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Bone Surface Reconstruction Using Localized Freehand Ultrasound
Imaging

Lucero Lopez-Perezα, Julien Lemaitreβ , Agung Alfiansyahγ and Marc-Emmanuel Bellemareδ

Abstract— We propose a bone surface reconstruction method
using localized ultrasound imaging. A set of bone contours is
first extracted from a series of freehand 2D B-mode localized
images, using an automatic segmentation method. This set
is then used to reconstruct the bone surface with a tensor
product B-splines approximation. Results of the partial surface
reconstruction are shown for real bones and for a phantom
physical model.

I. INTRODUCTION

Automatic segmentation of osseous structures in image
datasets is an essential pre-processing step for several vi-
sualization and analysis tasks, in particular for Computer
Assisted Diagnosis (CAD) and Surgery (CAS) applications.

Because of its ease of use, non-invasiveness, availability
and low cost, ultrasound (US) imaging is of great interest
for minimally-invasive exploration of the body, diagnosis,
intervention and therapy purposes. However, US images
analysis is made difficult by its strong speckle noise, and
currently, bone segmentations from US images are obtained
using time-consuming manual or semi-automatic algorithms.
We propose an automatic method for segmenting the partial
bone surface available from a series of US images, for
the case of long shaped bones such as the tibia, humerus,
clavicle, ulna or radius.

Our bone surface reconstruction method is presented in
Sect. II. Sect. III presents some examples and results on real
bones and a phantom model of clavicle, and we conclude in
Sect. IV.

II. RECONSTRUCTION METHOD

The reconstruction method is made up of four steps:
A. Ultrasound image acquisition.
B. Automated bone segmentation.
C. Point re-sampling.
D. Surface Reconstruction using B-Splines.

A. Ultrasound Image Acquisition

We use a navigated 7.5Mhz US probe1 to acquire a series
of localized 2D B-mode US images of the bone of interest.
These images are considered as slices of a 3D image volume.
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The acquisition process is straightforward: the operator
drags the probe over the patient skin, keeping the bone of
interest in the center of the image.

This process has three intrinsics constraints: the bone must
be immobilized, the probe must be visible to the navigation
system during the acquisition; and the bone must be visible
in the acquired images. Also, the slices should be sorted
along a straight axis; however, we do not require them to be
parallel to each other. For better restults, the probe should
be positioned aligned with the plane orthogonal to the bone.

B. Automated Bone Segmentation

Despite the relatively low visual quality and difficult
interpretation of US images, they are widely used in CAD,
resulting in a growing number of works on US image
segmentation. A wide review is presented in [1].

In [2] the authors propose to perform anisotropic diffusion
adapted to the speckle noise on the US images coupled with
a fast and simple segmentation procedure. Alternatively, one
may use a more detailed segmentation method coupled with a
fast regularization step or without regularization at all. Works
such as [3] use both robust regularization and segmentation
procedures. Because of the time constraints usual for CAD
applications, we have chosen the second approach.

Ultrasound images are characterized by strong speckle
noise, and the difficulty of their segmentation leads to the
use of all available prior information.

To automate the segmentation of the bone contours from
the series of 2D slices, we adapt the snake model involved
in the hip bone segmentation proposed in [4] and [5] to the
case of elongated bone partial contours, such as the ulna,
humerus, or clavicle. This model was designed to segment
the strong-contrast but noisy US images of bones. The bone
contour has been characterized by a bright pixel region, with
a light bright region above and a dark region below, which
corresponds to the acoustic shadow of the bone (see Fig. 1).

The energy that drives the evolution is defined by an
internal energy EInternal, which controls the curve v(s) :
R→ R2 regularity:

EInternal(v(s)) = w1|v′(s)|2 + w2|v′′(s)|2 (1)

and an external energy EExternal:

EExternal(v(s)) = FBalloon(v(s)) + ERegional

where FBalloon is a balloon-force constraint energy:

FBalloon(v(s)) = k1
~N(v(s)) + k2

∇P
‖∇P‖

(2)



Fig. 1. Intensity regions

P is a potential image, ~N(v(s)) is the normal to v(s) and
ERegional is a regional energy (plotted as the image intensity
in Fig. 2b) designed to position the snake in the center of
the dark-bright-dark region that characterizes the bone:

Dif(vi) = 2×Mmid −Mup −Mdown

ERegional =
{
k if Dif(vi) < 0
Dif(vi) otherwise (3)

where Mmid, Mup, Mdown are the average intensity of the
regions depicted on Fig. 1. FBalloon acts as an additional
pressure force in the direction normal to the contour in order
to avoid the contour converging towards a false local minima.

