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Estimation-based Robust Switching Control of a
DC-DC Boost Converter

Saif Ahmad Ryan P. C. de Souza Pauline Kergus Zohra Kader Stéphane Caux

Abstract—In this work, a robust switching control design
technique is presented for a DC-DC boost converter. It allows
operation under uncertain equilibrium conditions arising due to
perturbations in the input and load parameters. A parameter
estimator is designed to update the equilibrium point for the
switching controller in real-time. In order to mitigate the noise
amplification problem associated with the designed parameter
estimator, the estimation error injection term is filtered to obtain
the desired level of noise suppression in the final set of estimates.
To demonstrate the efficiency of the developed scheme, the
proposed control design is validated in simulation as well as on
an experimental platform, and compared to PWM-based state-
feedback control with integral action.

Index Terms—DC-DC boost converter, switching control, elec-
tric vehicle charging, parameter estimation, measurement noise.

I. INTRODUCTION

This paper deals with the problem of robust global sta-
bilization of switching power converters. It is an extension
of the work presented in [1], which can be considered as a
preliminary version. As recalled in [2], the projected increase
in the number of DC-powered components and distributed
sources that generate DC power, DC microgrids are a good
candidate for future energy systems. In order to meet the ex-
pectations regarding the performance of such DC microgrids,
efficient control and energy management are required at each
control level, which makes DC-DC converter control of crucial
importance.

In this context, a number of linear control strategies have
been proposed in the literature based on averaged small signal
models of DC-DC converters [3], [4] Such control techniques
ensure desired nominal performance and system stability but
only in the neighborhood of the equilibrium point, which is
not known usually. Power converters are generally character-
ized by highly nonlinear dynamics and continuous parametric
variations subject to source and load conditions, which in turn
shift the equilibrium point [5]. This highlights the limitations
of closed-loop performance achievable via linear feedback
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control and the need for more advanced control strategies
in this area that account for the switching and parameter-
varying nature of converters. Advanced control methods for
DC-DC converters in DC microgrids are reviewed in [6]
and classified into the following categories: model predictive
control, backstepping, sliding mode control (SMC), passivity-
based control, observer/estimation-based technique, and intel-
ligent control. More recently, principles of switched systems
theory have been successfully employed as an alternative to
the averaging approach for control of power converters in [7].
One of the main advantages of using switched systems theory
is that linearization around the equilibrium is not required,
and global stabilization can be ensured. The main drawback
of the switching controller in [7] is that it is designed for a
constant equilibrium point. This problem has recently been
addressed for DC-DC power converters by using augmented
state observer [8] and state augmentation via tracking error
integral [9]. In [1], the problem of uncertain equilibrium in
the context of switching control designed for a DC-DC boost
converter (DBC) is tackled by estimating the uncertain param-
eters. Unlike [8], the estimator designed in [1] approximates
only the required unknown parameters and not the measurable
states. Moreover, the noise amplification problem commonly
associated with observers/estimators (such as those used in
[8]) is addressed by the estimation error filtering approach
introduced in [10], which results in better estimation quality
and allows the freedom to introduce a desired level of filtering
in the obtained estimates. In addition, the resulting estimation
error dynamics are devoid of switched terms which in turn
facilitates the tuning of the estimator, and gives simpler linear
matrix inequality (LMI) conditions for the stability of the
designed estimator. Furthermore, the robust switched control
algorithm is implemented via a hysteresis block, providing a
simple and intuitive solution to the infinite switching frequency
problem [7] and facilitating practical implementation.

The novelty of this work resides in the implementation and
experimental validation of a robust switching controller. It
should be noted that, to our knowledge, implementations and
experimental validations of hybrid control laws on converters,
such as the one presented in this paper, remain fairly rare
[11] [12] [13] [14] [15] despite promising results. Indeed, the
presented switching control technique is relevant for various
industrial applications as it guarantees stability for any equilib-
rium point that can vary in a user-specified range of operations.
Switching control paradigms, as the one presented in our
work, remain rarely applied by power electronics specialists,978-1-6654-9071-9/23/$31.00 ©2023 IEEE



who mainly use well-established techniques based on the
use of averaged and continuous models [16]. At the same
time, switching control is currently a very active field of
research in the automatic control community. The idea of this
paper is to transfer this method between both communities
and to provide practitioners insights regarding the tuning
knobs for successful implementation. Furthermore, another
novelty of our work lies in developing a noise-suppressing
parameter estimator for switched systems which allows us to
consider all types of linear internal models. Hence, if the actual
parameter variation can be perfectly modeled through a system
of linear equations, we can guarantee asymptotic convergence
in the absence of measurement noise. Even in the case of a
mismatch, a practical convergence can be ensured close to
the origin via a sufficiently high estimator parameter. This
is in contrast to most existing techniques such as in [17],
[18] which are limited to the assumption of slow variation
in the parameters and cannot account for other forms of
variation in the parameters such as linearly varying with time,
sinusoidal, etc. In addition, we highlight the problem of noise
amplification in the switched parameter estimator and present
a modular redesign approach that allows a user-defined level
of noise filtering in the obtained estimate via a bank of
low-pass filters. This is also in contrast to the approaches
covered in literature which mostly ignore the problem of noise
amplification in parameter estimators. It is also to be noted that
the proposed parameter estimator has a general structure that
can be used in combination with other types of controllers
as well. In comparison with the previous work presented
in [1], an experimental validation of the developed robust
switching control algorithm is incorporated and additional
considerations regarding parameter estimation performance are
provided. Rigorous stability analysis of the designed param-
eter estimator is presented under the effect of residual term
and measurement noise. Furthermore, we analyze the noise-
suppressing feature of the proposed estimator in comparison
to the normal switched parameter estimator.

In order to situate the proposed method among other ad-
vanced techniques, it should be noted that it is based on
the estimation of parameter variations at the current time
step while model predictive control (MPC) needs a prediction
model valid over its whole horizon. MPC also comes with a
higher numerical complexity as optimization is performed on
a longer horizon compared to the proposed switching control.
When it comes to sliding mode control, the sliding surface
is usually computed based on a linearized model and as for
traditional PWM control, stability is then only guaranteed
around the corresponding operating condition. Hysteresis can
be used in addition to the sliding mode control as done in the
proposed work.

