
HAL Id: hal-04742082
https://hal.science/hal-04742082v1

Submitted on 17 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Computational Complexity of Standpoint LTL
Stéphane Demri, Przemyslaw Andrzej Walega

To cite this version:
Stéphane Demri, Przemyslaw Andrzej Walega. Computational Complexity of Standpoint LTL. 27th
European Conference on Artificial Intelligence, Oct 2024, Santiago de Compostela, Spain. pp.1206–
1213. �hal-04742082�

https://hal.science/hal-04742082v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Computational Complexity of Standpoint LTL
Stéphane Demria and Przemysław Andrzej Wałęgab

aUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France
bUniversity of Oxford, Queen Mary University of London, United Kingdom

Abstract. Standpoint linear temporal logic SLTL is a recent formal-
ism able to model possibly conflicting commitments made by distinct
agents, taking into account aspects of temporal reasoning. In this pa-
per, we analyse the computational properties of SLTL. First, we es-
tablish logarithmic-space reductions between the satisfiability prob-
lems for the multi-dimensional modal logic PTLxS5 and SLTL. This
leads to the ExpSpace-completeness of the satisfiability problem in
SLTL, which is a surprising result in view of previous investigations.
Next, we present a method of restricting SLTL so that the obtained
fragment is a strict extension of both the (non-temporal) standpoint
logic and linear-time temporal logic LTL, but the satisfiability prob-
lem is PSpace-complete in this fragment. Thus, we show how to
combine standpoint logic with LTL so that the worst-case complex-
ity of the obtained combination is not higher than of pure LTL.

1 Introduction
Standpoint Logic. Recently, a new framework based on modal
logics was developed in order to interpret languages in the presence
of vagueness [21]. The framework is called ‘standpoint logic’ where
standpoints (a concept first introduced by Bennett [10] in a logi-
cal context, see also [11]) are used to interpret vague expressions.
Logical reasoning about vagueness has a long tradition stemming
from fuzzy logics [34, 35], to information logics based on rough
sets [28, 27, 7]. In standpoint logic, each standpoint s is associated
with modalities 3s and 2s, and with a set of interpretations (a.k.a.
precisifications) corresponding to s. While 3sφ reads as “according
to s, it is conceivable that φ”, dually, 2sφ reads as “according to s, it
is unequivocal that φ”. The language of standpoint logic is equipped
also with a binary operator ⪯ between standpoints, such that s ⪯ s′

is interpreted as “the standpoint s is sharper than s′” leading to the
validity of the modal axiom 2s′p → 2sp. This is reminiscent to
partially-ordered (S4) modal operators [1], role hierarchies in de-
scription logics [4], and more generally to grammar logics [17], for
which computational properties are well studied [6, 14]. Originally,
standpoint logic framework was developed for propositional calcu-
lus [21], then also for predicate logic and description logics [23, 24],
and most recently for the temporal logic LTL [20]. This framework
has a potential for further combinations with logical formalisms ded-
icated to knowledge representation and reasoning, allowing us to per-
form logical reasoning about vagueness [18, 9, 11].

Standpoint LTL. As evoked above, the recent paper [20] in-
troduced a multi-perspective approach by combining standpoints
and temporal reasoning expressed in the linear-time temporal logic
LTL [29], which is a very popular specification language, for in-
stance used for model-checking [5], temporal planning [13, 2], and

temporal reasoning with description logics [3]. This new formal-
ism, called SLTL, handles both evolutions of systems and changes
of standpoints. Gigante et al. [20] develop a tableau-based proof sys-
tem to reason about SLTL, leading to a computational analysis for
deciding the satisfiability status of SLTL formulae. Within SLTL,
each standpoint is interpreted as a set of LTL models (i.e. as a set
of ω-sequences of propositional valuations, also known as traces)
and the logical formalism has the ability to model possibly conflict-
ing commitments made by distinct agents. Hence, SLTL significantly
increases the modelling capabilities offered by LTL, and so, SLTL
can be seen as a non-trivial extension of LTL. Our initial motiva-
tion in this work is to understand the computational properties of
SLTL. We agree with Gigante et al. [20] that it is particularly desir-
able to be able to decide the satisfiability status of SLTL formulae
in polynomial-space, which is the best we can hope for in view of
PSpace-completeness of LTL [31]. However, in contrast to the re-
sults of Gigante et al. [20], we show that the PSpace membership
can be guaranteed only for strict fragments of SLTL (see Section 4)
and ExpSpace is required for the full SLTL (see Section 3).

Our contributions. We study the computational properties of the
satisfiability problem for the standpoint linear temporal logic SLTL.
We show that the problem is ExpSpace-complete (Theorem 5)
by establishing logarithmic-space reductions between SLTL and the
multi-dimensional modal logic PTLxS5 whose satisfiability problem
is known to be ExpSpace-complete [19]. The obtained ExpSpace-
completeness of SLTL contrasts with PSpace-membership claimed
by Gigante et al. [20]. In Section 4.1, we provide examples of SLTL
formulae whose satisfiability is challenging to check as their mod-
els have an infinite set of traces and at every position, an exponen-
tial amount of valuations are witnessed on such traces (see Proposi-
tion 6). In Section 4.2, we identify a fragment of SLTL which con-
tains both LTL and propositional standpoint logic, but the satisfiabil-
ity problem can be decided in polynomial-space. Since LTL is known
to be PSpace-complete [31], we obtain the same tight complexity
result for the newly introduced fragment of SLTL (Theorem 11). To
do so, we use the automata-based approach following the general
principles for LTL [32], but with non-trivial modifications.

2 Logical Preliminaries

In this section, we briefly introduce the standpoint linear temporal
logic SLTL, the propositional standpoint logic PSL, as well as the
multi-dimensional modal logic PTLxS5, which we exploit in Sec-
tion 3. For motivations and detailed presentation of these logics, we
refer a reader to [22, 20] and [19, Chapter 5].

2.1 Standpoint linear temporal logic SLTL

The SLTL formulae are built over a countably infinite set P of propo-
sitional variables and a countably infinite set S = {s, s′, . . .} of
standpoint symbols including the universal standpoint symbol ∗. The
SLTL formulae φ are defined according to the grammar:

φ ::= p | s ⪯ s
′ | ¬φ | φ ∧ φ | 3sφ | 2sφ | Xφ | φUφ,

where p ∈ P and s, s′ ∈ S; other Boolean connectives and LTL
temporal operators (e.g. →, ↔, ∨, G for “always in the future”, and
F for “sometime in the future”) are treated as standard abbreviations.
In terms of expressivity, one modality among 3s,2s is sufficient. An
SLTL model, M, is a structure of the form M = (Π, λ) where,
– Π ̸= ∅ is a set of LTL models (traces) of the form σ : N −→ 2P ,

– λ is a map of the form λ : S −→ (2Π \ {∅}) such that λ(∗) = Π.
For example, Figure 1 presents an SLTL model with six traces. The
satisfaction relation, M, σ, i |= φ, for an SLTL model M = (Π, λ),
σ ∈ Π, i ∈ N, and an SLTL formula φ is defined inductively as
follows (we omit the standard clauses for Boolean connectives):

M, σ, i |= p
def⇔ p ∈ σ(i),

M, σ, i |= s ⪯ s
′ def⇔ λ(s) ⊆ λ(s′),

M, σ, i |= 3sφ
def⇔ M, σ′, i |= φ, for some σ′ ∈ λ(s),

M, σ, i |= 2sφ
def⇔ M, σ′, i |= φ, for all σ′ ∈ λ(s),

M, σ, i |= Xφ
def⇔ M, σ, i+ 1 |= φ,

M, σ, i |= φUψ
def⇔ there is i′ ≥ i such that M, σ, i′ |= ψ

and M, σ, i′′ |= φ for all i ≤ i′′ < i′.