Our snake is an open active contour with a discrete point
curve representation. The minimal energy is estimated with
finite elements and finite differences methods (see [4] for
details). The iterative energy minimization is stopped when
the snake’s point displacement becomes less than 3 pixels or
if the maximum number of iterations is reached (typically
set to 300).

For the hip bone in [4], the snake was initialized with
a straight line in the bottom of the image. To shorten the
number of iterations needed to segment the bone surface
and prevent the snake to converge to local minima, we use
the serial acquisition of the section images to initialize the
contour. Since the bone is continuous, if we have enough
section images of the bone (among 50 and 250 depending
on its size), the bone contour should not vary more than 1cm
between sections. During the acquisition, the bone contour
moves down to the bottom on the image until it reaches
the elbow. We initialize the contour of the (i)th image with
a horizontal straight line positioned 50 pixels below the
minimal height of the (i− 1)th image.

In order to keep only snake points which are good candi-
dates to lie on the bone surface, a posterior choice is made by
a threshold over its intensity to keep strong intensity pixels
only:

Intensity(p) > Imean + kintensity · Ivar

where Imean is the mean intensity over the snake points
and Ivar its variance. After the decimation step, only the
longest connected segment is kept; we consider two points
as connected if their distance is less than 10 pixels (Fig. 2d).

The parameters from 1, 2, and 3 were fixed using the
knowldge provided by previous works of the lab team ([5],
[4]): w1 = 1, w2 = 2.5, k1 = 500, k2 = 0.5, kintensity =
0.005, the number of points in the snake is 100.

a) First snake initialization b) Regional energy

c) Minimal energy snake d) Points after post-treatment

Fig. 2. Segmentation Procedure

For 5 sets of 50 to 200 images of real forearm bones, we
obtain an average 10% of images whose segmented points
do not correspond to the bone surface. These false positives
correspond to images with important noise on the acoustic
shadow under the bone. The phantom examples gave no false
positives.

To overcome false results, we performed an anisotropic
regularization step before the segmentation procedure. The
results were not satisfactory enough to justify the extra-
computation time (3 to 5 more seconds per image), instead,
we manage the outliers in the surface approximation step.

The summary of the segmentation procedure follows:
1) Initialize the snake for the first slice image by a straight

line at half the height of the image.
2) For each slice i:

a) Compute the minimal energy curve;
b) Perform the posterior choice of bone points;
c) Initialize the snake in slice i+1 using the current

segmentation result.

C. Point Re-sampling

We aim to build a mesh which approximates a partial
surface of the bone from the set of planar contour cross-
sections obtained from the segmentation procedure previ-
ously described. A first approach would consist in building
a Delaunay triangulation directly from the segmented points,
however the points distribution in the space is rather inho-
mogeneous: the x and y coordinates are about 1 mm close,
but the z coordinates are separated from 5 to 20 mm. Small
segmentation errors would result in bad surface topology.
Instead, we use prior knowledge of the cylinder-like local
topology of the bones of interest to obtain a convenient re-
sampled grid of points that we can use later to fit a B-Spline
surface.

A large amount of works addresses the problem of mesh
reconstruction from a set of parallel planar cross-sections for



general topology surfaces. Among such studies are found [6],
[7], and [8] in particular, where the authors propose a
vessel surface extraction method using skeletons and pseudo-
cylinders. In our case, the slices are not parallel, and the
partial bone surface is not a closed surface. Therefore, these
approaches are not adapted to our problem.

For each slice i, the algorithm first computes an approx-
imation of the bone slice center c(i). Using these central
points, it approximates a line corresponding to the central
axis of the bone. Then, for each slice, it:

1) Updates the value of c(i) as the intersection point of
the line and the corresponding slice plane;

2) Casts rays from the center toward the surface at regular
intervals (spaced by angle θ);

3) Computes the new vertex as the intersection between
rays and segments connecting the original points (at
distance r from the center).

This first parametrization of the surface provides us with
a homogeneous re-sampling of the original set of points in a
suitable grid form, with a mean distance of 0.14 mm between
the original and the re-sampled points.

