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Abstract

In this paper, we develop the notion of a Morse sequence, which provides an
alternative approach to discrete Morse theory, and which is both simple and
effective. A Morse sequence on a finite simplicial complex is a sequence composed
solely of two elementary operations, that is, expansions (the inverse of a collapse),
and fillings (the inverse of a perforation). In a dual manner, a Morse sequence
may be obtained by considering only collapses and perforations. Such a sequence
is another way to represent the gradient vector field of an arbitrary discrete Morse
function. To each Morse sequence, we assign a reference map and an extension
map. A reference map associates a set of critical simplexes to each simplex of a
given complex, and an extension map associates a set of simplexes to each critical
simplex. By considering the boundary of each critical simplex, we obtain a chain
complex from these maps, which corresponds precisely to the Morse complex.
We show that, when restricted to homology, an extension map is the inverse of
a reference map. Also we show that these two maps allow us to recover directly
the isomorphism theorem between the homology of an object and the homology
of its Morse complex. At last, we introduce the notion of a flow complex, which
is based solely on extension maps. We prove that this notion is equivalent to the
classical one based on gradient flows.

Keywords: Discrete Morse theory, Simplicial complex, Expansions and collapses,
Fillings and perforations, Homology and cohomology

1 Introduction

Discrete Morse theory is a combinatorial adaptation of classical Morse theory, appli-
cable to a wide range of topological problems. Initially developed by Robin Forman

1



[17, 19], this theory was first introduced through the use of discrete Morse functions
that identify particular cells, known as critical cells, which encapsulate the essential
topological characteristics of a given object. In more recent treatments [28, 29], dis-
crete Morse theory is presented through the notion of a combinatorial matching, which
is equivalent to the gradient vector field of a discrete Morse function.

In this paper 1, we propose an approach where, instead of a Morse function or a
gradient vector field, a sequence of elementary operators is used for a simple repre-
sentation of an object. This sequence, that we called a Morse sequence, is composed
solely of two elementary operations, that is, expansions (the inverse of a collapse), and
fillings (the inverse of a perforation). These operations correspond exactly to the ones
introduced by Henry Whitehead [37].

After some basic definitions (Section 2), we introduce Morse sequences and give
two meaningful examples (Sections 3). We provide two computational schemes for
extracting a Morse sequence from a given simplicial complex. Also, we introduce a
notion of equivalence between two Morse sequences, this notion is based on the gradient
vector field of a Morse sequence.

In section 4, we present reference maps, which are maps that associate a set of crit-
ical simplexes to each simplex. These maps allow adding some crucial information to
Morse sequences. In Section 5, we show that reference maps may be fully characterized
by counting the number of gradient paths between each simplex and each critical face.

By simply considering the reference map of the boundary of each critical simplex,
we obtain the critical complex of a Morse sequence (Section 6), which corresponds
precisely to the so-called Morse complex.

In Section 7, we introduce arranged sequences which are obtained through a rear-
rangement of Morse sequences. We also introduce the related notions of lower and
upper skeletons of a Morse sequence; these skeletons explicitly appear in arranged
sequences.

We then define extension maps (Section 8) which associate a set of simplexes to
each critical simplex. We show that, when restricted to homology, an extension map
is the inverse of a reference map. Also, we show that reference and extension maps
allow us to recover directly an isomorphism between the homology of an object and
the homology of its critical complex.

In Section 9, we propose a definition of an extension complex, which is based solely
on extension maps. Again, we show that there is an isomorphism between the homology
of an extension complex and the homology of a critical complex. Furthermore, we
prove that this notion is equivalent to the classical one based on gradient flows.

After the conclusion, we give two appendices. In the first one, we emphasize that
a Morse sequence may represent the gradient vector field of any arbitrary discrete
Morse function (Appendix A). In the second one, we make clear the relation between
Morse sequences and different kinds of Morse functions (Appendix B).

Note that the paper is self-contained, the only external result which is used is
Theorem 31 from [18], located at the very end of the paper.

1A preliminary version of some parts of this paper appears in [5] and [8]
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2 Simplicial complexes, homology, and cohomology

2.1 Simplicial complexes

Let K be a finite family composed of non-empty finite sets. The family K is a
(simplicial) complex if σ ∈ K whenever σ ̸= ∅ and σ ⊆ τ for some τ ∈ K.

An element of a simplicial complex K is a simplex of K, or a face of K. A facet of
K is a simplex of K that is maximal for inclusion. The dimension of σ ∈ K, written
dim(σ), is the number of its elements minus one. If dim(σ) = p, we say that σ is a p-
simplex. The dimension of K, written dim(K), is the largest dimension of its simplices,
the dimension of ∅, the void complex, being defined to be −1.

We recall the definitions of the collapses/expansions operators [37].
Let K,L be simplicial complexes. Let σ, τ ∈ K. The couple (σ, τ) is a free pair for K,
if τ is the only face of K that contains σ. Thus, τ is necessarily a facet of K. The
dimension of a free pair (σ, τ) is defined by dim(σ, τ) = dim(τ). Thus, dim(σ, τ) =
dim(σ) + 1. If (σ, τ) is a free pair for K, then L = K \ (σ, τ) is an elementary collapse
of K, and K is an elementary expansion of L.
We say that K collapses onto L, or that L expands onto K, if there exists a sequence
⟨K = K0, . . . ,Kk = L⟩, such that Ki is an elementary collapse of Ki−1, i ∈ [1, k];
we say that such a sequence is a collapse sequence (from K to L). The complex K is
collapsible if K collapses onto a vertex, that is, onto a complex of the form {{a}}.

2.2 Chain and cochain complexes

A chain complex (Cp, dp) is a sequence of vector spaces Cp, with p ∈ Z, connected by
linear transformations dp : Cp → Cp−1, called boundary operators with the property
that dp−1 ◦ dp = 0. Each element of Cp is a p-chain.
In a dual way, a cochain complex (Cp, dp) is a sequence of vector spaces Cp, with p ∈ Z,
connected by linear transformations dp : Cp → Cp+1 called coboundary operators with
the property that dp+1 ◦ dp = 0. Each element of Cp is a p-cochain.

Let (Cp, dp) and (Cp, dp) be a chain and a cochain complex. We define the four
vector spaces:

• the set Zp(C) of p-cycles of (Cp, dp), Zp(C) is the kernel of dp;
• the set Bp(C) of p-boundaries of (Cp, dp), Bp(C) is the image of dp+1;
• the set Zp(C) of p-cocycles of (Cp, dp), Zp(C) is the kernel of dp;
• the set Bp(C) of p-coboundaries of (Cp, dp), Bp(C) is the image of dp−1.

By the definition of (co)boundary operators, all (co)boundaries are (co)cycles. We
obtain homology and cohomology with the following quotient vector spaces:

• Hp(C) = Zp(C) \Bp(C), which is the pth homology vector space of (Cp, dp);
• Hp(C) = Zp(C) \Bp(C), which is the pth cohomology vector space of (Cp, dp).

An element h in Hp(C) is such that h = z + Bp(C) for some z ∈ Zp(C). We write
h = [z], which is the homology class of the cycle z.
Similarly, an element h in Hp(C) is such that h = z +Bp(C) for some z ∈ Zp(C). We
also write h = [z], which is the cohomology class of the cocycle z.

3



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b)

1 2 3 4

5 8

9 12

13 14 15 16

10 11

6 7

(c)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(d)

Fig. 1: An annulus, with various cycles and cocyles. See text for details.

2.3 Homology and cohomology modulo 2

Let K be a simplicial complex. We write K(p) for the set of all p-simplexes of K,
and K[p] for the set composed of all subsets of K(p). Thus K(p) = ∅ and K[p] = {∅}
whenever p < 0 or p > dim(K). Each element of K[p] is a p-chain of K. The symmetric
difference of two elements of K[p] endows K[p] with the structure of a vector space
over the field Z2 = {0, 1}. The set K(p) is a basis for this vector space. Within this
structure, a chain c ∈ K[p] may be written as a sum

∑
σ∈c σ, the chain c = ∅ being

written 0. The sum of two chains is obtained using the modulo 2 arithmetic. See
Chapter 8 of [21] and see [26] for a general presentation of modulo 2 homology.
If S ⊆ K, we write S(p) = {ν ∈ S | ν ∈ K(p)} and S[p] = {c ⊆ S(p)}.

As we are dealing with a finite simplicial complex, boundary and coboundary
operators can be both defined as operators on K[p]. If σ ∈ K(p), we set:

∂(σ) = {τ ∈ K(p−1) | τ ⊂ σ} and δ(σ) = {τ ∈ K(p+1) | σ ⊂ τ}.
The boundary operator ∂p : K[p] → K[p − 1] is such that, for each c ∈ K[p], ∂p(c) =∑

σ∈c ∂(σ), with ∂p(∅) = 0.
The coboundary operator δp : K[p] → K[p + 1] is such that, for each c ∈ K[p],
δp(c) =

∑
σ∈c δ(σ), with δp(∅) = 0.

For each p ∈ Z, we have ∂p ◦ ∂p+1 = 0 and δp+1 ◦ δp = 0.
Thus, (Cp, dp) = (K[p], ∂p) is a chain complex and (Cp, dp) = (K[p], δp) is a cochain
complex. We write Zp(K), Bp(K), Hp(K) for Zp(C), Bp(C), Hp(C), and Zp(K),
Bp(K), Hp(K) for Zp(C), Bp(C), Hp(C).

Let βp(K) = dim(Hp(K)) and βp(K) = dim(Hp(K)). We have βp(K) = βp(K)
(See [15, Sec. V.1]). The number βp(K) = βp(K) is the pth Betti number (mod 2) of
K. Informally, the pth Betti number of K corresponds to the number of “p-dimensional
holes” of the complex K.

Fig. 1 depicts an annulus, with various cycles and cocyles, coloured in blue. In
Fig. 1.a, we see a 1-cycle that is the 1-boundary of the two pink triangles. In Fig. 1.b, we
have a 1-cycle that is not a 1-boundary. Such a cycle detects a “hole” by “contouring”
it. In Fig. 1.c, we see a 1-cocycle which is the 1-coboundary of the four pink points.
In Fig. 1.d, we have a 1-cocycle that is not a 1-coboundary. Such a cocycle detects a
“hole” by “cutting” the annulus.
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3 Morse sequences

Let us start first with the definition of perforations and fillings.
Let K,L be simplicial complexes. If ν ∈ K is a facet of K and if L = K \ {ν}, we

say that L is an elementary perforation of K, and that K is an elementary filling of L.
These transformations were introduced by Whitehead in a seminal paper [37].

Combined with collapses and expansions, it has been shown that we obtain four oper-
ators that correspond to the homotopy equivalence between two simplicial complexes
(Th. 17 of [37]). See also [4] which provides another kind of equivalence based on a
variant of these operators.

We introduce the notion of a “Morse sequence” by simply considering expansions
and fillings of a simplicial complex.

Definition 1. Let K be a simplicial complex. A Morse sequence (on K) is a sequence
−→
W = ⟨∅ = K0, . . . ,Kk = K⟩ of simplicial complexes such that, for each i ∈ [1, k], Ki

is either an elementary expansion or an elementary filling of Ki−1. We also write
−→
W (K) for a Morse sequence

−→
W on K.

Let
−→
W = ⟨K0, . . . ,Kk⟩ be a Morse sequence. For each i ∈ [1, k], let ki be such that:

- If Ki is an elementary filling of Ki−1 and Ki = Ki−1 ∪ {ν}, then κi = ν. We say

that the face κi is critical for
−→
W .

