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A B S T R A C T 

Efforts toward the denovo design of artificial water channels have been made over the last decades to 

understand the selectivity of water transport through membranes and their applications in water 

purification and desalination. Currently, many insights are needed to elucidate the complex selective water 

vs ion/proton transport mechanism through Å-scaled artificial water channels. Generally, a narrow pore is 

required for driving off large ions or solutes and selectively allowing only water molecules to enter then 

forming an uninterrupted single wire or clusters within pore confined conditions. Several classes of 

artificial water channels, including self-assembled channels, organic cages, carbon-based nanopores, 

aromatic foldamers, pillar[n]arenes, and macrocycles have been systematically outlined in this review in 

terms of their structural properties and transport mechanism. Additionally, molecular simulation analysis 

can be applied to verify the spatial atomic distribution of channels, importantly it enables to reveal a deep 

understanding of the arrangement of water molecules within these pores. Herein, this review will 

introduce the recent achievements in artificial water channels listing how the astonishing examples operate 

in the presence of water molecules, and it may arouse more inspiring views for the continued research in 

the field of water selective channel-forming assemblies and their application in the field of membranes for 

water purification. 

© 2014 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.    

1. Introduction 

Water is one of the simplest molecules in the universe, but there are 

still great challenges for determining the precise role of its superstructures 

interacting and determining the function of biologically active molecules. 

A single water molecule composed of a central oxygen connected to two 

hydrogen atoms presenting an angle of 104° it is a dipolar molecule that 

can associate with other water molecules via donor-acceptor hydrogen 

bonds. A fascinating most perfect water assembly created by nature is 

solid ice, a stiff supramolecular material completely cross-linked by 

hydrogen bonds [1]. Free water and bound water play a major role in 

maintaining active functions of life [2–5]. Despite important 

advancements, a few unanswered questions are still attracting attention: 

how do water molecules collectively/selectively cross the cell bilayer 

membrane barrier? What is the selective mechanism for their distribution 

and transportation? What role do hydrogen bonds play in orchestrating the 

selective water vs. ions/protons translocation at the Ångström scale level? 

The discovery of natural water channel proteins, the Aquaporins, has 

gradually led researchers to unravel the mystery of water translocation in 

living organisms. The diversity of their structural properties was 

recognized by the presence of different Aquaporin channels in different 
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organs or tissues. Some subclasses such as hAQP0, 1, 2, 4 and 5 enable to 

transport selectively water, while rejecting other ions [6–12], which can 

be attributed to the unique narrow selectivity filter, allowing only single 

water molecule translocation. When present to the channel entrance, water 

molecules can automatically adjust their adaptive binding and orientation, 

followed by the generation of the continuous water wire/clusters through 

the channel. This process will be accompanied by the translocation of 

several small solutes when it comes to the subclasses of hAQP3, 7, 9, and 

10 [13–16]. For instance, hAQP3 ships urea, glycerol, and water 

molecules. Additionally, the binding of Ni2+ with histidine 241 in hAQP3 

can bring the Ni2+ sensitivity which is related to human lung diseases [17].  

The water vs. ion/molecule transport selectivity offers the intriguing 

possibility of achieving important membrane separations on a large scale 

for environmental applications, such as water purification and desalination. 

However, it is difficult to maintain the protein activity of each AQP 

subunit under harsh pressure and salinity conditions used for these 

industrial applications. To date, high amounts of AqpZ from bacteria cells 

can be produced by virtue of gene engineering. The most used approach is 

to transfer the AQP-encoded plasmid to the bacteria cells as a result of the 

over-expression of recombinant AqpZ [18–20]. Researchers have already 

come up with a His-tag modification method that can help solve the 

problem of low yield. This breakthrough can offer the direct use of AqpZ 

in the membrane filtration field. Tang and co-workers have recently 

optimized the AqpZ loading in order to obtain the optimal membrane 

performance. They varied the protein-to-lipid ratio, vesicle loading, and 

supplemental cholesterol in a thin-film composite membrane, showing a 

reliable standard for practical application [21]. 

In parallel, the discovery of artificial water channels - the synthetic 

counterparts of Aquaporins - busted the researchers’ efforts to develop 

selective biomimetic membranes for environmental application. The 

available diverse functional groups make it possible to decorate artificial 

channels and to have access to selective pathways for the diffusion of 

water. An increasingly growing number of novel compounds have been 

recently reported, leading to profound improvements in the transport 

performances of artificial water channels [22–29]. Small structural 

changes can make a huge difference in the construction of selective pores 

and can bring more diversities of these artificial alternatives used to sieve 

larger hydrated ions or molecules. Further structural details can be more 

precisely obtained from studies on their simpler X-ray single-crystal 

structures and molecular simulations. The hydrogen bond interactions of 

channel-water and water-water can help us understand the orientation and 

arrangement of water molecules within the channels, as well as learn the 

dynamic translocation process. Deep comprehension toward the water 

transport mechanism will lay the foundation for the research in future 

applications [30, 31]. 

This review will describe in detail the existing artificial water channels, 

and attempt to understand their transport mechanism on the basis of 

confined water structuration within self-assembled channel 

superstructures, dynamically connected at the Ångström scale. The 

mechanistic details might give a better understanding of the selective 

water transport behaviors, moreover may arouse an important 

understanding of the molecular design of biomimetic channel alternatives 

working as natural ones. Systematically, examples of organic cages, 

carbon nanotube porins, self-assembled channels, aromatic foldamers, 

pillar[n]arenes, and macrocycles will be presented below (Scheme 1). 

Some of them have been embedded into Reverse Osmose RO membranes 

and tested for the real desalination processes of seawater. Their unique 

spatial self-assembled superstructures allow water molecules to be 

arranged in well-organized ordered single-wires/clusters inside selective 

channels, thus making it intriguing for further development in the 

molecular separation field [32–36]. Therefore, this work will summarize 

the essence of current artificial water channels by listing their structural 

properties and elucidating the water permeation process, and it will 

envision to stimulate more ideas for practical applications.  

 
Scheme 1. Schematic representation of the existing classes of artificial 

water channels. 

2. Natural porins for water/proton trafficking 

To date, channel proteins are one of the most important transmembrane 

biomolecules discovered in living organisms. They allow specific 

molecules or ions to cross the bilayer membrane barriers. In this section, 

we will highlight the structural behaviors and transport mechanisms of 

several natural biological water channels: aquaporins, gramicidin A, 

influenza M2, etc., and extract the potential structural information leading 

to selective water transport useful for current environmental applications.  

The aquaporin family shares a common basic six-transmembrane 

helices for the bidirectional water transfer, which is dependent on the 

continuous hydrogen-bonded networks among adjacent water molecules 

and inner channel components. Other small solutes can be transported 

across the bilayer, thus differentiating classical AQP or aquaglyceroporins. 

The amphoteric water allows the movement of protons via a Grotthuss 

mechanism [37,38], showing that protons may hop among neighboring 

water molecules to achieve fast transfer. 