The satisfiability problem for SLTL takes as input an SLTL formula
φ and asks whether there is a model M = (Π, λ) and σ ∈ Π such
that M, σ, 0 |= φ. By way of example, we provide an SLTL for-
mula below taken from the medical devices example [20, Section
2.1] (more elaborated examples can be found in [21, 22, 20]):

2∗(G¬Malf → Test) ∧ 2IT(Comp ∨ Test → Safe).

The first conjunct states that all countries agree in their standpoints
that if a medical device never malfunctions, then it is safe according
to testing. The second one states that Italy deems a device safe if it is
safe according to testing or it has been found safe by comparison.

Regarding our definition of SLTL, it is worth observing that, as
far as we can judge, the satisfiability problem is not formally defined
in [20, Section 2.2]. Only the validity problem is defined. In particu-
lar, non validity of the SLTL formula φ is defined as the existence of
an SLTL model M = (Π, λ) and σ ∈ Π such that M, σ, 0 |= ¬φ.
So, our definition of satisfiability is dual to the notion of validity used
by Gigante et al. [20].

Besides, it is worth noting that the above presentation of SLTL
differs slightly with the definition of Gigante et al. [20, Section 2.2],
but it has no impact on our results, as described next. SLTL formu-
lae, as defined in [20], are in negation normal form and allow for
using the “release” LTL operator. In our definition negation is unre-
stricted and we do not use the “release” operator, which makes no
substantial difference. Gigante et al. [20] assumes also that the for-
mulae s ⪯ s′ cannot be combined with other formulae, so the way
we define SLTL formulae is slightly more expressive. However, our
ExpSpace-hardness proof (reduction in Lemma 1) does not use for-
mulae of the form s ⪯ s′ (actually only the modalities 2∗, X, and

U are needed). The ExpSpace-membership (Corollary 4) for our,
slightly richer language, clearly implies the same upper bound for
the weaker language of Gigante et al. [20].

The change of standpoint performed with the modalities 3s and
2s is reminiscent to the change of observational power studied in [8]
with the modalities ∆o. In both cases, a modality explicitly performs
a change in the way the forthcoming formulae are evaluated.

2.2 Propositional standpoint logic PSL

In the sequel, we also consider propositional standpoint logic [22]
(herein, written PSL) understood as the fragment of SLTL without
temporal connectives. The grammar of formulae is restricted to

φ ::= p | s ⪯ s
′ | ¬φ | φ ∧ φ | 3sφ | 2sφ,

and the models are of the form M = (Π, V) where Π is a finite
non-empty set of precisifications, V : S ∪ P −→ 2Π is a valuation
such that for all s ∈ S, we have V (s) ̸= ∅ and V (∗) = Π. The
satisfaction relation is defined as follows (where π ∈ Π and we omit
the obvious clauses for Boolean connectives):

M, π |= p
def⇔ π ∈ V (p),

M, π |= s ⪯ s
′ def⇔ V (s) ⊆ V (s′),

M, π |= 3sφ
def⇔ M, π′ |= φ, for some π′ ∈ V (s),

M, π |= 2sφ
def⇔ M, π′ |= φ, for all π′ ∈ V (s).

The satisfiability problem, for an input formula φ, consists in check-
ing whether there is some pair M, π such that M, π |= φ. This
problem is NP-complete. To show NP-membership, Gómez Ál-
varez [21, Section 4.4.2] proved that if a satisfiable formula φ con-
tains N1 many standpoint symbols and N2 many diamond modal
operators, then φ is satisfied in a model M = (Π, V) such that
|Π | ≤ N1+N2+1. An alternative way to get the NP-membership is
to translate φ into a formula

∧
s 3s∧t(φ) of the modal logic S5 [12],

where t turns standpoint operators into modal operators in the follow-
ing manner: t(s ⪯ s′) = 2(s → s′), t(3sφ) = 3(s ∧ t(φ)), and
t(2sφ) = 2(s → t(φ)). The correctness of such a reduction re-
lies naturally on the Kripke-style semantics for PSL. We will refine
complexity analysis of PSL in Section 4.2, which will be essential to
establish complexity of SLTL fragments.

2.3 Multi-dimensional modal logic PTLxS5

Another logic that is useful herein is the multi-dimensional modal
logic PTLxS5 [19, Chapter 5] defined as the product of LTL and S5.
PTLxS5 formulae are generated from the grammar

φ ::= p | ¬φ | φ ∧ φ | 3φ | 2φ | Xφ | φUφ,

where p ∈ P is a propositional variable. As in SLTL, we use stan-
dard abbreviations for other Boolean connectives and LTL opera-
tors (→, ∨, G, F, etc.). The models for PTLxS5 are of the form
M = (N × W,R,L) where (W,R) is an S5-frame (i.e. R is an
equivalence relation on W) and L : N ×W −→ 2P . The satisfac-
tion relation for PTLxS5 is defined as follows (again, we omit the

standard clauses for Boolean connectives):

M, (n,w) |= p
def⇔ p ∈ L(n,w),

M, (n,w) |= 3φ
def⇔ M, (n,w′) |= φ, for some w′ ∈ R(w),

M, (n,w) |= 2φ
def⇔ M, (n,w′) |= φ, for all w′ ∈ R(w),

M, (n,w) |= Xφ
def⇔ M, (n+ 1, w) |= Xφ,

M, (n,w) |= φUψ
def⇔ there is n′ ≥ n such that M, (n′, w) |= ψ

and M, (n′′, w) |= φ for all n ≤ n′′ < n′.

Therefore, the modalities 3 and 2 allow us to move within the
(W,R) dimension whereas the temporal connectives X and U allow
us to move along the (N,≤) dimension. The satisfiability problem
for PTLxS5 takes as input a PTLxS5 formula φ and asks whether
there is a model M = (N×W,R,L) and (n,w) ∈ N×W such that
M, (n,w) |= φ. It is known, that satisfaction of a formula can be al-
ways witnessed by a model M = (N×W,R,L) withR =W ×W
and by a pair (0, w) (i.e. its first component is the origin position 0).
In the sequel we will use this assumption; in particular, we will as-
sume that R = W ×W , and for simplicity of presentation we will
drop the component R from PTLxS5 models.

It is worth noting that the above presentation of PTLxS5 differs
slightly from the definitions by Gabbay et al. [19, Section 2.1], but
it has no impact on our results. Indeed, Gabbay et al. [19] use only
the strict “until” operator, which we denote by U< (and no next-time
operator X) and whose semantics is as follows:

M, (n,w) |= φU<ψ
def⇔ there is n′ > n with M, (n′, w) |= ψ

and M, (n′′, w) |= φ for all n < n′′ < n′.