- If Ki is an elementary expansion of Ki−1 and Ki = Ki−1 ∪ {σ, τ}, with σ ⊆ τ , then

κi = (σ, τ). The pair κi is regular for
−→
W , the face σ is lower regular for

−→
W , and the

face τ is upper regular for
−→
W .

We write ⋄
−→
W = ⟨κ1, . . . , κk⟩, and we say that ⋄

−→
W is a simplex-wise (Morse) sequence.

We will use also the four following notations:

- Ŵ = {ν ∈ K | ν is critical for
−→
W},

- Ẅ = {(σ, τ) | (σ, τ) is a regular pair for
−→
W},

- W = {ν ∈ K | ν is upper regular for
−→
W},

- W = {ν ∈ K | ν is lower regular for
−→
W}.

Thus, ⋄
−→
W is a sequence of faces of Ŵ and pairs of Ẅ . Clearly,

−→
W and ⋄

−→
W are two

equivalent forms. That is, one form is determined by the other. Also, we observe that
K = Ŵ ∪W ∪W . This partition of a complex corresponds to a classification which
is often associated to a matching in the Hasse diagram of a complex or a poset, see
for example Section 10.2 of [29].

Observe that, if
−→
W = ⟨K0, ...,Kk⟩ is a Morse sequence, with k ≥ 1, then K1 is

necessarily a filling of ∅. Thus, K1 is necessarily a vertex. That is, K1 is made of a

single 0-simplex that is critical for
−→
W .

There are several ways to obtain a Morse sequence
−→
W from a given complex K.

The two following schemes are basic ones to achieve this goal, see [3, 33, 24, 20, 14]
for similar schemes given in the context of discrete Morse theory:
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Fig. 2: A Morse sequence on the torus. (a) A triangulation, points with the same
label are identified. (b) The sequence begins with the critical 0-simplex a. Elementary
expansions are added to the sequence until we obtain a maximal expansion from a.
(c) The critical 1-simplex b is added to the sequence. (d) A maximal expansion from
b is done. (e) The second critical 1-simplex c is added, and a maximal expansion from
c is done. (f) The critical 2-simplex d is added.

1. The increasing scheme. We build
−→
W from the left to the right. Starting from ∅, we

obtain K by iterative expansions and fillings. We say that this scheme is maximal
if we make a filling only if no expansion can be made.

2. The decreasing scheme. We build
−→
W from the right to the left. Starting from K, we

obtain ∅ by iterative collapses and perforations. We say that this scheme is maximal
if we make a perforation only if no collapse can be made.

Fig. 2 presents an example of a Morse sequence on a torus. The sequence has
been obtained by following the maximal increasing scheme. Using the same scheme,
an example of a Morse sequence on the dunce hat is given Fig. 3. The dunce hat
is a well-known example of a contractible but not collapsible object, see [38]. Con-
tractibility can be seen by noting that the dunce hat embeds in a 3-ball which both
collapses onto a vertex and onto the dunce hat. We observe that:
- The Morse sequence on the torus leads to two critical 1-faces and one critical 2-face.
These numbers correspond exactly to the numbers of 1D and 2D “holes” of the torus.
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Fig. 3: A Morse sequence on the dunce hat. (a) the dunce hat, the three edges of the
triangle have to be identified with the arrows. (b) A triangulation of the dunce hat.
(c) The sequence begins with the critical 0-simplex a. c) A maximal expansion from
a is done, then the 1-critical simplex b is added. (e) A maximal expansion from b. (f)
The critical 2-simplex c is added.

- The dunce hat has no 1D or 2D “hole”, nevertheless the Morse sequence leads to one
critical 1-face and one critical 2-face. These numbers are the smallest we can obtain.
In this paper, we use the torus and the dunce hat as our canonical examples, as they
exemplify two contrasting cases which arise in the context of discrete Morse theory.

Remark 1. The above maximal increasing and decreasing schemes are two meth-
ods which try to minimize the number of critical simplexes of a Morse sequence. By
the results given in [27, 30], this problem is NP-hard. Therefore, these methods do
not, in general, give optimal results.

Remark 2. Let
−→
W = ⟨K0, . . . ,Kk⟩ be a Morse sequence, let ⋄

−→
W = ⟨κ1, . . . , κk⟩,

and let κi, κj , j > i, be two consecutive critical faces of ⋄
−→
W , that is, κi+1, ..., κj−1 are

regular pairs. Then, as a direct consequence of the definition of a Morse sequence, the
complex Kj−1 collapses onto Ki. This property is the core of a fundamental theorem,
called the collapse theorem, which makes the link between the basic definitions of
discrete Morse theory and discrete homotopy (See Theorem 3.3 of [16] and Theorem
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4.27 of [35]). In a certain sense, we can say that Morse sequences provide an intro-
duction to discrete Morse theory by starting from this property.

Remark 3. Any Morse sequence
−→
W on K is a filtration on K, that is a sequence

of nested complexes ⟨∅ = K0, ...,Kk = K⟩ such that, for i ∈ [0, k − 1], we have
Ki ⊆ Ki+1; see [13]. Also any simplex-wise filtration on K is a special case of a Morse
sequence where, for i ∈ [0, k − 1], Ki+1 \ Ki is made of a single simplex. That is, a
simplex-wise filtration is a Morse sequence which is made solely of fillings; all faces of
K are critical for such a sequence.

Definition 2. Let
−→
W (K) be a Morse sequence. The gradient vector field of

−→
W is the

set composed of all regular pairs for
−→
W , that is, the set Ẅ . We say that two Morse

sequences
−→
V (K) and

−→
W (K) are equivalent if they have the same gradient vector field.

Let
−→
V (K) and

−→
W (K) be two equivalent sequences. Clearly, since V̈ = Ẅ , we

have V̂ = Ŵ . It should be noted that the converse of this proposition is, in general,
not true. For example, let us consider a collapsible complex K. There exists a Morse

sequence
−→
W on K which has a single critical simplex κ. The simplex κ is a vertex, and−→

W may be obtained by a collapse sequence onto κ. Now, suppose that dim(K) ≥ 2.
By considering another collapse sequence onto κ, we see that we may obtain a Morse

sequence
−→
V , which has the same critical point as

−→
W , and which is not equivalent to

−→
W .

To conclude this section, it is worth mentioning that there is no loss of generality
when using Morse sequences as a presentation of acyclic vector fields and Morse func-
tions. We can prove that there is an equivalence between the gradient vector field of
an arbitrary Morse function and the gradient vector field of a Morse sequence, and the
same holds true for an arbitrary acyclic vector field: see Appendix A and B which give
more details about these correspondences. In fact, a Morse sequence may be simply
seen as a total ordering that respects the partial ordering induced by a Morse func-
tion or the one induced by an acyclic vector field. See Definition 5.38 of [35] which
introduces some linear extensions of a poset that respect these partial orderings; see
also Theorem 11.9 of [29] which provides an equivalence between a linear extension
and an acyclic vector field.

4 The reference and co-reference maps

A reference or a co-reference map is a linear map which assigns, to each simplex of a
simplicial complex, a set of critical simplexes. These maps provide Morse sequences
with a structure, they will be the main ingredient of this paper.

If
−→
W (K) is a Morse sequence, we write Ŵ [p] = {c ∈ K[p] | c ⊆ Ŵ}. Thus, Ŵ [p]

is a vector subspace of K[p]. Also, in the sequel of the paper, we often omit the
subscript or the superscript p if the variable p is clear from the context.
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Fig. 4: The reference map (b) and the co-reference map (c) of the Morse sequence of
Fig. 2. See text for details.

Definition 3. Let
−→
W (K) be a Morse sequence. Let ⋎p,⋏p be two linear maps:

⋎p : K[p]→ Ŵ [p] and ⋏p : K[p]→ Ŵ [p],

such that, for each critical simplex ν of
−→
W , we have ⋎(ν) = ⋏(ν) = ν.

We say that ⋎ is a reference map for
−→
W if, for each regular pair (σ, τ) of

−→
W , we have

⋎(τ) = 0 and ⋎(σ) = ⋎(∂(τ) + σ).

We say that ⋏ is a co-reference map for
−→
W if, for each regular pair (σ, τ) of

−→
W , we

have ⋏(σ) = 0 and ⋏(τ) = ⋏(δ(σ) + τ).

Let
−→
W (K) = ⟨K0, . . . ,Kk⟩ and let ⋄

−→
W = ⟨κ1, . . . , κk⟩.

1) Since κ1 is critical, we have ⋎(κ1) = κ1. Suppose i ≥ 2. If κi is critical, then
⋎(κi) = κi. If κi is a regular pair (σ, τ), then ⋎(τ) = 0 and we observe that
∂(τ) + σ ⊆ Ki−1. Thus a reference map on K may be computed by scanning the

sequence ⋄
−→
W from the left to the right.

2) Also, if κk is critical, then ⋏(κk) = κk. If κk is a regular pair (σ, τ), then ⋏(σ) = 0
and ⋏(τ) = ⋏(τ + τ) = 0. Suppose i ≤ k − 1. If κi is critical, then ⋏(κi) = κi. If
κi = (σ, τ), then ⋏(σ) = 0 and we observe that δ(σ) + τ ⊆ Ki+1. Thus a co-reference

map on K may be computed by scanning the sequence ⋄
−→
W from the right to the left.

In this way, we obtain two maps ⋎ and ⋏ on K[p], we see that these maps are the only

possible reference and co-reference maps for
−→
W . Thus, we have the following result.

Theorem 1. Any Morse sequence admits a unique reference map and a unique
co-reference map.

If ⋎ and ⋏ are respectively the reference and the co-reference maps of
−→
W (K), we

say that (⋎,⋏) is the reference pair of
−→
W (K). If c ∈ K[p], we say that ⋎(c) is the

reference of c and ⋏(c) is the co-reference of c (for
−→
W ).

We illustrate, Fig. 4 (b), the reference map ⋎ of the Morse sequence of the torus
depicted Fig. 2 (f). In this figure, any simplex ν in grey is such that ⋎(ν) = 0. We have
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Fig. 5: The reference map (b) and the co-reference map (c) of the Morse sequence of
Fig. 3. See text for details.

⋎(ν) = a (in pink) for all simplexes ν of dimension 0. All the simplexes ν coloured in
blue (resp. in green) are such that ⋎(ν) = b (resp. ⋎(ν) = c). We have ⋎(x) = b+c (in
red) and ⋎(d) = d (in yellow). Using the same colouring conventions, the co-reference
map ⋏ of the same Morse sequence is given Fig. 4 (c). In Fig. 5, again with these
conventions, we give the reference and the co-reference maps of the Morse sequence of
the dunce hat depicted Fig. 3 (f).

The following proposition is easy to prove. It provides another example of a refer-
ence and a co-reference map with the simple case where the complex K has a unique
critical face, that is, when K is collapsible.

Proposition 2. Let
−→
W (K) be a Morse sequence such that Ŵ = {κ}. Thus, the

simplex κ is a vertex, and K collapses onto κ. Then, for each ν ∈ K,
- we have ⋎(ν) = κ if dim(ν) = 0, and ⋎(ν) = 0 if dim(ν) ≥ 1,
- we have ⋏(ν) = κ if ν = κ, and ⋏(ν) = 0 if ν ̸= κ.

Proposition 3. Let
−→
W (K) and

−→
W ′(K) be two Morse sequences. Let (⋎,⋏) be the

reference pair of
−→
W , and (⋎′,⋏′) be the reference pair of

−→
W ′. If

−→
W and

−→
W ′ are

equivalent, then we have ⋎ = ⋎′ and ⋏ = ⋏′.

Proof. Let
−→
W and

−→
W ′ be two equivalent sequences. We have Ẅ = Ẅ ′ and Ŵ = Ŵ ′.