2.1. Aquaporins  

As one of the nature crafts with exceptional water permeation, the 

aquaporins family has been discovered by Agre et al. [39,40]. Classified 

by their selective functions, thirteen mammalian aquaporins were 

identified into three subfamilies including orthodox aquaporins, 

unorthodox aquaporins, and aquaglyceroporins which are enable to 

permeate small solutes such as glycerol and urea [41]. In their 

transmembrane domain, two functional sites are critical for water 

transport selectively and effectively (Fig. 1a) [42,43]. Taking 

aquaglyceroporin GlpF as an example (Fig. 1b) [42], at the exit of the 
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channel, an aromatic/arginine (ar/R) constriction region filter with a 2.8 Å 

of diameter is big enough to allow one single water molecule passing and 

exclude ions and small solutes. Additionally, they have a unique central 

NPA (Asn-Pro-Ala) sequence allowing the neighboring waters to 

assemble with opposite dipolar orientations (Fig. 1b). At this narrowest 

site of the pore, one water is doubly connected via acceptor H-bonds to its 

oxygen atom with adjacent amino groups (Asn76 and Asn192) and via 

donor H-bonding of neighboring water molecules. The water orientation is 

rearranged in the NPA center, interrupting the possible path for proton 

Grotthuss diffusion, thus excluding the transport of protons along such 

opposite-oriented dipolar water wires (Fig. 1c). Without any other 

restriction of H-bonds, a minimal energy barrier can be easily surmounted 

across the narrowest pore, leading to fast water transport as well as proton 

preclusion assumed as H-bond isolation mechanism. In comparison, the 

more hydrophobic and 1 Å wider ar/R pocket in GlpF channel endowed 

the broader transport range towards not only water but also glycerol, urea, 

O2, CO2, and NH3 [47,48].   

 

 

Fig. 1. a) Schematic representation of a common aquaporin topology of the six transmembrane α-helices, two functional sites containing the NPA center and ar/R 

region at reverse direction; b) the oriented water wire along the NPA region of the AQP pore center and c) the mechanism of proton preclusion along the narrowest 

pore region of the AQP. Reproduced with permission from Reference [42] Copyright © 2002 The American Association for the Advancement of Science and the 

permission from Reference [47] Copyright © 2008 National Academy of Science.

Having improved the scale-up production of aquaporins, one 

recombinant subtype AqpZ produced from E.coli was embedded into the 

membrane for desalination in scale-up fabrication [49–51]. Kumar has 

reported the first case of AqpZ-lipid-embedded PMOXAm-PDMSn-

PMOXAm (ABA) triblock membrane at different AqpZ-to-lipid ratios  

[52], showing at least two orders of magnitude of enhanced water 

productivity compared to the reference membrane. Moreover, this work 

inspired the further optimization of AqpZ concentration in membrane [53], 

and also paved the way for the development of more potential AqpZ-

embedded or MP (membrane protein)-inserted polymeric membrane (Fig. 

2a) [54–56]. 

2.2. Gramicidin A 

Gramicidin A is a pentadecapeptide with a narrow pore diameter of 4 

Å for selective monovalent cations transport [57]. Differently from 

aquaporins, protons were conducted with a flow rate of 8 times higher 

compared to water movement, as a uniform single-file H-bonded water 

wire is present along the channel facilitating the proton hopping. 

Molecular dynamic simulations showed that 22 waters can be 

accommodated inside the channel, H-bonded to the carbonyl oxygens of 

the wall surface [58]. In the middle of the channel, an excess proton was 

captured in the form of an O2H5
+ ion which can influence the water 

orientations but not in the channel conformation (Fig. 2b). Explained by 

the proton-wire mechanism, the proton had access to move rapidly along a 

confined channel which was determined as a 2.0-Å-radius of pore size 

with a small diffusion constant of water [59]. 

2.3. M2 influenza virus protein 

M2 protein is a pH-regulated proton-selective channel from influenza 

A virus [60–62]. It contains a transmembrane (TM) region formed by four 

helical strands surrounding a narrow pore. It has been indicated that the 

pH-dependent proton transport performances can be attributed to the pKa 

of the imidazole ring along with its tautomerization [60]. Proposed by 

Hirata’s group, the protonation states of two imidazoles were switched 

twice from protonated to non-protonated, and from non-protonated to 

protonated, as shown in Fig. 2c-2d. The δ-N site of neutral His-37 is 

protonated at lower pH, followed by the translocation to the Ɛ-N site for 

achieving proton transfer among water molecules [63]. On the other hand, 

the gate of the channel will be blocked at high pH as a result of the 

intermolecular interaction between Trp41 (W41) and Asp44 sites [64]. 

Further study demonstrates that the accommodation of water in the Ser31 

site is vital for the proton conduction that can be regarded as a bridge to 

transmit a proton to the His37 site where a 1.7 Å of size constriction is 

located for precluding ions (Fig 2e).   
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Fig. 2. (a) High performance RO Membrane embedding thef AqpZ (up), and simulated water wire within AQP1 pore which was then placed inside OmpF protein to 

study its dynamics ans stability(down). Reproduced with permission from Reference [55] Copyright © 2018 American Chemical Society, (b) Schematic 

representation of the gramicidin A channel with the presence of water molecules and a proton transport via  elusive O2H5+ species (in red) along the channel. 

Reproduced with permission from Reference [58] Copyright © 1996 The Biophysical Society by Elsevier, (c) and (d) the proposed mechanism of proton transport 

along of M2 influenza  channel. Reproduced with permission from Reference [63] Copyright © 2010 American Chemical Society, (e) the simulated M2 influenza 

tetramer in POPC lipid bilayer, showing the His37-filter and Trp41 gating. Reproduced with permission from Reference [63] Copyright © 2010 American Chemical 

Society, (f) the stereoview of KcsA channel selectivity filter showing the water-potassium sequences along the channel. Reproduced with permission from Reference 

[65] Copyright © 1998 The American Association for the Advancement of Science.

2.4. Binding site of water in ion channels 

Generally, the accommodation and translocation of ions through 

natural proteins are dependent on the coordination behaviors replacing the 

native ion-hydrated states in bulk water. Taking advantage of the 

amphoteric function of the water molecule, it enables to be the site of 

coordination bond as well as channel-water hydrogen bond, wherefore 

assisting in performing the ion transport process. For instance, KcsA is a 

well-known channel protein with a 3 Å-diameter as a filter for selective 

K+ transport [65,66]. Up to eight coordination bonds can be formed by 

KcsA -channel and K+ -water linkages (Fig. 2f). Within the channel, it has 

been illustrated that the four binding sites were occupied equally by two 

potassium atoms and two water molecules coined as 1-3 and 2-4 

configurations [67], herein water molecules play a vital role in connecting 

the adjacent K+, meanwhile bonding to the channel wall. 

2.5 Inspiration for artificial water channels 

Nature has created remarkable channels for efficient and selective water 

transport as suggested by the examples of natural protein channels 

presented in this section. One common structural feature is the narrowest 

hollow close to 3 Ångström pore size, which is only slightly larger than a 

confined water molecule size. To the best of our knowledge, the hollow 

architecture can be provided by the original molecular configuration, for 

instance, the helical foldamers, and carbon nanotubes, or formed by the 

self-assembling tubular architectures through intermolecular interactions. 