It is easy to see that φU<ψ can be encoded by X(φUψ) and therefore
the ExpSpace-hardness for PTLxS5 proved by Gabbay et al. [19,
Theorem 5.43] applies also to our version of PTLxS5. As far as the
ExpSpace-membership is concerned, the satisfiability problem for
our version of PTLxS5 is in ExpSpace using the approach of Gab-
bay et al. [19, Theorem 6.65] dedicated to PTLxS5 with strict “until”
and using a standard renaming technique [19, Proposition 2.10]. Note
that a naive translation t from our language to a formula with strict
“until” exploiting t(φUψ) = t(ψ) ∨ (t(φ) ∧ t(φ)U<t(ψ)), would
cause an exponential blow-up. However, we can get a logarithmic-
space reduction using the renaming technique, where any subformula
χ is associated with a fresh propositional variable pχ. For instance,
to capture the meaning of φUψ we introduce an additional formula
2G

(
pφUψ ↔ pψ∨ (pφ∧pφU<pψ)

)
. This additional formula (prop-

agating an equivalence all over the model), if asserted in any world
of the form (0, w), allows us to state that pφUψ is equivalent with
ψ∨ (φ∧φU<ψ), in all elements in N×W . The propagation is over
the model because of the modality 2G and we can always assume
that a world satisfying our formula is of the form (0, w). As a con-
clusion, the version of PTLxS5 involved in this paper admits also
an ExpSpace-complete satisfiability problem (ExpSpace-hardness
follows from the fact that φU<ψ can be encoded by X(φUψ)).

Let us conclude this section by evoking the relationships between
SLTL and the well-known modal logic S5 [12]. The logic SLTL con-
tains a modality 2∗ where ∗ can be understood as the universal stand-
point interpreted by the total set of traces and therefore 2∗ behaves
naturally as an S5 modality, whence the component S5 in PTLxS5.
The presence of S5 is not our finding as it has been already observed
that quantification over precisifications leads to S5 modalities, see
e.g., the works of Bennett [9, Section 2.1] and Bennett [10, page 43],

as well as the presence of S5 modalities for modelling standpoints
in [21, Section 3.5] and in [21, Chapter 4]. Furthermore, the relation-
ship with multi-dimensional modal logics is already briefly evoked
in [21, Section 7.3.3]. More importantly, an early introduction of
some multi-dimensional modal logic is performed by Bennett [9,
Section 2.1] where first-order logic and propositional modal logic S5
are mixed. Hence, the fact that we use PTLxS5 is not a total surprise,
and the need for multi-dimensional modal logics was in the air for
some time. Our contribution consists in establishing a formal result
involving multi-dimensional modal logics and in designing simple
logarithmic-space reductions between SLTL and PTLxS5, proving
ExpSpace-hardness of SLTL, despite the complexity result claimed
in [20, Theorem 28]. The design of a PSpace fragment completes
our analysis and provides us with a fragment of SLTL which is a
strict extension of both LTL and standpoint logic, but its computa-
tional complexity is not higher than the complexity of pure LTL.

3 Satisfiability for SLTL is ExpSpace-complete

In this section we design logarithmic-space translations from SLTL
to PTLxS5 formulae, and vice versa. As a result, we will obtain
that the computational complexity of satisfiability for SLTL for-
mulae is the same as for PTLxS5 formulae, namely ExpSpace-
complete. Both of our translations exploit similarities between SLTL
and PTLxS5 models. More specifically, we will consider an element
w ∈W in an PTLxS5 model (N×W,L) as a name for an LTL trace
σ ∈ Π from an SLTL model (Π, λ).

3.1 Translation from PTLxS5 to SLTL

Let φ be a PTLxS5 formula and t1(φ) be its translation obtained
from φ by replacing every occurrence of 3 by 3∗ and every occur-
rence 2 by 2∗ (an alternative translation consists in using 3s and
and 2s for some fixed s ∈ S). We show that this simple translation
preserves satisfiability.

Lemma 1. φ is PTLxS5-satisfiable iff t1(φ) is SLTL-satisfiable.

Proof sketch. Assume that there is a PTLxS5 model M = (N ×
W,L) and (0, w) ∈ N×W such that M, (0, w) |= φ. Let us build an
SLTL model M′ = (Π, λ) and a trace σ ∈ Π such that M, σ, 0 |=
t1(φ). To this end, we let Π consist of all traces of the form

σw′
def
= L((0, w′)), L((1, w′)), L((2, w′)), L((3, w′)), . . .

with w′ ∈W ; note that we represent a trace σ′ : N −→ 2P as an ω-
sequence σ′(0), σ′(1), σ′(2), We let λ(s) def

= Π, for each s ∈ S
(for the construction it is only important that λ(∗) = Π as no other
standpoint symbol occurs in t1(φ)). We can prove by structural in-
duction that, for all subformulae ψ of φ and for all (n,w′) ∈ N×W ,
we have M, (n,w′) |= ψ iff M′, σw′ , n |= t1(ψ). By way of exam-
ple we handle below the case when the subformula is of the form 2ψ.
It suffices to observe that the following statements are equivalent:
– M, (n,w′) |= 2ψ

– M, (n,w′′) |= ψ for all w′′ ∈W (by definition of |=)

– M′, σw′′ , n |= t1(ψ) for all w′′ ∈W (by induction hypothesis)

– M′, σ′, n |= t1(ψ) for all σ′ ∈ Π (by definition of Π)

– M′, σw′ , n |= 2∗t1(ψ) (by definition of |=)

– M′, σw′ , n |= t1(2ψ) (by definition of t1)

Therefore, we can show that M, σw, 0 |= t1(φ).
For the opposite implication, assume that there are an SLTL model

M = (Π, λ) and a trace σ ∈ Π such that M, σ, 0 |= t1(φ). Let us
build a PTLxS5 model M′ = (N ×W,L) and (0, w) ∈ N ×W

such that M′, (0, w) |= φ. We let W def
= Π and L((n, σ′))

def
= σ′(n),

for all (n, σ′) ∈ N ×W . We can show by structural induction that
for all subformulae ψ of φ, all σ′ ∈ Π, and all n ∈ N, we have
M, σ′, n |= t1(ψ) iff M′, (n, σ′) |= ψ. By way of example, we
handle below the case when the subformula is of the form ψ1Uψ2.
To this end, we observe that the below statements are equivalent:
– M, σ′, n |= t1(ψ1Uψ2)

– M, σ′, n |= t1(ψ1)Ut1(ψ2) (by definition of t1)

– There is n′ ≥ n such that M, σ′, n′ |= t1(ψ2) and for all n ≤
n′′ < n′, we have M, σ′, n′′ |= t1(ψ1) (by definition of |=)

– There is n′ ≥ n such that M′, (n′, σ′) |= ψ2 and for all n ≤
n′′ < n′, we have M′, (n′′, σ′) |= ψ1 (by induction hypothesis)

– M′, (n, σ′) |= ψ1Uψ2 (by definition of |=)
This allows us to show that M′, (0, σ) |= φ.