We set
−→
W = ⟨∅ = K0, . . . ,Kk = K⟩ and ⋄

−→
W = ⟨κ1, . . . , κk⟩. The simplex κ1 is critical

for both
−→
W and

−→
W ′, thus ⋎(κ1) = ⋎′(κ1). Let i such that 2 ≤ i ≤ k. Suppose we

have ⋎(ν) = ⋎′(ν) for each ν ∈ Ki−1. If κi ∈ Ŵ , then κi ∈ Ŵ ′, thus we have
⋎(κi) = ⋎′(κi) = κi. If κi = (σ, τ) is in Ẅ , then ⋎(τ) = 0 and ⋎(σ) = ⋎(∂(τ) + σ).
Since κi is in Ẅ ′, we have ⋎′(τ) = 0. We have ∂(τ) +σ ⊆ Ki−1, thus by the induction
hypothesis ⋎(σ) = ⋎′(σ). Therefore, we have ⋎(ν) = ⋎′(ν) for each ν ∈ Ki and we
obtain ⋎ = ⋎′. The equality ⋏ = ⋏′ may be derived in the same way.

It should be noted that the converse of the previous proposition is, in general, not
true. Let us consider again a collapsible complex K, with dim(K) ≥ 2. We can build

two Morse sequences
−→
W and

−→
W ′ that are not equivalent by following two distinct
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collapse sequences. By Proposition 2, these two sequences have the same reference and
co-reference maps.

Let (⋎,⋏) be the reference pair of
−→
W (K). Let (σ, τ) be a regular pair of

−→
W . By

linearity of the operators ⋎ and ⋏, we may write:
⋎(∂(τ)) = ⋎(∂(τ) + σ) + ⋎(σ) and ⋏(δ(σ)) = ⋏(δ(σ) + τ) + ⋏(τ).

By the definitions of ⋎ and ⋏, we obtain ⋎(∂(τ)) = 0 and ⋏(δ(σ)) = 0. It means
that, if C ⊆ W (p) and D ⊆ W (p) are made of a single simplex, then ⋎(∂(C)) = 0
and ⋏(δ(D)) = 0. By linearity, we obtain the following elementary result.

Proposition 4. Let (⋎,⋏) be the reference pair of a Morse sequence
−→
W (K).

If C ⊆W (p), then ⋎(∂(C)) = 0. If D ⊆W (p), then ⋏(δ(D)) = 0.

5 Gradient paths and cogradient paths

Reference maps are closely related to the notion of a gradient path. We first recall the
classical definition of such a path (see also [18]).

Let
−→
W (K) be a Morse sequence.

1. Let π = ⟨σ0, τ0, . . . , σk−1, τk−1, σk⟩, k ≥ 0, be a sequence with σi ∈ K(p), τi ∈
K(p+1). We say that π is a gradient path in

−→
W (from σ0 to σk) if, for any i ∈ [0, k−1],

the pair (σi, τi) is regular for
−→
W and σi+1 ∈ ∂(τi), with σi+1 ̸= σi. The path π is

trivial if k = 0, that is, if π = ⟨σ0⟩ with σ0 ∈ K(p).
2. Let π = ⟨τ0, σ1, τ1, . . . , σk, τk⟩, k ≥ 0, be a sequence with τi ∈ K(p), σi ∈ K(p−1).

We say that π is a cogradient path in
−→
W (from τ0 to τk) if, for any i ∈ [1, k], the

pair (σi, τi) is regular for
−→
W and τi−1 ∈ δ(σi), with τi ̸= τi−1. The path π is trivial

if k = 0, that is, if π = ⟨τ0⟩ with τ0 ∈ K(p).

Observe that a gradient path may end at a critical face, and a cogradient path may
begin at a critical face. Also note that the sequence obtained by reversing a gradient
path is not a cogradient path unless the path is trivial.

A gradient vector field which may be obtained from a Morse sequence is given
Figure 6 (a). The 1D (resp. 2D) regular pairs correspond to black (resp. green) arrows,
the critical faces are in red. There are two gradient paths from the face a to the critical
face b. The gradient path beginning at a splits into two gradient paths at a triangle,
and these two paths merge at a segment. Note that this gradient vector field is not
obtained by a maximal increasing or decreasing scheme, otherwise we would have only
one critical face.

The parity of the number of gradient paths between two simplices is a classical
tool for extracting information about the homology of a complex. With our defini-
tions, this may be accomplished through the following result.

Theorem 5. Let (⋎,⋏) be the reference pair of a Morse sequence
−→
W (K).

If κ ∈ Ŵ and ν ∈ K, then:

11
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a

(a)
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(b)

Fig. 6: (a) A gradient vector field: there are two gradient paths from a to b.
(b) The only regular pairs involved in a ⋎-path ending at b are in yellow: thus there
is no ⋎-path from a to b. See text for details.

1) κ ∈ ⋎(ν) if and only if the number of gradient paths from ν to κ is odd.
2) κ ∈ ⋏(ν) if and only if the number of cogradient paths from κ to ν is odd.

Proof. Let
−→
W (K) = ⟨∅ = K0, . . . ,Ki, . . . ,Kk = K⟩.

1) For the first statement we proceed by induction on i, the base case ν ∈ K0 is
trivial. Suppose the property is true for each ν ∈ Ki−1, i ≥ 1. We write N(ν, κ) for
the number of gradient paths from ν to κ. Let ν ∈ Ki \Ki−1.

i) Suppose ν ∈ Ŵ . We have ⋎(ν) = ν. If ν ̸= κ there is no gradient path from ν
to κ, thus N(ν, κ) = 0. If ν = κ there is one and only one gradient path from ν to κ,
that is, the trivial path ⟨κ⟩, thus N(ν, κ) = 1.

ii) If ν ̸∈ Ŵ , we have Ki \Ki−1 = {σ, τ} where (σ, τ) is a regular pair for
−→
W .

- Suppose ν = τ . We have ⋎(τ) = 0 and τ ̸= κ. Furthermore, there is no non-trivial
gradient path starting at τ . Thus we have N(ν, κ) = 0.
- Suppose ν = σ. We have σ ̸= κ. We consider the sets:

A = {ν′ ∈ σ + ∂τ}, B = {ν′ ∈ A | N(ν′, κ) is odd}, C = {ν′ ∈ A | κ ∈ ⋎(ν′)}.
Any gradient path from ν to κ is obtained by concatenating (σ, τ) to a gradient path
from a simplex ν′ ∈ A to κ. Thus we have N(ν, κ) =

∑
ν′∈A N(ν′, κ). By parity

considerations, we obtain:
N(ν, κ) is odd if and only if Card(B) is odd. (P )

By the definition of ⋎ we have:
κ ∈ ⋎(ν) if and only if Card(C) is odd. (Q)

We have A ⊆ Ki−1, thus B ⊆ Ki−1 and C ⊆ Ki−1. By our induction hypothesis we
obtain B = C. The result follows from (P ) and (Q).
2) For the second statement we consider the sequence

←−
W (K) = ⟨K0 = K \Kk, . . . ,Kj = K \Kk−j , . . . ,Kk = K \K0⟩.

We proceed by induction on the number j, the base case ν ∈ K0 is trivial. Then we
consider ν ∈ Kj \Kj−1. We use the same kind of arguments as above. The set A is
replaced by the set A′ = {ν′ ∈ τ + δσ}, thus A′ ⊆ Kj−1.

Now, we introduce a refinement of gradient and cogradient paths.

12



Definition 4. Let (⋎,⋏) be the reference pair of a Morse sequence
−→
W .

We say that a gradient path ⟨σ0, τ0, . . . , σk−1, τk−1, σk⟩ in
−→
W is a ⋎-path if, for each

i ∈ [0, k], we have σk ∈ ⋎(σi).

We say that a cogradient path ⟨τ0, σ1, τ1, . . . , σk, τk⟩ in
−→
W is a ⋏-path if, for each

i ∈ [0, k], we have τ0 ∈ ⋏(τi).

We observe that a ⋎-path (resp. a ⋏-path) necessarily ends (resp. begins) at a
critical face. By using the same arguments as in the proof of Theorem 5, we derive:

Proposition 6. Let (⋎,⋏) be the reference pair of a Morse sequence
−→
W (K).

If κ ∈ Ŵ and ν ∈ K, then:
1) κ ∈ ⋎(ν) if and only if the number of ⋎-paths from ν to κ is odd.
2) κ ∈ ⋏(ν) if and only if the number of ⋏-paths from κ to ν is odd.

Therefore, we can deduce that:

Corollary 7. Let (⋎,⋏) be the reference pair of a Morse sequence
−→
W (K).

If κ ∈ Ŵ and ν ∈ K, then:
1) We have κ ∈ ⋎(ν) if and only if there exists a ⋎-path from ν to κ.
2) We have κ ∈ ⋏(ν) if and only if there exists a ⋏-path from κ to ν.

In Figure 6 (b), the only regular pairs involved in a ⋎-path ending at the critical
face b are in yellow: we can check that there are precisely four segments ν such that
b ∈ ⋎(ν), with ν ̸= b. We can also check that there is no ⋎-path from a to b. By the
above corollary, it means that b ̸∈ ⋎(a). Since there are precisely two gradient paths
from a to b, this fact is also a consequence of Theorem 5.

Thus, the property given in Corollary 7 does not hold if we consider arbitrary
gradient (or co-gradient) paths instead of ⋎-paths (or ⋏-paths): ⋎- and ⋏-paths allow
us to discard some paths that do not convey information about homology.

6 The critical and cocritical complexes

Now, thanks to the reference and the coreference of a Morse sequence
−→
W , we intro-

duce two maps ∂̂p and δ̂p that are restricted to Ŵ . With these maps we obtain the
critical and the cocritical complexes of a Morse sequence.

In the sequel of the paper, if we write
−→
W for a Morse sequence, the symbols ⋎ and ⋏

stand respectively for the reference and co-reference maps of
−→
W .

Definition 5. Let
−→
W be a Morse sequence. Let ∂̂p and δ̂p be the two linear maps:

∂̂p : Ŵ [p]→ Ŵ [p− 1] and δ̂p : Ŵ [p]→ Ŵ [p + 1],

such that, for each ν ∈ Ŵ (p), ∂̂(ν) = ⋎p−1(∂(ν)) and δ̂(ν) = ⋏p+1(δ(ν)).

If c ∈ Ŵ [p], then ∂̂p(c) is the ⋎-boundary of c, δ̂p(c) is the ⋏-coboundary of c.
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Thus, for each c ∈ Ŵ [p], we have:

- ∂̂p(c) =
∑

ν∈c ⋎p−1(∂(ν)) = ⋎p−1(
∑

ν∈c ∂(ν)) = ⋎p−1(∂p(c)), and

- δ̂p(c) =
∑

ν∈c ⋏p+1(δ(ν)) = ⋏p+1(
∑

ν∈c δ(ν)) = ⋏p+1(δp(c)).

As an illustration, let us consider our two canonical examples:
- In Fig. 4 (b), we have ∂̂(d) = ⋎1(∂(d)) = b + c + ⋎(x) = 0,

- In Fig. 4 (c), we have δ̂(b) = ⋏2(δ(b)) = d + d = 0,

- In Fig. 5 (b), we have ∂̂(c) = ⋎1(∂(c)) = b + b + b = b.

- In Fig. 5 (c), we have δ̂(b) = ⋏2(δ(b)) = c + c + c = c.

This last example suggests us the following theorem, which reflects an important
duality relation between the reference and the co-reference maps of a Morse sequence.

Theorem 8. Let
−→
W be a Morse sequence on K and let σ, τ ∈ Ŵ . We have:

σ ∈ ∂̂(τ) if and only if τ ∈ δ̂(σ).

