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A B S T R A C T
During collision avoidance, the tether of Remote Operated Vehicle (ROV) is subject to entanglement
with obstacles or other ROVs’ tether. This specificity means that the classic literature on multi-robot
obstacles avoidance is not suitable to tethered multi-robot scenarios. This paper proposes a guarantee
ellipsoid model of the ROV’s tether and its obstacles to perform a collision avoidance method for a
fleet of ROVs, low in calculation. This model guarantees that if an obstacle is not inside or partially
inside the ellipsoid model, then we are sure that the tether is not collide with that obstacle. This model
is simple and can provide a guaranteed proof of non-collision without any knowledge of the tether
shape or its dynamic, only its two attachments point and its length. A collision avoidance strategy has
been developed based on potential field methods, tether’s length management, and bypass path. When
several ROVs are involved, personalities are added to ROV to obtain different behaviors in the same
configuration and so limit the case of minimal local during collision avoidance. Simulations show the
effectiveness of the method with several scenarios and the limits of the method are discussed.

1. Introduction
Remotely Operated Vehicles (ROVs) are underwater

robots equipped with a cable, namely umbilical or tether,
that connects them to the surface to maintain bi-directional
real-time communication, supply the robot with energy, and
maintain a lifeline with the robot to avoid losing it. However,
this tether has many inconvenient such as collision risks,
impact on ROV maneuverability due to cable inertia and
drag forces, entanglement, and cable breakage. The problem
of entanglement is all the more acute when several ROVs are
working in the same area, like for example during pipeline
installation [18]. Despite recent progress in obstacle avoid-
ance and trajectory planning for multiple robots and a single
tethered robot, the problem of multiple tethered robots trying
to reach their individual targets without entanglements
remains a challenging problem. Indeed, although there is
extensive literature on multi-robot trajectory planning and
obstacles avoidance [17, 29, 30, 21, 8, 22], classic methods
are often not suitable to tethered multi-robot scenarios.

Most of the studies on the tethered robot planning prob-
lem focus on the single robot case and use a representation
of homotopy to identify the path or cable configuration
[20, 24]. This homotopy approach simplifies the tether
configuration by focusing only on the robots’ start and end
positions, and the tether’s position relative to obstacles. Fea-
sible paths are found by exploring a graph augmented with
the homotopy classes of the paths. The few works treating
the problem of tethered multi-robot [7, 3] applies homotopy
theory to determine the path or cable configuration. They
induce in most case a slow offline construction of the graph
prior obtain an online planning. Note also most of them
consider a 2D environment, insufficient to represent the
interactions of multiple aerial or underwater robots. Indeed,

ORCID(s):

this technique induces in the vast majority of cases that the
cable can be laid on the ground by gravity, allowing flat
cables to cross or come into contact with external obstacles
[7, 20, 36, 3]. This solution is not possible with under-
water tethers: the obstacles are often sharp (sharp-edged
rocks, shellfish, corrosion, etc...), the cables evolve in three-
dimension because the seabed is not always accessible or
cover with obstacles, and crossings between tethers interfere
their movements as do the underwater currents. If these
solution are promising, the specifics of the cable dynamics
must be taken into account when deciding the path.

The tether (or umbilical) of ROV can be modeled by var-
ious methods. These range from simple geometrical models
like the catenary curve [28, 10, 14] to segment-based models
with geometrical constraints [15]. Geometrical models can
simulate a large number of segments in real-time and are
memory-efficient when precise physical modeling is not
necessary. For cases requiring accurate cable dynamics, the
Lumped-mass–spring method represents the tether as mass
points interconnected by massless elastic elements [16, 19],
while the segmental method treats the cable as a continuous
system and solves the resulting partial differential equations
numerically [12, 13, 4, 6]. However, they require information
on the external forces like currents or wave which cannot
be easily measured, and sometime a large computation time
if an accurate position is required. To take into account all
the unknowns and uncertainties, and therefore consider the
most unfavorable cases for managing collisions with external
obstacles or other cables, an ensemblistic method seems
more appropriate.

In this paper, a pessimist but guarantee ellipsoid model
of the ROV’s tether and its obstacles is proposed to perform
a collision avoidance method for a fleet of ROVs, low in
calculation. This model guarantees that if an obstacle is not
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inside or partially inside the ellipsoid model, then we are
sure that the tether is not collide with that obstacle. This
model is pessimist but can provide a guaranteed proof of
non-collision without any knowledge of the tether shape or
its dynamic, only its two attachments point and its length.

The aim objectives of this paper is to define
• A simple 3D-model of an un-stretched ROV tether

based on ellipsoid for the problem of collision avoid-
ance without any knowledge of the tether shape,

• A collision avoidance method between the different
tethers in a fleet of ROVs and the external obstacles
based on this model, to reach individual target posi-
tion,

• The introduction of ROV personality to smooth the
collision avoidance between ROVs and solve some
local minima.

Since underwater obstacles are often sharp, the possibility
of making a bend in the cable with an obstacle is limited or
forbidden in this study.

The paper is organized as follow. Section 3 exposes the
Problematic, definitions and properties on ellipsoid used
in this study. Section 4 presents the model of the tether
as an ellipsoid, and the system ROV plus tether as a set
of ellipsoids. Section 5 explains how to detect collision
between obstacles and the system ROV-tether, then Section 6
proposes the collision avoidance strategies. The path to the
ROV’s target is chosen in Section 7 to bypass the obstacles
directly on the way. Section 8 proposes an algorithm which
summarize all the behavior to provide the ROV’s motion.
Then, Section 9 adds personality in ROVs behavior to solve
problem of minima local when several ROVs try to avoid
each other. Finally, Section 10 illustrates the results obtains
with simulations based on several scenarios in which the
number and position of obstacles and ROVs are vary. Limits
of the method are discussed.

2. Related Work
2.1. Tether model

The most basics approaches to model tether/umbilical
are geometrical models. Cable can be assimulated to cate-
nary curve [28, 14, 10] more or less modified, or neutrally
buoyant cables [15] to model them as a series of connected
segments. Geometric constraints are incorporated to reflect
its stiffness and few dynamic properties. Some elements
like ballasts and buoys giving it a predictable shape and
assimilated it to straight line, easier to model [33].

For a dynamic and physically accurate cable model,
two main types of methods exist as discussed in [4]: the
lumped-mass-spring method [16, 19], which represents the
tether as a series of mass points linked by massless elastic
elements, and the segmental method [12, 13] which treats
it as a continuous system and solves the associated partial
differential equations numerically. Using Euler-Bernoulli
beam theory, cable compression can be represented [13], and

some approximation can be performed to use Finite Element
Method (FEM) for real-time execution [6]. These methods
are suitable for modeling cables dynamic considering exter-
nal forces like gravity or hydrodynamic drag and bending
force, but they often requires significant computational re-
sources and information on the external forces like currents
or wave which cannot be measured easily in practice.

The problems of both kind of methods have lead to the
solution proposed in Section 4.
2.2. Path-planning and collision avoidance with

untether multi-robot
2.2.1. Generality

[8] compares the performance of classic path planing al-
gorithm. Path planning methods of AUV are mainly divided
into two categories: global path planning with known static
obstacles and local path planning with unknown and dy-
namic obstacles. If a global map including obstacles is avail-
able, global path planning methods can be used to predefined
a collision-free path between the starting point and the target
point in advance. Algorithms A*, Genetic Algorithm (GA),
Ant Colony Algorithm (ACA), Particule Swarm Optimiza-
tion (PSO), Rapidly-exploring Random Trees (RERT) are
global path planning methods. Else, local path planning
methods are needed to avoid unknown and dynamic obsta-
cles by obtaining the local environmental information with
sensors in real time, on top of a planned path from a global
path planner. Common local path planning methods include
Artificial Potential Field (APF), Fuzzy Logic (FL), Neural
Network (NN) and Reinforcement Learning (RL).

[22] provides a quantitative and qualitative comparisons
of path-planning and collision-avoidance systems verified
by using numerical tests and also real applications. The
presented results show that the most frequently used algo-
rithms tested in the simulated environment are APF, RL, and
FL. However, in real implementations, the most frequently
used method is the application of behavioral rules based on
reacting to changes in the environment in a specific way.

However, very few of these methods study un-tether
robots, the cable represents a major constraint in theory and
practice.
2.2.2. Artificial Potential Field (APF)

The APF is a navigation technique where robots are
guided by virtual forces, attracting them toward goals and
repelling them from obstacles [21, 30]. The advantage of
the APF is the ease of implementation and low computa-
tional requirements, perfect for real time: it is mostly use in
swarm of robot [17, 29] where the number of interactions
is important. However, this method often struggles with
local minima, where robots can become trapped without
finding a path to the goal, that’s why it is often combine with
others methods [23, 35]. Additionally, it may have difficulty
navigating narrow spaces or complex environments with
closely placed obstacles.
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2.2.3. Robot personality
In absence of path planning to plan trajectories or real-

time centralized decisions, rules like APF defines the be-
havior of each robot inside the group, which sometime lead
to blocked configuration. Indeed, in multi-robot system, not
only cooperation but also competition exists, which may help
to improve the efficiency of the system or cause conflict.
Thus, some studies like [9, 2, 26, 27] propose to introduce
different personalities in the fleet to prevent conflicts by
adopting different behavior in a same configuration.

