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CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France

Abstract—The primary motor cortex (M1) receives dopaminergic (DAergic) projections from the midbrain which
play a key role in modulating motor and cognitive processes, such as motor skill learning. However, little is
known at the level of individual neurons about how dopamine (DA) and its receptors modulate the intrinsic prop-
erties of the different neuronal subpopulations in M1 and if this modulation depends on age. Using immunohis-
tochemistry, we first mapped the cells expressing the DA D1 receptor across the different layers in M1, and
quantified the number of pyramidal neurons (PNs) expressing the D1 receptor in the different layers, in young
and adult mice. This work reveals that the spatial distribution and the molecular profile of D1 receptor-
expressing neurons (D1+) across M1 layers do not change with age. Then, combining whole-cell patch-clamp
recordings and pharmacology, we explored ex vivo in young and adult mice the impact of activation or blockade
of D1 receptors on D1+ PN intrinsic properties. While the bath application of the D1 receptor agonist induced an
increase in the excitability of layer V PNs both in young and adult, we identified a distinct modulation of intrinsic
electrical properties of layer V D1+ PNs by D1 receptor antagonist depending on the age of the animal.� 2023 The

Author(s). Published by Elsevier Ltd on behalf of IBRO. This is an open access article under theCCBY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Dopamine (DA) is a neuromodulator playing a key role in

numerous physiological functions, such as cognitive

(Chudasama and Robbins, 2004; for reviews see

Nieoullon, 2002; Floresco, 2013), reward (Yokel and

Wise, 1975; Michely et al., 2020; for review see

Botvinick and Braver, 2015) and motor processes

(Ungerstedt et al., 1969; for reviews see Salamone,

1992; Alm, 2021). The dopaminergic (DAergic) system

is of high importance and the consequences of its dysreg-

ulation are best illustrated by some diseases, notably

Parkinson’s disease (Bernheimer and Hornykiewicz,

1965; for reviews see Bernheimer et al., 1973; Albin

et al., 1989; Nambu et al., 2015), schizophrenia (for

reviews see Davis et al., 1991; Brisch et al., 2014;

Grace, 2016) and depression (for reviews see Brown

and Gershon, 1993; Grace, 2016). Thus, the role of DA

in the striatum and the prefrontal cortex (PFC) has been
https://doi.org/10.1016/j.neuroscience.2023.11.006
0306-4522/� 2023 The Author(s). Published by Elsevier Ltd on behalf of IBRO.
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Abbreviations: DA, dopamine; DAergic, dopaminergic; D1+, D1
receptor-expressing neurons; GFP, green fluorescent protein; M1,
primary motor cortex; PNs, pyramidal neurons; PFC, prefrontal cortex.

21
well documented (D’Ardenne et al., 2012; for reviews

see Diamond, 1996; Ott and Nieder, 2019; Robbins and

Everitt, 1992; Valjent et al., 2019). However, even if to a

lesser extent, the primary motor cortex (M1) also receives

DAergic innervation (Descarries et al., 1987; Gaspar

et al., 1991), which comes from midbrain DAergic neu-

rons (Hosp et al., 2011). M1 is involved in motor learning

and it has been described that learning sophisticated

motor sequences such as skill-reaching behavior relies

upon DA-dependent structural and synaptic plasticity in

M1 (Hosp et al., 2009, 2011; Guo et al., 2015). Although

the architecture of the DAergic system within M1 has

been well characterized anatomically in rodents

(Descarries et al., 1987; Vitrac et al., 2014; Hosp et al.,

2015), the level of understanding of DA action in M1 is

rather macroscopic (for review see Cousineau et al.,

2022), monitoring global changes at the level of M1.

Besides, its functional significance remains debated, in

part because the precise location of DA receptors and

the modulation exerted by these receptors at the level

of individual neurons is poorly understood and sometimes

inconsistent.

DA activates two main classes of receptors, the D1-

like and the D2-like family which are both present in M1

(Dawson et al., 1986; Lidow et al., 1989; Weiner et al.,
ons.org/licenses/by-nc-nd/4.0/).
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1991; Gaspar et al., 1995). In M1, it has been shown that

pyramidal neurons (PNs) and interneurons express D1

and/or D2 DA receptors (Gaspar et al., 1995; Vitrac

et al., 2014; Cousineau et al., 2020; Swanson et al.,

2021). Based on their axonal projection, PNs can be

divided into 3 major classes in M1, the pyramidal tract

neurons (PT) which express the transcription factor Ctip2

(also known as Bcl11b), the intra-telencephalic neurons

(IT) which express Satb2 and the cortico-thalamic (CT)

neurons mainly located in layer VI (Arlotta et al., 2005;

Alcamo et al., 2008; Britanova et al., 2008; Digilio et al.,

2015, for review see Molnár and Cheung, 2006;

Shepherd, 2013). At the level of M1, some studies inves-

tigated the effect of DA receptors on the intrinsic proper-

ties of neurons. However, they were more centered on

the D2 receptor (Parr-Brownlie, 2005; Vitrac et al.,

2014; Cousineau et al., 2020; Swanson et al., 2021, for

review see Cousineau et al., 2022). The specific impact

of D1 receptors on the activity of PNs in M1 remains elu-

sive. To date, only one recent study has explored in mice

the effect of D1 receptor antagonist in M1, with no direct

evidence of D1 receptor expression in the recorded neu-

rons (Swanson et al., 2021). Furthermore, the impact of

D1 receptor activation in M1 PNs has not yet been inves-

tigated, nor has the molecular profile of the PNs express-

ing the D1 receptor. In the PFC, ex vivo
electrophysiological recordings have revealed that the

activation of the D1 receptors increases the firing proper-

ties of subpopulations of PNs (Seong & Carter, 2012),

with the majority displaying properties of IT neurons

(Anastasiades et al., 2019). Additionally, no study has

investigated if the age of the animals can influence the

DA modulation of the activity of PNs. Indeed, age is a crit-

ical variable as developmental changes continue to occur

far beyond the first postnatal weeks.