As t1(φ) is computed in logarithmic-space, we get the following.

Corollary 2. SLTL-satisfiability is ExpSpace-hard.

Note that this result contradicts the PSpace upper bound shown
by Gigante et al. [20, Theorem 28], as PSpace and ExpSpace are
known to be distinct complexity classes.

3.2 Translation from SLTL to PTLxS5

The translation from SLTL to PTLxS5 is (slightly) more complex
since SLTL models interpret standpoint symbols, which have no
natural counterpart in PTLxS5 models. As we will show, however,
standpoints can be simulated in PTLxS5 with fresh propositional
variables. This, in particular, requires an additional formula (called
χn below) simulating the requirements that each standpoint in an
SLTL model has at least one associated trace and that if a trace is
assigned to a standpoint, it is so throughout the entire timeline. As
we show, such requirements can be easily expressed in PTLxS5.

Given an SLTL formula φ, we construct a PTLxS5 formula t2(φ),
by applying the translation map t2 such that t2 is the identity map for
propositional variables, it is homomorphic for Boolean and temporal
connectives, and the following hold for all s, s′ ∈ S:

t2(3∗ψ)
def
= 3t2(ψ), t2(3sψ)

def
= 3(s ∧ t2(ψ)),

t2(2∗ψ)
def
= 2t2(ψ), t2(2sψ)

def
= 2(s → t2(ψ)),

t2(s ⪯ s
′)

def
= 2(s → s

′).

Assuming that the standpoint symbols in φ are s1, . . . , sn, we let

χn
def
=

∧
1≤i≤n

(3si) ∧ 2
∧

1≤i≤n

(Gsi ∨ G¬si).

As we show next, checking satisfiability of φ in SLTL reduces to
checking satisfiability of χn ∧ t2(φ) in PTLxS5.

Lemma 3. φ is SLTL-satisfiable iff χn∧t2(φ) is PTLxS5-satisfiable.

Proof sketch. Assume that φ is SLTL-satifiable, so there are an
SLTL model M = (Π, λ) and a trace σ ∈ Π such that M, σ, 0 |= φ.
Let us build a PTLxS5 model M′ = (N×W,L) such that W def

= Π

and L((n, σ′))
def
= σ′(n)∪{s | σ′ ∈ λ(s)} for all (n, σ′) ∈ N×W .

We show that M′, (0, σ) |= χn ∧ t2(φ). First, we observe that
M′, (0, σ) |= χn. This follows from the definition of χn and the
fact that for all σ′ ∈ Π and for all j ≥ 0, we have si ∈ L((j, σ′)) iff
σ′ ∈ λ(si). Second, by structural induction, we can show that for all
subformulae ψ of φ, all σ′ ∈ Π, and all j ∈ N, we get M, σ′, j |= ψ
iff M′, (j, σ′) |= t2(ψ). Hence M′, (0, σ) |= χn ∧ t2(φ).

Now, assume that there is a PTLxS5 model M = (N × W,L)
and (0, w) ∈ N × W such that M, (0, w) |= χn ∧ t2(φ). Let us
build an SLTL model M′ = (Π, λ) and a trace σ ∈ Π such that
M, σ, 0 |= φ. As in the proof of Lemma 1, let Π consist of all traces

σw′
def
= L((0, w′)), L((1, w′)), L((2, w′)), L((3, w′)), . . .

with w′ ∈ W . This time, the definition of λ exploits the assumption
that M, (0, w) |= χn. In particular, to define λ we let σw′ ∈ λ(si)

def⇔ M, (0, w′) |= Gsi, for all i ∈ [1, n] and w′ ∈ W . By the
definition of λ and the form of χn, for each si we have λ(si) ̸= ∅.
This guarantees that M is an SLTL model. By structural induction,
we can show that for all subformulae ψ of φ and for all (j, w′) ∈
N ×W , we have M, (j, w′) |= t2(ψ) iff M′, σw′ , j |= ψ. Hence,
M′, σw, 0 |= φ and so φ is satisfiable in SLTL.

As the construction of χn ∧ t2(φ) is feasible in logarithmic-space,
we obtain the following corollary.

Corollary 4. SLTL-satisfiability is in ExpSpace.

Together with Corollary 2 we obtain tight complexity bounds for
SLTL, which is the main result of this section:

Theorem 5. SLTL-satisfiability is ExpSpace-complete.

Logarithmic-space reductions between SLTL and PTLxS5 em-
phasize how close are these formalisms, a property that remained
unnoticed so far. This allows us to establish the ExpSpace-
completeness of SLTL-satisfiability in a transparent way. Therefore,
the analysis of the properties of the tableau-style calculus for SLTL
designed by Gigante et al. [20] needs, in the best case, lead to the
ExpSpace upper bound.

4 PSpace Fragment of SLTL
Corollary 2 can be viewed as a negative result for the usability of
SLTL (it is of course positive in terms of knowledge about SLTL
properties), but as shown below, there is some room to find interest-
ing fragments that include both LTL and PSL, but can be decided in
polynomial-space. Before presenting a fragment of SLTL in which
satisfiability is PSpace-complete, however, we provide more intu-
itions behind ExpSpace-hardness of full SLTL. This is helpful to
discard syntactic features that lead to high complexity.

4.1 Computationally challenging behaviour of SLTL

To obtain a better understanding of the ExpSpace-hardness of full
SLTL and of the mismatch between our result in Section 3.1 and the
PSpace bound stated by Gigante et al. [20, Theorem 28], we present
a specific SLTL formula φC whose satisfiability is particularly hard
to decide. This will also prove useful for constructing PSpace frag-
ments of SLTL, as they should disallow features expressing the com-
putationally challenging behaviour of φC .

Our construction of φC exploits the following LTL formula Cn,
encoding a binary counter from 0 to 2n − 1, where the propositional

variables p1, . . . , pn correspond to consecutive bits of the counter
with p1 being the most significant bit:

(¬p1 ∧ · · · ∧ ¬pn) ∧ G(p1 ∧ · · · ∧ pn → X(¬p1 ∧ · · · ∧ ¬pn))

∧
∧

1≤i≤n

G
(
(¬pi ∧

∧
i<i′≤n

pi′) →
(∧
i<i′≤n

(X¬pi′) ∧ Xpi

∧
∧

1≤i′<i

(pi′ ↔ Xpi′)
))
.

In every position i of an LTL trace σ, the propositional variables
p1, . . . , pn encode the bits b1, . . . , bn (with b1 being the most signif-
icant bit) such that bj = 1 iff pj ∈ σ(i). We write σ, i |= C = m if
the counter has value m in the position i, that is b1 . . . bn represents
the number m. It is easy to see that if σ, i |= Cn, then the counter
has value 0 in the position i and in every next position this value in-
creases by 1 until the counter reaches the value 2n − 1. If this is the
case, in the next position the value is 0 and the process of counting
(modulo 2n) repeats. Hence, σ, i |= C = 0 and for any j ≥ i, we
have σ, j |= C = m′ where m′ ≡ j − i (mod 2n).