In [9], some “Active” robot moves to avoid obstacle
while “Passive” robot stops moving and waits some time
before avoiding. Results show the personality strategy has
strong adaptability and coordination ability without need
to centralize information. [27, 26] investigate on the im-
pact of different “personality types” of robots. It seems
that some personalities show significant difference in per-
formance level, while other have virtually no impact on
final performance, despite different overall behavior whose
usefulness is subjective to the user’s needs. Same conclusion
is made in [2] which examines the influence of three different
”personality types” among drone swarm for a scenario of
search and rescue.
2.3. Multi-robot avoidance with tether

Most of the works studying tethered robot planning prob-
lem use a representation of homotopy to identify the path
or cable configuration. As presented in [20], the homotopy
approach consider that two curves connecting the same start
and end points are homotopic iff one can be continuously
deformed into the other without intersecting any obstacle.
Thus, if two cables configuration are homotopic, there exist
a path between them. A homotopy augmented graph is so
constructed to find the subgraph where the tether shape is
reachable from a given position, then the shortest path is
found using an A* algorithm. The main problem of these
methods is a slow construction of the graph prior obtain an
online planning.

Based on this concept, [20, 24] propose an algorithm to
find the shortest path for one tether robot from its initial
robot-cable configuration to its final robot position, con-
sidering also the maximal length of the tether. [3] solves
the same problem but with a cable attached at each end
to a mobile robots. Few studied like [7] proposes a non-
entangling trajectory planning for multiple tethered robots
with presence of obstacles. Without homotopy, [36] pro-
poses a plan coordinated motions for tethered mobile robots,
avoiding cable entanglement. This method requires to keep
the tether taut and retractable: it gives a geometrical shape to
the tether with can be assimilated to strait lines with angles
when the cable is bend by an obstacle or another robot.

All these work consider a 2D case, making the represen-
tation insufficient for capturing the interactions of multiple
aerial or underwater robots, and inducing that the cable can
be laid on the ground, allowing flat cables to cross or come
into contact with external obstacles [7, 20, 36, 3, 24].

3. Problematic and definition
3.1. Notations

Consider the referential  the global referential. For
a variable 𝑥, let note 𝑥𝑏

the variable in a referential
𝑏. In order to lighten notations, the notations 𝑣𝑏

=
[

𝑥𝑏
𝑦𝑏

𝑧𝑏

]𝑇 and 𝑣𝑏
=

[

𝑥 𝑦 𝑧
]𝑇
𝑏

are
equivalent. By default, parameters are expressed in  (𝑥is noted 𝑥).
3.2. Problematic

The main objective of this study is to lead a ROV 𝑖
from an initial position to a target objective 𝑅∗

𝑖 (or a sub-
target 𝑅∗

𝑖 ) without itself or its tether comes in collision with
an other tether or an obstacle. Since tether shape can be
complex and an accurate model requires the knowledge of
a lot of parameter and sometime a long calculation time, we
propose to model tether and other obstacles by ellipsoids.
Since ellipsoids don’t intersect each other, no collision are
possible. This section proposes tools link to ellipsoid which
will be used in the rest of this study.
3.3. Definition of ellipsoid

In this work, ellipsoids are used to model the tether and
the obstacles in the environment. This section exposes the
main notations and properties about ellipsoid used in this
paper.
Definition 1. Let 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 be the length of the semi-axes
of the ellipsoid 𝑖 and 𝐶𝑖 =

[

𝑥𝑐,𝑖, 𝑦𝑐,𝑖, 𝑧𝑐,𝑖
]𝑇
 be the center

of 𝑖. Let’s note 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 the normalized three axes that
intersect at the center 𝐶𝑖 and consider 𝑎𝑖 is the longest axis
of 𝑖, called “main semi-axis”. The general expression of an
ellipsoid 𝑖 in its own referential 𝑖 =

(

𝐶𝑖, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖
)

can be
defined as

𝑥2𝑖

𝑎2𝑖
+
𝑦2𝑖

𝑏2𝑖
+
𝑧2𝑖

𝑐2𝑖
= 1. (1)

Let also define 𝐹1,𝑖 = 𝐶𝑖 − 𝑎𝑖 and 𝐹2,𝑖 = 𝐶𝑖 + 𝑎𝑖 the two
focals of 𝑖, and 𝑑𝑖 = ⃗𝐹1,𝑖𝐹2,𝑖 be the “main axis”.

In the frame of reference , the ellipsoid 𝑖 can be
expressed with the matrix form

0 =𝑋̄𝑇𝑴𝒃
𝑖𝑋̄ (2)

where 𝑋̄ =
[

𝑥 𝑦 𝑧 1
]𝑇
, 𝑴𝒃

𝑖 = 𝑻𝑴𝒂
𝑖𝑻 𝑇 and

𝑴𝒂
𝑖 =

⎡

⎢

⎢

⎢

⎣

𝑨 𝑫 𝑬 𝑮
𝑫 𝑩 𝑭 𝑯
𝑬 𝑭 𝑪 𝑱
𝑮 𝑯 𝑱 𝑲

⎤

⎥

⎥

⎥

⎦

(3)

𝑻 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0

−𝑥𝑐,𝑖 −𝑦𝑐,𝑖 −𝑧𝑐,𝑖 1

⎤

⎥

⎥

⎥

⎦

. (4)
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where 𝑨,𝑩,𝑪 ,𝑫,𝑬,𝑭 ,𝑮,𝑯 ,𝑱 ,𝑲 are constant.
Finally, let define 𝑴𝒄

𝑖 the transformation matrix be-
tween  and 𝑖 such that

𝑋𝑖
= 𝑴𝒄

𝑖 (𝑋 − 𝐶𝑖|
)

. (5)
In this paper, a particular case of ellipsoid such that 𝑏𝑖 =
𝑐𝑖, named ellipsoid of revolution, is mostly used. Their
particularities are described in Definition 2.
Definition 2. Consider the particular case of ellipsoid of
revolution where 𝑏𝑖 = 𝑐𝑖. In the main referential , let define

𝐹1,𝑖 =
[

𝑥𝐹1,𝑖, 𝑦𝐹1,𝑖, 𝑧𝐹1,𝑖
]𝑇

and 𝐹2,𝑖 =
[

𝑥𝐹2,𝑖, 𝑦𝐹2,𝑖, 𝑧𝐹2,𝑖
]𝑇

the coordinate of the two focal of 𝑖, supposed known. The
orientation of the main semi-axis 𝑎𝑖 in  can be expressed
with the rotation of angles 𝜃𝑖 and 𝜓𝑖 around 𝐶𝑖𝑏𝑖 and 𝐶𝑖𝑐𝑖
such that

𝜃𝑖 = atan2
(

𝑦𝐹2,𝑖 − 𝑦𝐹1,𝑖, 𝑥𝐹2,𝑖 − 𝑥𝐹1,𝑖
)

(6)

𝜓𝑖 =

{

asin
( 𝑧𝐹2 ,𝑖−𝑧𝐹1 ,𝑖
‖𝐹1,𝑖𝐹2,𝑖‖

)

if ‖

‖

𝐹1,𝑖𝐹2,𝑖‖‖ > 0

0 else
(7)

and the center of the ellipsoid 𝐶𝑖 =
[

𝑥𝑐,𝑖 𝑦𝑐,𝑖 𝑧𝑐,𝑖
]𝑇

can be expressed as

𝐶𝑖 =
⃗𝐹1,𝑖𝐹2,𝑖
2

+ 𝐹1,𝑖. (8)
In the frame of reference , the ellipsoid 𝑖 can be

expressed in the matrix form (2) where 𝑮 = 𝑯 = 𝑱 = 0,
𝑲 = −1 and

𝑨 = 𝑑2

𝑎2𝑖
+
𝑔2

𝑏2𝑖
+
𝑗2

𝑐2𝑖
𝑩 = 𝑒2

𝑎2𝑖
+ ℎ2

𝑏2𝑖
+ 𝑘2

𝑐2𝑖

𝑪 =
𝑓 2

𝑎2𝑖
+ 𝑖2

𝑏2𝑖
+ 𝑙2

𝑐2𝑖
𝑫 = 𝑑𝑒

𝑎2𝑖
+
𝑔ℎ
𝑏2𝑖

+
𝑗𝑘
𝑐2𝑖

𝑬 =
𝑑𝑓
𝑎2𝑖

+
𝑔𝑖
𝑏2𝑖

+
𝑗𝑙
𝑐2𝑖

𝑭 =
𝑒𝑓
𝑎2𝑖

+ ℎ𝑖
𝑏2𝑖

+ 𝑘𝑙
𝑐2𝑖

with 𝑑 = cos
(

𝜃𝑖
)

cos
(

𝜓𝑖
)

, 𝑒 = cos
(

𝜃𝑖
)

sin
(

𝜓𝑖
)

, 𝑓 =
sin

(

𝜃𝑖
)

, 𝑔 = − sin
(

𝜓𝑖
)

, ℎ = cos
(

𝜓𝑖
)

, 𝑖 = 0, 𝑗 =
− sin

(

𝜃𝑖
)

cos
(

𝜓𝑖
)

, 𝑘 = − sin
(

𝜃𝑖
)

sin
(

𝜓𝑖
)

, 𝑙 = cos
(

𝜃𝑖
)

.
Moreover, in (5), the transformation matrix 𝑴𝒄

𝑖 between 
and 𝑖 can be expressed as

𝑴𝒄
𝑖 =

⎡

⎢

⎢

⎣

𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝑗 𝑘 𝑙

⎤

⎥

⎥

⎦

. (9)

Details of Definition 2 are available in the Appendix B.1.
3.4. Intersection between two ellipsoids

The following Theorem 1 allows to find if two ellipsoids
𝑖 and 𝑗 intersect or not.