This paper is organized as follows. Section II first introduces
the switching model for boost converters and highlights the
importance of considering variations of operating points in the
control design of DC-DC converters. Section III then recalls
the proposed control and estimation algorithm from [1], along
with the hysteresis and noise filtering approach to facilitate
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Fig. 1: Circuit of a DC-DC boost converter.

practical implementation along with stability and frequency
domain analysis. The efficiency of the proposed approach is
then illustrated in Section IV through numerical simulations,
experimental validation and comparison with PWM-based
control. The paper concludes in Section V with a summary
of the results and future research directions.

Notations: In is an identity matrix of dimension n ×
n, 0 is a zero vector or matrix of appropriate dimension,
diag(a1, . . . , an) denotes a diagonal matrix with a1, . . . , an as
diagonal elements. Given a symmetric matric M, M ≺ 0 (resp.
M ⪯ 0) means that M is negative-definite (resp. negative-
semidefinite). The notation for positive-(semi)definiteness is
analogous. For a vector x ∈ Rn,∥x∥ =

√
xTx denotes the L2

or Euclidean norm whereas for a matrix A ∈ Rm×n,∥A∥ =
supx ̸=0

∥Ax∥
∥x∥ is the induced matrix norm. Similarly, ∥x∥∞ for

a vector x ∈ Rn is defined as max{|x1|, |x2|, . . . , |xn|}. A
function f(x) : R≥0 → R≥0 belongs to class K when it is
continuous, strictly increasing and f(0) = 0.

II. PROBLEM FORMULATION

The electric circuit of the considered DBC is shown in Fig.
1, where L is the inductance, C is the capacitance, Ro is a load
resistance, iL is the inductor current, vo is the output voltage,
vin is the input voltage, and iLoad is the current being supplied
to another variable load connected in parallel.

The variable σ ∈ {0, 1} represents the state of the switching
device S in the following way: σ = 1 (resp. σ = 0) when S is
in the on (resp. off) state. The instantaneous model can then
be written as follows:

ẋ(t) = Aσx(t) +Gp(t), (1)

where x(t) := [iL(t) vo(t)]
T denotes the system state, p(t) =

[p1(t), p2(t)]
T := [vin(t) iLoad(t)]

T is the parameter vector,
and matrices Aσ , with σ ∈ {0, 1}, and G are given by:

Aσ =

[
0 − (1−σ)

L
(1−σ)

C − 1
RoC

]
, G =

[
1
L 0
0 − 1

C

]
. (2)

The possible equilibrium points of dynamics (1) are the
same as those of the nonlinear averaged model [8]:

ẋ(t) = A(σ̄)x(t) +Gp(t), (3)

where A(σ̄) := σ̄A1 + (1 − σ̄)A0 and σ̄ ∈ [0, 1]. A point
x∗ = [i⋆L v⋆o ]

T is an equilibrium of (3) if there exists some
σ̄∗ ∈ [0, 1] such that A(σ̄∗)x∗+Gp = 0. The value of σ̄∗ then
corresponds to the steady-state duty cycle of the converter.



The control objective in this paper is the stabilization of the
output voltage at a desired value v⋆o . Assuming 0 < σ̄∗ < 1,
the equilibrium point x∗ around which the system will stabi-
lize for a given parameter vector p satisfies

A(σ̄∗)x∗(p)+Gp = 0, (4)

where the dependence of the equilibrium on p has been made
explicit.

III. ROBUST SWITCHING CONTROL DESIGN

In Section III-A, the proposed switching control strategy
ensuring global stabilization of a given equilibrium point is
presented. It is based on the instantaneous model expressed in
(1). Then, in Section III-B, the estimation paradigm used in
this work is developed. The estimator and switching controller
are connected in Section III-C. A scheme providing a global
view of the entire closed-loop system is shown in Fig. 2.

Eq. point update (32) Estimator (27)

Output voltage reference v∗o

Switching control
with hysteresis (8)-(9) System (1)

x

p̂x∗(p̂)

σ

Fig. 2: Global view of the closed-loop system and the consid-
ered control architecture.

A. Switching Controller with hysteresis

For a given equilibrium x∗(p), the classical quadratic Lya-
punov candidate V (x−x∗(p)) = (x−x∗(p))TP (x−x∗(p))
is considered, with P = P T ≻ 0. In order to guarantee
that x∗(p) is a globally asymptotically stable equilibrium
of system (1) towards which x(t) converges with a minimal
decay rate α > 0, one wants to ensure that V̇ (x− x∗(p)) ≤
α(x−x∗(p))T (x−x∗(p)). The derivation of V̇ , as done in
[19] leads to the following sufficient condition: if there exists
P = P T ≻ 0 such that the following Linear Matrix Inequality
(LMI) is satisfied:

AT (σ̄∗)P + PA(σ̄∗) + 2αP ⪯ 0. (5)

then the x∗(p) is a globally asymptotically stable equilibrium
with a decay rate α.

Finding a solution to LMI (5) is a convex problem that can
be efficiently solved using commercially available software
(such as Matlab). A higher α ensures that the state x(t) con-
verges faster to the equilibrium x∗(p). A necessary condition
for LMI (5) to be feasible is that α should be lower than
the absolute value of the real part of the rightmost eigenvalue
of A(σ̄∗). In practice, it means that the decay rate α, i.e.

the speed of the controlled system, is limited by the slowest
dynamics of the averaged model (3) around equilibrium.

Based on the solution P to LMI (5), the following switching
controller can be built:

σ(t) ∈ argmin
σ∈{0,1}

(x(t)− x∗(p(t))TP (Aσx(t) +Gp(t)) (6)

that globally asymptotically stabilizes system (1) at x∗(p).
Indeed, as originally introduced in [19], this switching rule
consists of selecting the highest decrease rate at each time
instant. Since in (6) the term Gp(t) does not depend on the
mode σ, the controller can be equivalently expressed as:

σ(t) ∈ argmin
σ∈{0,1}

(x(t)− x∗(p(t))TPAσx(t). (7)

Unlike more traditional control methods, the switching law
presented here does not require linearization around the equi-
librium point and global stabilization is ensured. Furthermore,
note that the controller directly provides the mode to be
selected at each time instant, and thus a modulation stage
between the controller and the switching device is not required.

A significant drawback of switching law (7) is the fact that
it leads to the occurrence of sliding modes [19], which in
practical terms means that the switching frequency rises to
unacceptable high values. According to (7), switching only
occurs when both modes minimize the objective function in
(7). This can only occur on the surface s(x,p) = 0, where:

s(x,p) := (x− x∗(p))TPDx, (8)

and D := A1 −A0.
In order to prevent the occurrence of sliding modes, a

hysteresis-based strategy is employed here to bound the
switching frequency at a finite value. To that end, a parameter-
dependant hysteresis band h(p) > 0 is introduced: as long
as |s(x,p)| < h(p), switching is not allowed, otherwise if
|s(x,p)| ≥ h(p), switching is governed by the proposed
controller in (7).