We use Cn to define φC
def
= G

(
3s(Cn ∧ p ∧ XG¬p)

)
(of

polynomial-size in n). As we show next, if M, σ, 0 |= φC for some
SLTL model M = (Π, λ), then Π must contain infinitely many
traces and for every position i > 2n there are exponentially many
(at least 2n) traces in Π which are pairwise different with respect to
the valuation of p1, . . . , pn at the position i. The latter, in particular,
seems to contradict the first paragraph of the proof of [20, Lemma
27] used to argue for PSpace satisfiability of SLTL.

Proposition 6. The formula φC is SLTL satisfiable. Moreover, for
each SLTL model M = (Π, λ) and σ ∈ Π such that M, σ, 0 |= φC ,
the following hold: (1) λ(s) is infinite, (2) for each i > 2n and
m ∈ {0, . . . , 2n − 1}, there is σ ∈ Π such that M, σ, i |= C = m,
and (3) for all positions i > 2n, there are σ1, . . . , σ2n in Π such that
|{σj(i) ∩ {p1, . . . , pn} | j ∈ {1, . . . , 2n}}| = 2n.

Proof. Assume that M, σ, 0 |= φC . Firstly, let us show that λ(s) is
necessarily infinite. Since M, σ, 0 |= G(3s(Cn ∧ p ∧ XG¬p)), for
each i ≥ 0, there is a witness trace σ†

i ∈ λ(s) such that M, σ†
i , i |=

Cn ∧ p ∧ XG¬p. Hence, for all i′ > i, we have M, σ†
i , i

′ |= ¬p
and M, σ†

i′ , i
′ |= p, and so, σ†

i is distinct from σ†
i′ . Consequently,

{σ†
0, σ

†
1, . . .} is an infinite set of distinct traces, all belonging to λ(s).

To show the second item in the proposition, let i > 2n and
let σ†

1, . . . , σ
†
2n be 2n witness traces as defined above. So, for

all j ∈ {1, . . . , 2n}, we have M, σ†
j , j |= Cn. Assuming that

M, σ†
1, i |= C =m1 for some m1 ∈ {0, . . . , 2n − 1}, for all

j ∈ {1, . . . , 2n} we have M, σ†
j , i |= C =mj with mj ≡ m1 +

(j − 1) (mod 2n). Since m1, . . . ,m2n are pairwise distinct, we
obtain also that |{σ†

j (i) ∩ {p1, . . . , pn} | j ∈ {1, . . . , 2n}}| = 2n,
and so, the third item from the proposition holds.

Let us conclude by showing that φC is satisfiable, as stated in the
proposition. For this we can construct a model M = (Π, λ) with
infinitely many traces Π def

= {σ0, σ1, . . .} and with λ(s) def
= Π. Each

trace σj ∈ Π is such that M, σj , j |= Cn ∧ p ∧ XG¬p. Note that
such σj needs to exist and has a uniquely determined valuation of
p, p1, . . . , pn in all positions not smaller than j, whereas their val-
uation in positions smaller than j is irrelevant for our construction.
Then, by the form of φC , we get M, σ, 0 |= φC .

Proposition 6 specifies the types of computationally hard formulae of
SLTL. In forthcoming Section 4.2, we introduce a way of restricting
SLTL, in which the behaviour of φC cannot be reconstructed, and
which yields a PSpace-complete satisfiability problem.

4.2 Limiting the interplay between connectives

In this section we show that a PSpace upper bound for the sat-
isfiability problem in SLTL can be obtained by limiting the inter-
play between standpoint and temporal operators. To this end, we
focus on SLTL formulae which do not allow for LTL connectives
occurring in the scope of standpoint modal operators; in the se-
quel we call this fragment LTL[PSL]. By way of example, the for-
mula 2∗(G¬Malf → Test) from Section 2.1 does not belong to
LTL[PSL]. However the following is already an LTL[PSL] formula:
G(2∗¬Malf) → 2∗Test , which states that if always in future all
countries agree that a medical device does not malfunction, then all
these countries agree that this device is safe according to testing.
It is worth observing that the formula φC from Section 4.1, illus-
trating computationally challenging behaviour, does not belong to
LTL[PSL] (because of XG in the scope of 3s). In contrast, any for-
mula of the form G2∗φ1∧G(φ2 → Xφ3) where φ1, φ2, φ3 are PSL
formulae (see Section 2.2) are in LTL[PSL].

As we show in the remaining part of this section, we can check sat-
isfiability of LTL[PSL] formulae in PSpace by adapting the Büchi
automaton construction developed for LTL [5, 15] and by performing
model-theoretical constructions based on a refinement of the finite
model property for PSL (see Theorem 9).

Let us fix an LTL[PSL] formulaφ and let P(φ) be the set of propo-
sitional variables occurring in it. Let I (for ‘inequality’) be the set of
subformulae of φ of the form s ⪯ s′. To check satisfiability of φ,
our procedure considers all possible partitions D = (I+, I−) of I
into sets I+ and I−; intuitively such a partition states that formulae
in I+ are true and those in I− are false. Since s ⪯ s′ is a global
statement (either it is satisfied in all traces and all positions of a
model, or it is not satisfied in any of them), its truth value can be non-
deterministically guessed from the very beginning. Moreover, such a
guess is feasible in PSpace since NPSpace = PSpace [30]. Given
D = (I+, I−), we encode the above intuition with the formula

χD
def
= G

 ∧
(s⪯s′)∈I+

(s ⪯ s
′) ∧

∧
(s⪯s′)∈I−

(3s ps,s′ ∧ ¬3s′ ps,s′)

where each ps,s′ is a fresh propositional variable. This can be done
as P is countably infinite. Note that χD encodes that each s ⪯ s′ in
I+ holds true always in future and that each s ⪯ s′ in I− is always
false. We also define φD

def
= φ[I+ 7→ ⊤, I− 7→ ⊥] ∧ χD , where

φ[I+ 7→ ⊤, I− 7→ ⊥] is the formula obtained from φ by replacing
each (s ⪯ s′) ∈ I+ with ⊤ and each (s ⪯ s′) ∈ I− with ⊥. Note
that χD is an LTL[PSL] formula.

The purpose of the construction of φD , leading to Lemma 7, is
to nondeterministically choose which inequalities s ⪯ s′ hold, and
in particular to enforce the non-satisfaction of some s ⪯ s′ by the
existence of two traces, see the formula χD . Notice that s ⪯ s′

occurs only positively in χD . In forthcoming Theorem 9, we show
how to construct PSL models based on φ1, defined as a conjunction
of inequalities of the form s ⪯ s′. This step is therefore instrumental
to handle the inequalities s ⪯ s′.

Lemma 7. Satisfiability of φ reduces to checking if there exists a
partition D = (I+, I−) of I such that φD is satisfiable.

Therefore, in what follows we will consider an arbitrary partition
D = (I+, I−) of I , and focus on checking satisfiability of φD .

We write cl(φD) to denote the closure set of φD defined as the
smallest set containing all the subformulae ψ of φD as well as ⊥
and ⊤, which is closed under taking negations (as usually, we do not

allow for double negations by identifying ¬¬ψ with ψ) and such that
ψUψ′ ∈ cl(φD) implies X(ψUψ′) ∈ cl(φD). We can observe that
|cl(φD) | ≤ 4 · |φD | and the number of formulae in the set cl(φD),
whose outermost connective is a modality of the form 3s or 2s, is
bounded by |φD |.