Figure 1: Intersection between ellipsoids 𝑖 and 𝑗 . (a): just
intersect; (b) ellipsoid 𝑗 fully crosses the ellipsoid 𝑖; (c) 𝑖
and 𝑗 not intersected.

Theorem 1. [1] Let’s define two ellipsoids 𝑖 and 𝑗 with
the associated two matrices 𝑴𝒃

𝑖 and 𝑴𝒃
𝑗 as described in

(3) in Definition 1. We define 𝜆𝑖𝑗 =
[

𝜆𝑖𝑗𝑘
]

with 𝑘 = [1,… , 4]

the vector of eigenvalues of the matrix𝑴 𝑖𝑗 =
(

𝑴𝒃
𝑖)−1𝑴𝒃

𝑗 .
It can be shown that

(1) If one of the eigenvalues 𝜆𝑖𝑗𝑘 have an imaginary part,

𝑖.𝑒. ∃𝑘 ∈ [1,… , 4] such that Im
(

𝜆𝑖𝑗𝑘
)

≠ 0, then 𝑖 and 𝑗
intersect without one ellipsoid crossing the other completely,
see Figure 1(a);

(2) If all eigenvalues 𝜆𝑖𝑗𝑘 are real positive, 𝑖.𝑒. ∀𝑘 ∈

[1,… , 4] one has Im
(

𝜆𝑖𝑗𝑘
)

= 0 and Re
(

𝜆𝑖𝑗𝑘
)

≥ 0, then
𝑖 and 𝑗 intersect and one ellipsoid crosses the other
completely, see Figure 1(b);

(3) Else, there is not intersection between 𝑖 and 𝑗 or
the two are perfectly superposed, 𝑖.𝑒. 𝑖 ∩ 𝑗 = ∅ if 𝑖 ≠ 𝑗 .

In case (1) and (2), one has 𝑖 ∩ 𝑗 ≠ ∅.

Proof of Theorem 1 is described in [1] (note that the nota-
tions used in [1] are different).

4. Tether model
4.1. Tether ellipsoid model

In this study, a tether 𝑖 is assimilated to a cable charac-
terized by the three parameters 𝐿𝑖,𝑂𝑖 and 𝑅𝑖 where

• 𝑅𝑖 =
[

𝑥𝑅,𝑖, 𝑦𝑅,𝑖, 𝑧𝑅,𝑖
]𝑇 is the first extremity of the

tether, here the ROV position;
• 𝑂𝑖 =

[

𝑥𝑂,𝑖, 𝑦𝑂,𝑖, 𝑧𝑂,𝑖
]𝑇 is the second extremity of

the tether, which can be a surface vessel, another
underwater vehicle, a TMS, a cage or an anchor at the
extremity of another cable;

• 𝐿𝑖 (𝑡) ∈
[

0, 𝐿𝑖,max
] is the length of the tether, whose

length may vary using possible TMS positioned on𝑅𝑖or 𝑂𝑖. Let define 𝛿𝐿maxthe length of cable that can be
reduced/extended during a fixed time Δ𝑇 > 0, where
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𝛿𝐿max can be the mechanical limit of the TMS or a
chosen parameter.

In the rest of the study, let’s call 𝑂𝑖 an “anchor” and 𝑅𝑖 an
“ROV”. We suppose that
A1) the extremity 𝑂𝑖 is supposed to be fixed.
A2) the extremities 𝑅𝑖 is strong enough to compensate

action of the cables, therefore remain stationary since
an operator doesn’t decide to move on of theses points.

A3) The parameters 𝑂𝑖, 𝑅𝑖 and 𝐿𝑖 (𝑡) are supposed sup-
posed to be known,

A4) Excepted the three parameters 𝐿𝑖,𝑂𝑖 and 𝑅𝑖, we have
no information on the tether 𝑖. This includes its shape,
its rigidity, its dynamics, its weight or buoyancy, the
forces applied on it like the underwater currents, etc...

In absence of information on the tether as described As-
sumption A4, we desire to find a shape that wraps the cable in
all circumstances to guarantee the absence of collision with
its environment. Based on the gardener’s method to draw
ellipse, the tether 𝑖 can draw an ellipsoid 𝑖 corresponding
to the maximum distances it can reach, where 𝑂𝑖 and 𝑅𝑖 are
the two stakes. Thus tether 𝑖 is always inside this associated
ellipsoid 𝐿𝑖 , see examples on Figure 2. Characteristic of this
ellipsoid are described in Definition 3.
Definition 3. The tether 𝑖 is include inside the ellipsoid of
revolution 𝐿𝑖 as defined in Definition 2 with the following
parameters

𝑎𝑖 =
𝐿𝑖
2

(10)

𝑏𝑖 =

√

(

𝐿𝑖
2

)2
−
(

𝑑𝑖
2

)2
(11)

𝑐𝑖 = 𝑏𝑖 (12)
𝑑𝑖 = ‖

‖

𝑂𝑖𝑅𝑖‖‖ (13)

where 𝑎𝑖
‖𝑎𝑖‖

= 𝑑𝑖
‖

‖

‖

𝑑𝑖
‖

‖

‖

. Note that 𝑎𝑖 is the “main semi-axis”

of 𝑖 and 𝑑𝑖 is the “main axis” as defined in Definition 1
because 𝑎𝑖 ≥ 𝑏𝑖 and 𝑏𝑖 = 𝑐𝑖. Note that 𝑑𝑖 ≤ 𝐿𝑖 since the
ROV cannot go further that the tether length. The two focal
of 𝐿𝑖 are 𝐹1 = 𝑂𝑖 and 𝐹2 = 𝑅𝑖 , so 𝐶𝑖 =

⃗𝑂𝑖𝑅𝑖
2 + 𝑂𝑖 and so

one has

𝜃𝑖 = atan2
(

𝑦𝑅,𝑖 − 𝑦𝑂,𝑖, 𝑥𝑅,𝑖 − 𝑥𝑂,𝑖
) (14)

𝜓𝑖 =

{

asin
( 𝑧𝑅,𝑖−𝑧𝑂,𝑖

𝑑𝑖

)

if 𝑑𝑖 > 0

0 else
(15)

The proof and calculation of all parameters in Definition 3
is described in Appendix B.2.

This ellipsoidal model provides a guarantee area where
the tether cannot be outside. The shape of 𝐿𝑖 can be partially
controlled by 1) the distance between ROV𝑅𝑖 and anchor𝑂𝑖(𝐿𝑖 is a sphere if 𝑂𝑖 = 𝑅𝑖); 2) reducing/extending the the
length 𝐿𝑖.

Figure 2: Examples of tethers shapes in their associated
ellipsoids  . For each ellipsoid, three example of tether shape
(red, black and green). Here, 𝑂𝑖 is an anchor. Note the cable
𝑙0 can be equal to zero.

Figure 3: Examples of tethers shapes assimilated to several
ellipsoids if the position of several point (black dots) are known.
This method is not used in the rest of the paper.

Remark 1. In the same way, if the position of several points
on the tether are known, then the cable can be assimilated to
several smallest ellipsoid, as illustrated in Figure 3. In this
paper, only 𝑂𝑖 and 𝑅𝑖 are supposed to be known.

4.2. System “Anchor-Tether-ROV” 𝑖Depending of their positions, the two attachment point
𝑂𝑖 and 𝑅𝑖 (name it “ROV” and “anchor”) are not necessary
enclosed within 𝐿𝑖 and can be subject to entanglement with
other tether/ROV 𝑗 working in the same area. Thus, we
propose to model them by ellipsoids 𝑅𝑖 and 𝑂𝑖 as illustrated
in Figure 4 such that:
A5) items at positions 𝑅𝑖 and 𝑂𝑖 can be enclosed inside

ellipsoids 𝑅𝑖 and 𝑂𝑖 , center in 𝑅𝑖 and 𝑂𝑖, following
the Definition 1.

A6) Let 𝑖 be the system “Anchor-Tether-ROV” of ROV 𝑖
which can be modeled by the set of ellipsoid 𝑖 =
{

𝐿𝑖 , 
𝑅
𝑖 , 

𝑂
𝑖
}. The potential collisions/ entangle-

ments between 𝐿𝑖 and 𝑅𝑖 or 𝑂𝑖 are not considered
in this paper.

