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Abstract—Over recent years, Federated Learning (FL) has
proven to be one of the most promising methods of distributed
learning which preserves data privacy. As the method evolved and
was confronted to various real-world scenarios, new challenges
have emerged. One such challenge is the presence of highly
heterogeneous (often referred as non-IID) data distributions
among participants of the FL protocol. A popular solution
to this hurdle is Clustered Federated Learning (CFL), which
aims to partition clients into groups where the distribution are
homogeneous.

In the literature, state-of-the-art CFL algorithms are often
tested using a few cases of data heterogeneities, without system-
atically justifying the choices. Further, the taxonomy used for
differentiating the different heterogeneity scenarios is not always
straightforward.

In this paper, we explore the performance of two state-of-the-
art CFL algorithms with respect to a proposed taxonomy of data
heterogeneities in federated learning (FL). We work with three
image classification datasets and analyze the resulting clusters
against the heterogeneity classes using extrinsic clustering met-
rics. Our objective is to provide a clearer understanding of the
relationship between CFL performances and data heterogeneity
scenarios.

Index Terms—Federated Learning, Clustering, Data Hetero-
geneity

I. INTRODUCTION

Federated Learning (FL) is a distributed machine learning
paradigm designed to prioritize data privacy. Originally de-
signed [17] to train a global machine learning model across
multiple clients without sharing their data, only locally trained
model weights and the number of samples are shared to
a server that iteratively aggregates and updates the clients’
models.

One of the main challenges for the convergence of FL
algorithms is the presence of non-IID (non-independent and
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non-identically distributed) data distribution across clients. The
difficulty [24] of this scenario is illustrated with Figure 1,
where a comparison between the direction of parameters of
a hypothetical centralized model trained on all clients’ data
and the parameters of the federated model is proposed in
IID and non-IID scenarios. In the case of non-IID data, the
gap between the global federated model’s weights ω and the
centralized model’s weights ω̄ is far larger than in the case of
homogeneous distributions.

The heterogeneity of client distributions has been the subject
of a multitude of studies [11], [24]. In recent research, a popu-
lar solution proposed to mitigate the problem of heterogeneous
client data distribution is Clustered Federated Learning (CFL)
[2], [3], [6], [7], [9]. The idea behind CFL is to relax the notion
of a single global model and propose multiple personalized
models for particular distributions. CFL proposes a paradigm
that will group clients into clusters where ideally, client data
distributions are supposed to be homogeneous and where the
standard FL protocol will be applied within each cluster. It is
particularly useful when we already have insight of clients’
data with similar patterns.

Since a well recognized taxonomy of data heterogeneity of
client datasets for FL was proposed [11] and even if CFL
has been the subject of multiple research papers, the rigorous
exploration of CFL algorithms regarding each cases of hetero-
geneous data distribution, aiming to be comprehensive and as
exhaustive as possible in covering heterogeneity cases, to our
knowledge, has not been addressed yet in the literature.

Our contribution in this paper is to rigorously study the
effect of each cases of data heterogeneity on state-of-the-art
CFL solutions, striving to be as exclusive as possible in each
type without overlapping with other types. We propose to
explore each heterogeneity types independently using three
images classification datasets, MNIST, Fashion-MNIST and
KMNIST.

The paper is organized as follows. Section II provides a



(a) All clients i, 1 ≤ i ≤ N ,
train their local model’s parameters
ωi, on homogeneous data. In this sce-
nario, the federated model parameters
ω are close to the hypothetical non-
federated model with parameters ω̄
trained on the same data but in a
centralized manner

(b) All clients i, 1 ≤ i ≤ N , train
their local model’s parameters ωi, on
heterogeneous data. In this scenario,
the federated model parameters ω drift
from the non-federated model param-
eters ω̄ trained on the same data but
in a centralized manner

Fig. 1: IID scenario vs Non-IID as illustrated in [24]

description of the non-iid heterogeneous data problem in FL
and introduces a data heterogeneities taxonomy. In Section III,
we explain in details the functionality of CFL and present two
methods to classify state-of-the-art CFL solutions. In Section
IV, we study potential shortcomings of state-of-the-art CFL
with respect to the taxonomy described in Section II which
highlights our contribution in this paper. Finally, we conclude
with some remarks and future research directions.