Proof. Let σ, τ ∈ Ŵ . We write:
- Ωσ for the set of all gradient paths from a simplex ν ∈ ∂(τ) to σ,
- Ωτ for the set of all cogradient paths from τ to a simplex ν ∈ δ(σ).

We have σ ∈ ∂̂(τ) if and only if Card({ν | ν ∈ ∂(τ) and σ ∈ ⋎(ν)}) is odd.

Thus, by Theorem 5, we have σ ∈ ∂̂(τ) if and only if Card(Ωσ) is odd.

Similarly we have τ ∈ δ̂(σ) if and only if Card(Ωτ ) is odd.
We will establish the result by showing that Card(Ωσ) = Card(Ωτ ).
1) Let π be a gradient path in Ωσ. Then π is of the form

π = ⟨σ0, τ0, . . . , σk−1, τk−1, σk⟩,
with σ0 ∈ ∂(τ) and σk = σ. Let f(π) be the sequence

f(π) = ⟨τ, σ0, τ0, . . . , σk−1, τk−1⟩.
We can check that f(π) is a cogradient path from τ to τk−1. Furthermore we have
τk−1 ∈ δ(σ), thus f(π) is in Ωτ .
Let f be the map π ∈ Ωσ 7→ f(π) ∈ Ωτ and let

π = ⟨σ0, τ0, . . . , σk−1, τk−1, σk⟩ and π′ = ⟨σ′
0, τ

′
0, . . . , σ

′
l−1, τ

′
l−1, σ

′
l⟩

be two distinct paths in Ωσ. Since σ = σk = σ′
l, the two sequences

⟨σ0, τ0, . . . , σk−1, τk−1⟩ and ⟨σ′
0, τ

′
0, . . . , σ

′
l−1, τ

′
l−1⟩

must be distinct. It follows that f(π) ̸= f(π′). Therefore the map f is injective, which
means that Card(Ωσ) ≤ Card(Ωτ ).
2) Now, let π = ⟨τ0, σ1, τ1, . . . , σk, τk⟩ be a path in Ωτ . Thus, we have τ0 = τ and
τk ∈ δ(σ). We proceed as above:
- The sequence g(π) = ⟨σ1, τ1, . . . , σk, τk, σ⟩ is a gradient path in Ωσ,
- The map g : π ∈ Ωτ 7→ g(π) ∈ Ωσ is injective,
- Therefore we have Card(Ωτ ) ≤ Card(Ωσ).

Theorem 9. Let
−→
W be a Morse sequence. We have:
∂̂p ◦⋎p = ⋎p−1 ◦ ∂p and δ̂p ◦⋏p = ⋏p+1 ◦ δp.
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We will only give the first part of the proof of the theorem. The second part may
be derived by simply exchanging the role of the operators ∂ and δ.

In the sequel of the paper, we will proceed in the same manner for all propositions
and theorems where we have such a duality.

Proof. Let
−→
W = ⟨∅ = K0, ...,Kk = K⟩ be a Morse sequence on K, and let

⋄
−→
W = ⟨κ1, . . . , κk⟩. We consider the statement (Si): For each c ∈ Ki[p], we have

∂̂p(⋎p(c)) = ⋎p−1(∂p(c)). We have K0[p] = {∅}. Thus (S0) holds.
Suppose (Si−1) holds, with 0 ≤ i− 1 ≤ k − 1, and let c ∈ Ki[p].

1) Suppose κi = ν, with ν ∈ Ŵ . If ν ̸∈ c, then we are done. Otherwise, we have
c = c′ ∪ {ν}, with c′ ∈ Ki−1[p]. Thus ∂p(c) = ∂p(c′) + ∂(ν) and ⋎p−1(∂p(c)) =

⋎p−1(∂p(c′))+⋎p−1(∂(ν)). By the induction hypothesis and by the definition of ∂̂(ν),

we obtain ⋎p−1(∂p(c)) = ∂̂p(⋎p(c′)) + ∂̂(ν). Since the reference map ⋎ is the identity
on critical faces, we may write:

⋎p−1(∂p(c)) = ∂̂p(⋎p(c′)) + ∂̂p(⋎p(ν)).

By linearity we obtain ⋎p−1(∂p(c)) = ∂̂p(⋎p(c)).
2) Suppose κi = (σ, τ) is a free pair. If σ ̸∈ c and τ ̸∈ c, then we are done.
2.1) Suppose σ ∈ c. Let c′ = c + ∂p+1(τ). By Proposition 4, we have ⋎p(c′) =
⋎p(c) + ⋎p(∂p+1(τ)) = ⋎p(c). We also have ∂p(c′) = ∂p(c) + ∂p(∂p+1(τ)) = ∂p(c).

But we see that σ ̸∈ c′. By the induction hypothesis, it follows that ∂̂p(⋎p(c′)) =

⋎p−1(∂p(c′)). By the previous equalities, we obtain ∂̂p(⋎p(c)) = ⋎p−1(∂p(c)).
2.2) Suppose τ ∈ c. We have c = c′ ∪ {τ}, with c′ ∈ Ki−1[p]. Since ⋎(τ) = 0, we
obtain ⋎p(c) = ⋎p(c′). Furthermore ⋎p−1(∂p(c)) = ⋎p−1(∂p(c′)) + ⋎p−1(∂p(τ)) =

⋎p−1(∂p(c′)). By the induction hypothesis, we have ∂̂p(⋎p(c′)) = ⋎p−1(∂p(c′)). There-

fore ∂̂p(⋎p(c)) = ⋎p−1(∂p(c)).
We conclude that, in all cases, the statement (Si) holds.

The two following results are direct consequences of Theorem 9.

Proposition 10. Let
−→
W (K) be a Morse sequence and let c, c′ ∈ K[p].

1) We have ⋎p−1(∂p(c)) = ⋎p−1(∂p(c′)) whenever ⋎p(c) = ⋎p(c′).
2) We have ⋏p+1(δp(c)) = ⋏p+1(δp(c′)) whenever ⋏p(c) = ⋏p(c′).

Proof. Let c, c′ ∈ K[p] with ⋎p(c) = ⋎p(c′). Thus ∂̂p(⋎p(c)) = ∂̂p(⋎p(c′)). By
Theorem 9, we have ⋎p−1(∂p(c)) = ⋎p−1(∂p(c′)).

Proposition 11. If
−→
W is a Morse sequence, then:

1) The maps ∂̂p are boundary operators. That is, we have ∂̂p ◦ ∂̂p+1 = 0.

2) The maps δ̂p are coboundary operators. That is, we have δ̂p+1 ◦ δ̂p = 0.

Proof. Let ν ∈ Ŵ , with ν ∈ K(p+1). We have ∂̂p+1(ν) = ⋎p(∂p+1(ν)). By Theorem 9,

we have ∂̂p(⋎p(∂p+1(ν))) = ⋎p−1(∂p(∂p+1(ν))) = ⋎p−1(0) = 0.

Thus ∂̂p(∂̂p+1(ν)) = 0, which gives the result by linearity.

Since ∂̂p ◦ ∂̂p+1 = 0, the pair (Ŵ [p], ∂̂p) satisfies the definition of a chain complex,

see Section 2. Similarly, (Ŵ [p], δ̂p) satisfies the definition of a cochain complex.
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Definition 6. Let
−→
W be a Morse sequence. We say that the chain complex (Ŵ [p], ∂̂p)

is the critical complex of
−→
W and the cochain complex (Ŵ [p], δ̂p) is the cocritical

complex of
−→
W .

This notion of a critical complex is equivalent to the classical notion, also some-
times called Morse complex, given in the context of discrete Morse theory. This fact
may be verified using Theorem 8.31 of [35], Theorem 5, and the very definition of the

differential ∂̂p.

By Theorem 9, the map ⋎ is a chain map [25] from the chain complex (K[p], ∂p)

to the chain complex (Ŵ [p], ∂̂p). The map ⋏ is a cochain map [25] from the chain

complex (K[p], δp) to the chain complex (Ŵ [p], δ̂p).

Also, we easily derive from Theorem 9 the following facts, which are basic prop-
erties of chain maps, we follow the notations given in subsection 2.2:
- If c ∈ Zp(K), then ⋎p(c) ∈ Zp(Ŵ ), if c ∈ Zp(K), then ⋏p(c) ∈ Zp(Ŵ ).

- If c ∈ Bp(K), then ⋎p(c) ∈ Bp(Ŵ ), if c ∈ Bp(K), then ⋏p(c) ∈ Bp(Ŵ ).

It follows that we have linear maps (homomorphisms) between Hp(K) and Hp(Ŵ ),

and between Hp(K) and Hp(Ŵ ):

⋎H
p : [z] ∈ Hp(K) 7→ ⋎H

p ([z]) = [⋎p(z)] ∈ Hp(Ŵ ),

⋏H
p : [z] ∈ Hp(K) 7→ ⋏H

p ([z]) = [⋏p(z)] ∈ Hp(Ŵ ).

Thus, the maps ⋎ and ⋏ allow to carry out the homology of the complex K to the
smaller space Ŵ . We will see in section 8 how to go in the other direction in order to
obtain an isomorphism between the vector spaces Hp(K) and Hp(Ŵ ).

7 Arranged Morse sequences and skeletons

In this section, we introduce arranged sequences which may be obtained thanks to
a reordering of Morse sequences. Also we introduce the related notions of lower
and upper skeletons of an arbitrary Morse sequence. In particular, the properties of
skeletons and arranged sequences are crucial for the theorems of the next sections.

Recall that the dimension of a free pair (σ, τ) is equal to dim(τ). An arranged
sequence is simply a Morse sequence where the critical faces and the free pairs are
partially ordered according to their dimensions 2.

Definition 7. Let
−→
W be a Morse sequence and let ⋄

−→
W = ⟨κ1, . . . , κk⟩. We say that

−→
W is an arranged (Morse) sequence if for each i ∈ [1, k − 1], we have:
1) dim(κi) ≤ dim(κi+1), and
2) dim(κi) < dim(κi+1) if κi is critical and κi+1 is a regular pair.

2See also the rephrasing of the proof of Proposition 13.1 given in [29] where a similar ordering on the
simplexes is used.
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Let us write Ŵ (p) = {ν ∈ Ŵ | dim(ν) = p} and Ẅ (p) = {(σ, τ) ∈ Ẅ | dim(τ) = p}.
If
−→
W is an arranged sequence, each of the two sets Ŵ (p) and Ẅ (p) constitutes a

substring of ⋄
−→
W , that is a contiguous sequence. Furthermore, Ŵ (p) ∪ Ẅ (p) constitutes

also a substring of ⋄
−→
W where Ẅ (p) is a prefix.

Let ⋄
−→
W = ⟨κ1, . . . , κk⟩ be a simplex-wise Morse sequence. If κi and κi+1 do not

satisfy one of the two above conditions, it can be checked that the sequence obtained
by swapping κi and κi+1 is still a simplex-wise Morse sequence. By induction, we
have the following result.

Theorem 12. If
−→
W is a Morse sequence, then there exists an arranged sequence

−→
V

such that
−→
W and

−→
V are equivalent.

Remark 4. It should be noted that the maximal increasing scheme introduced
in Section 3 does not, in general, provide directly an arranged Morse sequence. A
sorting has to be made in order to obtain an equivalent arranged sequence. The same
holds true for the maximal decreasing scheme.

Recall that the p-skeleton of a simplicial complex K is the set composed of all the
q-simplices of K such that q ≤ p. The following may be seen as a refinement of this
notion for Morse sequences.