Another important point is related to specific water-water and water-

protein wall donor/acceptor H-bonding interactions able to stabilize 

confined clusters of water that might be responsible for the selectivity of 

the translocation. Charged moieties could play also a role in the rejection 

of ions but also are highly important for the orientation of channels within 

the bilayer membranes. 

 

3. Artificial water channels 

Inspired by natural protein channels, scientists have focused on the 

synthesis of artificial channels that allow water to transport selectively 

through a hollow architecture. The first synthetic self-assembled 

dendrimeric pore structure for water transport was reported by Percec et al. 

However, the water translocation within these pores was very low [68]. 

After that, several new artificial water channels have displayed excellent 

transport behavior close to aquaporin’s level. Importantly, the mechanism 

involved in the intermolecular interaction deserves much attention for 

their further development as alternatives in water purification and 

desalination. 

3.1. Water-assisted self-assembled channel  

3.1.1. Imidazole-quartet channels 

Barboiu et al. have reported the self-assembled functional I-quartet 

artificial water channels, showing the permeability of ~106 H2O/s which is 

within two orders of magnitude of AQPs’ rates (Fig. 3a) [69]. Along 

water wires, protons also can pass through the channel due to the unique 

dipolar orientation of water which results in strong dipole conservation. 

The dipolar orientation of water along the I-quartet channel is shown in 

Fig. 3a, the oxygen atom is strongly bonded to the imidazole N-H group 

as well as to vicinal water molecules with a distance of 1.92 Å and 1.94 Å, 

while the hydrogen atoms are bonded by both oxygen atom and the 

imidazole nitrogen atom (1.87 Å), as a result of the formation of water-
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assisted ‘open form’. With the absence of water molecules, the spatial 

distance between adjacent imidazoles at one side is decreased to 1.85 Å, 

while at the other side, 2.73 Å of hydrogen bond was still kept. It is of 

interest that an inversion center in the assembled channels leads to the 

reversion of dipolar orientation as shown in Fig. 3b. When it comes to the 

rigid bis-ureido containing compounds, the hydrogen bonds distribution 

becomes more alternative, which is attributed to the two possibilities of 

the occupancy in both opposite orientations of the water dipoles [70]. 

Additionally, the subsequent overall pores after varying the alkyl 

chains of I-quartet have the same diameter of 2.6 Å (Fig. 3a), this is 

reminiscent of natural aquaporin’s 2.8-Å pore for the efficient water 

transport [69]. The alkylureido chains varied from butyl-, hexyl-, octyl-, 

dodecyl, or octadecyl- or between chiral S-octyl-, R-octyl- and achiral 

octyl- (Fig. 3c), showing obvious increasing correlations between self-

assembly behaviors and water translocation by an order of magnitude. 

Furthermore, even if the high net permeability was determined in bilayer 

vesicles, the incorporation of I-quartet AWCs with longer alkyl chains 

would lead to an easy precipitation of hydrophobic aggregates and the 

formation of defects in the polymeric membrane layer. Practically, hexyl 

I-quartet, HC6 presents an optimal choice over other alternatives 

concerning the water transport ability of the single channels or their 

solubility in the bilayer membranes or in polymeric films where a high-

density distribution is requested for water permeation over the surface 

membrane but not affecting the mechanical stability of membranes. 

Multichannel crystalline or sponge-like HCx clusters were observed, 

displaying the presence and transport of water, as well as the H-bonding 

connection among them through MD simulation [71]. 

Highly selective ultrapermeable polyamide I quartet AWC membranes 

have been prepared fabricated and tested under real desalination seawater 

desalination conditions at the industrial scale (Fig. 3c). Improved 

permselectivity has been obtained leading to important energy reduction 

[143, 144].

Fig. 3. (a) )  The crystal structure of I-quartet channel with a diameter of 2.6 Å and (b) dipolar orientation of water wires within the channels presenting an inversion 

center. Reproduced with permission from Reference [69] Copyright © 2016 American Chemical Society, Reference [70] Copyright © 2011 WILEY-VCH Verlag 

GmbH & Co., Weinheim; (c) Molecular simulation study of I quartet crystal structure embedded within a polyamide membrane matrix. Reproduced with permission 

from Reference [71] Copyright © 2021 American Chemical Society. 

 

3.1.2. Hydroxy channels 

Inspired by the ceramide channels, Barboiu et al. described the OH 

channels by combining alkylureido arms with hydroxylic ethanol, 

propanediol, and trimethanol water binding components, presenting a high 

affinity for water [72]. The OH channels provide the bulk donors-

acceptors H-bonding environment for the formation of water wires or 

clusters along the assembled channel or pore as the function of 

concentration (Fig. 4a-4c).  

No water molecules were observed in the single crystals of OH-channels. 

However, strong concentration-dependent water transport behaviors were 

observed for these compounds in which the H-bonding networks can be 

observed by water cluster formation within larger channels in bilayer 

membranes. The AQP-level water net permeability enables the authors to 

emphasize the efficient transport mechanisms via transient water wires 

and sponges in larger channel superstructures, meanwhile displaying high 

ion or proton rejection.  

The water sponges in larger channels show two orders of magnitude 

higher water permeability than that of water-wires. The detailed MD 

simulation was performed to explain the membrane-embedded artificial 

channel structures, as shown in Fig. 4c the three regimes of channel H1 

including spongelike, crystal-like, and dissolved form are stabilized in the 

membrane. Then, Pasban and coworkers [73] have carried out molecular 

dynamic simulations and well-tempered metadynamics simulations to 

reveal the water permeability of hydroxy channels in the presence of 

different ions including nitrate (NO3
-), magnesium (Mg2+) and calcium 

(Ca2+) as shown in Fig. 4d. It was indicated that the water transport 

behaviors may be dependent of the size of small ions, as well as the active 
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site of artificial channels that in this case the hydroxy group can help to 

absorb and stabilize water clusters and swell inside the pores. 

 

 
Fig. 4. (a) Chemical structures of hydroxyl channels or pores embedding single water -wires or clusters respectively; (b) The single-channel permeability of 

representative artificial unimolecular pillararene PAP[4], Pilar AQP PAP[5] and self-assembled I quartet and hydroxy water channels compared with the AQPs 

channels; (c) MD simulation of hydroxy channel H1 and the formation of adaptive water clusters in the bilayer membrane. Reproduced with permission from 

Reference [72] Copyright © 2021 American Chemical Society; Metadynamic simulations of a hydroxy channel (d) with the presence of different ions, (e) detail of  

the self-assembed of free water hydroxy channel. Reproduced with permission from Reference [73] Copyright © 2023 Springer Nature. 