Note that 𝑅𝑖 and 𝑂𝑖 can be spheres or chosen ellipsoids
of revolution as defined in Definition 2. Let’s define  =
{

1,… ,𝑁
} the list of systems 𝑖. The tether is inside the

guarantee area 𝑖 such that if an obstacle is not inside or
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doesn’t intersect with 𝑖, then we are sure that the tether
is not collide with that obstacle. Else, no conclusion can
be made except there is a risk of collision. This model is
pessimist because depending of the position of the focal 𝑂𝑖and𝑅𝑖 the ellipsoid can be very imposing, but it can provide
a guaranteed proof of non-collision without any knowledge
of the tether shape. Some strategies in Sections 5.2 and 6 will
propose methods to reduce the pessimism or the volume of
𝑖.
4.3. ROV motion model

The objective of this paper is not to model the ROV but
the system 𝑖 Anchor-Tether-ROV. Since the anchor 𝑂𝑖 is
supposed immobile, the ROV is the only actuator of𝑖 which
changes its shape and position by moving 𝑅𝑖. We focus here
on the motion control of 𝑅𝑖 using the following discrete
model:

𝑅𝑖
(

𝑡𝑘+1
)

= Δ𝑇
(

𝛼𝑅𝑖
(

𝑡𝑘
)

𝑉𝑅𝑖max𝑣𝑅𝑖
(

𝑡𝑘
)

)

+ 𝑅𝑖
(

𝑡𝑘
)

(16)
where Δ𝑇 > 0 is the sampling time, 𝑉𝑅𝑖max > 0 is the
absolute maximum velocity of the ROV 𝑖, 𝛼𝑅𝑖 (𝑡) ∈ [0, 1]
a velocity ratio, and 𝑣𝑅𝑖 (𝑡) with ‖

‖

‖

𝑣𝑅𝑖
‖

‖

‖

= 1 the unitary
direction vector of the motion of 𝑅𝑖 at an instant 𝑡 > 0. We
suppose that the ROV has already a controller 1) to follow
𝑉𝑅𝑖 = 𝛼𝑅𝑖𝑉𝑅𝑖max and 𝑣𝑅𝑖 (field-oriented control input), or 2)
to reach the point 𝑅𝑖

(

𝑡𝑘+1
) from 𝑅𝑖

(

𝑡𝑘
) during time Δ𝑇 .

In the same way, let’s define 𝑅̂𝑖
(

𝑡𝑘+1, 𝛼, 𝑣
) the estima-

tion of 𝑅𝑖
(

𝑡𝑘+1
) at an instant 𝑡𝑘 for chosen 𝛼𝑅𝑖 and 𝑣𝑅𝑖such

as
𝑅̂𝑖

(

𝑡𝑘+1, 𝛼𝑅𝑖 , 𝑣𝑅𝑖
)

= Δ𝑇
(

𝑉𝑅𝑖max𝛼𝑅𝑖𝑣𝑅𝑖
)

+𝑅𝑖
(

𝑡𝑘
)

. (17)

Parameters 𝛼𝑅𝑖 and 𝑣𝑅𝑖 will depend of the target of the
ROV and the obstacle avoidance strategy, detailed in next
sections.

5. Detection obstacle collision
5.1. Classification of obstacles

The obstacles 𝑗 of an system 𝑖 are also modeled by
ellipsoids, divided in three categories:

• Full obstacle:

An irregular shape object which can be contained inside
an ellipsoid 𝑘 as defined in Definition 1, see Figure 4.
These obstacles are considered “untouchable” (sharp, risk of
snagging, dangerous, etc...), and so no intersection between
𝑘 and 𝑖 is allowed. Let  =

{

1,… ,𝑀
} be the list of

full obstacle 𝑚 with 𝑚 ∈  = {1,… ,𝑀}.
• Tether obstacle:

An other system 𝑗 , a tether/cable or an obstacle as it will
be defined in Section 4.2. Let  =

{

1,… ,𝑁
} be the

list of potential tethers obstacles 𝑛 (including ROVs) with

Figure 4: Collision (dark red area) between the ellipsoid 𝐿
containing the tether and an obstacle inside the ellipsoid 2.
Colored ellipsoids 2 and 3 are fixed full-obstacles. Purple:
ellipsoids 𝑅 and 𝑂 containing the ROV or the anchor.

𝑛 ∈  = {1,… , 𝑁}, and (−𝑖)
 =

{

 −
{

𝑖
}} be the list

of tethers obstacles of𝑖, 𝑖.𝑒. the list except𝑖 itself. Note
that a tether 𝑗 can also be considered as three full obstacles
𝑚 as it will be described in Section 5.3.

• Plane obstacle:

A plane surface  , to model for example seabed, surface
or wall. Let  be the list of all a plane obstacle 𝑘 with
𝑘 ∈  = {1,… , 𝐾}.

Then, let 𝑖obs be the list of obstacles of the system 𝑖
such that 𝑖obs =

{

,
(−𝑖)
 ,

}

. The number of elements
of 𝑖obs is 𝑁obs = 𝑁 − 1 + 𝑀 + 𝐾 . Let also define 𝑖

𝑗
as an generic obstacle of 𝑖 such that 𝑖

𝑗 = 𝑖obs (𝑗) with
𝑗 ∈

{

1,… , 𝑁obs
}.

Let’s define 𝑖 =
{

𝑄𝑖1,… , 𝑄𝑖𝑁obs

}

the list of col-
lisions of 𝑖 where 𝑄𝑖𝑗 ∈ {0…4} defines the type of
collisions between 𝑖 and 𝑖

𝑗 ∈ 𝑖obs, as described below:
1. 𝑄𝑖𝑗 = 0 if 𝑖 ∩𝑖

𝑗 = ∅;
2. 𝑄𝑖𝑗 = 1 if 𝑂𝑖 ∩𝑖

𝑗 ≠ ∅;
3. 𝑄𝑖𝑗 = 2 if 𝑅𝑖 ∩𝑖

𝑗 ≠ ∅;
4. 𝑄𝑖𝑗 = 3 if 𝐿𝑖 ∩ 𝑖

𝑗 ≠ ∅, except particular cases
described in Section 5.3;

5. 𝑄𝑖𝑗 = 4 if there is a “crossing collision” between
two tethers 𝐿𝑖 and 𝐿𝑗 , as it will be described in
Section 5.3.

Finally, let’s give the definition of a fixed obstacle.
Definition 4. A fixed obstacle is an obstacle which can/will
not move. An ROV which has reached its target position 𝑅∗

𝑖
is considered as a fixed obstacle.

Depending of the obstacle categories, different tests are
proposed to detect the collision and the type of collision𝑄𝑖𝑗 .Theses tests are described in the following subsections.
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5.2. Full obstacle
The “full obstacles” are items which can be enclosed

inside an ellipsoid 𝑘. Its can be for example a rock, a boat,
an ROV, an anchor, a submarine structure, etc... see Figure 4.
Encapsulate them in ellipsoid allows us to generalize their
very diverse shapes by dealing only with collisions between
ellipsoids. Indeed, if there is not intersection between two
ellipsoids each containing an item, then there is not possible
collision between them, see Theorem 2.
Theorem 2. Consider two geometric volumes 𝑉𝑖 and 𝑉𝑗
which can be contained respectively inside ellipsoids 𝑖 and
𝑗 , 𝑖.𝑒. 𝑉𝑖 ⊂ 𝑖 and 𝑉𝑗 ⊂ 𝑗 . If there is not intersection
between 𝑖 and 𝑗 , 𝑖.𝑒. 𝑖 ∩ 𝑗 = ∅, them there is not
intersection (and so collision) possible between 𝑆𝑖 and 𝑆𝑗 ,
𝑖.𝑒 𝑉𝑖 ∩ 𝑉𝑗 = ∅.

The proof of Theorem 2 is obvious: If 𝑉𝑖 ⊂ 𝑖, 𝑉𝑗 ⊂ 𝑗 and
𝑖 ∩ 𝑗 = ∅, then 𝑉𝑖 ∩ 𝑉𝑗 = ∅.

Based on Theorem 2 and since the system 𝑖 is com-
posed of three ellipsoids, one can make the following Theo-
rem 3.
Theorem 3. There is no collision between the system 𝑖
and an obstacle 𝑘 if the three conditions 𝐿𝑖 ∩ 𝑘 = ∅,
𝑂𝑖 ∩ 𝑘 = ∅ and 𝑅𝑖 ∩ 𝑘 = ∅ are respected. In this case,
let’s note 𝑖 ∩ 𝑘 = ∅. Else, let’s note 𝑖 ∩ 𝑘 ≠ ∅, and a
collision is possible.

One takes 𝑄𝑖𝑗 = max
([

𝑞1, 𝑞2, 𝑞3
])

where 𝑞1 = 1 if
𝑂𝑖 ∩ 𝑘 ≠ ∅, 𝑞1 = 0 else; 𝑞2 = 2 if 𝑅𝑖 ∩ 𝑘 ≠ ∅, 𝑞2 = 0
else; and 𝑞3 = 3 if 𝐿𝑖 ∩ 𝑘 ≠ ∅, 𝑞3 = 0 else.

Same proof that for Theorem 2 with 𝑅𝑖 and 𝑂𝑖 .
The most difficult part is to show that there is no inter-

section between the two ellipsoids 𝑖 and 𝑗 : the Theorem 1
presented in Section 3.4 provides a solution to test this
condition.

Using the Theorems 1, 2 and 3, the collision between 𝑖and an full obstacle can be detected.
5.3. Tether obstacles
5.3.1. Tether system obstacle detection

Checking the collision between two systems 𝑖 and
𝑗 by considering their ellipsoids as full obstacles is very
pessimistic because the effective volume occupied by the
tether 𝑖 is sometime much smaller than 𝐿𝑖 . Moreover, it can
be observed that the risk of entanglement between the two
cables appears only when:

• (a) there is a risk of snagging when the tether 𝑖 is in
contact with 1) ROV 𝑅𝑗 or anchor 𝑂𝑗 ; 2) objects
attached to cable 𝑗 (ballast, buoy, sensor, etc...); 3) the
tether 𝑗 if it is naturally twisted. Same with tether 𝑗.