As in the standard automaton construction for LTL [5, 15, 16], we
call a setB ⊆ cl(φ) maximally consistent if it satisfies the properties:
– ⊤ ∈ B and ⊥̸∈ B; ψ ∈ B iff ¬ψ /∈ B, for all ¬ψ ∈ cl(φD),

– ψ1 ∧ ψ2 ∈ B iff ψ1 ∈ B and ψ2 ∈ B, for all ψ1 ∧ ψ2 ∈ cl(φD),

– ψ1Uψ2 ∈ B iff ψ2 ∈ B or {ψ1,X(ψ1Uψ2)} ⊆ B, for all
ψ1Uψ2 ∈ cl(φD).

Moreover, we introduce an additional property specific to SLTL; we
say that B is standpoint-consistent if the PSL formula

∧
ψ∈B∩PSL ψ

(we treat here PSL as the set of all well-formed PSL formu-
lae) is satisfiable in standpoint logic PSL. It is worth noting that
checking standpoint-consistency is decidable and, in particular, NP-
complete [22, Corollary 3] as we have discussed in Section 2.1 (see
also the forthcoming Theorem 9).

We call B ⊆ cl(φD) s-elementary if it is maximally consistent
and standpoint-consistent. We will use s-elementary sets as states of
an automaton.

We are ready now to define an automaton AφD which we use for
checking satisfiability of φD . We let AφD be a generalised nonde-
terministic Büchi automaton AφD = (Q, 2P(φD), δ,Q0,F), whose
components are as follows:
– the set of states, Q, consists of all s-elementary sets B ⊆ cl(φD),

– the automaton alphabet is the powerset 2P(φD),

– the set of initial states is Q0 = {B ∈ Q | φD ∈ B},

– the set of accepting sets, F , is the family containing for each
ψ1Uψ2 ∈ cl(φD) the set {B ∈ Q | ψ1Uψ2 /∈ B or ψ2 ∈ B},

– the transition relation δ : Q × 2P(φD) −→ 2Q is such that
δ(B,A) = ∅ if A ̸= B ∩ P(φD), and otherwise δ(B,A) is the
set of all s-elementary B′ ⊆ cl(φD) which satisfy the following
condition: for each Xψ ∈ cl(φD), we have Xψ ∈ B iff ψ ∈ B′.

In what follows we show that accepting runs of AφD correspond
to SLTL models of φD , and so, satisfiability of φD is equivalent to
nonemptiness of AφD language. In the next lemma we show the first
implication of this equivalence.

Lemma 8. If φD is SLTL-satisfiable, then the language of AφD is
non-empty.

Proof sketch. Assume that M, σ, 0 |= φD , for some SLTL model
M = (Π, λ) and σ ∈ Π. We let states B0, B1, . . . be such that
each Bi = {ψ ∈ cl(φD) | M, σ, i |= ψ} and we let input word
A0A1 . . . be such that each Ai = Bi ∩ P(φD). As we will show,
B0, B1, . . . is a run of AφD on the word A0A1 . . . , and this run is
accepting. For the former statement, it suffices to observe that, by the
definition, each Bi is s-elementary and Bi+1 ∈ δ(Bi, Ai). To prove
that the run B0, B1, . . . is accepting, we can show that for each ac-
cepting set F ∈ F , there are infinitely many i with Bi ∈ F . This
follows from the standard argument used in the automaton construc-
tion for LTL [5, 15], since the accepting sets F in our construction
are defined in the same way as in the case of LTL. As B0, B1, . . . is
an accepting run of AφD , the language of AφD is non-empty.

Next, we will show that the converse of Lemma 8 (forthcom-
ing Lemma 10) holds true. This direction is more complex and
requires establishing new properties for PSL. Given an accepting
run B0, B1, . . . of AφD , we aim to construct an SLTL model of

φD . By standpoint-consistency of the Bi’s, there exists a sequence
(M0, π0), (M1, π1), . . . of pointed PSL models (i.e. pairs consist-
ing of a PSL model and one of its precisifications) such that for all
i ≥ 0, we have Mi, πi |=

∧
ψ∈Bi∩PSL ψ. From such a sequence, we

aim to construct an SLTL model M = (Π, λ) and a trace σ ∈ Π
such that M, σ |= φD . The main challenge is to construct the set Π
of traces in M from the sets Π0,Π1, . . . of precisifications in mod-
els M0,M1, This task is reminiscent of known constructions of
models from partial models, for instance, as developed in the mosaic
method for temporal logics [25], see also [33]. However, in our case,
the construction requires exploiting properties specific to PSL.

To address this challenge, we show a new model-theoretic result
for PSL, which is interesting on its own as, for example, it implies
NP-membership of PSL-satisfiability. Our result states that the sat-
isfiability of PSL formulae can be witnessed by PSL models of a
specific form and size, so it establishes a “normalised small model
property” for PSL. We show the result for PSL formulae which are
relevant for our construction. In particular, for formulae of the form
φ1 ∧ φ2 such that φ1 is a conjunction of formulae s ⪯ s′ and φ2

is a PSL formula in negation normal form with no occurrences of
s ⪯ s′ (see the formula φD involved in Lemma 7). Without any loss
of generality, we can assume that the universal standpoint ∗ occurs
in φ1 (indeed, we can always add to φ1 the formula ∗ ⪯ ∗, as it is
equivalent to ⊤).

Our normalised small model property states that satisfiability of
φ1 ∧ φ2 implies existence of some PSL model of a specific form.
This model has precisifications represented by pairs (S, j) such that
j is a natural number and S belongs to a set S defined as follows
(based on the form of φ1). We let R be the reflexive and transitive
closure of the relation {(s, s′) | s ⪯ s′ occurs in φ1} ∪ {(s, ∗) |
s ∈ S(φ1 ∧φ2)}. Hence, if (s, s′) ∈ R, then φ1 entails s ⪯ s′. We
letR(s) be the set of all s′ such that (s, s′) ∈ R. Then we define the
set S def

= {R(s) | s ∈ S(φ1 ∧ φ2)}. With these symbols in hand we
are ready to formulate the small model property of PSL.

Theorem 9. Let φ1 ∧ φ2 be a PSL-formula of the form described
above, which mentions N1 standpoint symbols and N2 occurrences
of 3. If φ1 ∧ φ2 is PSL-satisfiable, then for every natural number
N > N1 +N2 there is a PSL model M⋆ = (Π⋆, V ⋆) such that:

1. Π⋆ = S× {1, . . . , N},
2. M⋆, (S∗, 1) |= φ1 ∧ φ2 with S∗ = R(∗), and
3. for each (S, j) ∈ Π⋆, it holds that S = {s ∈ S(φ1 ∧ φ2) |

(S, j) ∈ V ⋆(s)}.

Proof sketch. The proof employs principles first used to show the
small model property for S5 [12, Chapter 6], for counting logics [26,
Chapter 1], and for PSL itself [21, Section 4.4].