II. NON-IID DATA DISTRIBUTION IN FEDERATED
LEARNING

The original state-of-the-art federated learning algorithm
and aggregation method named FedAvg [17] was thought to be
capable of convergence in IID and as well in non-IID settings.
Unfortunately, it was proven in subsequent studies [24] that
the non-IID scenario was problematic the more the distribution
of clients data shifted from one another (as illustrated in
Figure 1). To have a better grasp of the different cases of
data heterogeneity explained in that paper, we consider the
following setup.

We suppose we have N clients with i ∈ I = {1, . . . , N}.
For each client, we consider its associate local dataset Di noted
as a samples set of the form

Di =
{

(x
(i)
j , y

(i)
j ) | 1 ≤ j ≤ ni

}
(1)

where x = (x
(i)
j )1≤j≤ni

represents the features and y =

(y
(i)
j )1≤j≤ni

represents the target and with the number of local
samples being |Di| = ni. In case of a FL supervised learning
task with features x and target y, a statistical model operates
with two levels of sampling. To access a data point, we first
sample a client, denoted as i, from the statistical distribution
P , which represents the available clients. Then, we draw an
example (x, y) from the local data distribution of that client,
denoted as Pi(x, y). When we talk about non-IID data in
federated learning, we’re mainly focused on the heterogeneity
between the statistical distributions Pi and Pj for different
clients i and j.

Each clients datasets Di is represented by its local joint
distribution Pi(x, y) which we can factor as follows using
Bayes’ rule:

Pi(x, y) = Pi(y)Pi(x|y) = Pi(x)Pi(y|x) (2)

where Pi(x) the marginal distribution of the features (respec-
tively Pi(y) the target) and Pi(y|x) the distribution of the
target conditioned by the features (respectively Pi(x|y) the
distribution of features conditioned by the target) for client
i ∈ I .

A. A taxonomy of data heterogeneities in Federated Learning

Using the notations above, we consider 5 types of data
distributions heterogeneity situations [17]. We should note
that those situations are in principle not mutually exclusive
and two clients may encounter together any numbers of those
situations.

For client i ∈ I and client j ∈ I with i 6= j, we can
consider Di and Dj as having heterogeneous distributions if
one or multiple of the following conditions apply:

1) Concept shift on features: (same label, different
features) Pi(x|y) 6= Pj(x|y) for clients i and j even
if Pi(y) = Pj(y). This can be artificially attained in
MNIST if we rotate the images in certain devices. (see
Figure 2.a.)

2) Concept shift on labels: (same features, different
label) Pi(y|x) 6= Pj(y|x) even if Pi(x) = Pj(x).
Although more likely in dataset reflecting divergence
of labels concept or labels annotation error, we can
illustrate such a scenario in the MNIST dataset if for
instance the digits “1” in a user’s dataset resembles
digit “7” in another user’s or if two digits labels are
swapped either by error or for malicious purposes. (see
Figure 2.b.).

3) Feature distribution skew: Pi(x) 6= Pj(x) even if
Pi(y|x) = Pj(y|x). In the MNIST dataset, we can
artificially create this heterogeneity using different type
of writing with image erosion and dilatation simulating
the type of pen used. For example, we can have a
dilated image simulate bold writing with a marker
pen for client i and eroded image with finer writing
simulating a pencil writing for j like in Figure 2.c.

4) Label distribution skew: Pi(y) 6= Pj(y) even if
Pi(x|y) = Pj(x|y). We can create this scenario by
unevenly distributing the digits to the clients such that
one client has a majority “1”s, another a majority
of “4”s and so on as illustrated in Figure 2.d. It
corresponds to the natural cases of imbalanced datasets
across clients.

5) Quantity Skew: the volume of data differs significantly
among clients. Meaning that |Di| � |Dj | or |Dj | �
|Di|. (see Figure 2.e.)

For a clearer understanding, we illustrate in Figure 2 each
type of non-iid data distribution corresponding to the taxon-
omy with a corresponding example from the MNIST dataset



(The numbered items from the categories correspond to the
letter items in the Figure in alphabetical order).

(a) Concept
Shift
on Features

(b) Concept
Shift on
Labels

(c) Feature
Distribution
Skew

(d) Label
Distribution
Skew

(e) Quantity
Skew

Fig. 2: Illustration of non-IID categories for two clients i and
j with samples from the MNIST dataset.