Definition 8. Let
−→
W be a Morse sequence. We write:

- W−
p = {ν ∈W | dim(ν) ≤ p} ∪ {ν ∈ Ŵ ∪W | dim(ν) ≤ p− 1}.

- W+
p = {ν ∈ Ŵ ∪W | dim(ν) ≤ p} ∪ {ν ∈W | dim(ν) ≤ p− 1}.

The sets W−
p and W+

p are, respectively, the lower and the upper p-skeleton of
−→
W .

Also, if d = dim(K), we say that the sequence:
−→
S (W ) = ⟨W−

0 ,W+
0 , . . . ,W−

p ,W+
p , . . . ,W−

d ,W+
d ⟩

is the skeleton sequence of
−→
W .

Thus, W−
p is the simplicial complex that contains the (p − 1)-skeleton of K and

the p-simplexes that are upper regular for
−→
W ; W+

p is the simplicial complex that
contains the p-skeleton of K except the p-simplices of K that are lower regular for−→
W . We observe that:
- We have W−

0 = ∅ and W+
d = K. The set W+

0 is made of all vertices of K that are

critical for
−→
W .

- The skeleton sequence
−→
S (W ) of

−→
W is a filtration (see Remark 3).

- If two Morse sequences
−→
V and

−→
W are equivalent, then

−→
S (V ) =

−→
S (W ).

- We have W+
p \W−

p = Ŵ (p).

- We have W−
p+1 \W+

p = {ν ∈W | dim(ν) = p + 1} ∪ {ν ∈W | dim(ν) = p}. That is,

W−
p+1 \W+

p is made of all simplexes that are in Ẅ (p).
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Fig. 7: Skeleton sequences of two Morse sequences
−→
W (K). In (a) the sequence

−→
W (K)

is the one corresponding to Fig 2, and in (b) the sequence
−→
W (K) corresponds to Fig

3. See text for details.

An illustration of two skeleton sequences
−→
S (W ) = ⟨W−

0 ,W+
0 , . . . ,W−

2 ,W+
2 ⟩ is

given Figure 7. In each of the figures (a) and (b), we have:
- W−

0 = ∅ and W+
0 = {a}, where a is the critical vertex.

- W−
1 is the tree composed of W+

0 , all the green vertices, and all the green edges,
- W+

1 is composed of W−
1 and all the critical edges, that is, all the blue edges,

- W−
2 is composed of W+

1 , all the dark edges, and all the grey triangles.
- W+

2 = K, that is, W+
2 = W−

2 ∪ {κ}, where κ is the critical yellow triangle.

The two next propositions are direct consequences of the above definitions.

Proposition 13. Let
−→
W be an arranged Morse sequence and let

−→
S (W ) be the skele-

ton sequence of
−→
W . Then each complex in

−→
S (W ) is a complex in

−→
W .

Note that we can also affirm that
−→
S (W ) is a subsequence of an arranged sequence

−→
W . That is,

−→
S (W ) can be obtained from

−→
W by removing some elements without

changing the order of the remaining elements.

Proposition 14. Let
−→
W (K) = ⟨K0, . . . ,Kk⟩ be an arranged Morse sequence. Let

Ki = W+
p and Kj = W−

p+1. Then the sequence ⟨Kj , . . . ,Ki⟩ is a collapse sequence.

The following result is a direct consequence of Theorem 12 and Proposition 14. It
may be seen as another aspect of the fundamental collapse theorem of discrete Morse
theory; see Remark 2 given in Section 3. A specificity of this formulation is that all
regular pairs (and not only a part of them) of a given dimension are removed by the
collapse sequence.

Theorem 15. If
−→
W is a Morse sequence, then W−

p+1 collapses onto W+
p .
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We now give some properties of reference and co-reference maps. Theorems 17 and
18 will be essential for some crucial proofs in the sequel of this paper. These theorems
are obtained thanks to arranged sequences that may be derived from arbitrary Morse
sequences (Theorem 12), and thanks to the skeletons which appear in such sequences
(Proposition 13).

Let ν ∈ K(p) such that ν ∈ W+
p . Thus ν ∈ Ŵ ∪W . We have ⋎(ν) = ν if ν ∈ Ŵ ,

and ⋎(ν) = 0 if ν ∈W . This leads us to the following:

Proposition 16. Let
−→
W (K) be a Morse sequence and let c ∈ K[p].

1) If c ⊆W+
p , then ⋎(c) = c ∩ Ŵ .

2) If c ⊆ K \W−
p , then ⋏(c) = c ∩ Ŵ .

Theorem 17. Let
−→
W (K) be a Morse sequence.

1) Let z, z′ ∈ Zp(K). If ⋎(z) = ⋎(z′) and z, z′ ⊆W+
p , then z = z′.

2) Let z, z′ ∈ Zp(K). If ⋏(z) = ⋏(z′) and z, z′ ⊆ K \W−
p , then z = z′.

Proof. By Theorem 12 and by Proposition 3, we may suppose that
−→
W (K) is an

arranged sequence, we set
−→
W (K) = ⟨K0, . . . ,Kk⟩.

1) We will first prove that z = 0 whenever z ∈ Zp(K) and z ⊆ W−
p . Since W−

0 = ∅,
the property is trivially true whenever p = 0. Suppose p ≥ 1. By Proposition 13, there
exist Ki and Kj such that Ki = W+

p−1 and Kj = W−
p . Since dim(Ki) ≤ p − 1, the

property is trivially true whenever z ⊆ Ki. Suppose the property is true whenever
z ⊆ Kl−1, with i ≤ l − 1 ≤ j − 1, and let z ∈ Zp(K) with z ⊆ Kl. By Proposition 14
we have Kl = Kl−1 ∪ {σ, τ}, where (σ, τ) is a free pair and dim(τ) = p. But it is
not possible that z contains the simplex τ otherwise we would have σ ∈ ∂(z) and z
would not be a cycle. Thus, z ⊆ Kl−1. By the induction hypothesis, it means that
z = 0. Therefore the property is true whenever z ⊆ Kj . Since Kj = W−

p , we obtain
the desired conclusion.
2) Now, suppose z ∈ Zp(K), z ⊆W+

p and ⋎(z) = 0. By Proposition 16, it means that
z ⊆ W−

p . By the result obtained in 1), we deduce that z = 0. Let z, z′ ∈ Zp(K) such
that z, z′ ⊆ W+

p , and ⋎(z) = ⋎(z′). We have ⋎(z + z′) = 0. By the previous result,
this gives z = z′.

By the previous statement, two distinct p-cycles in W+
p must have distinct refer-

ences. Of course this property is not true if we consider arbitrary p-cycles. For example,
let us consider the 1-cycle z that is the boundary of the dunce hat depicted Figure 5
(b). We have ⋎(z) = b. But the 1-cycle z′ = ∂(c), the boundary of the critical sim-
plex c, is made of three simplices ν such that ⋎(ν) = b. Thus we have z ̸= z′ but
⋎(z) = ⋎(z′) = b.

In the next result, we consider the general case where the p-cycles are not neces-
sarily in W+

p . We write z ∼ z′ if z and z′ are two cycles (or two cocycles) that are in
the same homology (or cohomology) class.
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Theorem 18. Let
−→
W (K) be a Morse sequence.

1) Let z, z′ ∈ Zp(K). If ⋎(z) = ⋎(z′), then z ∼ z′.
2) Let z, z′ ∈ Zp(K). If ⋏(z) = ⋏(z′), then z ∼ z′.

Proof. Again, by Theorem 12 and by Proposition 3, we may suppose that
−→
W (K) is an

arranged sequence, we set
−→
W (K) = ⟨K0, . . . ,Kk⟩. We will prove that we have z ∼ 0

whenever z ∈ Zp(K) and ⋎(z) = 0. The result will follow by linearity.
Let z ∈ Zp(K). We first observe that z ⊆W−

p+1. By Proposition 13, there exist Ki and

Kj such that Ki = W+
p and Kj = W−

p+1. By Theorem 17, the property is true whenever
z ⊆ Ki. Suppose it is true for any z ⊆ Kl−1, with i ≤ l− 1 ≤ j− 1, and let z ∈ Zp(K)
such that z ⊆ Kl and ⋎(z) = 0. By Proposition 14 we have Kl = Kl−1∪{σ, τ}, where
(σ, τ) is a free pair. We have dim(τ) = p + 1, thus the simplex τ is not in z. Also by
the induction hypothesis, we have z ∼ 0 whenever σ ̸∈ z .
Suppose now that σ ∈ z. Let z′ = z+∂(τ). We have ⋎(z′) = ⋎(z)+⋎(∂(τ)) = ⋎(z) =
0. We have z′ ⊆ Ki−1. Therefore, by the induction hypothesis, we have z′ ∼ 0. But
∂(τ) is a boundary, thus z ∼ z′. Therefore z ∼ 0.

It should be noted that the converse of the previous statement is, in general, not
true. For example, let us consider again the cycle z that is the boundary of the dunce
hat depicted Figure 5 (b). We have ⋎(z) = b, but z ∼ 0 and ⋎(0) = 0.

8 The extension and co-extension maps

In this section, we introduce two maps ⋎̃ and ⋏̃ which, at the level of homology, may
be seen as the inverses of the maps ⋎ and ⋏. Each couple (⋎, ⋎̃) and (⋏, ⋏̃) allows us
to establish a relationship between a complex and its critical complex. In particular,
this relation includes the equality of their homology.

Definition 9. Let
−→
W (K) be a Morse sequence. Let ⋎̃p and ⋏̃p be the two linear maps

⋎̃p : Ŵ [p]→ K[p] and ⋏̃p : Ŵ [p]→ K[p] defined by:

⋎̃(κ) = {ν ∈ K | κ ∈ ⋏(ν)} and ⋏̃(κ) = {ν ∈ K | κ ∈ ⋎(ν)}, where κ ∈ Ŵ ,

⋎̃ and ⋏̃ are, respectively, the extension and the co-extension map of
−→
W . If c ∈ Ŵ [p],

⋎̃p(c) and ⋏̃p(c) are, respectively, the extension and the co-extension of c (for
−→
W ).

In other words, if κ ∈ Ŵ (p), we have:
ν ∈ ⋎̃(κ) if and only if κ ∈ ⋏(ν) and ν ∈ ⋏̃(κ) if and only if κ ∈ ⋎(ν).

Also, the two maps ⋎̃ and ⋏̃ may be described by ⋏- and ⋎-paths:
- We have ν ∈ ⋎̃(κ) if and only if there exists a ⋏-path from κ to ν.
- We have ν ∈ ⋏̃(κ) if and only if there exists a ⋎-path from ν to κ.

An illustration of two extension maps is directly given by the co-reference maps
of the torus and the dunce hat of Figure 4 (c) and 5 (c). Another example is given
Figure 8 where the effect of the modulo 2 arithmetic is emphasized.
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Fig. 8: (a) The gradient vector field of a Morse sequence with 4 critical faces. (b) The
extension of the face a. (c) The extension of the face b. (d) The extension of a + b.

With the notion of an extension map, we retrieve the closure operator ϕ intro-
duced in [29], Chapter 12. This fact can be checked by using Proposition 12.7 of [29]
and Theorem 5 of this paper. It has been proved that the image of the operator ϕ
induces a chain complex which leads to an isomorphism with the critical complex,
see Chapter 13 of [29]. Perhaps the main difference between ⋎̃ and ϕ is that the map
⋎̃ is defined with the co-reference map ⋏, while ϕ is built with a decomposition of a
graph, see Definition 12.3 of [29]. In the following, we will see that the link between

⋎̃ and ⋏ allows us to highlight the strong relationships between the maps ⋎̃, ⋎, ∂̂
and, in a dual way, between the maps ⋏̃, ⋏, δ̂. We will recover, in a different manner,
and without the image of ⋎̃, an isomorphism with the critical complex. In the next
section, we will use the chain complex induced by the image of ⋎̃ for an equivalence
with the flow complex.