• (b) the end 𝑂 or 𝑅 passes inside a loop, risking of
creation of a knot (see Figure 5(b)). The formation
of a knot is uncommon if neither end is involved, see
Figure 5(a);

• (c) one cable tries to pass between the two ends of the
other tether, see Figure 5(c): during its displacement,
neither 𝑂𝑖 or 𝑅𝑖 come inside 𝐿𝑗 , but the tether 𝑖
crosses 𝐿𝑗 and so make an entanglement.

In the case (a), each element of 𝑗 must be considered as
three full obstacles as described in Section 5.2. Else, a less
restrictive alternative is proposed where a collision between
𝑖 and 𝑗 happens in the two following cases:

• “Intrusion collision”: 𝑂𝑖 or 𝑅𝑖 comes in collision
with 𝐿𝑗 , 𝑂𝑗 or 𝑅𝑗 , see Figure 5(b). Same conditions
for 𝑗 with𝑖.

• “Crossing collision”: Between two instants 𝑡𝑘 and
𝑡𝑘+1, one cable has passed between the two ends of
the other tether, see Figure 5(c), 𝑖.𝑒. ∃𝑡 ∈

[

𝑡𝑘, 𝑡𝑘+1
]

such that [𝑂𝑖𝑅𝑖
]

(𝑡) ∩
[

𝑂𝑗𝑅𝑗
]

(𝑡) ≠ ∅:
Note that the crossing collision depends of the previous
positions, because its new position could have been reached
without creating entanglement if one tether had bypassed the
other tether without crossing it.

Two theorems are defined to test the collision between
two tethers.
Theorem 4. “intrusion collision”. There is no collision of
type “intrusion” between the two systems 𝑖 and 𝑗 if ̂𝑖 ∩
𝑗 = ∅ and ̂𝑗 ∩ 𝑖 = ∅ where ̂𝓁 =

{

𝑅𝓁 , 
𝑂
𝓁

}

with
𝓁 ∈ {𝑖, 𝑗}. In this case, let’s note 𝑖 ∩ 𝑗 = ∅. Else, let’s
note 𝑖 ∩ 𝑗 ≠ ∅, and a collision is possible.

One takes𝑄𝑖𝑗 = max
([

𝑞1, 𝑞2, 𝑞3, 𝑄̃𝑖𝑗 (𝑡)
])

where 𝑞1 = 1
if 𝑂𝑖 ∩ 𝑗 ≠ ∅, 𝑞1 = 0 else; and 𝑞2 = 2 if 𝑅𝑖 ∩ 𝑗 ≠ ∅,
𝑞2 = 0 else; 𝑞3 = 3 if 𝐿𝑖 ∩ ̂𝑗 ≠ ∅, 𝑞3 = 0 else; and where
𝑄̃𝑖𝑗 (𝑡) is defined in Theorem 5.

Same element of proof that for Theorem 2. Note that 𝐿𝑖 ∩
𝐿𝑗 ≠ ∅ doesn’t lead to 𝑖 ∩ 𝑗 ≠ ∅ or 𝑄𝑖𝑗 > 0.

Theorem 5. “crossing collision”. For an instant 𝑡 > 0, let
𝑆̄𝑖 (𝑡) ∈

[

𝑂𝑖𝑅𝑖
]

(𝑡) and 𝑆̄𝑗 (𝑡) ∈
[

𝑂𝑗𝑅𝑗
]

(𝑡) be the closest
points between the two main axis of ellipsoids 𝐿𝑖 (𝑡) and
𝐿𝑗 (𝑡). Let define the vector 𝑣𝑖𝑗 (𝑡) = 𝑆̄𝑗 (𝑡)− 𝑆̄𝑖 (𝑡). Consider
two instants 𝑡𝑘 and 𝑡𝑘+1 such that 0 < 𝑡𝑘 < 𝑡𝑘+1 with
|

|

|

‖

‖

‖

𝑣𝑖𝑗
(

𝑡𝑘
)

‖

‖

‖

− ‖

‖

‖

𝑣𝑖𝑗
(

𝑡𝑘+1
)

‖

‖

‖

|

|

|

< 𝜀 where 𝜀 > 0 is relatively
small. Finally, consider a memory variable 𝑄̃𝑖𝑗 (𝑡) such that
𝑄̃𝑖𝑗 (𝑡) = 0 if no crossing collision have detected, 𝑄̃𝑖𝑗 (𝑡) = 4
else.

(1) Suppose there is no crossing collision at instant
𝑡𝑘, 𝑖.𝑒. 𝑄̃𝑖𝑗

(

𝑡𝑘
)

= 0. If 𝑣𝑖𝑗
(

𝑡𝑘+1
)

.𝑣𝑖𝑗
(

𝑡𝑘
)

≤ 0, the seg-
ments

[

𝑂𝑖𝑅𝑖
]

(𝑡) and
[

𝑂𝑗𝑅𝑗
]

(𝑡) have crossed: one takes
𝑄̃𝑖𝑗

(

𝑡𝑘+1
)

= 4. Else, they are still in in the same side and
one keeps 𝑄̃𝑖𝑗

(

𝑡𝑘+1
)

= 𝑄̃𝑖𝑗
(

𝑡𝑘
)

.
(2) Suppose there is crossing collision at instant 𝑡𝑘 ,

𝑖.𝑒. 𝑄̃𝑖𝑗
(

𝑡𝑘
)

= 4. If 𝑣𝑖𝑗
(

𝑡𝑘+1
)

.𝑣𝑖𝑗
(

𝑡𝑘
)

≤ 0, the segments
[

𝑂𝑖𝑅𝑖
]

(𝑡) and
[

𝑂𝑗𝑅𝑗
]

(𝑡) are not crossed anymore: one
takes 𝑄̃𝑖𝑗

(

𝑡𝑘+1
)

= 0. Else, they are still crossed and one
keeps 𝑄̃𝑖𝑗

(

𝑡𝑘+1
)

= 𝑄̃𝑖𝑗
(

𝑡𝑘
)

.
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(a) The two ellipsoids are in contact with few risk of entangle-
ment as long as ROVs stay outside the ellipsoid of the other
tether and do not pass completely through the other ellipsoid.

(b) ROVs inside the ellipsoid of the other tether: risk of
entanglement.

(c) During its displacement, the ROV 2 does not come inside
1, but its tether crosses 1 and so make an entanglement.

Figure 5: Intersection between tether 1 (in blue) and 2
(in green), supposed assumed without attached item and
untwisted. In brown: risk of entanglement.

The proof of Theorem 5 is provided in Appendix B.3. The
Theorem 10 in Appendix A.1 proposes a method to evaluate
𝑆̄𝑖 (𝑡) and 𝑆̄𝑗 (𝑡).
5.3.2. System obstacle 𝑗An obstacle 𝑗 can be assimilated to a system 𝑗 =
{

𝐿𝑗 , 
𝑅
𝑗 , 

𝑂
𝑗

}

if
• The non-convex parts of 𝑗 are inside 𝑂𝑗 or 𝑅𝑗 ;
• The volume of 𝑗 which is not inside 𝑂𝑗 or 𝐿𝑗 is

1) convex and the tether can bend around it without
risk of snagging or cutting; 2) can be included in a
ellipsoid of revolution 𝐿𝑗 with the focal 𝐹1 and 𝐹2
corresponding to the center of 𝑂𝑗 and 𝑅𝑗 .

Figure 6: Example of system obstacle 𝑗 . Pink: ellipsoid 𝑂𝑗 or
𝑅𝑗 containing a forbidden area for the tether. Green: ellipsoid
𝐿𝑗 containing a surface where the tether can bend with risk.

The obstacle 𝑗 can be another underwater cable, but also a
smooth surface that connects an uncorroded pillar or pipe,
as illustrated in Figure 6. This model allows small bend
between the tether and an obstacle, and reduce drastically
the volume of the obstacle modeled. The system obstacle are
included in the list  and follow the rules than defined in
Section 5.3.1.
5.4. Plane obstacle

The planes obstacles 𝑘 can model for example seabed,
surface or wall. In this paper, theorems and definition con-
sider only infinite planes. Note that these surface are rarely
smooth (rocks, seaweed, floating objects...), so we consider
there is a risk of hooking and clipping if the tether comes in
collision with the plane that covers the hazardous surface.
Definition 5. A plane 𝑘 can be defined by its normal vec-
tor 𝑛𝑘 =

[

𝛼𝑘 𝛽𝑘 𝛾𝑘
]𝑇 and a point𝑃𝑘 =

[

𝑥𝑃 ,𝑘, 𝑦𝑃 ,𝑘, 𝑧𝑃 ,𝑘
]𝑇 .

Let’s note it 𝑘
(

𝑃𝑘, 𝑛𝑘
)

.
𝑘 can be expressed by the following equation

𝛼𝑘𝑥 + 𝛽𝑘𝑦 + 𝛾𝑘𝑧 + 𝛿𝑘 = 0 (18)
where 𝛿𝑘 = −

(

𝛼𝑘𝑥𝑃 ,𝑘 + 𝛽𝑘𝑦𝑃 ,𝑘 + 𝛾𝑘𝑧𝑃 ,𝑘
)

.