B. Related works : Datasets and heterogeneity types in CFL
literature

Even though the taxonomy defined in subsection II-A is
well recognized across scientific papers, it is often ambigu-
ously used. Most CFL papers do not clearly define which
heterogeneity cases they are addressing.

To rectify this, we use the taxonomy as a guideline in Table
I, where we provide an overview of the different types of
datasets, clearly identifying which types of heterogeneities,
as defined by the taxonomy, are explored in CFL studies.
This table reveals that none of the reviewed studies have
examined the global impact of all data heterogeneity types
on CFL algorithms, often focusing on seemingly random or
specific cases instead. Among all the papers classified in
Table I, only [1]–[3], [7], [10], [18] address two heterogeneity
types out of five, while all others consider only one particular
case. Moreover, it is important to note that none of these
papers tested the impact of quantity skew scenarios. These
observations form the foundation of our research.

We also observe that most papers focus on image classi-
fication datasets like MNIST, EMNIST, FEMNIST, Fashion-
MNIST, FedCelebA and CIFAR-10, with only a few address-
ing other type of data like text and time series. We believe the
main reason behind this is the difficulty in clearly identifying
the taxonomy cases for tasks other than image classification,
where the cases can be more easily defined (as illustrated by
the examples derived from MNIST in subsection II-A).

III. CLUSTERED FEDERATED LEARNING

As stated in previous sections, Clustered Federated Learning
is one of the most recently researched method to mitigate
the negative effect of data heterogeneity across clients in FL
scenario.

In this Section, we define a generic cluster-based federated
optimization formulation, and then, present the two type of
solution approaches we found in the literature and classify
them this way: namely, “Server-side Clustering” in subsection
III-A and ”Client-side Clustering’ in subsection III-B.

Let clients i ∈ {1, . . . , N} having datasets Di each con-
taining |Di| = ni data samples which are supposed to span
together K different data distributions P1, . . . ,PK such that

Dataset Suggested Category of non-IID situation Papers

MNIST Concept shift on labels [2], [3], [7], [20]

Concept shift on features [3], [5], [9], [10], [18], [21]

Label distribution skew [2], [6], [10], [13], [22]

EMNIST Concept shift on features [1], [18], [19]

Label distribution skew [1]

FEMNIST Feature distribution skew [6], [9], [15], [18]

Concept shift on labels [7]

Label distribution skew [21]

Fashion MNIST Concept shift on labels [7], [16]

Label distribution skew [10], [13]

Concept shift on features [10]

FedCelebA Feature distribution skew [15]

CIFAR-10 Concept shift on labels [16], [18], [20]

Concept shift on features [9], [10], [19]

Label distribution skew [10], [18], [21], [22]

Shakespeare Feature distribution skew [5]

Sentiment140 Feature distribution skew [6]

ml-100K Concept shift on labels [14]

ml-1M Concept shift on labels [14]

Ag-News Feature distribution skew [20]

Time series data Feature distribution skew [12]

TABLE I: Summary of datasets and tasks tested in the CFL
literature

1 ≤ K ≤ N . That is, the total number of distribution is
less than or equal to the number of clients. This implies
that the clients can be partitioned into K disjoint clusters
C1, . . . , CK where the clients’ datasets distributions are homo-
geneous intra-cluster. For the sake of simplicity in notations,
each cluster will be considered as a disjoint partition of
I = {1, . . . , N} with the notation i ∈ Ck meaning that the

client of index i is inside cluster Ck (i.e.: I =
K⋃
k=1

Ck). We

would then have K different clusters and for k ∈ {1, . . . ,K} a
corresponding objective function Fk to optimize the federated
model on cluster Ck of the form:

min
ω∈Rd

Fk(ω) :=
∑
i∈Ck

ni∑
j∈Ck

nj
fi(ω) (3)

where
∑
j∈Ck

nj correspond to the total number of samples
of all clients inside cluster Ck and

fi(ω) = E(x,y)∼Di
[Li(x, y, ω)] ∀i ∈ Ck (4)

that is the expected values of the expected value of the
local loss function Li calculated with feature and target
(x, y) following the distribution of dataset Di with model of
parameters ω ∈ Rd.

Based on this formulation , we describe two of the main
CFL solution approaches which we found in the literature.