Let κ ∈ Ŵ . We have ⋏(κ) = ⋎(κ) = κ, therefore κ ∈ ⋎̃(κ) and κ ∈ ⋏̃(κ). Also,

if κ′ ∈ Ŵ and κ ∈ ⋏(κ′) or κ ∈ ⋎(κ′), we have κ = κ′ (since ⋏(κ′) = ⋎(κ′) = κ′).
Furthermore:
- if ν ∈ ⋎̃(κ), then ν cannot be lower regular (since ⋏(ν) ̸= 0).
- if ν ∈ ⋏̃(κ), then ν cannot be upper regular (since ⋎(ν) ̸= 0).
Thus, we have the two following results.

Proposition 19. Let
−→
W be a Morse sequence on K and let κ ∈ Ŵ . Then:

1) ⋎̃(κ) and ⋏̃(κ) each contains a unique critical simplex which is precisely κ.

2) If ν ∈ ⋎̃(κ) and ν ̸= κ, then ν is upper regular for
−→
W . That is ⋎̃(κ) + κ ⊆W .

3) If ν ∈ ⋏̃(κ) and ν ̸= κ, then ν is lower regular for
−→
W . That is ⋏̃(κ) + κ ⊆W .

Proposition 20. Let
−→
W be a Morse sequence and let c ∈ Ŵ [p]. We have:
⋎̃p(c) ⊆W+

p and ⋏̃p(c) ⊆ K \W−
p .

Let κ ∈ Ŵ . We have ⋎(ν) = 0 whenever ν is upper regular. Thus, by Proposition
19, we have ⋎(⋎̃(κ)) = κ. If we denote by IdS the identity map on a set S, we obtain
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by linearity:

Proposition 21. Let
−→
W be a Morse sequence. We have:
⋎p ◦ ⋎̃p = Id

Ŵ [p]
and ⋏p ◦ ⋏̃p = Id

Ŵ [p]
.

Let κ ∈ Ŵ . With Propositions 4 and 19, we derive ⋎(∂(⋎̃(κ) + κ)) = 0. It means
that ⋎(∂(⋎̃(κ))) = ⋎(∂(κ)) where the last expression corresponds to the definition of

the map ∂̂. By linearity we obtain:

Proposition 22. Let
−→
W be a Morse sequence. We have:

⋎p−1 ◦ ∂p ◦ ⋎̃p = ∂̂p and ⋏p+1 ◦ δp ◦ ⋏̃p = δ̂p

Proposition 23. Let
−→
W be a Morse sequence and let κ ∈ Ŵ .

1) If ν ∈ ∂(⋎̃(κ)), then ν is either critical or upper regular for
−→
W .

2) If ν ∈ δ(⋏̃(κ)), then ν is either critical or lower regular for
−→
W .

Proof. Let κ ∈ Ŵ and let σ be a simplex that is lower regular for
−→
W . Let T = {ν ∈

⋎̃(κ) | σ ∈ ∂(ν)}. By the definition of the boundary operator, we have σ ∈ ∂(⋎̃(κ))
if and only if card(T ) is odd. But we may also write T = {ν ∈ δ(σ) | κ ∈ ⋏(ν)}.
By the definition of ⋏, since σ is lower regular, we have ⋏(δ(σ)) = 0 (Proposition 4).
Therefore, the number card(T ) must be even, otherwise we would have κ ∈ ⋏(δ(σ)).

It means that ∂(⋎̃(κ)) cannot contain a simplex that is lower regular for
−→
W .

Proposition 24. Let
−→
W be a Morse sequence and let κ ∈ Ŵ . We have:

∂̂(κ) = ∂(⋎̃(κ)) ∩ Ŵ and δ̂(κ) = δ(⋏̃(κ)) ∩ Ŵ .

Proof. By Proposition 22, we have ∂̂(κ) = ⋎(∂(⋎̃(κ))). Let ν ∈ K. We can write:
ν ∈ ⋎(∂(⋎̃(κ)))⇔ card{ν′ | ν′ ∈ ∂(⋎̃(κ)) and ν ∈ ⋎(ν′)} is odd.

If ν′ is an upper regular simplex of ∂(⋎̃(κ)), we have ⋎(ν′) = 0. Furthermore, by
Proposition 23, ∂(⋎̃(κ)) does not contain any lower regular simplex. Therefore, if

ν′ ∈ ∂(⋎̃(κ)) and ν ∈ ⋎(ν′), we must have ν′ ∈ Ŵ . In this case, we also have
⋎(ν′) = ν′. We obtain ν = ν′. Thus, we can write:

ν ∈ ⋎(∂(⋎̃(κ)))⇔ card{ν | ν ∈ ∂(⋎̃(κ)) ∩ Ŵ} is odd,
This last number must be equal to 1. That is, we have ν ∈ ⋎(∂(⋎̃(κ))) if and only if

ν ∈ ∂(⋎̃(κ)) ∩ Ŵ , which gives the desired result.

Proposition 25. Let
−→
W be a Morse sequence on K.

1) If z ∈ Zp(Ŵ ), then ⋎̃p(z) ∈ Zp(K).

2) If z ∈ Zp(Ŵ ), then ⋏̃p(z) ∈ Zp(K).

Proof. If z ∈ Z0(Ŵ ), then z ∈ K[0], ⋎̃0(z) = z, and ∂(z) = 0. Thus the property is

true for p = 0. Suppose the property is true for any z ∈ Zp−1(Ŵ ), with p ≥ 1.

1) Let κ ∈ Ŵ with κ ∈ K(p). By Proposition 24, we have ∂̂(κ) = ∂p(⋎̃(κ)) ∩ Ŵ .

By Proposition 23, if ν ∈ ∂p(⋎̃(κ)), then ν is either critical or upper regular for
−→
W .

Therefore, ⋎p−1(∂p(⋎̃(κ))) = ∂p(⋎̃(κ)) ∩ Ŵ . Thus we obtain:
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⋎p−1(∂p(⋎̃(κ))) = ∂̂(κ) and ∂p(⋎̃(κ)) ⊆W+
p−1.

Also, by Proposition 21 and by Proposition 19, we have:
⋎p−1(⋎̃p−1(∂̂(κ))) = ∂̂(κ) and ⋎̃p−1(∂̂(κ)) ⊆W+

p−1.

We have ∂p(⋎̃(κ)) ∈ Zp−1(K). Since ∂̂(κ) ∈ Zp−1(Ŵ ), by the induction hypothesis,

we also have ⋎̃p−1(∂̂(κ)) ∈ Zp−1(K). Thus, by considering the two above expressions

of ∂̂(κ), Theorem 17 leads to ⋎̃p−1(∂̂(κ)) = ∂p(⋎̃(κ)).

2) Let z ∈ Zp(Ŵ ), that is ∂̂p(z) = 0. We have:
∂p(⋎̃p(z)) =

∑
{∂p(⋎̃(κ)) | κ ∈ z}.

With the above result we obtain:
∂p(⋎̃p(z)) =

∑
κ∈z ⋎̃p−1(∂̂(κ)) = ⋎̃p−1(

∑
κ∈z ∂̂(κ)) = ⋎̃p−1(∂̂p(z)) = 0.

Proposition 26. Let
−→
W be a Morse sequence.

1) If z ∈ Zp(K), then ⋎̃p(⋎p(z)) ∼ z.
2) If z ∈ Zp(K), then ⋏̃p(⋏p(z)) ∼ z.

Proof. Let z ∈ Zp(K). By Theorem 9, ⋎p(z) ∈ Zp(Ŵ ), and by Proposition 25
⋎̃p(⋎p(z)) ∈ Zp(K). By Proposition 21, we have ⋎p(⋎̃p(⋎p(z))) = ⋎p(z). Now, by
applying Theorem 18, we obtain ⋎̃p(⋎p(z)) ∼ z.

Theorem 27. Let
−→
W be a Morse sequence. We have:
∂p ◦ ⋎̃p = ⋎̃p−1 ◦ ∂̂p and δp ◦ ⋏̃p = ⋏̃p+1 ◦ δ̂p

Proof. Let κ ∈ Ŵ with κ ∈ K(p).
- By Proposition 23, we have ∂p(⋎̃(κ)) ⊆ W+

p−1. By Proposition 16, we obtain

⋎p−1(∂p(⋎̃(κ))) = ∂p(⋎̃(κ)) ∩ Ŵ . Thus, by Proposition 24,

⋎p−1(∂p(⋎̃(κ))) = ∂̂(κ).

- By Proposition 21, we have ⋎p−1(⋎̃p−1(∂̂(κ))) = ∂̂(κ). Thus:

⋎p−1(∂p(⋎̃(κ))) = ⋎p−1(⋎̃p−1(∂̂(κ))).

Furthermore, by Proposition 25, we have ⋎̃p−1(∂̂(κ)) ∈ Zp−1(K) and, by Proposition

20, ⋎̃p−1(∂̂(κ)) ⊆W+
p−1. Thus, by Theorem 17, we obtain:

∂p(⋎̃(κ)) = ⋎̃p−1(∂̂(κ)),
which gives the result by linearity.

Thus, the previous theorem is a counter-part of Theorem 9 given for ⋎ and ⋏:
the map ⋎̃ is a chain map from the chain complex (Ŵ [p], ∂̂p) to the chain complex

(K[p], ∂p), and the map ⋏̃ is a cochain map from (Ŵ [p], δ̂p) to (K[p], δp).

The counter-part of ⋎H
p and ⋏H

p are two linear maps ⋎̃
H
p and ⋏̃

H
p between Hp(Ŵ )

and Hp(K), and between Hp(Ŵ ) and Hp(K).
From Propositions 21 and 26, we deduce that:

1) ⋎̃
H
p ◦⋎H

p = IdHp(K) and ⋎H
p ◦ ⋎̃

H
p = Id

Hp(Ŵ )
,

2) ⋏̃
H
p ◦⋏H

p = IdHp(K) and ⋏H
p ◦ ⋏̃

H
p = Id

Hp(Ŵ )
.

Therefore, we have the following result which relates the homology of a complex
with the homology of its critical complex.
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Theorem 28. Let
−→
W be a Morse sequence. For all p:

1) The vector spaces Hp(K) and Hp(Ŵ ) are isomorphic.

2) The vector spaces Hp(K) and Hp(Ŵ ) are isomorphic.

We have seen that the critical complex (Ŵ [p], ∂̂p) is equivalent to the classical
notion of a Morse complex. Thus, the previous theorem allows us to retrieve a basic
fact of discrete Morse theory. There are several presentations of this fact, see [16], [29].

A specificity of the above results is that the isomorphism between Hp(K) and Hp(Ŵ )
is given directly with the maps ⋎ and ⋎̃.

9 The flow complex and gradient flows

In discrete Morse theory, gradient flows and flow complexes are basic ingredients
for setting the fundamental property of a Morse complex, that is, the equality of
homology between a complex and its Morse complex. In this section, we first give the
definition of chain complexes based on the images of ⋎̃ and ⋏̃, which was mentioned
in the last section. Then, we outline a deep link between reference and extension
maps of a Morse sequence, and gradient flows (Theorem 33). We conclude by showing
the equivalence between the classical definition of a flow complex and the definition
of a chain complex based on extension maps.

Let
−→
W be a Morse sequence. We write:

O[p] = {⋎̃p(c) | c ∈ Ŵ [p]} and O[p] = {⋏̃p(c) | c ∈ Ŵ [p]}.
That is, O[p] is the image of the map ⋎̃p, and O[p] is the image of the map ⋏̃p.