This study aimed to fill the gap in our understanding of

how D1 receptors are expressed in the different layers of

M1, and how they impact the intrinsic properties of PNs

expressing the D1R (D1+) in the layer V of M1, in

young and adult mice. Using the D1-GFP transgenic

mouse line, we first mapped in young (P16-P25 old) and

adult mice (6–10 weeks old) neurons expressing the D1

receptors according to M1 layers and pyramidal

neuronal markers they express (Ctip2 and Satb2). Then

using whole-cell patch-clamp recordings coupled to

pharmacology, we investigated ex vivo in layer V how

activation and blockade of the D1 receptor in M1

modulate D1+ PNs intrinsic properties in young and

adult animals. This work reveals an age-dependent

modulation of the excitability of M1 layer V D1+ PNs by

D1 receptors.
EXPERIMENTAL PROCEDURES

Animals

All experiments were performed in accordance with the

guidelines of the French Agriculture and Forestry

Ministry for handling animals (APAFIS #26 770) and the

official European guidelines (Directive 2010/63/UE).

Male and female D1-GFP mice (Tg(Drd1-EGFP)

X60Gsat) were used, aged between P16 and P25 for
young mice and between 6 and 10 weeks for adult

mice. Young mice from P16 to P25 have been chosen,

as the number of layer V D1 receptor sites is at its

maximum at these stages of development in the PFC

(Leslie et al., 1991). D1-GFP mice express the GFP under

the D1 receptor promoter, enabling the identification of

D1-expressing cells. Mice were housed collectively under

artificial conditions of light (12/12 h light/dark cycle, light

on at 7:00 a.m.), with food and water access ad libitum.

Experimenters were not blind to animal age or treatment.
Slice preparation

Mice were deeply anesthetized using ketamine and

xylazine (100 and 20 mg/kg, i.p., respectively). After the

disappearance of all arousal reflexes, a thoracotomy

was done to enable the transcardial perfusion of an ice-

cooled and oxygenated with carbogen (95% O2/5%

CO2) cutting solution containing 250 mM sucrose,

2.5 mM KCl, 1.25 mM NaH2PO4�H2O, 0.5 mM

CaCl2�H2O, 10 mM MgSO4�7H2O, 10 mM D-glucose

and 26 mM NaHCO3. The brain was then quickly

removed and glued to the stage of a vibratome

(VT1200S; Leica Microsystems, Germany) and placed

into a cutting chamber filled with the cutting solution and

oxygenated with carbogen. The brain was then cut into

300 mm thick sections, which were then incubated for 1

hour into a 37 �C warmed ACSF containing 126 mM

NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4�H2O, 2 mM

CaCl2�H2O, 2 mM MgSO4�7H2O, 26 mM NaHCO3, and

10 mM D-glucose, 1 mM sodium pyruvate and 4.9 mM
L-glutathione reduced and oxygenated with carbogen

(�310 mOsm). Slices were then placed at room

temperature for 30 minutes before recordings.
Drugs

Drugs were prepared in double-distilled water as

concentrated stock solutions, then aliquoted and stored

at �20 �C. Drugs were diluted daily at the experimental

concentrations and perfused in the recording chamber.

In all experiments, glutamatergic AMPA/kainate and

NMDA receptors were blocked with 20 mM 6,7-

dinitroquinoxaline-2,3-dione (DNQX, Tocris, UK) and

50 mM D-(-)-2-amino-5-phosphonopentanoic acid (APV,

Tocris, UK) respectively, and GABAA receptors were

blocked using 10 mM 6-Imino-3-(4-methoxyphenyl)-1

(6H)-pyridazine butanoic acid hydrobromide (GABAzine,

Tocris, UK). To block D1 receptors, 1 mM D1 receptor

antagonist (R)-(+)-7-Chloro-8-hydroxy-3-methyl-1-phe

nyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride

(SCH 23390, Sigma, France) was used, and to

activate D1 receptors, 2.5 mM D1 receptor agonist (±)-6

-Chloro-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine
hydrobromide (SKF 81297, Tocris, UK) was used.

Electrophysiological recordings were made 20 minutes

after drug application.
Ex vivo electrophysiological recordings

Single slices were placed in a recording chamber

continuously perfused with a recording solution



Table 1. List of primary antibodies used.

Antigen Host Dilution Supplier # Catalog # Lot

Ctip2 Rat 1:500 Abcam ab18465 GR3272266-4

GFP Chicken 1:1000 Aves lab GFP-1010 GFP3717982

GFP Chicken 1:1000 Abcam ab13970 GR3190550-21

Satb2 Mouse 1:300 Abcam ab51502 GR273053-6
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containing 126 mM NaCl, 3 mM KCl, 1.25 mM

NaH2PO4�H2O, 1.6 mM CaCl2�H2O, 2 mM

MgSO4�7H2O, 10 mM D-glucose and 26 mM NaHCO3,

oxygenated with carbogen and heated at 32 �C. D1+

PNs were visualized under IR-DIC and fluorescence

microscopy using a 63X water-immersion objective (W

Plan-Apochromat 63X/1.0 VIS-IR, Zeiss) equipped on

an axio examiner Z.1 microscope (Zeiss, Germany).