Assuming that the switching frequency is high compared to
the system bandwidth, it can be shown [7] that the following
equation expresses the relationship between the steady-state
switching frequency fs and the hysteresis parameter:

h(p) =
1

2fs

|b0(p)TPDx∗(p)x∗(p)TDTPb1(p)|(
|b0(p)TPDx∗(p)|+ |b1(p)TPDx∗(p)|

) , (9)

where bσ(p) := Aσx
∗(p) + Gp, σ = 0, 1. In order to

keep the switching frequency bounded at a desired value fs,
parameter h(p) is then updated in real-time according to (9).

Remark 1: As stated earlier, the speed of the controlled
system is limited by the slowest dynamics of the averaged
model (3), compared to which the switching frequency is
chosen high for properly designed converters. Therefore, the
assumption that the switching frequency is high compared
to the system bandwidth normally holds in practice. This
assumption is also valid when using more classical PWM-
based techniques: for a given switching frequency fs, a typical
choice is to operate the PWM at fPWM = fs/10 and the



controller is designed so that the system bandwidth is placed
around fPWM/10.

Remark 2: System (1) and switching controller (7) are not
specific to DBCs. In fact, they can be used to model and
control a wider class of DC-DC converters including buck,
buck-boost, and flyback converters among others [8], [9]. A
general methodology to model converters as switched systems
such as (1) can be found in [20], laying the ground for
extending the proposed method for more complex topologies.
Moreover, the problem of uncertain equilibria is common to
all power converters due to the inherent intermittency of the
renewables and uncertain load conditions (time-varying p(t))
in most applications. Thus, the presented solutions, results,
and ensuing discussions are more general and can easily be
extended for other converter topologies.

Note that the controller (with or without hysteresis) requires
the knowledge of the equilibrium point x∗(p(t)), which
depends on both p1(t) and p2(t). Moreover, note that σ̄∗,
used in the definition of LMI (5), is also dependent on p.
It implies that either the measurements of source and load
signals (incurring additional cost) or their real-time estimations
are required to ensure accurate tracking of the uncertain
and possibly time-varying equilibrium point x∗(p(t)). If the
measurements are unavailable, it then becomes necessary to
estimate p(t), which is the subject of the next subsection.

B. Parameter Estimator

In real-world industrial applications, p(t) is uncertain and
time-varying which in turn causes the equilibrium point x∗(p)
to change accordingly. Assuming that p1 is bounded such that
v−in ≤ p1 ≤ v+in < v⋆o , where v−in and v+in are specified by
the user to define the range of input voltages against which
the designed controller will guarantee stability. Note that if
v+in > v⋆o , then the equilibrium point may be unreachable since
the output voltage of a DBC cannot be lower than the input
voltage. As p1 = vin evolves over time, the steady-state duty
cycle σ̄∗ must be updated according to the following equation:

σ̄∗ = 1− p1
v⋆o

, (10)

so that the desired output voltage can be tracked.
In order for the control law (7) to stabilize the equilibrium

point for all possible values of σ̄∗, one must find a single
matrix P ≻ 0 such that (5) holds for all σ̄∗ ∈ [σ̄∗

min, σ̄
∗
max],

where σ̄∗
min = 1 − v+in/v

⋆
o and σ̄∗

max = 1 − v−in/v
⋆
o . Thanks

to the convexity of (5), this is true if the following two LMIs
hold:

AT (σ̄)P + PA(σ̄) + 2αP ⪯ 0, σ̄ ∈ {σ̄∗
min, σ̄

∗
max}. (11)

Remark 3: In order for (11) to be feasible, it is necessary
(but not sufficient) to choose α to be lower (in magnitude) than
the real part of the rightmost eigenvalue of both A(σ̄∗

min) and
A(σ̄∗

max).
Remark 4: For the sake of simplicity, it is assumed in

this paper that Ro is a known load resistance. However,

uncertainties in this parameter can be addressed by adapting
the LMIs in (11) to be solved in a similar way as in [8], for
instance.

Now, in order to obtain the estimate of uncertain parameters,
it is assumed that the parameter vector p(t) is generated by a
known linear exo-system of the form

ζ̇p(t) = Apζp(t)

p(t) = Cpζp(t),
(12)

with Ap ∈ Rm×m and Cp ∈ R2×m, and ζp ∈ Rm the
state vector of the exo-system. This assumption allows us to
consider a wider class of parameter behaviors such as linearly
varying with time, sinusoidal etc., or a combination of them,
which arises in practical systems. Furthermore, the common
assumption of ṗ = 0 considered in [8], [9], is a special case
of (12) obtained with Ap = 0 and Cp = I2. The user can
then choose Ap and Cp to reflect the parameter variations in
the considered application. A parameter estimator (PE) can be
constructed upon (1) and (12) as

˙̂ζp(t) = Apζ̂p(t) + κG(p(t)− p̂(t))

= Apζ̂p(t) + κ(ẋ(t)−Aσx(t)−Gp̂(t))

p̂ = Cpζ̂p

(13)

where ζ̂p and p̂ are estimates of ζp and p defined respectively
in (12), while κ ∈ Rm×2 is the observer gain vector that needs
to be selected. However, a straightforward implementation of
the above estimator is complicated because of the ẋ term in
the expression for p, which requires computing the derivative
of measured states. To avoid this problem, we introduce a
transformation ζ̂p → ẑp := ζ̂p − κx in (13) following the
general design framework introduced in [21] to obtain:

˙̂zp(t) =(Ap − κGCp)ẑp(t) + (Ap − κGCp)κx(t)

− κAσx(t)

ζ̂p(t) =ẑp(t) + κx(t)

p̂(t) =Cpζ̂p(t).

(14)

The parameter κ is selected such that Ap−κGCp is Hurwitz
: the estimation error dynamics is then globally asymptotically
stable, see [1]. The design parameter κ is obtained via a
classical pole placement strategy: as in [1],κ is chosen such
that all the eigenvalues of Ap − κGCp are placed at −λ.
The value of λ is chosen bigger than α so that the estimator
is faster than the switching controller to obtain good control
performances. Later on in the section, we show in (21) that
the higher λ is, the faster the estimate p̂ will converge to the
actual parameter value p from its initial value p̂(0) at t = 0.