 

3.1.3. Peptide-diol channel 

Talukdar et al. have reported a series of peptide-diols combining L-

phenylalanine and D-mannitol connected to two aliphatic chains (Fig. 5) 

[74]. Dual water wires along the diol segment were observed in the crystal 

structure, with a strong H-bonding between O(water)-H(diol OH), H(water)-O(diol 

OH), and H(water)-O(amide C=O), but surprisingly with any interaction among 

water molecules. The intricate alternative H-bonding between channel OH 

groups and water allows the accommodation of water within a diameter of 

2.5 Å, thus leading to the superfast transport behavior. Our opinion is that 

the hydroxy channels are very adaptive examples of selective channels 

stabilizing in a very effective manner the cluster formation and synergistic 

water translocation 

3.1.4. Diphenyl-hydroxy helix 

A hydroxyl-based self-assembled water channel was obtained with the 

self-assembly of a hydrophobic diphenyl segment (Fig. 6a) [75]. The six 

stacks of 2-hydroxy-N-(diphenylmethyl)acetamide HNDPA units created 

a hollow cylindrical architecture where an inner helical water wire was 

present along the tubular path and stabilized via donor H-bonding with 

assembled (OH)6 supramolecular hexagons. The water occupancy under a 

large temperature gap from 110 K to 350 K, indicated that the low 

temperature may make a big difference in the stability of the channel 

structure resulting in the decrease of water content. This channel remains 

an optimal model as the water transport remains to be proven.  

3.1.5. Bola-amphiphile-triazole channels 

Barboiu et al. have reported a class of synthetic triazole TCT non-

selective ion/water channels [76,77]. It was indicated that TCT had similar 

transport behaviors and performance to gramicidin A, conducting water 

and proton while selective to cation/anion. Two hydrogen bonding 

positions happen to –NH---OH2O and –C=O---HH2O which are verified by 

X-ray crystal observation. Within the 5 Å-diameter of the channel, water 

clusters are divided into two layers at opposite directions, showing that 

two wires are close to the inner channel surface by the H-bond interaction 

(Fig. 6b-6c). Additionally, the translocation of alkali cations was 

attributed to hydration-dehydration processes along surrounding water 

molecules dynamically H-bonded to cover the inner wall of the channel. 

Our opinion is that this hydrophilic channel design is one of the 

innovative way to construct adaptive dynamic channels for selective 

translocation. 

 

Fig. 5. (a) Peptide-diol molecules and (b) their crystal structure showing the 

formation of H-bonded water wires within the channel, (c) the snapshot from 

MD simulation of the 4R channel showing the water H-bonded network. 

Reproduced with permission from Reference [74] Copyright © 2022 The 

Royal Society of Chemistry. 
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Fig. 6. (a) Schematic representation of supramolecular diphenyl-hydroxy helical supramolecular channel. Reproduced with permission from Reference [75] 

Copyright © 2022 Wiley-VCH GmbH; (b) Schematic representation of bola-amphiphile-triazole TCT channel, and the water distribution along the channel. 

Reproduced with permission from Reference [77] Copyright © 2014 Springer Nature. 

3.2. Aromatic foldamers 

Aromatic foldamers have been studied for more than two decades due 

to their highly functional biomimetic hydrogen-bonded-stacked helical 

architectures. Easily available starting materials are used as monomers for 

the formation of foldamer backbones, providing extensive hydrogen 

bonds and aromatic stacking interactions for stabilizing the folded 

conformations [78,79]. This set of hollow helical shapes with inner 

channel architectures gave inspiration to the development of water/ion 

channels. The selection of helical units plays a vital role in forming an 

adapted and precise hollow structure for achieving selective transport 

functions. It is attributed to the possibility to selectively build different 

cavity sizes and to structurally design a optimal inner distribution of 

variable binding sites at the Ångström scale, leading to selective binding 

with ionic or molecular species.  

3.2.1. Polypyridine foldamer 

Zeng’s group have reported a class of short foldamers with ‘‘sticky 

end’’ which contributed to the helical stacking through electrostatic 

interactions [80–82]. The single foldamer contains five or six repeating 

units named pentamer or hexamer, and it is sufficient enough to form a 

helical turn using 4.3 residues [83].  

 

 

Fig. 7. (a) Structure of the pentameric foldamer 1 and intramolecular hydrogen 

bonding leading to foldameric channels; (b) the helical stacks in the crystal 

structure of pentamer 1; (c) A H-bonded 1D water chain as extracted from the 

crystal structures of foldamer 1. Reproduced with permission from Reference 

[84] Copyright © 2014 American Chemical Society. 

 

 

While in this work, they demonstrated that the sticky ends do not 

always help to form the helical stacks, other factors including surface over 

protrusion, stronger intermolecular hydrogen bonds, and shorter single 

foldamers may interfere with the packing states [84]. The pentamer 4 

grafted with an ester end and phenyl ring [85] present the 1D helical chiral 

stacks via intercolumnar edge-to-edge contacts as shown in Fig. 7a-7b.  

Four water molecules were accommodated in each turn, and the single 

wire was generated through the H-bonds among water molecules, where 

one water was stabilized by another two neighboring waters (Fig. 7c). 

Additionally, five H-bonds were formed between water dimer and the 

inner surface of 1. 

Several novel pentamers 2 and 3 (Fig. 8a) containing a phenyl ring 

were subsequently designed [86]. A small elongation between the phenyl 

ring and pyridine unit brings an average diameter of 2.8 Å, showing the 

weaker binding of 2 to water, thereby resulting in the faster water 

transport rate (∼3*109 H2O/s/channel). Assumed from the crystal 

structures of 2·(2H2O)n and 3·(2H2O)n, the enhanced water flow rate can 

be attributed to the more optimized position of water molecules 

accommodating inside the channel as well as the more spacious space for 

translation and rotation (Fig. 8b). 

Furthermore, the authors have synthesized the polypyridine-based 

aromatic folded pentamer through one-pot polymerization using POCl3, 

showing an average length of 2.8 nm as a breakthrough [87]. About the 

largest polypyridine amide foldamer P31 (Fig. 8c), the 31 of repeating N-

H in the channel allows the formation of H-bonds of channel-water and 

water-water [88], as a result, creating a single-file water wire along the 

hollow cavity for water and proton transport as shown in Fig. 8c. The flow 

rate of channel P31 can reach at 1.6*109 water molecules/s/ channel, as 

well as proton permeation at the gramicidin A scale. 

3.2.2. Pyridine-pyridone foldamer 

Pyridine and pyridone moieties have been used to obtain polymeric 

foldamers by varying the coupling agents, (Fig. 8d) [89]. The use of 

pyridone units enabled to form three types of hydrogen bonds including 

C=O---H-O-H---O=C, C=O---H-O-H---Npyridine and Npyridine---H-O-H---

Npyridine, which means that no extra H atom can be bound to the O atom in 

the neighboring water, thus leading to the bifurcated H-bonds and the 

disrupted water wires (Fig. 8e). The further binding of protons into the 

channel, 2-3 Å or slightly more, may promote the connection of two short 

water chains, generating a fully H-bonded water chain for proton transport 

via the Grotthuss mechanism. 
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3.2.3. Quinoline helix 

Liu and coworkers have reported a class of quinoline-based helical 

foldamers 4 as the proton channels [90]. The number of repeating units is 

varied from 4 to 16, thus obtaining 4 mer, 8 mer, and 16 mer of different 

lengths respectively (Fig. 9a-9c). A small luminal cavity with a diameter 

of only 1 Å allows the helix to preclude ions and water except for protons. 