PNs were identified by the shape of their cell bodies

and then confirmed by their electrophysiological

signature. The use of D1-GFP mice enabled us to

record only D1+ PNs. Recordings of PNs were made

using patch pipettes of impedance between 4–9 MO.
These pipettes were made from glass capillaries

(GC150F10; Warner Instruments, Hamden, CT, USA)

pulled with a horizontal pipette puller (P-97; Sutter

Instruments, Novato, CA, USA). All recordings were

made in the whole-cell configuration using an internal

pipette solution containing 135 mM K-gluconate, 3.8 mM

NaCl, 1 mM MgCl2�6H2O, 10 mM HEPES, 0.1 mM

Na4EGTA, 0.4 mM Na2GTP, 2 mM MgATP and 5.4 mM

biocytin (pH = 7.2, �292 mOsm). Recordings were

corrected for a junction potential of 13 mV. Experiments

were done with a Multiclamp 700B amplifier and

digidata 1550B digitizer controlled by clampex 11.0

(Molecular Devices LLC). Recordings were acquired at

20 kHz and low-pass filtered at 4 kHz. Series resistance

was monitored throughout the experiment by voltage

steps of �5 mV, and data were discarded when the

series resistance changed by >20%.
Histology

Transcardial perfusions were made on mice following the

same procedure as described for slice preparation,

except the ACSF used did not contain sodium pyruvate

and glutathione. The brains were then post-fixed at 4 �C
in a solution of PBS 0.01 M containing 4%

paraformaldehyde for 24 hours, washed, and cut into

50 mm thick slices with a vibratome (VT1000S; Leica

Microsystems, Mannheim, Germany). Slices were then

processed for immunohistochemistry labeling. Slices

were placed in a blocking buffer for 2 hours, then 48

hours in a solution of PBS 0.01 M/Triton X-100 0.3%
Fig. 1. Distribution of D1+ neurons in M1 of young mice. (A) Image of a co

animal. (B) Laminar distribution of D1+ cells in M1 of young mice. For each c

of a coronal slice containing M1. The red rectangle indicates the area imaged

molecular identity. (D) Example of the labeling obtained for D1 (green), Ctip2

level of the red-dotted square in D for each molecular marker. The brown arro

Distribution of D1 positive only (green), D1 and Ctip2 positive only (blue), D1

(brown) cells in M1 layers. For each category, the darker the color, the deep
containing the primary antibodies (Table 1). Slices were

washed three times in PBS 0.01 M, incubated with the

secondary antibodies for 2 hours, washed three times

again with PBS 0.01 M, and then mounted onto slides in

DAPI fluoromount medium (SouthernBiotech). Images

were taken with a confocal microscope (Leica TCS SP8,

Leica Microsystems, Mannheim, Germany) equipped

with an HC PL APO 20x/0.75 IMM CORR CS2 objective

(used to take pictures for counting). Confocal images

were further processed using Fiji. Counting and

colocalization were made manually using a rectangle-

delimited M1 area. Layers were delimited by the DAPI

and Ctip2 labeling. The delimitation between layer I and

layer II-III was placed where a sharp decrease in

nuclear DAPI labeling is found. The layer V was placed

where there is an increase in Ctip2 labeling intensity.

Three slices containing a large part of M1 from three

mice were used for counting (Fig. 1A, B; 2A, B).

Data analysis

Electrophysiological data were analyzed using Clampfit

10.7 (Molecular Devices, USA) and Origin 7 (OriginLab,

USA). Input-output (F-I) curves were generated by

injecting increasing 1 s depolarizing currents (25 pA

increments, from �150 pA to 225 pA) and counting the

number of evoked action potentials. Input resistance

was calculated using Ohm’s law when a current of �50

pA was injected. DU corresponds to the voltage

variation between the baseline and the new voltage

recorded due to the current injection. The rheobase was

determined by injecting increasing depolarizing currents

of 500 ms, with 1 pA increments. Action potential half

width and peak amplitude were obtained after detecting

each spike with the threshold search in Clampfit 10.7.

The action potential threshold was measured as the

beginning of the rising slope of the phase plots of the

neurons. These phase plots were made at rheobase

using Clampfit 10.7. Electrophysiological traces were

processed using Origin 7.

Statistics

Statistical analyses were performed using Prism 9.3.1

(GraphPad Software Inc). For paired analysis (i.e., for
ronal section at the level of M1 showing the D1+ neurons in a young

ategory, the darker the color, the deeper the layer. (C) Left, schematic

in D. Right, distribution in % of all D1+ cells in M1 according to their

(blue), and Satb2 (magenta) in M1. E. Enlarged view of layer V at the

wheads indicate neurons positive for D1, Ctip2 and Satb2 labeling. (F)
and Satb2 positive only (magenta), and D1, Ctip2 and Satb2 positive

er the layer. Data are given as mean ± SEM.
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membrane resting potential, rheobase, action potential

peak amplitude, action potential threshold, input

resistance, and action potential half-width) Wilcoxon

signed rank tests (WSR) were performed. In this case,

the black dotted line represents the mean ± standard

error to the mean (SEM) of all neurons, and the

transparent-colored lines represent individual neurons.

For firing frequency, two-way multiple comparisons

ANOVA followed by a Bonferroni post hoc were made.

In all tests, the level of significance was set at

p < 0.05. The effect size has been calculated using

Cohen’s d, following the formula: d ¼
meanðcontrolÞ � meanðtreatedÞ

pooled sd
. The pooled sd was calculated as

follow:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd controlð Þ2þsdðtreatedÞ2

2

q
. d values are given as

absolutes. An effect size <0.1 is trivial, one between

0.1 and 0.3 is small, one between 0.3 and 0.5 is

moderate, and one >0.5 is considered large, according

to Cohen (Cohen, 1988). Data are represented as

mean ± SEM in the figures. Details about statistical tests,

p-values and effect size are shown in Tables 2–4.
RESULTS

The distribution of D1 receptor expressing cells in M1
is similar in young and adult mice

Taking advantage of the D1-GFP transgenic mice in

which the GFP is expressed under the control of the D1

receptor promoter, we first performed a quantitative

layer-based mapping of M1 neuronal populations

expressing the D1 receptor in young and adult mice.

The analysis of the GFP fluorescence in M1 brain slices

revealed that D1+ cells were distributed in all M1

cortical layers and with a similar distribution in young

and adult mice (Fig. 1A, B; 2A, B). In young mice,

�26% of D1 receptor-expressing cells were localized in

layer VI, �29% in layer V, 44% in layers II/III, and less

than 1% in layer I (Fig. 1A, B). In adult mice, �30% of

D1+ cells were localized in layer VI, �34% in layer V,

�35% in layers II/III and less than 1% in layer I

(Fig. 2A, B).