Given a PSL model M† and a precisification π† such that
M†, π† |= φ1 ∧ φ2, we perform four transformations to modify
M†, π† into M⋆, π⋆ satisfying Statements 1–3 from the theorem,
where π⋆ = (S∗, 1). The steps are schematised below.

M†, π† Elect−−−→ M, π
Select−−−−→ Mf , πf Normalise−−−−−−−−→ Mfn, πfn Populate

−−−−−−−→ M⋆, π⋆ .

Let us describe briefly the objectives of each reduction.

(Elect) The goal of transforming M†, π† into M, π is to guarantee
that the standpoint symbols labelling π are exactly those in S∗. At
most one precisification is added to M† to obtain M.

(Select) The construction of Mf , πf from M, π amounts to select a
finite subset of precisifications from M to witness the satisfaction
of all the 3-formulae. This step is analogous to the way the small
model property is shown for the modal logic S5.

(Normalise) The construction of Mfn, πfn from Mf , πf guaran-
tees that for any precisification π in Mfn, the set of standpoint
symbols whose valuation contains π, belongs to S. To do so, pre-
cisifications are “copied”, preserving the satisfaction of proposi-
tional variables but possibly updating the valuation of standpoints.

(Populate) This step to get M⋆, π⋆ from Mfn, πfn consists in
“copying” precisifications, so that the set of precisifications can
be identified with S× [1, N].

It can be shown that M⋆, π⋆ constructed in this way is possible and
satisfies all Statements 1–3 from the theorem.

Interestingly, as a consequence of Theorem 9, we obtain the NP-
membership for PSL-satisfiability. Indeed, given a PSL formula φ, it
suffices to non-deterministically guess a partition D = (I+, I−) of
formulae s ⪯ s′ in φ, and to verify satisfiability of

∧
(s⪯s′)∈I+(s ⪯

s′)∧
∧

(s⪯s′)∈I−(3s ps,s′∧¬3s′ ps,s′)∧φ[I+ 7→ ⊤, I− 7→ ⊥]. The
form of the obtained formula allows us to apply Theorem 9. Hence,
to check satisfiability, it remains to guess a model with |S |(N1 +
N2 + 1) precisifications. The whole procedure is in NP. Above all,
Theorem 9 is a key to show the converse of Lemma 8, stated below.

Lemma 10. If the language of AφD is not non-empty, then φD is
SLTL-satisfiable

Proof sketch. Assume that B0, B1, . . . is an accepting run of AφD

on a wordA0A1 We construct an SLTL model M = (Π, λ) and
a trace σ ∈ Π such that M, σ, 0 |= φD . For each i ∈ N, by stand-
point consistency of Bi, there exists a PSL model Mi = (Πi, Vi)
and a precisification πi ∈ Πi such that Mi, πi |=

∧
ψ∈Bi∩PSL ψ.

Each formula
∧
ψ∈Bi∩PSL ψ can be written in the form φ1 ∧ φ2 as-

sumed in Theorem 9. Indeed, the only atomic formulae of the form
s ⪯ s′ in cl(φD) are those from I+, and due to χD , each s ⪯ s′

can occur only positively in Bi (otherwise
∧
ψ∈Bi∩PSL ψ is not sat-

isfiable). For each i ∈ N, the formula
∧
ψ∈Bi∩PSL ψ yields R, N1,

and N2 used in Theorem 9. Importantly, all these R are the same,
all N1 ≤ |S(φD) |, and all N2 ≤ |φD |2. Therefore we can apply
Theorem 9 with N = |S(φD) | + |φD |2 + 1 to obtain that there
are PSL models M′

i = (Π′
i, V

′
i) such that Π′

i = S × {1, . . . , N},
M′

i, (S
∗, 1) |=

∧
ψ∈Bi∩PSL ψ (with S∗ = R(∗)), and for all

(S, j) ∈ Π′
i, we have {s ∈ S(φD) | (S, j) ∈ V ′

i (s)} = S. We
use these models to define an SLTL model M = (Π, λ) and σ ∈ Π.
We let Π be {σ(S,j) | (S, j) ∈ S× {1, . . . , N}} and λ be such that
– for all s ∈ S(φD), σ(S,j) ∈ λ(s) iff s ∈ S,

– for all (S, j) ∈ S × {1, . . . , N}, for all k ≥ 0, we have
σ(S,j)(k)

def
= {p ∈ P(φD) | (S, j) ∈ V ′

k(p)}.
Finally, we let σ be σ(S∗,1). The construction of M is schema-
tised in Figure 1. Observe that φD ∈ B0. Hence, to prove that
M, σ(S∗,1), 0 |= φD , it suffices to show by structural induction that
for all subformulae ψ of φD and all i ∈ N we have ψ ∈ Bi iff
M, σ(S∗,1), i |= ψ. In the basis of the induction we let ψ be any sub-
formula which does not mention LTL connectives. Note that for such
ψ, the equivalence follows from the construction of M′

i. Regarding
the inductive step, since φ does not mention LTL connectives in the
scope of standpoint operators, the cases in the inductive steps are for
Boolean and LTL connectives only. Thus, the proof is analogous as
in the case of automaton construction for LTL [5, 15].

Lemmas 8 and 10 allow us to reduce the satisfiability of φD to
checking the nonemptiness of AφD language. This, as we show next,
leads to tight PSpace complexity bound for satisfiability checking.

σ(S1,1) ∈ λ(∗) ∩ λ(s1) ∩ λ(s2)

σ(S1,2) ∈ λ(∗) ∩ λ(s1) ∩ λ(s2)

σ(S2,1) ∈ λ(∗) ∩ λ(s1) ∩ λ(s2)

σ(S2,2) ∈ λ(∗) ∩ λ(s1) ∩ λ(s2)

σ(S3,1) ∈ λ(∗) ∩ λ(s1) ∩ λ(s2)

σ(S3,2) ∈ λ(∗) ∩ λ(s1) ∩ λ(s2)

S1, 1

p, q

|= ψ0

S1, 2

q

S2, 1

r

S2, 2

S3, 1

p

S3, 2

q

S1, 1

r, q

|= ψ1

S1, 2

q

S2, 1

r

S2, 2

p, q, r

S3, 1

S3, 2

p, q

S1, 1

q

|= ψ2

S1, 2

q, r

S2, 1

r

S2, 2

r

S3, 1

p, q, r

S3, 2

q

S1, 1

p, r

|= ψ3

S1, 2

p, q

S2, 1

p, r

S2, 2

p, q

S3, 1

q

S3, 2

p

M′
0 M′

1 M′
2 M′

3

Figure 1. Construction of M from M′
i’s with N = 2, S∗ = S1 = {∗},

S2 = {∗, s2}, S3 = {∗, s2, s1}, and ψi =
∧
ψ∈Bi∩PSL ψ

Theorem 11. LTL[PSL]-satisfiability problem is PSpace-complete.