Different from other water wire-assisted proton channels, the fast 

exchange between protons of active NH and N-pyridine groups inside the 

hollow cavity and protons assisted by the water molecules at the two ends 

was able to trigger a single-file proton wire. 

 

 

 
Fig. 8. (a) Crystal structures of polypyridine-folded pentamer 2 forming a 1D chain of dichloromethane (CH2Cl2) or methanol (MeOH) molecules, and pentamer 3 

forming a 1D chain of water or MeOH molecules; (b) Crystal structures of aquafoldamers 2·(2H2O)n and 3·(2H2O)n. Reproduced with permission from Reference 

[86] Copyright © 2020 American Chemical Society; (c) Molecular dynamic-simulations of P31 foldamer encapsulating a water wire; (d) The chemical structure of 

hybrid pyridine-pyridone foldamer; (e) The proposed mechanism of proton transport along water wires for channel (AB)25. Reference [87] Copyright © 2020 

WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, Reference [89] Copyright © 2022 WILEY-VCH GmbH. 

 

 
Fig. 9. (a) Chemical and (b) single-crystal structures of quinoline helical foldameric channel 4 for proton transport; (c) The mechanism of proton transport along the 

quinoline-based helix inner surface. Reproduced with permission from Reference [90] Copyright © 2021 American Chemical Society; (d) The proposed synthetic 

route of fluorofoldamer by one-pot polymerization strategy; (e) Helical tubular structure of (A1B)8 oligomer by QM-computation and (f) insertion of the water-

containing channel in POPC lipid bilayer; (g) The distribution of proton wire breakers within the water clusters. Reproduced with permission from Reference [92] 

Copyright © 2022 American Chemical Society. 
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3.2.4. Polyacylhydrazone foldamer 

A series of polyacylhydrazone foldameric water channels were readily 

obtained by using the one-pot polymerization method and varied coupling 

reagents [91]. The QM-optimized pore structures have indicated that 

tunning the inner groups made a big difference in the cavity size, channel 

7-LA and 8-LA have a sizable cavity of 6.5 Å and 4.5 Å for water 

accommodation, whereas the diameter of channel 5 is 3.0 Å due to the 

block of isopropyl group. This example show that variable inner diameter 

can be created within different structures that are useful to explain 

different transport mecanisms at different scales. Inside the cavity of 7-LA 

and 8-LA, around 48 and 33 water molecules were observed, respectively 

while about 36% of them belong to proton wire breakers, which means 

that these water molecules either form only one H-bond, or no bond, or 

form two H bonds via H atom or O atom therefore impeding the hopping 

of protons along water clusters. 

Moreover, foldamers decorated with fluor atoms [92] were designed for 

fast water transport (Fig. 9d-9g). They have a pore size of 5.2 Å and a 

channel length of 2.8 nm for the accommodation of water clusters, 

displaying an ultrafast flow rate of 1.4*1010 water molecules/s/channel 

with an average of 40.7% proton wire breakers as well as high ion 

rejection. It was indicated that the introduction of C(sp2)-F brings dipolar 

bonds, good hydrophobicity, smaller cavity size, and weaker H-bonding 

capability which were regarded as vital factors for excellent water 

transport performances. 

3.3. Macrocyclic channels 

Macrocycles possess the inherent advantage of separating various 

sizable species compatible and selectively bound within their molecular 

diameters. Macrocyclic aromatic or peptide systems [93, 94] are self-

assembled to tubular configurations through intermolecular H-bond or 

stacking interactions resulting in the formation of cylindrical or toroidal 

pores for fast permeation of ions or molecules.  

3.3.1. Hexa(m-phenylene ethynylene) macrocycles 

Gong and coworkers have designed a rigid macrocycle that can self-

assemble to a nanotubular architecture by hydrogen bonds and π-π 

stacking for water transport [95]. By calculating the stacking angle and 

energy configuration, an optimal spatial arrangement was obtained once 

the relative stacking angle of two macrocycles was 19.5° and the 

subsequent vertical distance was 3.46 Å. The hydrophobic nanopore was 

determined at a diameter of 8.63 Å, having an aquaporin-level water 

transport with 22% of the permeability of AQP1. This work pioneered the 

design of macrocycles with hydrophobic nanopores for efficient water 

permeation. 

3.3.2. Diethynyl-benzene-phenylene ethynylene hybrid macrocycle 

Following this, a hybrid shape-persistent macrocycle was introduced 

by the Gong group [96], consisting of alternate hydrophobic and 

hydrophilic moieties, which take advantage of accommodating water 

clusters through the hydrogen bonding of water molecules and carbonyl 

oxygens. This anionic lumen allows ion-dependent water transport, Na+ 

having the longest lifetime of its first-shell water clusters thus the lowest 

water permeability. 

3.3.3. Tetra(ethylene glycol)-based discotic molecule 

Wang’s group synthesized a class of amphiphilic discotic molecules 

formed by tetra(ethylene glycol) chains and 12 dodecyl chains via 

Steglich esterification [97]. With the presence of water molecules as 

oriented directional templating guests (Fig. 10a-10c), these amphiphilic 

units can self-assemble to the well-aligned array, transporting water along 

the water-induced growth direction. 
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Fig. 10. (a) The chemical structure of amphiphilic discotic molecules used for (b,c) the directional  growth of aligned mesophases within alumina ADM membranes 

for directional water transport and their dynamic transformation via  water-induced self-assembly. Reproduced with permission from Reference [97] Copyright © 

2021 American Chemical Society; (d) The schematic representation of fluorous macrocyclic nanochannels used  for water transport; (e) The effect of fluorous 

matrix nanochannels inner surface on water clusters stability within channels. Reproduced with permission from Reference [98] Copyright © 2022 The American 

Association for the Advancement of Science; (f) Tuning the intermolecular pores in resorcin[4]arene membranes via interfacial polymerization. Reproduced with 

permission from Reference [100] Copyright © 2020 Elsevier. 

3.3.4. Fluorine-modified macrocycles 

Aida and coworkers have developed a class of fluorine oligoamide 

macrocycles [98] able to form water channels having stacked macrocyclic 

structures, required for narrow accommodation water clusters (Fig. 10d-

10e). Furthermore, the authors were able to control the diameters of the 

lumen by tuning the amount of aromatic units, ranging from 0.9 nm to 1.9 

nm. The hydrophobic surface can get rid of water H-bonding to the inner 

surface, leading to the fast delivery of water clusters through the 

nanochannels. Meanwhile, involving multiple fluorine atoms can generate 

a negative interior surface as the electrostatic barrier for ultrafast water 

permeation according to the computationally prediction 

3.3.5. Arylene ethynylene macrocycle 

Arylene ethynylene macrocycles can pile up to a uniform hollow 

channel, along with the multiple presentations of H-bonding of side chains 

and π-π stacking interactions [99]. The inner distribution was simulated, 

presenting a 1.1 nm diameter which packed up to three water molecules 

per layer. Compared to the previous case [93], this work demonstrated a 

broader pattern of 2-3-2-3 water molecules at each macrocyclic plane for 

higher water content. Even though the inability of efficient water transport, 

further modification of inner groups may improve the water channel 

performances. 