To refine the molecular identity of the D1+ cells, we

performed immunostaining to quantify the colocalization

of GFP with specific markers of two classes of

pyramidal neurons. Ctip2 and Satb2 transcription factors

were used as molecular markers of PT and IT neurons,

respectively (Arlotta et al., 2005; Alcamo et al., 2008;

Britanova et al., 2008; Digilio et al., 2015; for review see

Molnár and Cheung, 2006). The D1+ neurons were then

divided into four categories: the cells expressing only the

D1 receptor, neurons expressing the D1 receptor and only
Fig. 2. Distribution of D1+ neurons in M1 of adult mice. (A) Image of a coron

an adult mouse. (B) Laminar distribution of D1+ cells in M1 of adult mice. F

schematic of a coronal slice containing M1. The pictures in D. are taken from

all D1+ cells in M1 according to their molecular identity in adult mice. (D) Ex
(magenta) in M1 of an adult mouse. (E) Higher magnification of the layer V o

markers. The brown arrowheads indicate neurons positive for D1, Ctip2 and S

positive only (blue), D1 and Satb2 positive only (magenta), and D1, Ctip2 a

darker the color, the deeper the layer. Data are given as mean ± SEM.
Ctip2, those expressing the D1 receptor and only Satb2,

and those expressing the D1 receptor and both Ctip2

and Satb2, in young and adult mice (Fig. 1C–F; 2C–F).

Most of the D1+ cells in M1 co-expressed Satb2 (around

80% both in young and adult mice) and very few cells co-

expressed only Ctip2 (3.3% and 1.83% in young and adult

mice, respectively) (Fig. 1C; 2C). The laminar distribution

of the cells in the four categories was also similar in young

and adult mice (Fig. 1D–F; 2D–F and Table 2). The cells

expressing only the D1 receptor were mostly localized in

layer II-III, 58.01% in young (Fig. 1D–F) and 52.09% in

adult mice (Fig. 2D–F). The few D1+ cells co-

expressing only Ctip2 were mainly localized in layer VI

both in young (Fig. 1D–F) and adult mice (Fig. 2D–F).

The D1+ cells co-expressing Satb2 were mainly local-

ized in layer II–III as they represented 63.46% in young

(Fig. 1D–F) and 58.38% in adult mice (Fig. 2D–F) and

in layer V (25.03% and 32.63%). Finally, a non-

negligible number of D1+ cells co-expressing Ctip2 and

Satb2 were also counted. They were mainly found in layer

VI of young (55.15%) and adult (56.86%) mice (Fig. 1D–

F; 2D–F).
D1 receptor activation increases D1+ PNs
excitability both in young and adult animals

We then explored if the DA D1 receptor can modulate the

intrinsic electrical properties of individual neurons and

whether DAergic modulation of these neurons changes

with age. We focused our attention on PNs in layer V,

the main output layer of the cortex (Lévesque et al.,

1996; Veinante et al., 2000; Hattox and Nelson, 2007;

for reviews see Aronoff et al., 2010; Harris and

Shepherd, 2015) which is largely innervated by DAergic

fibers (Vitrac et al., 2014). Using patch-clamp recording,

we first investigated ex vivo the effects of the activation

of the D1 receptors on D1+ PNs’ intrinsic electrical prop-

erties in M1 layer V (Figs. 3, 4). Among D1+ cells, PNs

were identified on morphological (triangle shape of their

cell bodies) and electrophysiological criteria. To prevent

a network effect, intrinsic properties of D1+ PNs were

recorded while pharmacologically blocking fast gluta-

matergic and GABAergic transmission using DNQX

(50 mM), APV (20 mM), and GABAzine (10 mM). In young

animals (Fig. 3), bath application of the D1 agonist SKF

81297 (2.5 mM) changed the intrinsic properties of the

D1+ PNs recorded. Many parameters were measured

and to assess the treatment effect, not only was calcu-

lated the p-value, but also the effect size. We observed

that D1+ PNs were more excitable as they fired more

action potentials in response to current injections from
al section at the level of M1 showing the D1+ neurons in the brain of

or each category, the darker the color, the deeper the layer. (C) Left,
the area delineated by the red-dotted square. Left, distribution in % of

ample of the labeling obtained for D1 (green), Ctip2 (blue), and Satb2

f M1 at the level of the red-dotted square in B. for the same molecular

atb2 labeling. (F) Distribution of D1 positive only (green), D1 and Ctip2

nd Satb2 positive (brown) cells in M1 layers. For each category, the
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Table 2. Statistical analysis of the distribution and the molecular identity of the D1 receptor expressing neurons in M1 of young and adult mice.