The collision between a system𝑖 and a plane𝑘 can happen
if 1) the ROV 𝑅𝑖 comes in collision with the plane, 2) the
tether itself touch the plane. These conditions are expressed
in Theorem 6.
Theorem 6. There is no collision between the tether system
𝑖 and an plane 𝑘 if the three conditions 𝐿𝑖 ∩ 𝑘 = ∅,
𝑂𝑖 ∩ 𝑘 = ∅ and 𝑅𝑖 ∩ 𝑘 = ∅ are respected. In this case,
let’s note 𝑖 ∩ 𝑘 = ∅. Else, let’s note 𝑖 ∩ 𝑘 ≠ ∅, and a
collision is possible.

One has 𝑄𝑖𝑗 = max
([

𝑞1, 𝑞2, 𝑞3
])

where 𝑞1 = 1 if
𝑂𝑖 ∩ 𝑘 ≠ ∅, 𝑞1 = 0 else; 𝑞2 = 2 if 𝑅𝑖 ∩ 𝑘 ≠ ∅, 𝑞2 = 0
else; and 𝑞3 = 3 if 𝐿𝑖 ∩ 𝑘 ≠ ∅, 𝑞3 = 0 else.

Remark 2. In the case where the plane is considered per-
fectly safe for the tether without risk of snagging or clipping,
the Theorem 6 can be adapted such that 𝑖 ∩ 𝑘 = ∅ only if
(

𝑅𝑖 ∩ 𝑘 = ∅
)

|

(

𝑂𝑖 ∩ 𝑘 = ∅
)

and 𝑞3 = 0 in all cases.

The Theorem 11 in Appendix A.2 provides a test to know if
a plane 𝑘 and an ellipsoid 𝑖 intersect, 𝑖.𝑒. if 𝑖 ∩ 𝑘 ≠ ∅.
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Figure 7: Two examples of two ellipsoids 1 and 2 and their
layers ̄1 and ̄2.

5.5. Prediction collision: ellipsoid layer
To perform an obstacle avoidance, the obstacle must be

detected before the collision occurs. Thus, we propose to
envelop the ellipsoids in a larger one, called a “layer”, to
detect potential future collisions. If an intersection occurs
between two layers, an obstacle avoidance procedure is
triggered.

The following definition describes the chosen layer
shape.
Definition 6. For a chosen thickness 𝜂𝑖 ≥ 0 , let define
̄𝑖

(

𝜂𝑖
)

the layer of ellipsoid 𝑖 such that ̄𝑖
(

𝜂𝑖
)

is an
ellipsoid as defined in Definition 1 with the parameters 𝑎̄𝑖 =
𝑎𝑖 + 𝜂𝑖, 𝑏̄𝑖 = 𝑏𝑖 + 𝜂𝑖, 𝑐𝑖 = 𝑐𝑖 + 𝜂𝑖 and 𝐶̄𝑖 = 𝐶𝑖 where 𝑎𝑖, 𝑏𝑖,
𝑐𝑖 and 𝐶𝑖 are the parameters of 𝑖. Moreover, since all axis
of ̄𝑖

(

𝜂𝑖
)

are larger that those of 𝑖 and both as the same
center, one has 𝑖 ⊆ ̄𝑖

(

𝜂𝑖
)

and ̄𝑖 (0) = 𝑖.
By extension, let define ̄𝑖

(

𝜂𝐿𝑖 , 𝜂
𝑅
𝑖 , 𝜂

𝑂
𝑖
)

=
{

̄𝐿𝑖
(

𝜂𝐿𝑖
)

, ̄𝑅𝑖
(

𝜂𝑅𝑖
)

, ̄𝑂𝑖
(

𝜂𝑂𝑖
)}

the layer of the sys-
tem 𝑖 =

{

𝐿𝑖 , 
𝑅
𝑖 , 

𝑂
𝑖
}

, where 𝜂𝐿𝑖 ≥ 0, 𝜂𝑅𝑖 ≥ 0 and 𝜂𝑂𝑖 ≥ 0.

The layer ̄𝑖
(

𝜂𝑖
) of 𝑖 is illustrated in Figure 7. The formalist

exposed in Definition 6 has been chosen because it has
observed in practice that, for each point on the surface 𝑖 ,
the distance to the nearest point of ̄𝑖 is equal to 𝜂𝑖. However,
as we have not found a proof of this property, it won’t be used
in this document.
Choice of the layer thickness 𝜂𝑖 The main difficult of
̄𝑖

(

𝜂𝑖
) is to choose the thickness 𝜂𝑖. Since the aim of the

layer is to predict collision, we propose to choose 𝜂𝑖 such
that for two instants 0 < 𝑡𝑘 < 𝑡𝑘+1, the shape of ellipsoid
𝑖

(

𝑡𝑘+1
) is still inside its previous layer ellipsoid ̄𝑖

(

𝜂𝑖, 𝑡𝑘
),

𝑖.𝑒. 𝑖
(

𝑡𝑘+1
)

⊆ ̄𝑖
(

𝜂𝑖, 𝑡𝑘
). Thus, if no other obstacle are in

contact with ̄𝑖, there is no risk of collision, see Theorem 7.
Theorem 7. For𝓁 ∈ {𝑖, 𝑗}, let define 𝓁

(

𝑡𝑘
)

and ̄𝓁
(

𝜂𝓁 , 𝑡𝑘
)

an ellipsoid and its layer at an instant 𝑡𝑘 > 0. For 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘+1
]

with 𝑡𝑘+1 > 𝑡𝑘, suppose that ∀𝓁 ∈ {𝑖, 𝑗}, 𝓁 (𝑡) ⊆
̄𝓁

(

𝜂𝓁 , 𝑡𝑘
)

. Thus, if there is not intersection between layers
̄𝑖

(

𝜂𝑖, 𝑡𝑘
)

and ̄𝑗
(

𝜂𝑗 , 𝑡𝑘
)

, 𝑖.𝑒. ̄𝑖
(

𝜂𝑖, 𝑡𝑘
)

∩ ̄𝑗
(

𝜂𝑗 , 𝑡𝑘
)

= ∅,
then there is not risk of collision between 𝑖 (𝑡) and 𝑗 (𝑡), 𝑖.𝑒.
𝑖 (𝑡) ∩ 𝑗 (𝑡) = ∅ for 𝑡 ∈

[

𝑡𝑘, 𝑡𝑘+1
]

. Else, a risk of collision
is possible.

Same comments can be made between
(1)𝑖

(

𝑡𝑘
)

and 𝑗
(

𝑡𝑘
)

using ̄𝓁

(

𝜂𝐿𝓁 , 𝜂
𝑅
𝓁 , 𝜂

𝑂
𝓁 , 𝑡𝑘

)

with
𝓁 ∈ {𝑖, 𝑗};

(2)𝑖
(

𝑡𝑘
)

and𝑗
(

𝑡𝑘
)

using ̄𝑖
(

𝜂𝐿𝑖 , 𝜂
𝑅
𝑖 , 𝜂

𝑂
𝑖 , 𝑡𝑘

)

and ̄𝑗
(

𝑡𝑘
)

;
(3)𝑖

(

𝑡𝑘
)

and a plane 𝑘 using ̄𝑖
(

𝑡𝑘
)

and 𝑘.
and so Theorems 2, 3, 4 and 6 using the layer notation.

The proof of Theorem 7 is in the theorem itself. In the same
way, we can define ̄𝑖obs and ̄𝑖the list of obstacle layers of
the system 𝑖.Since the tether 𝑖 shape changes when ROV 𝑅𝑖 moves,
it is not trivial to how to choose 𝜂𝑖 such that 𝑖

(

𝑡𝑘+1
)

⊆
̄𝑖

(

𝜂𝑖, 𝑡𝑘
)

∀𝑡 ∈
[

𝑡𝑘, 𝑡𝑘+1
]. We proposed here to arbitrary

choose 𝜂𝑖 based on observations, then constrain the ROV’s
displacement such that the tether gets out of its layer. This
displacement is limited using 𝛼𝑅𝑖 , as exposed in Section 8.2.
Note that the faster you want an ROV to move, the larger the
layer must be.

Note that 𝜂 = 0 is a valid solution for an immobile ob-
stacle. In practice, depending on how dangerous the obstacle
is (mine, sharp-edged obstacle, etc.), an additional safety
distance inducing 𝜂 > 0 can be chosen: this comment will
be more developed in Section 9.
Remark 3. Since 𝐿𝑖

(

𝑡𝑘+1
)

and ̄𝐿𝑖
(

𝜂𝑖, 𝑡𝑘
)

share the fo-
cal point 𝑂𝑖, 𝐿𝑖

(

𝑡𝑘+1
)

⊆ ̄𝐿𝑖
(

𝜂𝑖, 𝑡𝑘
)

⇔ 𝐿𝑖
(

𝑡𝑘+1
)

∩
̄𝐿𝑖

(

𝜂𝑖, 𝑡𝑘
)

= ∅.