3.3.6. Tetra-C-ethyl resorcin[4]arene 

Prior to the real utilization in nanofiltration, many macrocycles have 

been studied with regard to the theoretical transport performance and 

mechanism. A direct incorporation of tetra-C-ethyl resorcin[4] arene 

macrocycles [100] into a cross-linked polymeric membrane was 

performed through interfacial polymerization (Fig. 10f), resulting in a 

high water permeability of 42.3 L/m2/h/bar and sodium sulfate rejection of 

96.5%. This work will inspire more possibilities in macrocycle-based 

materials for water purification areas. 

3.4. Pillar[n]arenes water channels 

Pillar[n]arenes were first reported by Ogoshi in 2008. The unique 

pillar-shaped structure was constructed by connecting the 1,4-dialkoxy-

benzene units using a methylene bridge [101]. Then the construction of a 

tubular channel structure along the column axle can be performed by 

using lateral arms connected to Pillar[n]arene scaffold (Fig. 11a, 9 and 10) 

[102,103].  

Hou et al. have initiated the studies on pillar[5]arenes artificial water 

channels and these channels are also the very first representative examples 

of Artificial Water Channels [104]. Two overlapping self-assembled 

superstructures were observed through discrete crystal structures of 

compound 10, it was piled up either uniformly or with a rotation angle of 

36° in order to form a hollow cavity templated by a single-file water wire 

in both cases (Fig. 11b-11c). Eight water molecules were encapsulated 

inside each module, generating the H-bonded water chain during the 

crystallization process of the pillar scaffold. It was revealed that the 

conversion between the two modes happened in different solvents, 10a→

10b in ethylene glycol and 10b→10a in methanol. The slight rotation of 

10 may lead to the interruption of proton jumping, thus reducing or even 

stopping the proton transfer.   

 

Fig. 11. (a) The chemical structure of pillar[5]arene 9 and its pillar[5]arene methyl ester 10 used for the design of artificial water channels; (b) and (c) the crystal 

stacking modes of compound 10 along the channel axis with encapsulated water molecules. Reproduced with permission from Reference [103] Copyright © 2010 

American Chemical Society, Reference [104] Copyright © 2011 Elsevier; (d) The chemical structures of Hydrazide appended pillar[5]arene cylinders with varied 
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length and side groups; (e) The crystal structures of channel 12b with encapsulated water molecules. Reproduced with permission from Reference [105] Copyright 

© 2012 American Chemical Society; (f) The chemical structures of tripeptide-modified pillar[5]arene PAP; (g) The molecular model of unimolecular PAP molecule; 

(h) and (i) the simulated PAP channel embedded within a POPC bilayer; (j) MD simulations of the wetting/dewetting mechanisms of a PAP channels within bilayer 

membranes. Reproduced with permission from Reference [106] Copyright © 2015 National Academy of Science; Reference [106] Copyright © 2018 Springer 

Nature. 

 

 

Fig. 12. (a) The crystal structures of diastereomeric pillar[5]arene pR-PH and pS-PH  and (b) molecular dynamics simulated structures of from peptide-attached 

pillar[5]arene channels; (c) The water transport performances of pR-PH and pS-PH as observed in bilayer membranes Reproduced with permission from Reference 

[108] Copyright © 2019 WILEY-VCH Verlag GmbH & Co. KgaA Weinheim; (d) The inner interaction between the single-file water wire and pillar[5] arene 

AAQPs; (e) Chemical structures of AAQPs pillar[5]arenes with different charges: positive charges, negative charges and zwitterionic charges. Reproduced with 

permission from Reference [110] Copyright © 2020 American Chemical Society. 

3.4.1. Hydrazide-appended pillar[5]arene 

Taking advantage of the readily synthesis and available modification, 

Li and coworkers have reported a series of short or long-side chains 

hydrazide-appended pillar[5]arenes containing two or four benzene units, 

respectively on the central scaffold [105]. The eight intramolecular 

hydrogen bonds and two intermolecular hydrogen bonds between –NH 

and –C=O gave rise to the generation of pentameric cylinders. From the 

crystal structure of 12b (Fig. 11d), it was shown in Fig. 11e that four 

water molecules were bonded to hydrazide groups inside the hydrophilic 

region of the channel. 

3.4.2. Peptide-appended pillar[5]arene (PAP) 

The involvement of intramolecular hydrogen bonds is regarded as a 

vital factor for the stabilization of long pillar structures. Thus the peptide 

scaffolds grafted with the pillar scaffold attracted much attention as the H-

bond forming and membrane inserting hydrophobic components. The D-

L-D poly-phenylalanine (Phe)3 modified pillar[5]arene was reported by 

Hu et al. in 2015 (Fig. 11f) [106]. It has been demonstrated by molecular 

modelling that the aromatic rings of side chains were extended outside of 

the tubular structure allowing water molecules to permeate through the 

PAP channel with an average pore of 5 Å, without ionic selectivity. 

Important wetting-dewetting transitions happened to the channel with the 

presence of 30 % full-water wetting hydrophobic channels in a lipid 

environment (Fig. 11j). Additionally, the length of the PAP channel is 

around 4 nm which is favorable for the insertion in a bilayer membrane 

system [107]. 

In the consideration of the chirality of pillar[5]arene, two isomers (pS 

and pR) were evaluated from two facets --- inner structure and transport 

activity (Fig. 12a-12c) [108]. Both isomers enable to form a hollow 

structure, the only difference is the relative orientation of side chains. 

Interesting chiral pressure may induce a selective water transport 

performance of the pR channel in comparison to the pS channel in lipid 

membrane environments. The direct inclusion of such selective liposomes 

embedded via interfacial polymerization in solid polyamide membranes 

was evaluated by Wang et al. for seawater desalination [109].  

3.4.3. Artificial AAQP pillar[5]arene 

It was recently shown that pillar[5]arene AWCs can be used to treat 

AQP-related diseases by efficiently using these channels as artificial 

AAQPs in cell membranes by Hou et al. [110] AAQP can work in bilayer 

membranes to allow a water permeability close to that of AQPs and 

simultaneous ion and proton exclusion. The AAQP was constructed from 

tubular pillararenes containing positively charged rims, hourglass-like 

cavities and pore constrictions to generate steric hindrance. As a proton 

acceptor, a triazole moiety was found to interact with water molecules 

within the pillar[5]arene, discontinuing the formation of proton wire, 
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reminiscent of the natural AQP channel mechanism [110]. The narrow 

pore allows only one water molecule to pass, thus generating the single-

file water wire with three remarkable H-bonds between water and channel 

inner surface, HH2O---Ntriazole, HH2O---O(-O-) (Fig. 12d). The authors have 

revealed that different positive, negative and zwitterionic charges at the 

two ends of pillar[5]arene channels made a big difference in water 

permeability (Fig. 12e). It was displayed that positive charges assisted to 

reduce the collective hydrogen bonding lifetime thus achieving improved 

water transport performance [111]. Interesting, the high-water 

permeability of AAQP enables the restoration of the water transport of 

cells containing function-lost AQPs, developing a new strategy for the 

treatment of AQP-related diseases [112] and most importantly first 

medical application of AWCs. 