D1 only – Young D1 only – Adult p-value

n = 9 Mann-Whitney

Mean Mean % SEM SEM % Mean Mean % SEM SEM %

Layer I 1.000 6.639 0.236 1.833 0.778 4.114 0.222 1.067 > 0.999

Layer II/III 9.222 58.015 0.940 3.563 10.111 52.087 1.263 5.088 0.0892

Layer V 3.444 17.851 0.944 3.435 3.889 20.753 0.676 3.602 0.8796

Layer VI 2.889 17.496 0.633 3.007 4.778 23.046 1.470 5.612 0.3081

D1 Ctip2 only – Young D1 Ctip2 only – Adult p-value

n = 9 Mann-Whitney

Mean Mean % SEM SEM % Mean Mean % SEM SEM %

Layer I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA

Layer II/III 0.125 13.889 0.147 7.384 0.222 14.815 0.147 11.264 0.7176

Layer V 0.750 23.512 0.289 7.682 0.444 24.074 0.242 12.763 0.4869

Layer VI 2.625 62.599 1.002 11.729 1.222 61.111 0.434 16.197 0.5923

D1 Satb2 only – Young D1 Satb2 only – Adult p-value

n = 9 Mann-Whitney

Mean Mean % SEM SEM % Mean Mean % SEM SEM %

Layer I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA

Layer II/III 41.625 63.459 4.916 3.049 28.111 58.377 0.949 3.946 0.1297

Layer V 16.375 25.032 1.956 2.453 16.556 32.630 2.062 2.683 0.4503

Layer VI 7.625 11.509 1.047 2.199 5.000 8.992 1.863 3.162 0.1095

D1 Satb2 Ctip2 – Young D1 Satb2 Ctip2 – Adult p-value

n = 9 Mann-Whitney

Mean Mean % SEM SEM % Mean Mean % SEM SEM %

Layer I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NA

Layer II/III 1.333 4.535 0.408 1.428 0.111 0.383 0.111 0.383 0.0078

Layer V 13.889 40.313 2.312 3.397 15.778 42.758 1.211 3.076 0.5919

Layer VI 18.444 55.152 2.304 3.664 21.222 56.859 1.730 3.078 0.2547
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25 pA to 175 pA (Fig. 3B, two-way repeated measures

ANOVA, F(9, 72) = 138.5, p< 0.0001, n= 9 and Table 3)

in presence of the D1 receptor agonist SKF 81297

(Fig. 3C). Furthermore, the rheobase, action potential

threshold, half-width and peak amplitude were signifi-

cantly lower with the application of D1 receptor agonist

SKF 81297 compared to control conditions (Fig. 3D, Wil-

coxon signed rank (WSR), p < 0.05, n = 9 and Table 4).

No significant effect was observed concerning the resting

membrane potential and the input resistance (Fig. 3D,

WSR, p > 0.05, n = 9).

The effect of D1 receptor activation on layer V M1 D1

+ PNs was then assessed in adult mice (Fig. 4). As for

young mice, D1 agonist increased the excitability of D1

+ PNs as illustrated by the recording of a D1+ PN in

response to a 100 pA current injection (Fig. 4C). For

current injections from 50 pA to 175 pA, D1+ PNs fired

more action potentials in presence of SKF 81297

compared to control conditions (Fig. 4B, two-way

repeated measures ANOVA, F(9, 144) = 306.2,

p < 0.0001, n = 17). It should be noted, however, that

the effect size of D1 receptor activation is slightly

smaller in adult than in young mice (Table 3). Moreover,

the action potential half width, and the action potential

threshold were significantly lower in the presence of
SKF 81297 compared to the control condition (Fig. 4D,

WSR, p < 0.05, n = 17). A trend of decreasing input

resistance was observed and supported by the

moderate effect calculated using the Cohen method

(Table 4). No significant effect was observed concerning

the resting membrane potential, the rheobase, and the

action potential peak amplitude (Fig. 4D, WSR,

p > 0.05, n = 17 and Table 4). These effects were

specific to the activation of the receptor as coactivating

and blocking the D1 receptor simultaneously did not

affect significantly the intrinsic properties of the D1+

PNs (Supplementary Fig. 1).
Blockade of D1 receptor differently impact layer V D1
+ PNs intrinsic properties according to the age

We then investigated the effect of blocking the D1

receptor on D1+ PNs’ intrinsic properties in M1 layer V

(Figs. 5 and 6). In young animals (Fig. 5), bath

application of the D1 antagonist SCH 23390 (1 mM) had

the opposite effect of the bath application of the D1

agonist on the intrinsic properties of the D1+ PNs

recorded. Indeed, we observed a significant decrease in

the neuronal excitability of D1+ PNs in the presence of

SCH 23390. D1+ PNs fired fewer action potentials in



Table 3. Statistical analysis of the effect of the D1 receptor agonist and antagonist on the firing properties of layer V pyramidal neurons.

Control young D1R agonist young p-value Effect size d

n = 9 ANOVA2 way Cohen

Mean SD Mean SD

Firing frequency

(Hz)

0 pA 0.000 0.000 0.000 0.000 > 0.9999 0.000

25 pA 0.667 1.658 3.111 3.296 < 0.0001 0.9370

50 pA 3.889 3.621 6.778 5.380 < 0.0001 0.6299

75 pA 8.000 4.472 11.11 5.231 < 0.0001 0.6393

100 pA 11.33 5.523 14.67 5.408 < 0.0001 0.6099

125 pA 14.67 5.895 17.33 5.568 < 0.0001 0.4651

150 pA 17.56 5.940 19.67 5.895 < 0.0001 0.3568

175 pA 20.44 5.747 22.11 5.904 0.0004 0.2861

200 pA 23.00 5.408 23.89 6.412 0.0903 0.1499

225 pA 24.67 5.568 25.22 6.704 0.4173 0.0902

Control adult D1R agonist adult p-value d

n = 17 ANOVA2 way Cohen

Mean SD Mean SD

Firing frequency

(Hz)

0 pA 0.250 1.000 0.250 1.000 > 0.9999 0.000

25 pA 0.375 1.500 0.813 2.401 0.7501 0.2118

50 pA 2.813 3.582 4.250 3.907 0.0014 0.4302

75 pA 6.688 3.928 8.125 4.965 0.0033 0.3357

100 pA 10.63 3.500 11.88 5.149 0.0076 0.3162

125 pA 13.81 3.449 14.94 4.781 0.0233 0.2912

150 pA 16.50 3.688 18.13 5.620 0.0009 0.3576

175 pA 19.19 3.637 20.63 5.548 0.0051 0.3106

200 pA 21.44 3.932 21.88 5.512 0.6216 0.1014

225 pA 23.63 4.145 23.94 5.767 0.8940 0.0725

Control young D1R antagonist young p-value d

n = 9 ANOVA2 way Cohen

Mean SD Mean SD

Firing frequency

(Hz)