D. Surface Reconstruction using B-Splines

Let Pi,j for i = 1, ...,m and j = 1, ...n be the points of
the grid obtained from the previous re-parametrization. We
will fit a Tensor Product B-Spline Surface BS : (u, v) 7→
p ∈ Sbone on this grid using a Least Squares approximation
procedure proposed by Carl Boor in [9].

Given order p and q, and the number of control points
e and f for the u and v directions respectively, finding the
B-Spline surface of minimum Least Squares (LS) distance
to the grid is a non-linear optimization problem. However, it
may be approached using a B-Spline curve LS approxima-
tion, which is reduced to the resolution of a linear system.
The procedure consists of the following steps:
• Apply curve approximation to each column of data

points to compute a set of (e + 1) data points, which
form a grid of (e+1)×(n+1) intermediate data points.

• Apply curve approximation to each row of these in-
termediate data points to compute the desired control
points. Since each row has n+1 intermediate data points
and there are e+1 rows, each approximation for a row
generates f + 1 desired control points, and, as a result,
we will finally obtain (e+ 1)× (f + 1) control points.

The approximating B-Spline surface is obtained after
solving (n + 1) × (e + 1) linear systems. m is the number
of image slices (between 50 and 250 for our data) and n the
number of rays for the re-sampling step, that we fixed at 15.
e and f must be chosen depending on the form of the bones.
For elongated bones as the ulna and radius, typical values
are e = 15 and f = 5. For this work we used quadratic
splines (p = q = 2). The computation time for this step is
usually less than 1 second.

The surface approximation step ensures a smooth surface
and helps to overcome the problem of segmentation false
positives.

Fig. 3. Points sampled from the clavicle phantom

Fig. 4. Reconstructed upper surface of a clavicle phantom model. Yellow
points represent the 2D segmentation output.

III. RESULTS ON PHANTOM MODELS AND REAL BONES

In order to measure the error of our reconstruction ap-
proach, we used a phantom model (a dry bone) of a clavicle
as our gold standard. We first obtained a sample of 1145
localized surface points (see Fig. 3). These points were
digitized from the dry bone surface thanks to the Surgetics
digitizing probe, such as in [10]. Keeping the bone in the
same position, we then performed a series of US acquisitions
and applied our surface reconstruction method.

The result is shown on Fig. 4. The yellow points rep-
resent the 2D segmentation output, and the gray intensity
texture of the approximated B-Spline surface corresponds to
the euclidean distance between the surface and the closest
segmented point. The mean distance from the surface to the
point cloud for several spline parameters is shown in Table I.
Even though a greater number of control points leads to
a smaller approximation error, it is better to choose a low
number (10 to 15 gives the best results for our data) in order
to keep on control the smoothness of the surface. Using as
many control points as data points yields an interpolation of
the original surface, where small segmentation errors cause
bad surface topology and unsuitable folds (see Fig. 5 and 6).
To ensure a good topology, a compromise must be found.

Also, in order to compare the extracted surface to a gold
standard, the experiment has been made with phantom data
where the segmentation performance is at its best and no
false positives are obtained. As a result, the reconstruction



e = 5 e = 30

Fig. 5. Reconstructed surface of a real ulna with different values of e

e = 5

e = 10

e = 20
Fig. 6. Reconstructed surface of a real radius. Results for different numbers
of Control Points.

error does not reflect the utility of an approximating spline
using a low number of control points to attenuate the effect
of false positive segmentation results. Further validation will
cover this point.

Fig. 6 and 7 show the output of our algorithm for a series
of US images of a real forearm from a healthy subject. Even
though we leave to future work the validation of our approach
on this kind of data, the results are visually very encouraging.

IV. CONCLUSION AND PERSPECTIVES

We have presented a fully automatic method for recon-
structing partial bone surfaces from a series of localized B-
mode US scans. The segmentation scheme has been subject
to validation in [4] for semi-automatic segmentation. The
surface approximation step ensures a smooth topology and
helps overcome the segmentation outliers.

We have obtained encouraging results from our approach
with a physical phantom model of clavicle, obtaining an error
of 1,16mm (see Sect. III). We also have presented examples
on real data built from several bones.

Ongoing work focuses on validation on a extended data
set, measuring intra-operator variability, and application to a

Fig. 7. Reconstructed radius and ulna. Data scanned from a real subject
(a vivid human being).

TABLE I
AVERAGE RECONSTRUCTION ERROR

Number of Control Points Average distance (mm.)
5 1.71
10 1.32
15 1.26
20 1.16

CAD system.
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