A. Server-Side Clustering

First, and arguably the most intuitive approach as originally
proposed in [8] is often referred to as gradient-based (or
model-based) clustering. The studies following this approach
solve a clustering problem (c.f Equation (3)) by only using



models weights. This strategy has the advantage of requiring
minimum set-up over the baseline FL approach. Specifically,
after a number of rounds of global FedAVG aggregations,
the central server calculates clusters with k-means applied to
the models weights in a ”one-shot” manner and then, cluster-
specific federated models are optimized separately for each
cluster using the FedAVG algorithm.

Practically, in the clustering algorithm, we first define a
cluster-associated representative point µk ∈ Rd essential for
the formation of each cluster Ck for all k ∈ {1, . . . ,K}.
The central server will determine each client i ∈ {1, . . . , N}
cluster membership by minimizing the distance between its
model parameters ωi ∈ Rd and the cluster-associated represen-
tative point. The formulation can be expressed as k-means-like
optimization as follows:

min
µk,k∈{1,...,K}

K∑
k=1

N∑
i=1

1i∈Ck
dist(ωi, µk) (5)

This approach is the baseline of many other CFL algorithm
[5], [6], [10], [20] with dist being a generic distance function
such as the originally proposed Euclidean distance between
models parameters and 1i∈Ck

= 1 if client i is in cluster Ck,
0 otherwise. Since the cluster assignment is determined by
the central server, throughout the remainder of this paper, this
type of clustering method will be refer to as ”Server-side”
clustering.

B. Client-Side Clustering

An alternative to Server-side clustering is to assign the
computational burden of determining cluster membership to
client nodes. In this case, clients are presented with several
possible models, initialized by the central server. The clients
then evaluate the loss of their training data on these different
cluster models and choose to adhere to the cluster whose
model minimizes their loss. This specific approach is named
IFCA (Iterative Federated Clustering Algorithm) by its author
[9]. Once an initial cluster assignment has been chosen and at
each communication round, each client iteratively re-evaluates
and determines its optimal cluster. The clusters’ models will be
updated by the weighted average of corresponding members
models parameters after clients’ local training.

Formally, let µk ∈ Rd be the cluster representative point of
cluster Ck for all k ∈ {1, . . . ,K} essential for the formation
of each cluster. These representative points can be initialized
by the central server. Each clients i ∈ {1, . . . , N} will evaluate
their training data on the K different models, each initialized
with parameters µk and update theirs models parameters ωi
with the cluster representative point which minimizes their
local loss function:

ωi = arg min
µk,k∈{1,...,K}

E(x,y)∼Di
[Li(x, y, µk)], ∀i ∈ {1, . . . , N}

(6)
that is the representative point µk that minimize the expected
values of the local loss function Li calculated with feature

and target (x, y) following the distribution of dataset Di with
model of parameters µk.

This approach is the baseline of many other CFL algorithm
[12], [15], [19] and since the cluster assignment in this case is
determined by clients, throughout the remainder of this paper,
this type of clustering method will be denominate as ”Client-
side” clustering.

IV. COMPARATIVE ANALYSIS OF STATE-OF-THE-ART CFL
SOLUTION WITH RESPECT TO THE NON-IID TAXONOMY

In this section, we compare Client-side and Server-side
CFL in non-iid scenarios. For this, we design experiments
with heterogeneous distributions as defined in Section II-A.
For simplicity, we restrict these experiments to one class of
heterogeneity per client. In other words, each clients’ dataset
is assumed to be homogeneous in itself. Furthermore, given
that the objective of CFL is to address the challenges raised
by heterogeneous data distributions, we consider clusters to
be well-defined if the data distributions within each cluster is
homogeneous. As such, we select the initial number of clusters
to match the number of data distributions across all clients. For
Client-side CFL, as the final number of clusters is dictated by
the algorithm, some clusters may end up with no members by
the end of the process.

We use the datasets MNIST, fashion-MNIST, and KMNIST
[4] for all our experiments. All three datasets contain labeled
images from 0 to 9. We assign data to clients to match the
desired heterogeneity distribution as described in the follow-
ing Sections. This straightforward architecture was shown to
perform efficiently on the MNIST dataset using CFL [9].