0 pA 0.000 0.000 0.000 0.000 > 0.9999 0.000

25 pA 0.556 1.667 0.556 1.667 > 0.9999 0.000

50 pA 1.778 3.701 1.333 3.041 > 0.9999 0.1312

75 pA 4.333 4.796 2.889 4.622 0.0664 0.3067

100 pA 7.667 5.123 4.556 6.307 < 0.0001 0.5415

125 pA 10.78 5.044 7.000 6.245 < 0.0001 0.6655

150 pA 13.44 5.003 9.556 7.230 < 0.0001 0.6255

175 pA 15.67 4.975 11.89 7.672 < 0.0001 0.5843

200 pA 18.11 4.781 13.56 8.293 < 0.0001 0.6730

225 pA 19.78 5.142 15.78 8.700 < 0.0001 0.5597

Control adult D1R antagonist adult p-value d

n = 12 ANOVA2 way Cohen

Mean SD Mean SD

Firing frequency

(Hz)

0 pA 0.083 0.289 0.000 0.000 > 0.9999 0.4082

25 pA 0.833 1.801 2.417 3.753 0.0046 0.5379

50 pA 3.250 4.372 5.667 5.280 < 0.0001 0.4986

75 pA 6.750 5.770 7.917 6.653 0.0481 0.1873

100 pA 10.17 6.279 11.92 6.302 0.0016 0.2782

125 pA 13.33 6.679 14.50 5.992 0.0481 0.1839

150 pA 15.75 6.877 16.75 6.092 0.1055 0.1539

175 pA 18.17 7.554 18.83 6.088 0.3908 0.0972

200 pA 20.58 7.154 20.83 6.103 > 0.9999 0.0376

225 pA 22.58 6.868 22.50 6.230 > 0.9999 0.0127
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response to a somatic injection of depolarizing currents in

the presence of SCH 23390 compared to control

conditions (Fig. 5B, two-way repeated measures

ANOVA, F(9, 72) = 48.58, p < 0.0001, n = 9 and
Table 3), as illustrated by the recorded traces (Fig. 5C)

and by the frequency/current input–output curve

(Fig. 5B). Furthermore, the rheobase of these neurons

was significantly higher with SCH 23390 compared to



Table 4. Statistical analysis of the effect of the dopamine D1 receptor agonist and antagonist on the intrinsic properties of layer V pyramidal neurons.

Control young D1R agonist young P value Effect size d

n = 9 Wilcoxon Cohen

Mean SD Mean SD

Vrest (mV) �77.09 2.660 �75.75 3.600 0.6523 0.4234

Rheobase (pA) 51.44 28.76 36.00 25.97 0.0391 0.5635

Resistance (MX) 249.0 65.60 254.0 61.37 0.9102 0.0787

Half width (ms) 0.892 0.178 0.853 0.173 0.0195 0.2211

AP threshold (mV) �51.94 2.297 �54.06 2.877 0.0039 0.8144

Peak amplitude (mV) 50.19 6.285 44.54 10.96 0.0039 0.6324

Control adult D1R agonist adult P value d

n = 17 Wilcoxon Cohen

Mean SD Mean SD

Vrest (mV) �77.92 5.624 �78.34 6.883 0.354 0.0668

Rheobase (pA) 52.12 22.01 49.71 26.87 0.5245 0.0981

Resistance (MX) 230.8 56.93 207.6 48.43 0.0505 0.4390

Half width (ms) 0.834 0.111 0.758 0.081 0.0003 0.7820

AP threshold (mV) �52.29 4.024 �54.32 4.896 0.0242 0.4530

Peak amplitude (mV) 37.89 10.90 37.23 9.645 0.7119 0.0641

Control young D1R antagonist young P value d

n = 9 Wilcoxon Cohen

Mean SD Mean SD

Vrest (mV) �79.93 3.764 �79.73 6.085 0.8203 0.0395

Rheobase (pA) 65.89 28.09 108.3 65.53 0.0313 0.8412

Resistance (MX) 214.6 53.39 162.2 39.47 0.0078 1.1161

Half width (ms) 0.797 0.092 0.755 0.072 0.0273 0.5039

AP threshold (mV) �50.61 2.913 �51.44 3.395 0.2461 0.2624

Peak amplitude (mV) 44.16 8.943 40.63 9.343 0.027 0.3860

Control adult D1R antagonist adult P value d

n = 12 Wilcoxon Cohen

Mean SD Mean SD

Vrest (mV) �78.39 5.105 �75.23 6.967 0.0425 0.5174

Rheobase (pA) 63.08 50.82 45.33 35.40 0.0425 0.4053

Resistance (MX) 186.7 64.00 187.1 68.04 0.1099 0.0061

Half width (ms) 0.736 0.107 0.696 0.116 0.1294 0.3660

AP threshold (mV) �53.83 3.284 �55.83 5.623 0.0337 0.4559

Peak amplitude (mV) 46.59 9.000 42.22 10.17 0.0640 0.4551
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control conditions (WSR, p < 0.05, n = 9 and Table 4),

and the input resistance, the action potential half-width

and peak amplitude were significantly lower with SCH

23390 compared to control conditions (Fig. 5D, WSR,

p < 0.05, n = 9). No significant differences were

observed concerning the resting membrane potential

and the action potential threshold between SCH 23390

and control conditions (Fig. 5D, WSR, p > 0.05, n = 9).