1) Stability Analysis: To present a more realistic analysis,
we consider the effect of measurement noise and unmodeled
parameter variations on the designed PE. The perturbation
dynamics (12) is assumed to contain lumped residual terms
indicating unmodeled parts of the perturbation, and is therefore
redefined as

ζ̇p = Apζp +ΛH (15)



where H is the residual vector and Λ is the associated
input matrix. Furthermore, the effect of sensor noise on
state measurement is considered in (14) by replacing x with
xm := x+ν, where xm is the noisy measurement and ν ∈ R2

is the noise vector.
Introducing a similar transformation of the form ζp → zp :=
ζp − κx used previously and taking its derivative results in

żp(t) = (Ap − κGCp)zp(t) + (Ap − κGCp)κx(t)

− κAσx(t).
(16)

Subtracting (14) from (16), we obtain the following error
dynamics in the transformed space

ėz = Azez +ΛH− Γν, (17)

where ez = zp − ẑp,Az = Ap − κGCp and Γ = (Ap −
κGCp)κ− κAσ .

In the rest of this work, parameter variations are modeled
using a commonly used assumption of ṗ = 0, i.e. slow
variation of parameters with respect to time (Ap = 0 and
Cp = Λ = I2). Replacing the above expressions in (17), the
transformed estimation error dynamics can be rewritten as

ėz = λĀzez +H− λΓ̄ν, (18)

where λ acts as the high-gain term which parameterizes the
estimator gain vector κ, Āz = −κ̄G and Γ̄ = −λκ̄Gκ̄ −
κ̄Aσ .

The ensuing stability analysis is based on the following
assumptions, commonly used in literature:

Assumption 1: The unmodeled parameter variations or the
residual in ṗ = H is bounded in the sense∥H∥∞ ≤ µ1 ∈ R>0

Assumption 2: The additive measurement noise ν is
bounded such that ∥ν∥∞ ≤ µ2 ∈ R>0 [22]

Consider a Lyapunov function V = eTz Peez bounded as
ρ∥ez∥2 ≤ V ≤ ρ̄∥ez∥2 where ρ, ρ̄ denote respectively the
smallest and greatest eigenvalues of Pe = P T

e ≻ 0 which
satisfies

PeĀz + ĀT
z Pe + I2 = 0. (19)

Taking the derivative of V along the trajectories of (18), we
obtain

V̇ ≤− λ∥ez∥2 + 2
√
2∥H∥∞∥Pe∥∥ez∥

+ 2λ∥ν∥∞∥Pe∥∥ez∥
∥∥Γ̄∥∥

=⇒ V̇ ≤− λ(1− θ)∥ez∥2 ∀ez ∈ Ω

(20)

where the region Ω = {ez | ∥ez∥ ≥
2
√
2(θλ)−1∥H∥∞∥Pe∥ + 2θ−1∥ν∥∞∥Pe∥

∥∥Γ̄∥∥} and
θ ∈ (0, 1) is a selected majorization constant. The obtained
lower bound for ∥ez∥ is a class K function with respect to
the inputs H and ν. Consequently, we can claim that (18) is
input-to-state stable (ISS) and ez is bounded by∥∥ez(t)∥∥ ≤√ ρ̄

ρ
max

[∥∥ez(0)∥∥ exp (−λα1t),(
α2µ1

λ
+ α3µ2

∥∥Γ̄∥∥)] (21)

where α1 = (1 − θ)/(2ρ̄), α2 = 2
√
2∥Pe∥ /θ and α3 =

2∥Pe∥ /θ. It is to be noted that the preceding bound for
estimation error is quite similar to the one usually obtained
for high-gain observers [10], [22], [23], and it can be observed
that increasing the value of λ results in better attenuation of the
effects of H. Furthermore, a closer look at the expression for
Γ̄ indicates that the effect of noise on ∥ez∥ is amplified with
increasing λ due to the linear increase in the first term, thereby
illustrating the noise amplification problem associated with
observers in general. In addition, there is also the presence
of switching noise (due to the second term) which generates
undesirable oscillations in the estimated parameters.

2) Effect of Measurement Noise: The bounds obtained
previously due to the effect of measurement noise are con-
servative and do not consider the filtering effect introduced by
estimators, To better characterize the effect of high-frequency
measurement noise on the obtained estimates, we model ν as

εẇ = Sw

ν = Cνw
(22)

where S = blkdiag(S1, . . . ,Sϑ),Si =

[
0 ωi

−ωi 0

]
,Cν =

[I2, I2, . . . , I2] and ε ∈ (0, 1) is a small parameter which
shifts the frequencies ωi/ε of the above harmonic generator
in the high-frequency range. This type of representation can
be thought of as a truncated Fourier series reconstruction of
a noise signal and allows us to physically model the high-
frequency noise content typically introduced in the sensed
measurements during data acquisition.

Ignoring the effect of H, the asymptotic bound for trans-
formed estimation error can be obtained using the combined
system

εẇ = Sw

ėz = λĀzez − λΓ̄Cνw,
(23)

following the approach used in [10], which gives

lim
t→+∞

|ezi| ≤ (α4ελ+ α5ε)∥w∥∞ , (24)

under the assumption that ωi/ε ≫ λ. Consequently, the
asymptotic bound for eζi = ζi − ζ̂i is obtained as

lim
t→∞

|eζi| ≤ (α4ελ+ α5ε+ α6λ)µ2 (25)

which is devoid of any filtering as

lim
ε→0

lim
t→+∞

|eζi| ≠ 0. (26)

It is to be noted that the low-pass filtering effect is
visible in (24) for the transformed error coordinates as
limε→0 limt→+∞ |ezi| = 0. However, the additive noise com-
ponent introduced while recovering the actual perturbations
from ez results in a relative degree of zero between ν and
eζi.