For Server-side CFL we use the algorithm in [8], and for
Client-side CFL we use the algorithm described in [9]. We
choose these algorithms as they served as baselines for later
improvements in the literature. We test the CFL approaches
against simple federated learning on the entire dataset, and
against central learning on homogeneous subsets which we
call the “oracle”. These results give us respectively a lower
and upper bound on our results.

The results of our experiments are summarized in Tables
II, III, IV, V and VI. For each experiment, the tables show
the dataset used, the models’ accuracy, and the clustering-
quality metrics obtained. The metrics reported are the Adjusted
Rand Index (ARI), the Adjusted Mutual Information (AMI), as
well as the homogeneity (hom), completeness (cmplt) and v-
measure (vm) of the clusters. To illustrate what these metrics
represent, we plot two edge cases in Figure 3. In the first
case (Figure 3a), the assignment follows exactly the clients’
underlying data distribution with all metrics equal to one. And
in the second case (Figure 3b), the distribution of clients in
clusters poorly reflects data heterogeneities with metrics close
to zero.

All of these metrics are extrinsic measures calculated
against the clustering ground truth (which is no other than the
data heterogeneity classes). It is important to note that for CFL,
the “optimal” clustering strategy might diverge from the strat-
egy which yields the most efficient models. That is because



Server-side CFL is agnostic to the models performances and
relies on the hypotheses that data homogeneity is desirable
in our scenario. This might not be true for scenarios such
as “quantiy-skew” but analyzing these results gives us some
insights on the impact of applying these algorithms without
proper knowledge of our data’s heterogeneity.

The following sections discuss the results for each type
of heterogeneity scenario. In all our experiments, we used
48 client with 100 samples by label per client. The model
used for the classification tasks is a fully connected neural
network with ReLU activations [9], with a single hidden
layer of size 200 and we set the learning rate to 0.01.
For the CFL algorithms we train the models for 20 fed-
erated rounds with each round running 10 epochs while
the oracle centralized model is parameterized to 50 local
epochs. The associated github used for the experiments
can be found at: https://github.com/leahcimali/Comparative-
Evaluation-of-Clustered-Federated-Learning-Methods

(a) Clients to clusters assignment
which reflects the clients underlying
data heterogeneity classes. In this
case, all metrics equal one

(b) Clients to clusters assignment
which does not reflect the underlying
clients’ data heterogeneity classes.
The resulting clustering metrics ap-
proach zero

Fig. 3: Illustration of two clients to clusters assignment edge
cases

A. Concept shift on features

To introduce concept shift on features in our datasets, we
create four heterogeneity classes by rotating the images 0,
90, 180, and 270 degrees. The distribution of images is such
that each heterogeneity class is equally represented amongst
clients. Additionally, any given client only has images of one
type of rotations as explained above. As such, we set the
number of clusters k = 4 in the CFL algorithms.

For Server-side CFL, the results show a significant im-
provement over standard FL, with performances comparable
to the personalized oracle models across all experiments (cf
Table II). Additionally, the clusters obtained are optimal in
all Server-side experiments in the sense that they separate
clients by heterogeneity perfectly. These results indicate that
data heterogeneity is reflected in the models’ weights which
allows k-means to find the optimal clusters.

On the other hand, with Client-side CFL, the algorithm fails
to optimally cluster clients by heterogeneity, which results
in performances less stellar than with server-side. Several

exp type dataset accuracy ARI AMI hom cmplt vm

FL fashion-mnist 73.81 ± 0.00 n/a n/a n/a n/a n/a

oracle fashion-mnist 83.98 ± 0.69 n/a n/a n/a n/a n/a

client fashion-mnist 77.31 ± 2.41 0.48 0.66 0.5 1 0.67

server fashion-mnist 83.66 ± 1.70 1 1 1 1 1

FL kmnist 72.83 ± 0.00 n/a n/a n/a n/a n/a

oracle kmnist 87.24 ± 1.31 n/a n/a n/a n/a n/a

client kmnist 78.44 ± 5.55 0.7 0.85 0.75 1 0.86

server kmnist 86.01 ± 2.00 1 1 1 1 1

FL mnist 80.95 ± 0.00 n/a n/a n/a n/a n/a

oracle mnist 92.33 ± 0.55 n/a n/a n/a n/a n/a

client mnist 86.26 ± 4.65 0.7 0.85 0.75 1 0.86

server mnist 91.78 ± 1.62 1 1 1 1 1

TABLE II: Summary of results for all concept-shift-on-
features experiments with average accuracy across clusters

factors can explain this. First, the initial assignment of clients
to clusters is random in our experiments. This assignment
can have a strong impact of the entire training process.
Second, clients can be reassigned to different clusters at any
point during the learning phase which leaves less room for
improvement of models if the reassignment is done late in
the experiment. And finally the features in this scenario very
different across heterogeneity classes. This means that sub-
optimal clustering will result in slightly less improvements as
we see here.