The sets O[p] and O[p] are two vector spaces. In the example of Figure 8, O[1] is
composed of four vectors: we have O[1] = {0, ⋎̃p(a), ⋎̃p(b), ⋎̃p(a + b)}.

Let d ∈ O[p] and let c ∈ Ŵ [p] such that d = ⋎̃(c). We have ∂p(d) = ∂p(⋎̃p(c))

and, by Theorem 27, ∂p(d) = ⋎̃p−1(∂̂p(c)). Since ∂̂p(c) ∈ Ŵ [p − 1], we obtain
∂p(d) ∈ O[p− 1]. Thus, the boundary operator ∂p : K[p]→ K[p− 1] can be restricted
to ∂p : O[p]→ O[p− 1]. This leads us to the following definition:

Definition 10. Let
−→
W (K) be a Morse sequence. We say that the chain complex

(O[p], ∂p) is the extension complex (of
−→
W ), and the cochain complex (O[p], δp) is

the coextension complex (of
−→
W ). We write Hp(O) and Hp(O) for the corresponding

homology vector spaces.

The map ⋎̃p can be considered as a map ⋎̃p : Ŵ [p] → O[p]; with an abuse of
notation, we use the same name for this map. Also, we may consider the restriction
of the map ⋎p to O[p], we write ⋎p : O[p] → Ŵ [p]; again we use the same name for
this map. We proceed in the same manner with the maps ⋏̃p and ⋏p.

By Proposition 21, we have ⋎p ◦ ⋎̃p = Id
Ŵ [p]

. Now, let d ∈ O[p], we have

d = ⋎̃p(c), with c ∈ Ŵ [p]. Again by Proposition 21, we have ⋎p(d) = c. Thus,
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⋎̃p(⋎p(d)) = d. Hence, ⋎̃p ◦⋎p = IdO[p]. Since ⋎p and ⋎̃p are linear, we obtain:

Proposition 29. Let
−→
W be a Morse sequence. For all p:

1) The map ⋎̃p : Ŵ [p] → O[p] is a vector space isomorphism. Its inverse is given by

the map ⋎p : O[p]→ Ŵ [p].

2) The map ⋏̃p : Ŵ [p] → O[p] is a vector space isomorphism. Its inverse is given by

the map ⋏p : O[p]→ Ŵ [p].

By Theorem 9, the map ⋎ is a chain map from the chain complex (O[p], ∂p) to

(Ŵ [p], ∂̂p), and by Theorem 27 the map ⋎̃ is a chain map from the chain complex

(Ŵ [p], ∂̂p) to (O[p], ∂p). As in the previous section, we obtain from Propositions 21

and 26 two isomorphisms ⋎H
p and ⋎̃

H
p between Hp(Ŵ ) and Hp(O):

Theorem 30. Let
−→
W be a Morse sequence. For all p:

1) The vector spaces Hp(O) and Hp(Ŵ ) are isomorphic.

2) The vector spaces Hp(O) and Hp(Ŵ ) are isomorphic.

Now, we recall the definition of a gradient flow, see [18]; we just adapt this def-
inition in the context of Morse sequences. See also [31, 32] for an interpretation in
terms of chain homotopy equivalences.

Let
−→
W (K) be a Morse sequence.

We write Vp, V ∗
p for the linear maps Vp, V

∗
p : K[p]→ K[p] such that:

- V (κ) = V ∗(κ) = 0 if κ is critical for
−→
W .

- V (σ) = τ , V (τ) = 0, V ∗(σ) = 0, V ∗(τ) = σ if (σ, τ) is a regular pair for
−→
W .

We write Φp, Φ∗
p for the linear maps Φp,Φ

∗
p : K[p]→ K[p] such that:

- for each ν ∈ K(p), Φp(ν) = ν + ∂p+1(Vp(ν)) + Vp−1(∂p(ν)).
- for each ν ∈ K(p), Φ∗

p(ν) = ν + δp−1(V ∗
p (ν)) + V ∗

p+1(δp(ν)).

The maps Φ and Φ∗ are, respectively, the (gradient) flow and coflow of
−→
W .

If c ∈ K[p], then there are integers i, j such that Φi+1(c) = Φi(c) and
(Φ∗)j+1(c) = (Φ∗)j(c), we write Φp(c) = Φi(c) and Φp(c) = (Φ∗)j(c).

In this way we obtain two linear maps Φp,Φp : K[p]→ K[p].

Let π = ⟨π0, . . . πk⟩ be a sequence where each πi is either a gradient or a cogradi-

ent path in
−→
W (K). We say that π is a composite (gradient) path (from ν to µ) if:

1) The path π0 begins at ν and the path πk ends at µ,
2) For each i ∈ [1, k], the path πi begins where πi−1 ends.
We say that π is nontrivial if π contains more than one simplex.

For example, if π0 = ⟨σ0, τ0, ν⟩ is a gradient path and if π1 = ⟨ν, σ1, τ1⟩ is a
cogradient path, then the sequence π = ⟨π0, π1⟩ = ⟨σ0, τ0, ν, σ1, τ1⟩ is a composite
path from σ0 to τ1. Note that we have dim(σ0) = dim(τ1).
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Let ν, µ ∈ K(p). We let Ωµ
ν denote the set of all composite paths from ν to µ which

include at least one critical simplex. Then, we have the following characterization of
the maps Φ and Φ.

Theorem 31 (from [18]). Let
−→
W be a Morse sequence on K and let ν ∈ K.

- We have µ ∈ Φ(ν) if and only if Card(Ωµ
ν ) is odd.

- We have µ ∈ Φ(ν) if and only if Card(Ων
µ) is odd.

From Lemma 1.3 of [18], we also have three basic properties of composite paths from
which we easily derive Proposition 32:
- If κ, κ′ ∈ Ŵ and κ ̸= κ′, then there are no composite paths from κ to κ′.
- If κ ∈ Ŵ , then any composite path ending at κ is a gradient path.
- If κ ∈ Ŵ , then any composite path beginning at κ is a cogradient path.

Proposition 32. Let
−→
W be a Morse sequence on K. Let ν, µ ∈ K(p) and let π ∈ Ωµ

ν .

Then there exists κ ∈ Ŵ , a gradient path π′ from ν to κ, and a cogradient path π′′

from κ to ν, such that π = ⟨π′, π′′⟩.

Let ν, µ ∈ K(p). Suppose ν ∈ Ŵ . Then, Ωµ
ν is necessarily a cogradient path. By

Theorem 31, Theorem 5, and Definition 9, we obtain Φ(ν) = ⋎̃(ν). In fact, we have
the following more general result which shows that Φ may be decomposed into the
maps ⋎̃ and ⋎.

Theorem 33. If
−→
W is a Morse sequence, then we have:

Φ = ⋎̃ ◦⋎ and Φ = ⋏̃ ◦⋏.

Proof. Let ν, µ ∈ K(p). If κ ∈ Ŵ , we write Ωµ
ν (κ) for the set composed of all paths

in Ωµ
ν which contain κ. Since each path in Ωµ

ν contains a single critical simplex, by
Theorem 31, we have:

µ ∈ Φ(ν) if and only if
∑
{Card(Ωµ

ν (κ)) | κ ∈ Ŵ} is odd.
But Card(Ωµ

ν (κ)) = Card(Ωκ
ν ) × Card(Ωµ

κ). Therefore, by parity considerations, we
have µ ∈ Φ(ν) if and only if:∑

{Card(Ωµ
κ(κ)) | κ ∈ Ŵ and Card(Ωκ

ν ) is odd} is odd.
By Proposition 32, Ωκ

ν is the set of all gradient paths from ν to κ. Thus, by Theorem 5,

we have ⋎(ν) = {κ ∈ Ŵ | Card(Ωκ
ν ) is odd}. Therefore:

µ ∈ Φ(ν) if and only if
∑
{Card(Ωµ

κ(κ)) | κ ∈ ⋎(ν)} is odd.
By Proposition 32, Ωµ

κ(κ) is the set of all cogradient paths from κ to µ. By Definition 9,
and by Theorem 5, we obtain:

µ ∈ Φ(ν) if and only if µ ∈ ⋎̃(⋎(ν)).

Classically, the flow complex of a complex K is defined with the vector space
Fp = {c ∈ K[p] | Φp(c) = c}, see Section 7 of [16] and Section 8.2 of [35]. We have
Fp = {c ∈ K[p] | Φp(c) = c}. Also, we observe that:
- If c ∈ Fp, then by Theorem 33, ⋎̃p(⋎p(c)) = c. Therefore we have c = ⋎̃p(d), with

d ∈ Ŵ [p]. It follows that c ∈ O[p].

- If c ∈ O[p], then c = ⋎̃p(d) with d ∈ Ŵ [p]. By Theorem 33, we
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have Φp(c) = ⋎̃p(⋎p(c)) = ⋎̃p(⋎p(⋎̃p(d))). By Proposition 21, we derive
Φp(c) = ⋎̃p(d) = c. Thus c ∈ Fp.
Therefore, as a direct consequence of the previous theorem, we obtain the equivalence
between a flow complex and an extension complex.

Corollary 34. If
−→
W is a Morse sequence, then we have:

O[p] = {c ∈ K[p] | Φ(c) = c} and O[p] = {c ∈ K[p] | Φ(c) = c}.

10 Conclusion

In the final chapter of his gentle introduction to discrete Morse theory [35], Nicholas
Scoville wrote, “As is now apparent, the idea behind discrete Morse theory is extremely
simple: every simplicial complex can be broken down (or, equivalently, built up) using
only two moves: 1) perform an elementary collapse, and 2) remove a facet.” In this
paper, we just start from this basic fact for an alternative approach to this theory. A
Morse sequence is simply made of two operators which provide a direct introduction
to discrete Morse theory with two fundamental aspects: homotopy with the expansion
operator, and homology with the filling operator.

A key aspect of a Morse sequence is that it gives rise to the maps ⋎ and ⋎̃. These
two maps, along with their dual ⋏ and ⋏̃, contain the crucial homological information
of the sequence.

The reference map ⋎ assigns, to each simplex, a set of critical simplexes. This
leads us to a chain complex, the critical complex, which corresponds precisely to the
classical definition of such a complex. The map ⋎ is a chain map: it allows to carry
out the homology of the original complex to the critical complex.

The extension map ⋎̃ assigns, to each critical simplex, a set of simplexes. It is
noteworthy that ⋎ and ⋎̃ are “homology inverses”. This fact allows us to recover a
fundamental property, that is, the equality of homology between a complex and its
critical complex. Also, extension maps leads directly to a chain complex which fully
characterizes a flow complex.

Arranged Morse sequences constitute a special class of sequences which contains
different kinds of skeletons of the complex. Any Morse sequence may be transformed to
an arranged sequence by a simple rearrangement which preserves the gradient vector
field. The skeleton sequence which is included in an arranged sequence allows us to
derive some crucial properties of the map ⋎. Furthermore, it leads to a result which
provides another aspect of the fundamental collapse theorem of discrete Morse theory.

Reference and extension maps, as well as their duals, can be computed with solely
two local operators. For future work [7], we will take advantage of this fact to derive
new algorithms for topological data analysis and for digital image segmentation [34,
12, 11]. Also, we will make a link between Morse sequences and some notions of
Mathematical Morphology such as the watersheds [10, 9, 36, 6]. On the theoretical
side, we aim at extending our framework to other fields than the mod 2 arithmetic
and to other kind of complexes.
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A Discrete vector fields

We first recall the definitions of a discrete vector field and a p-gradient path, see
Definitions 2.43 and 2.46 of [35]. See also [22, 23] where a generalization of gradient
vector fields is introduced, which allows cycles under a certain algebraic condition.