3) Redesigned Noise Suppressing Parameter Estimator
(PE-r): As shown previously, the estimate ζ̂p (and conse-
quently p̂) is directly affected by ν as there is no filtering
in the designed estimator (14). A high value of λ selected
for faster reconstruction of the system parameters directly
amplifies the noise component rendering the estimates useless.
In order to address the noise amplification problem, we modify
the estimator dynamics following the approach introduced in
[10] such that the estimation error injection term is filtered
via a pool of stable first-order low-pass filters. This solution
avoids a complex trade-off when selecting the value of λ and
provides an additional degree of flexibility for suppressing
high-frequency sensor noise. The resulting estimator dynamics
are obtained in the following expression:

˙̂ζp(t) = Apζ̂p(t) + κGzr(t)

η̇(t) = θ
[
− (Aσ +Gθ)x(t)−GCpζp(t)−Gη(t)

]
żi(t) = θ

[
zi−1(t)− zi(t)

]
, i = {2, . . . , r}

z1(t) = η(t) + θx(t)

p̂(t) = Cpζ̂p(t)

(27)

where θ = diag(λθ, λθ) is the filter gain vector parameter-
ized in terms of λθ. In order to ensure that the accuracy of
the designed estimator remains unaffected, the filter parameter
is selected such that λθ = γλ where γ > 1 is a tuning
parameter for the filters. The parameter r, which denotes the
number of first-order filters, is a design choice where higher
values result in a steeper cutoff in the frequency domain.
In practice, r = 1 often gives a sufficient level of filtering
under the assumption of ṗ = 0 unless dealing with very noisy
measurements. Furthermore, higher values of r become almost
necessary when the disturbance is assumed to be unstructured
and of time polynomial form defined in [23]. This is due to
the fact that considering a higher-order time polynomial model
for the disturbance results in more noise amplification in the
obtained estimates as shown in [23].

Since the error equation and the transformed estimation
error bounds obtained for the designed PE are very similar to
that obtained in the case of general high-gain observers, the
ISS property for the proposed noise suppressing parameter
estimator can be easily shown following the methodology
proposed in [10]. Nevertheless, we mention the key steps and
main results here for the sake of clarity.

Considering the effect of measurement noise on the sensed
states, we obtain the following set of equations for the es-
timation error vector eζ and the filtered counterparts of the
estimation error injection term

ėζ =Apeζ − κGzr +ΛH
ż1 =θG[Cpeζ − z1]− Γθν

żi =θ(zi−1 − zi) i = {2, . . . , r},
(28)

where Γθ = θ(Gθ + Aσ). In line with the previous as-
sumption of ṗ = 0 and considering r = 1, we define
eθ = [eTζ , z

T
1 ]

T to obtain

ėθ = λFeθ +ΛθH− λΥν (29)
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Fig. 3: Bode magnitude plots for eνi→ζi(s), i ∈ {1, 2}
comparing the noise suppression capabilities of PE and PE-
r with r = {1, 2} which corroborate the theoretical results
obtained in Section III.B.2 and III.B.3.

where F =

[
0 Āz

θ̄G −θ̄G

]
, θ̄ = diag(γ, γ),Λθ =[

I2
0

]
,Υ =

[
0
Γ̄θ

]
, and Γ̄θ = θ̄(Gθ + Aσ). The obtained

combined error dynamics are very similar to those obtained in
(18) and hence, following the analysis performed previously
for the PE in (14), we obtain upper bounds for estimation error
similar to (21). This observation is also in line with that of the
authors in [10], where it is shown that under the assumption of
z1(0) = 0, the error bounds for observer remain unchanged.

Similarly, on analyzing the effect of measurement noise ν
on eθ, we can obtain asymptotic bounds that match with those
obtained in (24) thereby illustrating the noise suppressing
capabilities of the designed parameter estimator.

4) Frequency Domain Analysis: To compare the noise-
suppressing performance of the designed parameter estimators,
we analyze their behavior in the frequency domain. We
highlight that in our case eζi = ζi − ζ̂i = pi − p̂i which
gives

eζ1 =
−κ1

s+ κ1g1Qr(s)
Qr(s)

[
(s− a1,1(σ

∗))ν1 − a1,2(σ
∗)ν2

]

eζ2 =
−κ2

s+ κ2g2Qr(s)
Qr(s)

[
(s− a2,2(σ

∗))ν2 − a2,1(σ
∗)ν1

]
(30)

where ai,j(σ
∗) are the elements of state matrix A(σ̄∗) defined

for the averaged nonlinear model under equilibrium in (4), gi’s
are the diagonal elements of G, κi’s are the diagonal elements
of κ and νi are the different noise components of vector ν

affecting different sensor channels and Qr(s) =
(

λθ

s+λθ

)r



is an rth-order low-pass filter introduced via the estimator re-
design. Clearly, selecting r = 0 in the above expression results
in Qr(s) = 1 which essentially recovers the performance of
PE in (14).

To further analyze the effect of noise components on the pa-
rameter estimation errors, we plug-in the values corresponding
to our experimental set-up (see Table I) into (29) and analyze
the following four transfer functions: eνi→ζi :=

eζi (s)

νi(s)
, i ∈

{1, 2} whose magnitude plots are obtained in Fig 3, where
PE with r = {1, 2} are denoted respectively by PE-r1 and
PE-r2 . A few observations can be made straight away:

• Each parameter estimate is affected by noise entering via
both the sensor channels used for measuring iL(t) and
vo(t) which is evident from (30).

• The estimates are more affected by the principle noise
component i.e. p1 (similarly p2) is more affected by
the noise ν1 (ν2) entering via iL ((vo)) measurements
as the relative degree between the estimation error and
noise is r. This is clearly observed from the slope of
the magnitude plots in Fig 3a and Fig 3d in the high-
frequency range where noise content is expected.

• The noise entering via the cross channel is more sup-
pressed since the relative degree is r + 1, evidenced by
the slope of the plots in Fig 3b and Fig 3c.

• Increasing r in the redesigned estimator results in a
steeper cutoff ( r·20 dB/decade in principle channel
and (r + 1)·20 dB/decade in the cross channel) in the
frequency domain resulting in better noise suppression
which can be observed in all the plots in Fig 3.

C. Equilibrium Point Update

The controller (7) introduced in Section III-A requires the
knowledge of the equilibrium point x∗(p). Based on (4),
x∗(p) is determined as:

x∗(p) =
1

1− σ̄∗

[
p2 +

p1

Ro(1−σ̄∗)

p1

]
. (31)

The parameter estimator from Section III-B provides an esti-
mate p̂(t), allowing to update the equilibrium point in real-
time by combining (31) and (10) replacing p by p̂. The
resulting expression is given by:

x∗(p̂) =

[
v∗
o

p̂1

(
v∗
o

Ro
+ p̂2

)
v∗o

]
. (32)

Note that, since the desired output voltage v∗o is given by
design, it is only the reference inductor current i⋆L(p̂) that
needs to be determined in real-time.