From these results, It appears that personalized learning is
crucial for improving performance when data features allow
us to group clients with confidence such that is the case in
this experiment.

B. Concept shift on labels

In the case of concept shift on labels, we introduce hetero-
geneity by swapping some labels in the datasets. Specifically,
we create 6 heterogeneity classes: swap 1 with 7, 2 with 7, 4
with 7, 3 with 8, 5 with 6, or 7 with 9. As with previous ex-
periments, the modified datasets are distributed across clients
ensuring that heterogeneity classes are equally represented. As
the resulting datasets imply diverging learning objectives, it
is expected that personalized models for each heterogeneity
type would also improve the models performances. This is
confirmed in the results observed in Table III.

As in the previous scenario, Server-side CFL systematically
reaches performances close to the oracle model’s across all
datasets. Also predictably, these good performances from the
Server-side CFL algorithm result from accurate clustering
which is show by the perfect clustering metrics across all
experiments.

For Client-side CFL, although the clustering results are not
as good, the models obtained still significantly improve on the
standard FL baseline. Again This confirms that personalization
can still achieve good results even if the resulting clusters are
sub-optimal.



exp type dataset accuracy ARI AMI hom cmplt vm

FL fashion-mnist 68.97 ± 0.00 n/a n/a n/a n/a n/a

oracle fashion-mnist 84.48 ± 1.07 n/a n/a n/a n/a n/a

client fashion-mnist 76.85 ± 9.33 0.81 0.92 0.87 1 0.93

server fashion-mnist 84.17 ± 2.00 1 1 1 1 1

FL kmnist 72.21 ± 0.00 n/a n/a n/a n/a n/a

oracle kmnist 87.98 ± 2.50 n/a n/a n/a n/a n/a

client kmnist 76.53 ± 7.40 0.54 0.79 0.69 1 0.82

server kmnist 86.44 ± 1.94 1 1 1 1 1

FL mnist 75.17 ± 0.00 n/a n/a n/a n/a n/a

oracle mnist 92.17 ± 1.10 n/a n/a n/a n/a n/a

client mnist 84.10 ± 8.89 0.81 0.92 0.87 1 0.93

server mnist 91.57 ± 1.55 1 1 1 1 1

TABLE III: Summary of results for all concept-shift-on-labels
experiments with average accuracy across clusters

C. Features distribution skew

In the case of feature distribution skew, we introduce two
types of image transformations: “erosion” which makes the
lines thinner, and “dilation” which makes them bolder. We
also keep unaltered images as a third heterogeneity class.
Consequently we set the number of clusters to k = 3.

In this scenario, while mostly improving performance over
standard FL, the CFL algorithms have a hardered time sepa-
rating clients into appropriate clusters (c.f Table IV).

exp type dataset accuracy ARI AMI hom cmplt vm

FL fashion-mnist 80.81 ± 0.00 n/a n/a n/a n/a n/a

oracle fashion-mnist 83.83 ± 2.66 n/a n/a n/a n/a n/a

client fashion-mnist 78.69 ± 2.45 0.56 0.73 0.58 1 0.73

server fashion-mnist 82.19 ± 2.78 1 1 1 1 1

FL kmnist 84.49 ± 0.00 n/a n/a n/a n/a n/a

oracle kmnist 83.65 ± 10.59 n/a n/a n/a n/a n/a

client kmnist 75.68 ± 8.90 0 0 0 1 0

server kmnist 81.61 ± 7.49 0.54 0.64 0.6 0.71 0.65

FL mnist 87.85 ± 0.00 n/a n/a n/a n/a n/a

oracle mnist 88.86 ± 6.86 n/a n/a n/a n/a n/a

client mnist 80.34 ± 9.99 0 0 0 1 0

server mnist 86.40 ± 8.18 1 1 1 1 1

TABLE IV: Summary of results for all features-distribution-
skew experiments with average accuracy across clusters