3.4.4. Pillar[5]arene poly carboxylate dimers (PAD) 

Our group in collaboration with Ogoshi and Baaden groups has 

discovered another interesting selective water translocation mechanism 

along peralkyl-carboxylate-pillar[5]arenes dimers [113]. The hollow pore 

was adjusted to 2.8 Å by self-assembly of the twisted carboxy-phenyl 

moieties on pillar[5]arene backbone, which helps to block large cations 

and transport water selectively. To gain further insights into the water 

channel mechanism, the crystal structure of PAD4 was analyzed, 

presenting two dimeric conformations pS-pS and pR-pR along the tubular 

channel (Fig. 13a). The polar region (carboxylic moiety) assisted the 

connection with phospholipid head, the aliphatic chains enabled to insert 

into the lipid and the longer chains may stabilize the membrane 

environment to the more degree. Thanks to the simulation approach, a 

water wetting-dewetting process was shown along the carboxylate dimer 

honeycomb, followed by a slight tilt which led to the water penetration as 

shown in Fig. 13b. 

 

Fig. 13. (a) The crystal structure of Pillar[5]arene poly carboxylate dimers 

PAD4: (b) carboxylate and hydrophobic interactions of possible dimers of 

PAD4. Reproduced with permission from Reference [113] Copyright © 2020 

WILEY-VCH GmbH. 

3.4.5. Peptide-appended hybrid[4]arene (PAH[4]) 

The cumulative understanding of pillar arenes functional channel 

superstructures has provided other strategies for the fabrication of new 

functional species. A narrow unimolecular channel was constructed by 

using a pillar[4]arene scaffold by grafting eight (Phe)3 chains at the two 

entrances[114]. MD simulation mentioned that water clusters are observed 

within PAH[4]-embedded bilayers. This resulted in cooperative water 

wire permeation supported by an energy-minimized horizontal-orientation 

windows mechanism. Instead of a traditional single water file within the 

inner PAH[4] channel cavity, water clusters were interconnected between 

adjacent channels on their outer surface, achieving multiple water-wire 

paths and paving the way toward applications for the construction of 

polymeric membranes with surface permeance selectivity. Although 

undergoing an unpredicted long itinerary, more than 109 water 

molecules/s can be transported along each channel in average. 

3.5. Carbon-enriched nanochannels 

Carbon-enriched materials including carbon nanotubes and graphene 

oxide nanostructures have attracted much attention due to their confined 

hydrophobic or hybrid hydrophobic/hydrophilic channels featuring 

important combined structural information for water translocation. Several 

typical examples, involving various carbon nanotubes, graphene 

nanopores, or nanosheets have been listed below.  

3.5.1. Carbon nanotube porins 

Carbon nanotubes CTNs are one-dimensional quantum nanomaterials 

with a tubular axial structure and extremely hydrophobic surfaces which 

makes it perfect as a channel alternative. It has been two decades since 

CTNs were proposed for studying water conduction performances by 

varying mechanical and physical properties [115,116, 117]. As is known, 

the continuous hydrogen bonding interaction between water molecules 

makes a big difference in the transport of water through the absolute 

hydrophobic environment [118], while the influence of tube length is 

negligible [116]. A one-dimensionally continuous water wire in a single-

walled carbon nanotube has been reported by Hummer using molecular 

dynamics simulations and Markovian CTRW [119,120]. It was shown that 

five H-bonded water molecules with a distance of 2.6 Å were filled in the 

nanotube which has a diameter of 8.1 Å and a length of 13.4 Å. 

Stimulated by osmotic pressure, it was determined that 5.8 water 

molecules can be transported through the nanotube per nanosecond [121]. 

Then, Noy’s group has elucidated the proton and water permeability in 

0.8-nm-diameter carbon nanotube porins (CNTPs) along a one-

dimensional water wire [122,123]. Enhanced proton transport can be 

observed in the more confined environment than that in 1.5-nm-diameter 

CTN porins even though the latter present bulk water in the tube, thus 

indicating the necessity of water confinement for improving proton 

transport rates. In addition, this subnanometer CNTP was able to reject 

chloride ions selectively and keep a good water-salt permselectivity 

balance at the commercial desalination membrane level [124]. From the 

simulated models, 12 water molecules were found to occupy the whole 

tube as shown in Fig. 14a, and they displayed three different dipolar states 

along the channel for the formation of a water wire.  

To improve the biocompatibility of carbon nanotubes in the biological 

environment, a class of double-walled carbon nanotubes (DWCNT) was 

designed, it has an outer tube with hydrophilic ends (Fig.14b) to capture 

the free water molecules as well as protect the inner tube for achieving 

effective water permeation [125]. 

Additionally, the presence and spreading of water inside the 

multiwalled carbon nanotube was observed using a transmission electron 

microscope under the heating from 25°C to 75°C [126]. The retarded 
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movement of water molecules may attribute to the interaction between 

water and tube walls. 

In total, the absolute hydrophobicity and tubular architecture of carbon 

nanotubes bring the prospects in the water transport for desalination and 

purification. However, it is not meaning the absence of its drawback, for 

instance, the repulsion of the rim to water molecules, the selectivity-

permeability trade-off. Thus further studies and simulations on the 

functionalization of CTN mouth as well as the optimization of radical 

diameter need to be studied. The applications of carbon nanotubes for the 

construction of large scale membranes is more or less affected by the 

relative difficult production of open size pores and the generation of pore 

gate keepers to push water inside nanotubes 
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Fig. 14.  (a) The water dipole states and dominant configuration of water molecules within CTNs; (b) Designed models of DWCNT and SWCNT with charged 
carbon atoms for water capture (in red) and end caping hydroxyl groups gate keepers. Reproduced with permission from Reference [126] Copyright © 2009 

American Chemical Society; (c) The desalination model using multilayer graphene membrane (MGM) and its inner arrangement, dG is the gap width, H is the 

interlayer spacing, O is the offset; (d) The simulated water clusters within the gaps of MGM at different gap width. Reproduced with permission from Reference 

[128] Copyright © 2022 Elsevier. 