IV. NUMERICAL IMPLEMENTATION AND EXPERIMENTAL
VALIDATION

In this section, the strategy proposed in the previous sections
is applied to a real Boost converter. Nominal circuit, controller
and estimator parameters for the system considered here are
given in Table I. First, simulation results are presented in
order to illustrate the use of the proposed control method as

TABLE I: Parameters used for the validation.

Parameter Type Parameter Value
Circuit L = 4.5mH,C = 1mF,Ro = 50Ω, iLoad =

0A, vin = 30V, v+in = 30V, v−in = 15V, v∗o = 50V
Sensor Noise Band-limited white noise of power 10−10, high-pass

filtered via first-order filter with cutoff at 2π105

Controller & Es-
timator

α = 5,Ap = 0, Cp = I2, λ = 400, γ = 2.5, r = 1,
fs = 5kHz

well as the importance of the estimator. Then, an experimental
validation is carried out to show a hardware implementation,
and some interesting conclusions regarding the experimental
results are drawn. A comparison with a classical controller is
also proposed so as to highlight the methodological differences
between the approach adopted in this paper and the more
traditional PWM-based implementation of a linear controller
commonly employed in power electronics.

A. Design and Implementation of Proposed algorithm

When applying the proposed technique in a digital hardware
implementation, discrete sampling is required. Let Tsamp

denote the sampling period. The control and estimator design,
as well as their real-time implementation, is summarized in
Algorithm 1. The first part of this algorithm, shaded in red, is
carried out offline and summarizes the full design procedure
for control and estimation. The second part, shaded in blue,
describes the code run in real time to implement both the
estimator and controller designed in the first part. The goal of
this online part is to determine in each time step t the mode
σ(t) to be selected. It is worth keeping in mind that the mode
is held constant between two successive time steps.

Guidelines: As the choice of the parameters α, λ, γ and r
is key for a successful implementation, practitioners may want
to consider the following guidelines:

• Choose α = αmax where αmax is determined as the real
part of the rightmost eigenvalue of both A(σ̄∗

min) and
A(σ̄∗

max). Decrease α until LMI (5) becomes feasible.
• To start with, choose λ = 10α, r = 1, and γ = 1. In-

crease λ to accelerate the parameter estimation. Increase
γ until the noise level in the estimated parameters is
acceptable. It is to be noted that the control and estimation
algorithm is designed in the continuous-time domain
while the real-time implementation is in the discrete-time
domain. In order to ensure that the algorithm designed
in continuous-time behaves well even in the discrete-
time domain, we limit the choice of observer and filter
parameter to be within 10 times the sampling frequency
(1/Tsamp) i.e. 10× γλ < 2π/Tsamp.

Following Algorithm 1, the values of v−in and v+in are
determined so as to consider unmodeled voltage drops of up
to 15V in the input side. This should easily cover reductions
in voltage caused by parasitic elements in the cable, inductor
and IGBT module. By using the values in Table I, σ̄∗

min and
σ̄∗
max have been determined to be 0.4 and 0.7, respectively.

The eigenvalues of matrices A(σ̄min) and A(σ̄max) are given
by −10 ± j282.7 and −10 ± j141.1, respectively. As per



Algorithm 1: Robust switching control
Input: Switched model (1), reference voltage v∗o

Control design
1 Select v+in and v−in to model possible input voltage

variations
2 Calculate σ̄∗

min = 1− v+in/v
∗
o

3 Calculate σ̄∗
max = 1− v−in/v

∗
o

4 Determine A(σ̄∗
min) and A(σ̄∗

max)
5 Choose α according to the desired decay rate

following Remark 3
6 Solve LMIs (11) to find a solution P ≻ 0
7 Choose λ to be at least 10 times the value of α
8 Using λ, determine κ so that the eigenvalues of

Ap − κGCp are placed at −λ
9 Select γ > 1 and r to obtain a suitable noise

suppression level on the estimations
Real-time implementation

10 Initialization : t← 0, p̂(0) nominal values, x∗, σ(0)
(7)

11 while t > 0 do
12 Using the measured states x(t), determine p̂(t)

using (27)
13 Update the equilibrium point x∗(p̂(t)) using (32)
14 Update h(p̂(t)) using (9)
15 Calculate s(x(t), p̂(t)) using (8)
16 if |s(x(t), p̂(t))| < h(p̂(t)) then
17 σ(t)← σ(t− Tsamp)
18 else
19 Determine σ(t) as in (7)
20 end
21 t← t+ Tsamp

22 end
23

Remark 2, the choice of α = 5 has been made for LMIs (11)
to be feasible. Following Algorithm 1, LMIs (11) are solved
numerically using the Matlab Robust Control Toolbox to find
a symmetric matrix P ≻ 0. The solution is given by:

P =

[
20.13 −0.39
−0.39 4.47

]
. (33)

Estimator parameter λ is tuned to be faster than the con-
vergence rate α for the switching controller while the filter
parameter is selected as γ = 2.5 along with r = 1 to ensure
that steady-state noise content in the estimates are limited to
be below 0.1. In this case, the noise content is defined as the
maximum deviation of the estimates from their mean steady-
state values.

B. Numerical simulation

In [1], the proposed robust switching controller and param-
eter estimator were tested in simulation on an EV charging
application scenario. Arrival or departure of EVs corresponds
to steps in the load current, and the onboard BMS might
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Fig. 5: Simulation plots for S1.

impose load current ramps (when charging in constant-voltage
mode for instance). For these reasons, it is proposed in this
paper to consider the variations of the parameters iLoad and
vin as shown in Fig. 4, consisting of steps and ramps. Note that
the changes in these parameters occur at the same time. The
reason is the behavior of the voltage source, which provides a
voltage value that depends on the current. More specifically, a
greater input current causes a reduction in the input voltage as
a protection mechanism to avoid surpassing the source current
limit. In fact, here only the load current behavior is imposed.
It has a direct impact on the input current which in turn
modifies the input voltage, resulting in the parameter evolution
shown in Fig. 4. This practical consideration should not be
a problem as far as stabilization is concerned since estimates
for both parameters are provided by the designed estimator. In
fact, the simultaneous occurrence of both the input and load
perturbations present a more stringent regulation scenario for
the designed controller compared to the sequential case.

The simulation study is carried out in Simulink environment
of MATLAB with a step time of 1µs. The switching frequency
of the implemented control scheme is limited to 5kHz via
the hysteresis approach defined in Section III-A. A high-pass
filtered white noise is added to the state variables going to the
estimator designed in (27), in order to replicate the effect of
measurement noise, as mentioned in Table I.