For Client-side CFL, the algorithm lumps all clients into
the same cluster in 2/3 cases, resulting in poor performances.
These clustering results might indicate that the loss values
in the different clusters are not discriminative enough. Indeed,
since the heterogeneities classes are not very different, the loss
values calculated at each round may be strongly influenced
by the initial random distribution of clients to clusters. Also
because of the nature of the Client-side algorithm, it is possible
that the cluster model with all clients have had fewer rounds to
learn with the entire population of client compared to standard
Fl model, which results in poorer performances.

With Server-side CFL, while we achieve model perfor-
mances consistently better than FL, the cluster structure in
the ‘k-mnist’ experiment, does not adequately separate clients

Fig. 4: Example clients to clusters distribution resulting from
Server-side CFL using the k-mnist dataset for features distri-
bution skew

by heterogeneity class. To illustrate, we see in Figure 4 that
all clients with “erosion” or no transformation are assigned to
cluster b, while cluster c has most clients with dilation. As
opposed to the experiment with image rotations, these results
suggest that the features transformations used here are not well
reflected in the model weights.

D. Labels distribution skew

In the case of label distribution skew, we down-sampled
some labels on each client dataset. Specifically, we create four
heterogeneity classes by down-sampling 8 labels out of 10 to
0.1% in each class. This results in selecting k = 4 clusters for
the CFL algorithms.

exp type dataset accuracy ARI AMI hom cmplt vm

FL fashion-mnist 84.65 ± 0.00 n/a n/a n/a n/a n/a

oracle fashion-mnist 88.04 ± 2.88 n/a n/a n/a n/a n/a

client fashion-mnist 84.55 ± 2.88 1 1 1 1 1

server fashion-mnist 87.70 ± 3.88 1 1 1 1 1

FL kmnist 85.64 ± 0.00 n/a n/a n/a n/a n/a

oracle kmnist 86.66 ± 3.67 n/a n/a n/a n/a n/a

client kmnist 82.39 ± 3.43 1 1 1 1 1

server kmnist 85.89 ± 4.43 1 1 1 1 1

FL mnist 91.74 ± 0.00 n/a n/a n/a n/a n/a

oracle mnist 92.61 ± 1.64 n/a n/a n/a n/a n/a

client mnist 88.57 ± 3.30 1 1 1 1 1

server mnist 92.04 ± 3.24 1 1 1 1 1

TABLE V: Summary of results for all labels distribution skew
experiments with average accuracy across clusters

As the results in Table V show, both CFL algorithms
consistently succeed in separating clients by heterogeneity
class while the performances remain sub-optimal. The server-
side algorithm reaches models’ accuracies slightly better than
standard FL while Client-side CFL has results similar to
standard FL. The under performance of Client-side CFL
algorithm can partly be explained by the low improvement
margin available over the FL algorithm (as indicated by the
results of the “oracle” model) and the iterative nature of the
algorithm.



E. Quantity skew

In the case of quantity skew, we have clients with varying
volumes of data, ranging from 100 percent to 20 percent of
the total data distribution mentioned at the start of this section.
We use this to introduce k = 4 heterogeneity classes, which
we select as the number of clusters for CFL. Note that each
client will have a balanced quantity of labels to avoid label
distribution skew.

exp type dataset accuracy ARI AMI hom cmplt vm

FL fashion-mnist 89.05 ± 0.00 n/a n/a n/a n/a n/a

oracle fashion-mnist 85.66 ± 2.04 n/a n/a n/a n/a n/a

client fashion-mnist 82.54 ± 4.83 0 0 0 1 0

server fashion-mnist 85.21 ± 4.76 -0.01 -0.03 0.06 0.11 0.07

FL kmnist 93.44 ± 0.00 n/a n/a n/a n/a n/a

oracle kmnist 87.35 ± 2.48 n/a n/a n/a n/a n/a

client kmnist 86.10 ± 4.39 0 0 0 1 0

server kmnist 89.71 ± 4.17 0 -0.01 0.07 0.21 0.1

FL mnist 95.72 ± 0.00 n/a n/a n/a n/a n/a

oracle mnist 92.07 ± 0.56 n/a n/a n/a n/a n/a

client mnist 90.33 ± 3.76 0 0 0 1 0

server mnist 92.13 ± 3.50 0 -0.01 0.07 0.21 0.1

TABLE VI: Summary of results for all quantity skew experi-
ments with average accuracy across clusters