6. Obstacle avoidance
To avoid a collision with an obstacle 𝑖

𝑗 , three strategies
are used based on 𝑄𝑖𝑗 :

• Repelling strategy to move the ROV away from the
obstacle if 𝑄𝑖𝑗 ∈ {2, 3}, based on APF;

• Anti-crossing collision to untie the knot if 𝑄𝑖𝑗 = 4;
• Reduction of tether’s length to reduce the size of the

ellipsoid if 𝑄𝑖𝑗 = 3.
The impact of these strategies on the ROV motion is de-
scribed in Section 6.4, and a strategy to bypass more effi-
ciently some obstacle is described in Section 7.3. One can
observe that no strategy is used if 𝑄𝑖𝑗 = 0 or 𝑄𝑖𝑗 = 1.
Indeed, 𝑄𝑖𝑗 = 0 means there is no collision, and 𝑄𝑖𝑗 =
1 corresponds to the case where 𝑂𝑖 is in collision, 𝑖.𝑒.
the anchor 𝑂𝑖. However, since 𝑂𝑖 is supposed to be fixed
(Assumption A2), the system 𝑖 is unable to resolve this
collision: only obstacle 𝑖

𝑗 can.
Remind the collisions are detected using the layers ̄𝑖and ̄𝑖

𝑗 , but notations 𝑖 and 𝑖
𝑗 will be used by comfort in

the rest of the paper.
6.1. Repelling strategy

Let 𝑅̂∗
𝑖 (𝑡) be the current target followed by ROV 𝑅𝑖at instant 𝑡, as it will be defined in Section 7.3.2. When a

collision of type 𝑄𝑖𝑗 ∈ {2, 3} is detected between 𝑖 and an
obstacle 𝑖

𝑗 , a repulsive force noted 𝑓 𝑖,𝑗𝑟 is applied on the
ROV 𝑖 to move away from 𝑖

𝑗 .
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6.1.1. Repelling from a plane
If 𝑖

𝑗 is a plane, 𝑖.𝑒. 𝑖
𝑗 ∈  and 𝑖

𝑗 = 𝑗
(

𝑃𝑗 , 𝑛𝑗
),

then the repulsion follows the normal to the plane 𝑛𝑗 such
that 𝑓 𝑖,𝑗𝑟 = 𝑛𝑗

‖𝑛𝑗‖
.

6.1.2. Repelling from an ellipsoid full-obstacle 𝑗
If 𝑖

𝑗 ∈ 𝑖, let’s name 𝑗 the ellipsoid obstacle such
as 𝑗 = 𝑖

𝑗 . The ROV 𝑖 is repulsed from 𝑗 following the
three following potential field: one repulsive force 𝑣1 from
the main axis and the extremities of the ellipsoid, and two
“rotary” forces 𝑣2 and 𝑣3 to help to bypass the obstacle in
direction of the objective 𝑅̂∗

𝑖 , as illustrated in Figure 8. These
three forces are combined to give global repulsive force 𝑓 𝑖,𝑗𝑟 .
Definition 7. Let’s define the notation ‖.‖𝑢 such that ∀𝑥⃗ ∈
ℝ3,

‖

‖

𝑥⃗‖
‖𝑢 =

{

‖

‖

𝑥⃗‖
‖

if ‖

‖

𝑥⃗‖
‖

≠ 0,
1 else.

(19)

For the system 𝑖 and an ellipsoid obstacle 𝑗 , the global
repulsive force 𝑓 𝑖,𝑗𝑟 can be expressed as

𝑓 𝑖,𝑗𝑟
(

𝑗
)

=
2𝑣1 + 𝑣2 + 𝑣3

‖

‖

2𝑣1 + 𝑣2 + 𝑣3‖‖𝑢
(20)

where 𝑣1, 𝑣2 and 𝑣3 can be expressed as

𝑣1 =
⃗̄𝑣1

‖

‖

‖

⃗̄𝑣1
‖

‖

‖𝑢

(21)

𝑣2 =
𝑣20

‖

‖

𝑣20‖‖𝑢
sign (𝑣20.𝑣rot2

) (22)

𝑣3 =
𝑣30

‖

‖

𝑣30‖‖𝑢
sign (𝑣30.𝑣rot3

) (23)

where

⃗̄𝑣1 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⃗𝐹1,𝑗𝑅𝑖 if
(

|

|

|

𝑣𝑑𝑗 .
⃗𝐹2,𝑗𝑅𝑖

|

|

|

> 𝑑𝑗
)

&
(

‖

‖

‖

𝑅𝑖𝐹1,𝑗
‖

‖

‖

< ‖

‖

‖

𝑅𝑖𝐹2,𝑗
‖

‖

‖

)

⃗𝐹2,𝑗𝑅𝑖 if
(

|

|

|

𝑣𝑑𝑗 .
⃗𝐹1,𝑗𝑅𝑖

|

|

|

> 𝑑𝑗
)

&
(

‖

‖

‖

𝑅𝑖𝐹1,𝑗
‖

‖

‖

> ‖

‖

‖

𝑅𝑖𝐹2,𝑗
‖

‖

‖

)

𝑣10 else.

(24)

with 𝑣10 = ⃗𝐶𝑗𝑅𝑖 − 𝑣𝑑𝑗
(

𝑣𝑑𝑗 .
⃗𝐶𝑗𝑅𝑖

)

, 𝑣𝑑𝑗 =
𝑑𝑗

‖

‖

‖

𝑑𝑗
‖

‖

‖

and

𝑣20 = 𝑣1 ∧ 𝑣30 (25)
𝑣30 = 𝑣1 ∧ 𝑣𝑑𝑗 (26)
𝑣rot2 =

(

𝑣0 ∧ 𝑣30
) sign ((𝑣0 ∧ 𝑣30

)

.𝑣4
) (27)

𝑣rot3 =
(

𝑣0 ∧ 𝑣𝑑𝑗
)

sign
((

𝑣0 ∧ 𝑣𝑑𝑗
)

.𝑣4
)

(28)

where 𝑣0 = ⃗𝐶𝑗𝑅𝑖 and 𝑣4 = ⃗𝑅𝑖 ̂
∗
𝑖𝑅.

Detail of previous calculation is detailed in Appendix B.7.

(a) Repulsive potential field 𝑣1 (b) Rotary potential field 𝑣2

(c) Rotary potential field 𝑣3

Figure 8: Representation of repulsive potential fields 𝑣1, 𝑣2 and
𝑣3 in 𝑗 . Small black circle: target 𝑅̂∗

𝑖 . Dash line:
[

𝐶𝑗𝑅̂∗
𝑖

]

. 𝑣1
pushes always the ROV to 𝑗 . 𝑣2 and 𝑣3helps to bypass 𝑗 in
direction of the objective.

Remark 4. The first idea to create 𝑣1 was to use the Jaco-
bian matrix of 𝑗 , but it was more difficult for the ROV to
go around 𝑗 near its extremities when 𝑗 is flat. See more
details in Appendix B.7.

6.1.3. Repelling from an tether obstacle system 𝑗
In case of a system obstacle 𝑗 , 𝑖.𝑒.𝑖

𝑗 ∈ (−𝑖)
 , three el-

lipsoids can be involved. Let 𝑣1
(

𝑗
) be the evaluation of ⃗̄𝑣1

as exposed in Section 6.1.2 using parameter of ellipsoid 𝐿𝑗 ,
similarly for 𝑂𝑗 and 𝑅𝑗 and for the evaluation of 𝑣2

(

𝐿𝑗
)

and 𝑣3
(

𝐿𝑗
)

.
Go around 𝑗 is more complex. Indeed, 𝑣2 and 𝑣3 will

push in most case the ROV 𝑅𝑖 at the intersection between
𝐿𝑗 and 𝑂𝑗 or 𝑅𝑗 , even more so if they are summed for the
three ellipsoids. Since 𝐿𝑗 is the center of the system 𝑗 , the
proposed solution is to consider the global repulsive force
𝑓 𝑖,𝑗𝑟

(

𝐿𝑗
)

in all case and add the repulsive forces 𝑣1
(

𝑂𝑗
)

and 𝑣1
(

𝑅𝑗
)

to avoid collision with 𝑂𝑗 and 𝑅𝑗 when going
around them:

𝑓 𝑖,𝑗𝑟
(

𝑗
)

=
2𝑣1

(

𝑗
)

+ 𝑣2
(

𝐿𝑗
)

+ 𝑣3
(

𝐿𝑗
)

‖

‖

‖

‖

2𝑣1
(

𝑗
)

+ 𝑣2
(

𝐿𝑗
)

+ 𝑣3
(

𝐿𝑗
)

‖

‖

‖

‖𝑢

(29)

First Author et al.: Preprint submitted to Elsevier Page 10 of 28



Ellipsoid tether model for collision avoidance in a fleet of ROVs

where 𝑣2
(

𝐿𝑗
)

and 𝑣3
(

𝐿𝑗
)

are evaluated using (22) and
(23) and 𝑣1

(

𝑗
)

=
⃗̄𝑣1
(

𝑗
)

‖

‖

‖

⃗̄𝑣1
(

𝑗
)

‖

‖

‖𝑢

where

⃗̄𝑣1
(

𝑖
)

= 𝑣1
(

𝐿𝑗
)

+ 𝑣1
(

𝑂𝑗
)

𝑞𝑖,𝑗𝑂 + 𝑣1
(

𝑅𝑗
)

𝑞𝑖,𝑗𝑅
(30)

where 𝑣1 (.) is evaluated using (21), 𝑞𝑖,𝑗𝑂 = 1 if 𝑖 ∩ 𝑂𝑗 ≠ 0
(⇔ 𝑄𝑗𝑖 = 1), 𝑞𝑖,𝑗𝑂 = 0 else and 𝑞𝑖,𝑗𝑅 = 1 if 𝑖 ∩ 𝑅𝑗 ≠ 0 (
⇔ 𝑄𝑗𝑖 = 2), 𝑞𝑖,𝑗𝑅 = 0 else.
6.2. Anti-crossing collision

When a crossing collision as defined in Theorem 5 is
detected with an obstacle 𝑖

𝑗 ∈ (−𝑖)
 , 𝑖.𝑒. 𝑄𝑖𝑗 = 4 , the

ROV must go back to undo the knot that is forming. A
displacement following the vector 𝑓 𝑖,𝑗𝑎 is performed, with

𝑓 𝑖,𝑗𝑎 =
𝑆̄𝑖𝑆̄𝑗

‖

‖

‖

‖

⃗𝑆̄ 𝑖𝑆̄𝑗
‖

‖

‖

‖𝑢

(31)

where 𝑆̄𝑖 and 𝑆̄𝑗 the closest points between 𝐿𝑖 (𝑡) and 𝐿𝑗 (𝑡)
of system 𝑖 and 𝑗 = 𝑖

𝑗 . Remind 𝑆̄𝑖 (𝑡) and 𝑆̄𝑗 (𝑡) can be
evaluated using Theorem 10 in Appendix A.1.
6.3. Tether length reduction

When the tether is in collision with an obstacle 𝑖
𝑗 , 𝑖.𝑒.