For the simulation study, two different test scenarios are
considered and they are described hereafter.

[S1] Without Parameter Estimator: In this scenario, only
the switching controller is implemented without the parameter
estimator updating the equilibrium for i⋆L(t). Fig. 5 shows
the obtained plots of the inductor current and output voltage
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over time. Note that, from time instant t = 0, the output
voltage is stabilized at about 55V instead of the reference of
50V. This is caused by the error in the input voltage, which
is equal to 31.4V instead of the considered nominal value
of 30V. Thus, it can be verified that even a small error of
1.4V is already sufficient to prevent stabilization at the desired
operating point. Moreover, after t = 5s, p is such that the new
voltage equilibrium value is lower than the input (30V). Since
this cannot be achieved in a DBC, the system stops switching
and the output voltage converges to vin.

[S2] Practical Scenario with Parameter Estimator: Para-
metric perturbations in S1 are reapplied on the closed-loop sys-
tem, but now with the estimator in (27) providing the required
information to update x∗(p̂) at each time-step. Simulation
plots obtained in Fig. 6 clearly indicate that vo(t) tracks the
desired reference of v∗o = 50V as the designed estimator is
able to accurately reconstruct the uncertain parameters using
the state measurements and the mode (σ) information which
is subsequently used to update the equilibrium current i∗L. Fur-
thermore, the closed-loop system is able to recover from the
successive simultaneous input voltage and load perturbations.
Moreover, even though the assumption ṗ = 0 does not hold
when the ramp variations are applied, the estimates p̂ converge
nonetheless to the actual perturbation values, which is evident
from Figs. 6c and 6d. It is also worth noting that the estimates
p̂ are not affected much by the measurement noise due to the
additional filtering introduced in the designed estimator.

Before presenting the practical results concerning the im-
plementation of the control strategy discussed in this paper,
to be referred here as M1, the design of a classical PWM-

based controller is presented. The latter approach shall be
referred to as M2. The goal is to illustrate how to apply the
controller proposed here in a real experimental setup and then
compare it to the more traditional method, in order to highlight
the differences (in terms of methodology and performance)
between both approaches.

C. PWM-based control design (M2)

For comparison purposes, a classical PWM-based control
design, more commonly used in practice, is also carried out.
The state-space average model (3) of the Boost converter
is linearized around the desired operating point, and then
a classical linear controller is used in conjunction with a
modulation stage such as PWM. The linearization of (3)
around the equilibrium point x∗ is given by:

δ̇x(t) = A(σ̄∗)δx(t) +Bu(t) +Gδp(t), (34)

where δx := x − x∗, u := σ̄ − σ̄∗, δp := p − [30 0]
T

(since in nominal conditions vin = 30V and iLoad = 0)
and B :=

[
v∗o/L i∗L/C

]T
, with i∗L also determined from

the nominal parameter values. It is important to recall that
this model is only valid in a neighborhood of the nominal
equilibrium x∗. Vector δp is regarded here as perturbations
instead of parameters to be estimated.

A classic linear state feedback controller will be used here
for the comparison. As the strategy proposed in this paper, it
requires the measurements of both the inductor current and the
output voltage. The control law can be expressed as follows:

u(t) = −Kxδx(t) +Ki

∫ t

0

[
v∗o − vo(τ)

]
dτ, (35)



where Kx and Ki are control gains to be determined.
Note that (35) is an extension of a PI controller where a
proportional action on the current error is also considered.
Considering δp = 0, the dynamics of the augmented state
xa =

[
δxT xi

]T
, with xi = vo − v∗o = [0 1] δx, are given

by:

ẋa =

Aa(σ̄
∗)︷ ︸︸ ︷[

A(σ̄∗) 0
0 1 0

]
xa +

Ba︷︸︸︷[
B
0

]
u. (36)

The gains Kx and Ki can be calculated by adopting the
classical strategy of placing the poles of the closed-loop
system matrix, which from (36)-(35) is given by A(σ̄∗)−BK,
with K :=

[
KT

x Ki

]T
. For the choice of the three closed-

loop poles, two of them are placed at −100rad/s and the
remaining one at −1000rad/s. Note that they are much lower
in magnitude than the switching frequency ωs = 2πfs =
3.1× 104rad/s. The values of the gains are Kx = [0.11 0.01]
and Ki = 1.5.

D. Methodological comparison between M1 and M2
An important conceptual difference between both methods

is that, in M1, the switched model is used and the obtained
controller stabilizes the operating point if the LMIs (11) are
feasible. And this holds for any input voltage in the specified
range [v−in, v

+
in]. On the other hand, in M2, the average

model is used in order to work with a continuous model. On
top of that, an approximate model based on linearization of
the average model is adopted for control design. Thus, the
controller is only expected to work in a neighborhood of the
nominal operating point, since it is where the linearization is
valid. It should be noted that the range of operating conditions
in which the linearized average model is valid is not known
usually.

There are also important differences between M1 and M2
regarding how the uncertain parameter variations are dealt
with. In M1, these variations are estimated and then the
equilibrium point is updated in order to stabilize the reference
output voltage. In M2, no estimations are made and instead, an
integral action is added in order to achieve a zero static error
despite parameter variations. However, since the linearized
model is used, it is not clear how to determine the ranges
of parameter uncertainty that can be handled in this approach.

E. Experimental Validation

A global view of the hardware used in the experi-
ment is shown in Fig. 7. The controller is implemented
using a dSPACE platform RT1104. The IGBT module
SKM50GB12T4 is used in the setup. A digital output port
in the dSPACE platform is connected to a circuit board that
provides the adequate voltage signal to trigger the gate of the
transistor (15V). For the controller, the inductor current and the

Fig. 7: Experimental setup with components: 1 - IGBT
module; 2 - Inductor (L); 3 - Capacitor (C); 4 - dSPACE
µC; 5 - IGBT driver circuit; 6 - Voltage source (vin); 7 -
Programmable load (iLoad); 8 - Load resistance (Ro).

output voltage are measured using sensors and these analog
signals are converted to numerical values using the analog
ports of the dSPACE platform. The dSPACE platform is also
connected to a computer, where the control and estimation al-
gorithms are implemented in the software Simulink integrated
with Matlab R2021b.

1) Method M1: The plots showing the results obtained
with the controller designed using M1 are shown in Fig. 8.
A low-pass filter with a crossover frequency of 100rad/s has
been added to reduce the noise content in the input voltage
measurements, making it easier to compare with the estimated
input voltage.