It is expected that clustered federated learning with quantity
skew will fail at improving performances over standard FL.
Understandably, if the objective of clustering by heterogeneity
class is respected, some clusters with very low volumes of
data will be constituted. These low data volume clusters are
expected to perform poorly. And indeed, as we see in Table
VI, the results validate this intuition in that CFL algorithms
do not improve over a simple FL model (We note that this is
also the case for the oracle algorithm given that we separate
clients by heterogeneity class as well).

It is important to note that in the standard FL model,
FedAVG aggregation takes into account the number of local
samples of each client. As such, clients with larger data
will have a greater impact on the overall global model and
potentially mitigate the discrepancy of dataset sizes among
clients.

In our Server-side experiments, the clusters have no dis-
cernible logic and create models which slightly underperform.
Alternatively, with Client-side CFL, the algorithm clusters all
clients together which results in a set-up and performances
similar to that of the baseline FL method but with less training
rounds.

F. Impact of the number of clusters

All the experiments presented assume that the number of
clusters is well defined. That is, the number of clusters is
always set to the number of data heterogeneity classes in
the dataset. In real-life, knowing the number of heterogeneity
classes in advance might not always be possible. As such, even
an educated guess of an expert might miss the mark on the
exact number of data heterogeneities present. To evaluate the

impact of this variable, we tested the impact of the number of
clusters on the accuracy for the Server-side “concept-shift-on-
labels” problem with the mnist dataset.

Fig. 5: Impact of the number of clusters on the CFL results

As we see in Figure 5, when the number of clusters is very
low compared to the number of heterogeneity classes (here
being six like in Section IV-B), the results approach those
observed with the baseline FL algorithm. As we increase the
number of clusters, the accuracy increases as well. We note
that the accuracy seems to stabilize if we increase the number
of clusters beyond the nominal value. This means that in
some circumstances (and assuming sufficient data volumes per
clusters), models personalization can go beyond the number of
heterogeneity classes without penalizing model performances.

V. CONCLUSION

In this study, we explored the performance of Server-side
and Client-side Clustered Federated Learning (CFL) algo-
rithms under systematized data heterogeneity conditions. Our
findings show improved performances for several use-cases
with more consistent results from server-side CFL.

In most cases, the accuracy improvements follow a cluster-
ing stage which successfully separates clients by heterogeneity
class. This is the case in scenarios where the features or
the labels are significantly different across clients such as
in concept-shift-on-features and concept-shift-on-labels sce-
narios. On the other hand, when the differences across the
heterogeneity classes are more subtle (e.g features distribution
skew), even server-side CFL has a harder time separating by
heterogeneity class but personalization still improves results.
In the case of labels distribution skew, it seems that the
heterogeneity does not have a strong impact on the model
performances with standard FL achieving quite high accura-
cies. As such CFL method only slightly improve these results.
Finally, when the data heterogeneity leads to clusters with
incomplete data for learning (e.g quantity skew) it seems
undesirable to use CFL at all.

This might suggest that an informed understanding of the
learning environment might be key to making adequate deci-
sions on when and how to use CFL. Fortunately, even in the
quantity-skew scenario, the performances of the models were
not strongly penalized by clustering. Further, in Client-side
clustering, as the initial assignment of clients to clusters has a
strong impact on the entire training process, it is important to
make an informed decision at this initial stage. We confirmed



this intuition by starting the CFL experiments with a semi-
random assignment (essentially simulating an expert opinion
on the heterogeneity class of the client) and obtained improved
results which approached those of server-side CFL. Further
investigation in this direction is needed.

We also investigated the impact of the number of clusters on
the performance of our models. We observed that, as expected,
the best results are obtained when the number of clusters is
close or equal to the number of data heterogeneity classes. It
also appears safer to overestimate the number of heterogeneity
classes (up to a certain limit) which might be explained by
unaccounted heterogeneities in the data.

Further research is needed to see if these results scale be-
yond simple datasets, and with the presence of a combination
of data heterogeneities by client.
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