 

3.5.2. Graphene-based 2D nanochannel 

Parallel to carbon nanotube, the carbon-based graphene material, as a 

two-dimensional lamellar channel was proposed to be used for selective 

water confinement in its narrow space [127, 128]. The transport of water 

molecules is mainly dependent on the two-dimensional network between 

the stacked carboxylate/hydroxyl graphene sheets which both the 

nanopore size and charges are the common factors for adjusting the water 

flux and selectivity (Fig. 14c-14d), while the hydrogen bonding among 

water molecules may restrict water flux by increasing permeation energy 

[129–132].   Beyond this, graphene oxide and its derivatives have been 

used in upscaled hybrid membrane systems for water treatment [133]. Xu 

and coworkers reported a chitosan-modified graphene oxide membrane 

[134], having the hydrophilic polymer for capturing water molecules 

through hydrogen bonding and filtering impurities, and graphene oxide 

laminate as 2D channels for effective water permeation. More studies on 

the functionalization of graphene oxide surface and layer distance are 

worth to continuing for the further development of graphene oxide in the 

fabrication of efficient membranes for environmental applications. 

3.6. Porous cage or material systems 

In the past decades, multiple of porous materials have been made for 

water treatment [135-137], for example metal-organic frameworks, 

covalent organic frameworks, zeolites, and porous organic polymers. The 

common feature of porous systems is having Ångström level or nano-

level cavities for water accommodation while excluding salts or 

contaminants, thus providing more possibilities for the development of 

porous systems in water purification. Several representative examples are 

listed below. 

3.6.1. Tetrahedral-shaped porous organic cages 

Zhao and coworkers have reported a class of tetrahedral-shaped 

porous organic cages (POCs) used as novel zero-dimensional nanopores 

for water transport and embedded in bilayer membranes and polyamide 

membrane desalination [138]. The transport of water molecules can be 

achieved through the narrow windows of POCs as shown in Fig. 15a, 

where they need to undergo the strongest energy barrier between two cage 

units (a 5-step mechanism). Self-assembling such cage molecules with a 

optimal density represent an important strategy to generate highly 

competitive membranes for desalination. 

 

 

Fig. 15. (a) The transport of water and a 5-step mechanism for water transport 

along the POC channel; (b) The formed water chains along channels CC3 and 

CC19 by simulations. Reproduced with permission from Reference [138] 

Copyright © 2020 Springer Nature. 
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Fig. 16. (a) The structural water distribution within the 13X-zeolite; (b) The simulated dynamic wetting process of the internal zeolite pore . Reproduced with 

permission from Reference [139] Copyright © 2021 Elsevier.

Table 1. The possible water distribution and hydrogen bonding interaction along artificial water channels.

 

 Pore size (or gap width) H-bond of Channel – Water Water arrangement Ref 

Self-assembled channels 2.6 – 4 Å H(H2O)-N(imidazole) 

O(H2O)-HN(imidazole) 

O(H2O)-HO(hydroxyl) 

H(H2O)-O(amide) 

Single-wires; 

Water clusters 

[69-75] 

Aromatic foldamers 2.8 – 6.5 Å H(H2O)-O(pyridone) 

H(H2O)-N(pyridine) 

H(H2O)-O(ether) 

O(H2O) -H(amide) 

Single-wires; 

Water clusters 

[83-89], [91-92] 

Macrocycles 5.5 – 19 Å H(H2O)-O(amide) Single-wires; 

Water clusters 

[95-96], [98-99] 

Pillar[n]arenes 1.5 – 6.5 Å H(H2O)-O(carboxylic carbonyl) 

H(H2O)-O(carboxylic hydroxyl ) 

H(H2O)-N(triazole) 

H(H2O)-O(ether) 

Single-wires; 

Water clusters 

[104-114] 

Organic cages 4.0 – 10.7 Å H(H2O)-O(cage) 

O(H2O)-HO(hydroxyl) 

H(H2O)-N(cage) or O(H2O)-HN(cage) 

Single-wires and water 

clusters 

[138-139] 

Carbon-based nanochannels 6.8 – 29.8 Å / Single-wires; 

Water clusters 

[118-128] 

Benefiting from the higher hydrophilicity, channel CC19 can encapsulate 

more water molecules inside the cage compared to channel CC3, but 

meanwhile leading to higher resistance for water movement. The possible 

water encapsulation and hydrogen bonding interactions are depicted in Fig. 

15b. Along with the simulation graph, the distribution of water in CC3 

and CC9 displayed the single-file wires with a dipolar-ordered 

arrangement following opposite orientations along neighboring transport 

pathways. Again an optimal H-bonding anchoring is necessary to stabilize 

these clusters in multiple pore regions within the membrane. 
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3.6.2. Zeolite nanomaterials 

The distribution and transport of water molecules in multi-porous 13X 

zeolite (Na96Al96Si96O384) was elucidated by Wang through molecular 

dynamics simulations (Fig. 16a) [139]. Water molecules enter the zeolite 

pores along the green transport pathways through the 12-R windows, and 

then a small amount of water can be transported into subsequent super 

cages due to the strong absorption behavior of channel entrance to the 

water, causing the sudden breakage of water clusters inside the cavity as 

coined a vacuum. A four-step wetting process was explained as the 

retention stage of the frontier water (HH2O-Ocage), the competition stage 

between the frontier water and subsequent water (HH2O-Ocage-HH2O), 

separation stage of the frontier water and triggering wetting stage of the 

next water (Fig. 16b). This work may envision the further study on 

channel mechanism and actual utilization of nanoporous zeolite for the 

fabrication of upscaled membranes with per area permeability for water 

treatment.

4. Conclusion and outlook 

To date, several hundreds of tailored compounds have been accounted 

and synthesized as selective Artificial Water channels for their potential 

utilization in water separation or purification. From a broad point of view, 

interdisciplinary research provides researchers from different fields with 

numerous opportunities for innovative molecular construction, no matter 

from overall architecture design or molecular modification, its unique 

structure is worthy of in-depth research and evaluation on the direction of 

channel functions. Noticeably, the countless reported results of artificial 

channels enlarge the field of molecular separations, for instance involving 

in the synthesis and their inclusion in bilayer and solid membranes. From 

the perspective of structural properties, the transport mechanism may 

consider the channel architecture and dimension as well as the water 

single-wires or cluster self-assembly and water-channel interaction of 

each template (Table 1). The continuous water wires or water clusters can 

interfere with the single channels or pores. Until now, exclusively a small 

amount of clear examples have been elucidated comprehensively for 

practical utilization but important useful information is gained by 

exploiting the simulation approach at Ångström-scale observation. Thus 

this is still broad room for continuous efforts in the interpretation of 

artificial water channels.  

In this review, artificial water channels currently reported are listed 

and classified into organic cages, macrocycles, carbon-based nanopores, 

aromatic foldamers, pillar[n]arenes, and self-assembled channels. The 

pore-forming property of these compounds offers a path to accommodate 

water molecules along the channel axle, giving rise to equal or over AQP-

level water translocation. In particular, water distribution and orientation 

based on hydrogen bonding interaction is the key point when we explore 

important behaviors of the transport mechanism of each channel. Having 

sufficient microscale analysis, the development of an artificial channel-

inserted solid membrane can be envisioned for environmental 

applications. In this case, additional precautions need to be necessarily 

considered, such as the reliable evaluation of transport performance and 

observation of water arrangement in real membrane systems, the 

optimization of artificial channel-embedded membranes under harsh 

conditions etc. 
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