Regarding the results shown in Figs. 8d and 8c, note that
the estimations of the uncertain parameters obtained with the
designed estimator are consistent with their real values. The
estimation of iLoad tracks the real value, and even though there
is an overshoot at start-up, it rapidly stabilizes at the correct
value in a steady state. Note that no overshoots are observed
in the instances where the other changes occur. In Fig. 8c, the
red plot indicates the estimate of vin.

It is also worth remarking that the estimations have success-
fully converged to the real values even while the parameters
suffered ramp variations, despite assuming in the design that
ṗ = 0. The reason is that the ramp changes are sufficiently
slow so that the adopted model for parameter dynamics is
still considered valid and the residual H is comparatively very
small.

Note that the estimation of vin, shown in Fig. 8c, is always
lower than the average measured input voltage. This can be
explained by the fact that unmodeled voltage drops are also
present in the real system, such as drops in the parasitic
resistance of the inductor and in the semiconductor devices.
Thus, the estimated input voltage corresponds in fact to the
actual input voltage (which is measured in Fig. 8c) discounting
all these unmodeled voltage drops. In this sense, vin can be
regarded here as an effective input voltage, which is even more
pertinent for control purposes since in practice this is what the
equilibrium point depends on. This goes to show the generality
of the proposed method and its ability to address unmodeled
and yet real phenomena.

The equilibrium point is updated in real-time according to
the aforementioned estimations. As a result, the controller is
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Fig. 8: Results using Method M1.

able to stabilize the system at the desired output voltage, as it
can be seen in Fig. 8a. However, a static error can be observed
in the voltage response. Furthermore, the magnitude of this
error depends on the uncertain parameters, and it remains
below 2% of the reference value of 50V. Therefore, it can be
seen that the voltage is still in close proximity of the desired
voltage. It is believed that the static error is caused by the
limited sampling frequency of the dSPACE, which is 50kHz.
This is suggested by the simulation result shown in Fig. 6a,
where sampling is not an issue. Furthermore, it has been seen
that including sampling in the simulation has the effect of
introducing static errors in the voltage response. This analysis
suggests that reductions in the static error, resulting in better
voltage regulation, can be achieved by faster implementation
using FPGA, for instance.

2) Method M2 : The plots showing the results obtained
with the controller designed using M2 are shown in Fig. 9.
The output voltage is indeed stabilized using Method M2, as
seen in Fig. 9a. It is worth noting that, due to the integral
action added to the state feedback controller, no static errors
are observed in the voltage response. However, overshoots of
about 10% occur whenever there are load step changes. The
duty cycle, which in this method corresponds to the control
signal, is shown in Fig. 9c.

Even though the use of M2 has been successful in sta-
bilizing the system with good performance regarding the
elimination of the static error, it is important to note that the
performance seems to be sensitive to the choice of the closed-
loop system poles. Indeed, suppose that instead of placing

the poles at [-100,-100,-1000]rad/s, as done in Section IV-C,
the poles are placed at [-5,-5,-50]rad/s. This choice of poles
corresponds to a similar performance requirement as the one
imposed for M1, where α = 5 was the desired decay rate.
Placing the dominant poles at -5rad/s is somewhat analogous
in terms of tracking convergence speed. In theory, since all
poles have negative real parts, stability of the equilibrium point
is still expected. However, consider the plots shown in Fig. 10,
which correspond to this case. It can be seen in Fig. 10a that
the output voltage is stabilized at the wrong equilibria over the
course of the experiment. Indeed, the presence of large static
errors can be noted in this plot, indicating that xi diverges.
This behavior is mirrored in Fig. 10c, where it is seen that the
duty cycle never settles at a steady-state value and instead, it
always keeps growing. One probable reason for this behavior
is that, since the linearized model is used and its domain of
validity is not known, placing the poles at the open left plane
does not necessarily guarantee stabilization. Another factor
that impacts closed-loop system stability is the initialization
of the integral state, according to which this state may take
longer to reach its equilibrium value x∗

i . However, it is not
straightforward to determine x∗

i , implying difficulties for the
choice of the initial condition for xi. If this choice is too far
away form x∗

i , large overshoots occur in the voltage response.
In addition, nonlinear phenomena such as saturation of the
control signal (since the duty cycle is physically constrained
to be between 0 and 1) also play a role in increasing the
gap between the employed linear model and the real system,
making it possible for instability to occur. The aforementioned
limitations reduce the interest in using the linearized model as
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Fig. 9: Results using Method M2.
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Fig. 10: Results using Method M2 with poles placed at [-5,-5,-50]rad/s.

a stand-in for the switched model as far as control design is
concerned, depending on the pole placement selection. Since
it is not easy to anticipate what choices of poles lead to
unacceptable behaviors, reliability can be greatly reduced.

V. CONCLUSION

A robust switching controller was proposed in this work
for a DC-DC boost converter operating under input voltage
and load perturbations. To address the problem of uncertain
equilibrium points in the context of switching controllers, a
parameter estimator was constructed under the assumption that
the uncertain parameters are generated via a known linear
exo-system. Furthermore, the noise amplification and infinite
switching frequency problems were addressed to facilitate
practical implementation on real systems. Simulation results
have been obtained for a real Boost converter so as to illustrate
the effectiveness of the developed scheme. It has been seen that
the designed estimator allows the flexibility to consider time-
varying parameters characterized by linear dynamics which
covers a wider class of perturbations. An experimental study
has also been carried out in order to demonstrate the practical
feasibility of the method presented in this paper. The main
takeaway of this study is that the estimations of the uncertain
parameters have been accurately obtained, making it possible
to track the desired output voltage with small errors despite
the technical constraints linked to the implementation, such as
limited sampling. In this study, a comparison has also been

made with a classical PI-type controller associated with a
PWM scheme. It has been concluded that the robust switching
control developed here can be more reliable since model
linearization is not required and stabilization holds globally,
whereas the performance of the traditional linear controller is
affected by unmodeled nonlinear phenomena making it work
poorly depending on the choice of the closed-loop poles.

For future works, it will be interesting to explore the
effectiveness of the designed estimator for different types of
parametric variations and how higher-order time-polynomial
approximations for such variations affect the estimation and
closed-loop performance in the context of switching controller.
Furthermore, closed-loop performance of the designed estima-
tor with other types of switching controllers, such as those
designed for local stabilization, can also be investigated.
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