The same experiments were then performed in adult

mice (Fig. 6). Surprisingly, even if the effect size is

considered as small (Table 3), the excitability of layer V

D1+ PNs was significantly increased by the bath

application of the D1 receptor antagonist as it was with

the application of the D1 receptor agonist. Indeed, the

recorded D1+ PNs fired more action potentials

following low-intensity stimulation ranging from 25 pA to

125 pA with 1 mM SCH 23390 than in control conditions

(Fig. 6B, C, two-way repeated measures ANOVA, F(9,
99) = 124.4, p < 0.0001, n = 12). Moreover, the

resting potential of these neurons was more depolarized

in the presence of D1 receptor antagonist SCH 23390

compared to control conditions (Fig. 6D, WSR,

p < 0.05, n = 12 and Table 4). Furthermore, the

rheobase and the action potential threshold of layer V

M1 D1+ PNs were lowered while blocking D1 receptors

(Fig. 6D, WSR, p < 0.05, n = 12). No significant

effects were observed concerning the input resistance,

the action potential half-width, and peak amplitude

(Fig. 6D, WSR, p > 0.05, n = 12).
DISCUSSION

DA signaling is crucial for the control of voluntary

movement and for motor learning, however, how D1

receptors modulate intrinsic properties of individual

neurons in mouse primary motor cortex is poorly
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and merge of the two pictures (down, IR/GFP). (B) Input/output curves in control (black) and in presence of the D1 agonist (red). n = 9. *p < 0.05
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parameters recorded before and after bath application of D1 agonist, from left to right: resting membrane potential, rheobase, input resistance, half-
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understood and contradictory. In this study, we

demonstrated ex vivo that neurons expressing the D1

receptor are widely distributed in all layers of M1

similarly in young and adult mice. Moreover, we showed

that blocking or activating the D1 receptor modulates in
a specific way the intrinsic properties of layer V D1+

PNs depending on the age of the animals.

We first showed that D1+ cells are widely distributed

in all layers of M1. This distribution correlates well with the

localization of the DAergic fibers in the superficial and

deep layers of M1 (Berger et al., 1985; Descarries



V. Plateau et al. / Neuroscience 536 (2024) 21–35 31
et al., 1987; Raghanti et al., 2008; Vitrac et al., 2014). As it

has been shown in the medial PFC that the expression of

the D1 receptor changes during postnatal development

(Leslie et al., 1991), we looked at the expression of the

D1 receptor in M1 at two stages. The mapping of these

D1+ cells reveals a similar distribution regardless of the

age of the mice, with however a slight tendency to

decrease in superficial layers and to increase in deep lay-

ers when mice get older. Projection neurons progressively

acquire subtype and area identities by transcriptional

mechanisms (for review see Greig et al., 2013). To better

characterize the identity of the neurons that express the

D1 receptor, we used the classical biological markers of

distinct pyramidal neurons, Ctip2 for PT neurons and Sat-

b2 for IT neurons (Arlotta et al., 2005; Alcamo et al., 2008;

Britanova et al., 2008; Digilio et al., 2015; for review see

Molnár and Cheung, 2006). Satb2 represses the expres-

sion or prevents the activity of Ctip2 (Alcamo et al., 2008;

Britanova et al., 2008). Thus, overexpression of Satb2

during adolescence in layer II/III could be of importance

to repress the expression of other transcriptional factors

leading to the specification of neurons other than

subcortical- and callosal-projection neurons. Nearly 15%

of the cells were expressing only the D1 receptor, sug-

gesting that some inhibitory interneurons and some CT

pyramidal neurons in layer VI also express the D1 recep-

tor as described in the PFC (Anastasiades et al., 2019).

As very few D1+ neurons express only Ctip2, it indicates

that the majority of PT neurons do not have the D1 recep-

tor as already reported (Gaspar et al., 1995; for review

see Shepherd, 2013). In any case, most of the D1+ cells

also express Satb2 suggesting that a majority of these

cells are IT neurons, which is similar with previous find-
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experimental design. Right, images of a recorded pyramidal neuron expres

merge of the two pictures (down). (B) Input/output curves in control (black) an

repeated measures ANOVA). (C) Responses to depolarizing and hyperpolar

(left) and after bath application of D1 antagonist (right in blue). An expand

parameters recorded in young animals before and after bath application of D

input resistance, half-width of action potentials, action potential threshold an

significant (WSR).
ings at the level of the PFC (Anastasiades et al., 2019).

Because the D1/Satb2 cells are located in different layers,

they could be further identified as IT Cortico-cortical neu-

rons in layer II/III and IT Cortico-striatal neurons in deeper

layers (Huang et al., 2013; Shepherd, 2013). As it has

already been reported in neocortical regions in mice

(McKenna et al., 2011), staining with Ctip2 antibodies

revealed neurons that expressed high levels of Ctip2 pro-

tein while Ctip2 expression level was much lower in

others. Satb2 is known to negatively regulate the level

and activity of Ctip2 in neurons (Alcamo et al., 2008;

Britanova et al., 2008). Interestingly, some cells co-

express Satb2 and Ctip2 in deep layers highlighting the

existence of a subpopulation of neurons that have been

already described in the somatosensory cortex (Harb

et al., 2016), motor area (Sohur et al., 2014;

Tantirigama et al., 2014) and hippocampus (Lickiss

et al., 2012; Nielsen et al., 2014; Digilio et al., 2015) that

also express the D1 receptor.

Using a combination of pharmacology and ex vivo
electrophysiology, we studied how DA modulates the

intrinsic properties of D1+ PNs in layer V of M1 in

young and adult mice. Intracellular cascades induced by

DAergic receptor activation vary with the cell types and

the brain region (Stoof and Kebabian, 1981; Sidhu

et al., 1991; Rioult-Pedotti et al., 2015; for review see

Mishra et al., 2018) and more importantly, the DA recep-

tor can be coupled with several G proteins (for review see

Sidhu, 1998). To avoid a network effect and to specifically

study the impact of the D1 receptor on the electrical intrin-

sic properties of the neurons, we isolated the neurons

recorded from the network by the presence of fast synap-

tic transmission blockers. In this study, we demonstrated
 (pA)
20

0
15

0
17

525 22
5

* * * * *

n = 9
+ 100 pA
-  150 pA

+ 100 pA
-  150 pA

C

20 mV
2 ms

10 mV
250 ms

Control SCH 23390 Control SCH 23390
-70

-60

-50

-40

AP
 th

re
sh

ol
d 

(m
V)