Let K be a complex and V be a set of pairs (σ, τ), with σ, τ ∈ K and σ ∈ ∂τ . We
say that V is a (discrete) vector field on K if each simplex of K is in at most one
pair of V . We say that σ ∈ K is critical for V if σ is not in a pair of V .

Let V be a vector field on a complex K. A (p-)gradient path in V (from σ0 to
σk) is a sequence π = ⟨σ0, τ0, σ1, τ1, ..., σk−1, τk−1, σk⟩, with k ≥ 0, composed of faces
σi ∈ K(p), τi ∈ K(p+1) such that, for all i ∈ [0, k − 1], (σi, τi) is in V , σi+1 ⊂ τi, and
σi+1 ̸= σi. This sequence π is said to be trivial if k = 0, that is, if π = ⟨σ0⟩; otherwise,
if k ≥ 1, we say that π is non-trivial. Also, the sequence π is closed if σ0 = σk. We
say that a vector field V is acyclic if V contains no non-trivial closed p-gradient path.

Now, let
−→
W be a Morse sequence on K. Then, the gradient vector field of

−→
W is

clearly a vector field. Also, a path is a gradient path in this vector field if and only if

it is a gradient path in
−→
W .

In the sequel of this section, we want to emphasize that a Morse sequence may be
seen as an alternative way to represent the gradient vector field of an arbitrary dis-
crete Morse function. A classical result of discrete Morse theory states that a discrete
vector field V is the gradient vector field of a discrete Morse function if and only if
V is acyclic (Theorem 2.51 of [35]). Thus, in order to achieve this goal, it is sufficient
to establish the equivalence between gradient vector fields of Morse sequences and
acyclic vector fields. In fact, this equivalence is a direct consequence of Theorem 11.9
of [29] which is formulated in terms of linear extensions associated to a poset. We give
hereafter a proof which is based on the notion of a maximal gradient path. Such a path
allows us to extract, in the top dimension of a complex K, either a critical simplex
or a free pair for K (Lemma 35). This formalizes an incremental deconstruction of a
complex, which is usually given with certain Morse functions, see Remark 13 of [1].

Let V be a vector field on K and let π = ⟨σ0, τ0, ..., σk−1, τk−1, σk⟩ be a p-gradient
path in V . We say that a pair of simplexes (η, ν) is an extension of π (in V ) if
⟨η, ν, σ0, τ0, ..., σk−1, τk−1, σk⟩ or if ⟨σ0, τ0, ..., σk−1, τk−1, σk, ν, η⟩ is a p-gradient path
in V . We say that π is maximal (in V ) if π has no extension in V . If V is acyclic, it
can be checked that, for any p ≥ 0, there exists a maximal p-gradient path in V . To
see this point, we can pick an arbitrary (possibly trivial) p-gradient path and extend
it iteratively with extensions. If V is acyclic, we obtain a maximal path after a finite
number of extensions.

Lemma 35. Let V be an acyclic vector field on K, with dim(K) = d. Then, at least
one of the following holds:
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1) There exists a facet τ of K, with dim(τ) = d, that is critical for V .
2) There exists a pair (σ, τ) in V , with dim(τ) = d, that is a free pair for K.

Proof. If K has a d-face that is critical for V , then we are done. Suppose there is no
such faces in K. If d = 0, then all the 0-faces of K are critical, thus we must have
d ≥ 1. Let τ be an arbitrary d-face of K. Since τ is not critical, there exists a pair (σ, τ)
that is in V . Since d ≥ 1, there is a face σ′ ∈ K such that π′ = ⟨σ, τ, σ′⟩ is a (d − 1)
gradient path in V . By iteratively extending π′ with extensions we obtain a maximal
(d − 1)-gradient path in V that is non-trivial. Let π = ⟨σ0, τ0, ..., σk−1, τk−1, σk⟩ be
such a path, we have k ≥ 1. If (σ0, τ0) is a free pair for K, then we are done. Otherwise,
σ0 must be a subset of a d-simplex ν, with ν ̸= τ0. By our hypothesis ν is not critical
for V . Since ν is a facet for K, there must exist a (d− 1)-simplex η, η ̸= σ0, such that
(η, ν) is in V . In this case, the path π′ = ⟨η, ν, σ0, τ0, ..., σk−1, τk−1, σk⟩ would be a
(d− 1)-gradient path in V . Thus, the path π would not be maximal, a contradiction:
the pair (σ0, τ0) must be a free pair for K.

Theorem 36. Let K be a simplicial complex. A vector field V on K is acyclic if and
only if V is the gradient vector field of a Morse sequence on K.

Proof. i) Let
−→
W = ⟨∅ = K0, ...,Ki, ...,Kl = K⟩ be a Morse sequence on K, and let V

be the gradient vector field of
−→
W . For each ν ∈ K, let ρ(ν) be the index i such that

ν ∈ Ki and ν ̸∈ Ki−1. Now, let π = ⟨σ0, τ0, σ1, τ1, ..., σk−1, τk−1, σk⟩, k ≥ 1, be a non-
trivial p-gradient path in V . For all i ∈ [0, k − 1], (σi, τi) is in V , thus ρ(σi) = ρ(τi).

Since σi+1 ⊂ τi and since
−→
W is a filtration, we have ρ(σi+1) ≤ ρ(τi). Since σi+1 ̸= σi

the pair (σi+1, τi) is not a regular pair for
−→
W , thus we have ρ(σi+1) < ρ(τi). It follows

that, for all i ∈ [0, k− 1], we have ρ(σi+1) < ρ(σi). This gives ρ(σk) < ρ(σ0). It means
that σk ̸= σ0, and the path π cannot be closed. Thus the vector field V is acyclic.
ii) Let V be an acyclic vector field on K, with dim(K) = d.
1) Suppose there exists a facet τ of K, with dim(τ) = d, that is critical for V .
Let K ′ = K \ {τ} and V ′ = V . Then, the set V ′ is also an acyclic vector field on K ′.
2) Suppose there exists a pair (σ, τ) in V , with dim(τ) = d, that is a free pair for K.
Clearly, the set V ′ = V \ {(σ, τ)} is also an acyclic vector field on K ′ = K \ {σ, τ}.
By 1), 2), and by Lemma 35, we can build inductively two sequences

←−
W = ⟨K =

K0, ...,Kk = ∅⟩ and ⟨V = V0, ..., Vk = ∅⟩ such that, for each i ∈ [1, k]:
- either Ki is an elementary perforation of Ki−1 and Vi = Vi−1,
- or Ki = Ki−1 \ {σ, τ} is an elementary collapse of Ki−1 and Vi = Vi−1 \ {(σ, τ)}.
By considering the inverse of

←−
W we obtain the sequence

−→
W = ⟨Kk = K ′

0, ...,K
′
k = K0⟩,

which is such that, for each i ∈ [1, k], either K ′
i is an elementary expansion of K ′

i−1,

or K ′
i is an elementary filling of K ′

i−1. In other words,
−→
W is a Morse sequence on

K0 = K; the gradient field of
−→
W is precisely V, as required.

B Morse functions and Morse sequences

Discrete Morse theory is classically introduced through the concept of a discrete Morse
function. In this section we show that it is possible, in a straightforward manner, to
make a link between Morse sequences and these functions.
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We first introduce the notion of a Morse function on a Morse sequence
−→
W .

Definition 11. Let
−→
W (K) be a Morse sequence, let ⋄

−→
W = ⟨κ1, . . . , κk⟩. We say that

a map f : K → Z is a Morse function on
−→
W if f satisfies the two conditions:

1) If κi is critical for
−→
W and ν ∈ ∂(κi), then f(κi) > f(ν).

2) If κi = (σ, τ) is regular for
−→
W , then f(σ) ≥ f(τ).

Now, we can check that the following definition of a Morse function on a simplicial
complex K is equivalent to the classical one [17, 19].

Let K be a simplicial complex and let f : K → Z be a map on K. Let V be the
set of all pairs (σ, τ), with σ, τ ∈ K, such that σ ∈ ∂(τ) and f(σ) ≥ f(τ). If each
ν ∈ K is in at most one pair in V , we say that f is a Morse function on K, and V is
the gradient vector field of f . We say that two Morse functions on K are equivalent if
they have the same gradient vector field.

Let f be a Morse function on K, and V be the gradient vector field
of f . From the above definition, the set V is a discrete vector field on K. If
π = ⟨σ0, τ0, σ1, τ1, ..., σk−1, τk−1, σk⟩ is a p-gradient path in V , we have f(σi) ≥ f(τi),
and also f(τi) > f(σi+1). Thus, f(σ0) > f(σk) whenever k ≥ 1. It means that V con-
tains no non-trivial closed p-gradient path. In other words, we have the classical result:

Proposition 37. If f is a Morse function on K, then the gradient vector field of f
is an acyclic vector field.

Let
−→
W be a Morse sequence on K. We see that a Morse function on

−→
W is indeed a

Morse function on K, the gradient vector field of this Morse function is precisely the

gradient vector field of
−→
W . Conversely, by Proposition 37 and by Theorem 36, if f is

a Morse function on K, then there exists a Morse sequence
−→
W on K which has the

same gradient vector field as f . It is easy to check that f is also a Morse function on−→
W . This leads us to the following result.

Theorem 38. If f is a Morse function on K, then there exists a Morse sequence
−→
W

on K such that f is a Morse function on
−→
W . Furthermore, any Morse function on

−→
W

is equivalent to f .

We introduce hereafter a particular kind of Morse function. Since a Morse

sequence is a filtration, the following function f is indeed a Morse function on
−→
W .

Definition 12. Let
−→
W be a Morse sequence on K and let ⋄

−→
W = ⟨κ1, . . . , κk⟩. The

canonical Morse function of
−→
W is the map f : K → Z such that:

1) If κi is critical for
−→
W , then f(κi) = i.

2) If κi = (σ, τ) is regular for
−→
W , then f(σ) = f(τ) = i.
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As a consequence of Theorem 38, any Morse function on K is equivalent to a
canonical Morse function.

We note that a canonical Morse function f is flat, that is, we have f(σ) = f(τ)
whenever (σ, τ) is in the gradient vector field of f (Definition 4.14 of [35]). Also f
is excellent, that is, all values of the critical simplexes are distinct (Definition 2.31
of [35]). In fact, a canonical Morse function has the three properties which define a
basic Morse function (see [2] and also Definition 2.3 of [35]).

Let f : K → Z be a map on K. We say that f is a basic Morse function if f satisfies
the properties:

1) monotonicity : we have f(σ) ≤ f(τ) whenever σ ⊆ τ ;
2) semi-injectivity : for each i ∈ Z, the cardinality of f−1(i) is at most 2;
3) genericity : if f(σ) = f(τ), then either σ ⊆ τ or τ ⊆ σ.

We observe that, if f is a basic Morse function on K, then we can build a Morse

sequence
−→
W if we pick the simplexes of K by increasing values of f . For each i, f−1(i)

gives a critical simplex if the cardinality of f−1(i) is one, and f−1(i) gives a regular
pair if the cardinality of f−1(i) is two.

Let f and g be two basic Morse functions on K. We say that f and g are strongly
equivalent if f and g induce the same order on K. That is, we have f(σ) ≤ f(τ) if
and only if g(σ) ≤ g(τ).

With the above scheme for building a Morse sequence from a basic Morse func-
tion, we obtain the following result.

Proposition 39. Let f be a basic Morse function on K. There exists one and only one

Morse sequence
−→
W such that the canonical Morse function of

−→
W is strongly equivalent

to f .
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