Proof. The lower bound is from the fact that LTL is a syntactic frag-
ment of LTL[PSL] and is already PSpace-hard [31, Theorem 4.1].
For the upper bound, assume that we want to check if φ is satisfi-
able. Our procedure starts by guessing a partition D of subformulae
of φ of the form s ⪯ s′ (in nondeterministic polynomial-time), and
constructing the formula φD . By Lemma 7, it remains to check if
φD is satisfiable. This, however, by Lemmas 8 and 10, reduces to
checking if the language of AφD is non-empty. The size (number of
states) of AφD is exponentially large, but similarly as in the automata
construction for LTL, we can use an “on the fly” approach to check
in PSpace non-emptiness of AφD language [5, 15]. The difference
between our procedure and the standard one for LTL is that we need
to check if each constructed ‘on the fly’ state Bi of the automaton
is standpoint-consistent. This, however, is feasible in NP due to NP-
completeness of the satisfiability problem for PSL [22].

As a corollary of the proof, we obtain also the following result.

Corollary 12. If an LTL[PSL] formula φ is satisfiable, it is satisfied
in an SLTL model with polynomially many (in the size of φ) traces.

5 Concluding Remarks

We studied the computational properties of standpoint linear tem-
poral logic SLTL. First, we proved that its satisfiability problem is
ExpSpace-complete, contrary to the PSpace bound claimed re-
cently in [20, Theorem 28]. To show this result, we designed reduc-
tions between SLTL and the multi-dimensional modal logic PTLxS5.
Furthermore, we proposed a fragment of SLTL which has PSpace-
complete satisfiability problem, as LTL [20]. This fragment disal-
lows occurrences of temporal connectives in the scope of standpoint
connectives; to show that the satisfiability problem for its formulae
is in PSpace, we followed the automata-based approach [32] (sim-
ilar to the well-known technique for LTL) but for which correctness
requires to prove a new model-theoretic property about PSL (Theo-
rem 9) that we find interesting for its own sake. In future it would be
also interesting to implement practical decision procedures for SLTL
and for the PSpace fragment we have introduced, apart from study-
ing its expressive power.

Acknowledgements

We thank the referees for suggestions that help us to improve the
quality of the document. Special thanks to the referee who pointed us
to [8]. Przemysław A Wałęga was supported by the EPSRC projects
OASIS (EP/S032347/1), ConCuR (EP/V050869/1) and UK FIRES
(EP/S019111/1), as well as SIRIUS Centre for Scalable Data Access
and Samsung Research UK.

References

[1] G. Allwein and W. Harrison. Partially-ordered modalities. In AiML’10,
pages 1–21. College Publications, 2010.

[2] B. Aminof, G. De Giacomo, A. Murano, and S. Rubin. Planning un-
der LTL environment specifications. In ICAPS’19, pages 31–39. AAAI
Press, 2019.

[3] F. Baader, S. Ghilardi, and C. Lutz. LTL over description logic axioms.
ACM Transactions on Computational Logic, 13(3):21, 2012.

[4] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to De-
scription Logic. Cambridge University Press, 2017.

[5] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT press,
2008.

[6] M. Baldoni, L. Giordano, and A. Martelli. A tableau calculus for mul-
timodal logics and some (un)decidability results. In TABLEAUX’98,
volume 1397 of Lecture Notes in Artificial Intelligence, pages 44–59.
Springer, 1998.

[7] M. Banerjee, M. Chakraborty, and A. Szałas. Logics from rough sets.
Journal of Applied Non-Classical Logics, pages 1–3, 2024.

[8] A. Barrière, B. Maubert, A. Murano, and S. Rubin. Reasoning about
changes of observational power in logics of knowledge and time. In
AAMAS’19, pages 971–979. International Foundation for Autonomous
Agents and Multiagent Systems, 2019.

[9] B. Bennett. Modal semantics for knowledge bases dealing with vague
concepts. In KR’98, pages 234–244. Morgan Kaufmann, 1998.

[10] B. Bennett. A theory of vague adjectives grounded in relevant observ-
ables. In KR’06, pages 36–45. AAAI Press, 2006.

[11] B. Bennett. Standpoint semantics: a framework for formalising the vari-
able meaning of vague terms. In Understanding Vagueness — Logical,
Philosophical and Linguistic Perspective, pages 261–278. College Pub-
lications, 2011.

[12] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
University Press, 2001.

[13] D. Calvanese, G. De Giacomo, and M. Vardi. Reasoning about actions
and planning in LTL action theories. In KR’02, pages 593–602, 2002.

[14] S. Demri. The complexity of regularity in grammar logics and related
modal logics. Journal of Logic and Computation, 11(6):933–960, 2001.

[15] S. Demri, V. Goranko, and M. Lange. Temporal Logics In Computer
Science: Finite-State Systems, volume 58. Cambridge University Press,
2016.

[16] J. Esparza and M. Blondin. Automata Theory. MIT Press, 2023.
[17] L. Fariñas del Cerro and M. Penttonen. Grammar logics. Logique et

Analyse, 121–122:123–134, 1988.
[18] K. Fine. Vagueness, truth and logic. Synthese, pages 265–300, 1975.
[19] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-

dimensional modal logics: theory and practice. Cambridge University
Press, 2003.

[20] N. Gigante, L. Gómez Álvarez, and T. Lyon. Standpoint linear temporal
logic. In KR’23, pages 311–321, 2023.

[21] L. Gómez Álvarez. Standpoint Logic: A Logic for Handling Seman-
tic Variability, with Applications to Forestry Information. PhD thesis,
University of Leeds, School of Computing, 2019.

[22] L. Gómez Álvarez and S. Rudolph. Standpoint logic: Multi-perspective
knowledge representation. In FOIS’22, volume 344, pages 3–17, 2022.

[23] L. Gómez Álvarez, S. Rudolph, and H. Strass. Tractable diversity: Scal-
able multiperspective ontology management via standpoint EL. In IJ-
CAI’23, pages 3258–3267. ijcai.org, 2023.

[24] L. Gómez Álvarez, S. Rudolph, and H. Strass. Pushing the boundaries
of tractable multiperspective reasoning: A deduction calculus for stand-
point EL+. In KR’23, pages 333–343, 2023.

[25] M. Marx, S. Mikulas, and M. Reynolds. The mosaic method for tempo-
ral logics. In TABLEAUX’00, volume 1847 of Lecture Notes in Artificial
Intelligence, pages 324–340. Springer, 2000.

[26] S. Mikulás. Taming logics. PhD thesis, ILLC, 1995.

[27] E. Orłowska. Reasoning with incomplete information: rough set based
information logics. In Incompleteness and Uncertainty in Information
Systems, pages 16–33. Springer, October 1994.

[28] Z. Pawlak. Rough sets. International Journal of Information and Com-
puter Sciences, 11:341–356, 1982.

[29] A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57.
IEEE Computer Society Press, 1977.

[30] W. Savitch. Relationships between nondeterministic and deterministic
tape complexities. JCSS, 4(2):177–192, 1970.

[31] A. Sistla and E. Clarke. The complexity of propositional linear temporal
logic. Journal of the ACM, 32(3):733–749, 1985.

[32] M. Vardi and P. Wolper. Reasoning about infinite computations. Infor-
mation and Computation, 115:1–37, 1994.

[33] F. Wolter and M. Zakharyaschev. On the decidability of description
logics with modal operators. In KR’98, pages 512–523. Morgan Kauf-
mann, 1998.

[34] L. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
[35] L. Zadeh. Fuzzy logic and approximate reasoning. Synthese, 30:407–

428, 1975.