Control SCH 23390
0

20

40

60

80

Pe
ak

 a
m

pl
itu

de
 (m

V)

ns

*

*

insic properties of layer V D1+ pyramidal cells in young mice. (A) Left,
sing the D1 receptor under IR-DIC (top), fluorescence (middle) and

d in presence of the D1 antagonist (blue). n = 9. *p < 0.05 (two-way

izing current steps in an individual pyramidal neuron recorded before

ed view of a single spike is presented next to each trace. (D) Cell
1 antagonist, from left to right: resting membrane potential, rheobase,

d peak amplitude of action potentials. n = 9. *p < 0.05, ns = non-



A

D

B C

Fig. 6. Effect in M1 of the D1 dopaminergic antagonist SCH 23390 on the intrinsic properties of layer V D1+ pyramidal cells in adult mice. A. Left,
experimental design. Right, images of a recorded pyramidal neuron expressing the D1 receptor under IR-DIC (top), fluorescence (middle) and

merge of the two pictures (down). (B) Input/output curves in control (black) and in presence of the D1 antagonist (green). n = 12. *p < 0.05 (two-

way repeated measures ANOVA). (C) Responses to depolarizing and hyperpolarizing current steps in an individual pyramidal neuron recorded

before (left) and after bath application of D1 antagonist (right in blue). An expanded view of a single spike is presented next to each trace. (D) Cell
parameters recorded in adult animals before and after bath application of D1 antagonist, from left to right: resting membrane potential, rheobase,

input resistance, half width of action potential, action potential threshold and peak amplitude of action potential. n = 12. *p < 0.05, ns = non-

significant (WSR).

32 V. Plateau et al. / Neuroscience 536 (2024) 21–35
that activating the D1 receptor increased the excitability of

M1 layer V D1+ PNs, presumably IT, both in young and

adult mice. These results concur with previous findings in

PFC; where it has been demonstrated that the activation

of D1 receptor can directly modulate the firing properties

of subpopulation of PNs in layer V (Seong and Carter,

2012), mainly IT (Anastasiades et al., 2019). However,

even if we observed a significant global change in intrinsic

properties, we observed an important inter-individual vari-

ability of the responses induced by the bath application of

the agonist. Even if the immunohistochemistry experi-

ments (Figs. 1, 2) indicate that most of the D1+ cells in

layer V of M1 are IT neurons, this variability suggests that

subtypes of D1+ PNs have been recorded (Sohur et al.,

2014; Tantirigama et al., 2014). More specifically, a small

portion of recorded cells may be PT neurons, as it has

been shown that PT neurons in the layer V of the mouse

PFC can also express D1 receptors (Leyrer-Jackson and

Thomas, 2019). At first glance, these results do not seem

to agree with an in vivo study showing a decrease in

excitability of layer V PNs following DA local application

in rat motor cortex (Awenowicz and Porter, 2002), but

their study was targeting specifically PT neurons whereas

our recordings were done in a majority of IT neurons.

Interestingly, we demonstrated an age-dependent

action of D1 receptor antagonist on intrinsic electrical

properties of layer V D1+ PNs. While D1 receptor

blockade decreased the excitability of M1 layer V D1+

PNs in young animals, it increased their excitability in

adults. In young mice, as the D1 receptor activation

induced an increase in M1 layer V D1+ PNs

excitability, it was consistent to observe a decrease in

the excitability of M1 layer V D1+ PNs by the blockade
of the D1 receptor. This supports the idea that the D1

receptors recruit an excitatory G protein. Surprisingly, in

adults, the D1 receptor blockade increased the firing

frequency and lowered the action potential threshold of

M1 layer V D1+ PNs as it was for the activation of the

D1 receptor. Even if it is surprising, the effect observed

in adults is in line with the work of Swanson and

colleagues who recently showed ex vivo that D1

receptor antagonism caused increased excitability of

layer V PNs with the engagement of intrinsic

mechanisms (Swanson et al., 2021). This electrophysio-

logical signature in the presence of the antagonist is rem-

iniscent of the altered electrophysiological properties (i.e.,
higher firing frequency and depolarized resting membrane

potential) described in vivo in cortical neurons of Parkin-

sonian rats in which the DAergic transmission was inter-

rupted (Degos et al., 2013). While in young mice,

concomitant use of the D1 agonist and D1 antagonist

can cancel each other’s action, the lack of effect on

excitability in adult mice is surprising, since both, when

used separately, increase the excitability of D1+ PN neu-

rons. Moreover, why the D1 receptor antagonists produce

the opposite effect on M1 D1+ PNs in young and adult

animals is not easy to explain but some hypothesis can

be raised. Besides, drug effects on receptor activity are

often integrated with some preexisting level of receptor

activity which depends on endogenous ligand and consti-

tutive receptor activity. It has been already reported that

the D1 receptor in other brain regions can have a consti-

tutive activity (Rankin et al., 2006; Zhang et al., 2014)

meaning a receptor activity in the absence of ligands at

the binding site. The opposite effect observed in young

and adult mice may suggest that the D1 receptor could
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be constitutively active in adults but not in young animals.

This hypothesis is reinforced by the fact that the effects

observed in adults by the bath application of D1 receptor

agonist were not as strong as the ones observed in young

animals as attested by the measure of the size effect

(Table 3). Indeed, if the constitutive activity of the receptor

in adult is high, further increasing the activity of the recep-

tor by the agonist may have a small effect relative to the

baseline and may be harder to detect. Additionally, the

effect of the antagonist will work better if there is a high

level of DA. The data obtained could thus suggest a differ-

ent DAergic tone in young and adult mice that could arise

from different emotional or motor states, but there is no

proof at this date of a different DA tone in the M1 of mice

depending of the age. Thus, the DAergic modulation may

be governed by different mechanisms at different ages

which can involve intricate interactions between level of

endogenous ligands, constitutive activity and distinct

intrinsic pathways.

In summary, this study unravels the impact of D1

receptors on M1 layer V PNs ex vivo, and maps for the

first time the D1 receptor-expressing neurons in M1

according to their molecular profile. The D1 receptors

modulation of M1 layer V PNs is of importance for the

physiological completion of M1 processes, such as

motor learning and execution of fine motor tasks in a

healthy M1 and impaired DA signaling will lead to

pathologies.
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