𝑄𝑖𝑗 = 3, this may be due to the cable being too loose between
𝑂𝑖 and 𝑅𝑖. A solution can be to reduce the length 𝐿𝑖 to
reduce the volume of 𝐿𝑖 and so avoid the collision. Note that
𝐿𝑖 could be reduce until it becomes a line, but underwater
navigation with a stretched cable between it and its reel is
not simple, that’s why we prefer in most cases to keep the
tether a minimum loosen.

If ∃𝑄𝑖𝑗 ∈ 𝑖 such that 𝑄𝑖𝑗 = 3, 𝐿𝑖 is reduced so
that 𝐿𝑖

(

𝑡𝑘+1
)

= 𝐿𝑖
(

𝑡𝑘
)

− 𝛿𝐿max if (𝐿𝑖
(

𝑡𝑘
)

− 𝛿𝐿max
)

<
𝑑next

(

𝑡𝑘
) with 𝑑next

(

𝑡𝑘
)

= ‖

‖

𝑂𝑖𝑅𝑖‖‖
(

𝑡𝑘
)

+ 𝑉𝑅𝑖maxΔ𝑇 , else
the ROV could be blocked by the cable in its next move. Note
that since 𝐿𝑖 is not reduced when there is no collision, some
additional optional rules could be added to avoid the tether
to become too long and so generate too much drag force, for
example reduce 𝐿𝑖 if 𝐿𝑖 > 2 ‖

‖

𝑂𝑖𝑅𝑖‖‖
(

𝑡𝑘
).

6.4. Multi-collision management
Previous sections exposed repulsive forces to avoid an

single obstacle. The combination of these forces for several
obstacle provides a target motion vector 𝑣𝑅𝑖 , as described by
the following Algorithm 1.

To limit local minima inherent to potential field method,
we add in the algorithm the following test: if the found vector
𝑣𝑅𝑖 points in the direction opposite to the ROV’s target (we
choose 180◦ +−10

◦ here), then we add a random component
𝑢rand 3×1 ∈ ℝ3 to try to escape the local minimum.

Algorithm 1 Mutli-collision avoidance
Require: 𝑅̂∗

𝑖 , 𝑖
1: Need_Reduction_L = False
2: 𝑣𝑅𝑖 =

[

0 0 0
]𝑇

3: for 𝑗 in 1 ∶ 𝑁obs do
4: if 𝑄𝑖𝑗 = 4 then
5: Anti-crossing collision strategy: 𝑣𝑄𝑖𝑗 = 3𝑓 𝑖,𝑗𝑎
6: else if 𝑄𝑖𝑗 = 3 then
7: Repelling strategy: 𝑣𝑄𝑖𝑗 = 𝑓 𝑖,𝑗𝑟 ,
8: Need_Reduction_L = True
9: else if 𝑄𝑖𝑗 = 2 then

10: Repelling strategy: 𝑣𝑄𝑖𝑗 = 𝑓 𝑖,𝑗𝑟
11: else
12: 𝑣𝑄𝑖𝑗 =

[

0 0 0
]𝑇

13: end if
14: 𝑣𝑅𝑖 = 𝑣𝑅𝑖 + 𝑣𝑄𝑖𝑗
15: end for
16: 𝑣𝑅𝑖 =

𝑣∗𝑅𝑖
‖

‖

‖

𝑣𝑅𝑖
‖

‖

‖𝑢

17: if
⎛

⎜

⎜

⎝

𝑣𝑅𝑖 .
⃗𝑅𝑖 ̂

∗
𝑖𝑅

‖

‖

‖

‖

⃗𝑅𝑖 ̂ 𝑖𝑅
‖

‖

‖

‖𝑢

⎞

⎟

⎟

⎠

< cos(170◦) then

18: 𝑣𝑅𝑖 = 𝑣∗𝑅𝑖 + 0.1𝑢rand 3×1 % add random unit vector
19: 𝑣𝑅𝑖 =

𝑣𝑅𝑖
‖

‖

‖

𝑣𝑅𝑖
‖

‖

‖𝑢
20: end if
21: % Reduction of 𝐿𝑖 if need
22: if Need_Reduction_L = True then
23: if

(

𝐿𝑖
(

𝑡𝑘
)

− 𝛿𝐿max
)

< ‖

‖

𝑂𝑖𝑅𝑖‖‖
(

𝑡𝑘
)

+ 𝑉𝑅𝑖maxΔ𝑇
then

24: 𝐿𝑖 = 𝐿𝑖 − 𝛿𝐿max
25: end if
26: end if
27: return 𝑣𝑅𝑖 , 𝐿𝑖, Need_Reduction_L

7. Path to the target objective
7.1. Hypotheses on the target

Let 𝑅∗
𝑖 be the final target of 𝑅𝑖. Since underwater obsta-

cles are often sharp and so the possibility of making a bend
in the cable is excluded, the target𝑅∗

𝑖 of ROV𝑅𝑖 is reachable
only if

• the tether is long enough to reach the target, 𝑖.𝑒.
‖

‖

‖

𝑂𝑖𝑅∗
𝑖
‖

‖

‖

< 𝐿𝑖,max;
• there exist a line 𝑂𝑖𝑅∗

𝑖 free of full-obstacles 𝑚 on
it, 𝑖.𝑒. ∃𝐿𝑖 ∈

[

0, 𝐿𝑖,max
] such that 𝑖 ∩ 𝑚 = ∅

∀𝑚 ∈ [1…𝑀] when 𝑅𝑖 = 𝑅∗
𝑖 ;

• ∀ (𝑖, 𝑗) ∈  2, each target 𝑅∗
𝑖 has been chosen such

that there is no collision between their layers when
all targets have been reached, 𝑖.𝑒. ∀𝑖 ∈  one has
̄𝑖 ∩ ̄𝑗 = ∅ (following Theorem 4) when 𝑅𝑖 = 𝑅∗

𝑖. It can induce to reduce the layer 𝜂𝑖 when ROV 𝑖
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Figure 9: Bypass strategy: following the colored arrows, the
ROV 𝑅𝑖 can avoid the collision between its tether and the
obstacle obs. Repulsive strategy is used in parallel to avoid
collision. Blue ellipsoid: 𝑖. Red circle: target to reach. Black
circle: obstacle obs. Green circle: circles tangent to obs with
center 𝑂𝑖. Black dotted line: shortest path. 𝑃 1 and 𝑃2:
intermediate targets. tangent is the circle tangent to obs and
center in 𝑂𝑖.

has reached its target (for example take 𝜂𝑖 = 0 when
𝑅𝑖 = 𝑅∗

𝑖 ).
In an ideal configuration, the shortest path between 𝑅𝑖 and
𝑅∗
𝑖 would be the direct line 𝑅𝑖𝑅∗

𝑖 , as illustrated by the black
dash line in Figure 9. However, the presence of an obstacle
on the path can induce to bypass it, as exposed in next section
and illustrated by colored lines in Figure 9.
7.2. Detection of obstacles on the path

The avoidance strategies presented in Section 6 can lead
to bypassing the obstacle while avoiding it, but it is more
efficient to anticipate and choose another path when an
obstacle is detected on the way, as illustrated in Figure 9.

As planes are assumed to be infinite in this study and so
cannot be bypassed, only ellipsoidal obstacles are considered
here.
Definition 8. For a system 𝑖, an ellipsoid obs is con-
sidered on the path between 𝑅𝑖 and its target 𝑅∗

𝑖 if the
main axis 𝑑𝑖 =

[

𝐹1,𝑖𝐹2,𝑖
]

=
[

𝑂𝑖𝑅𝑖
]

of 𝐿𝑖 will have to
intersect with 𝑑obs =

[

𝐹1,obs𝐹2,obs
]

to reach 𝑅∗
𝑖 , 𝑖.𝑒. the

intersection between 𝑑obs and triangle 𝑂𝑖𝑅𝑖𝑅∗
𝑖 is not empty,

𝑖.𝑒. 𝑑obs ∩ 𝑂𝑖𝑅𝑖𝑅∗
𝑖 ≠ ∅. Systems obstacle 𝑗 are considered

as three different and independent ellipsoidal obstacles obs.

The Figure 10 illustrates the intersection between obs and
the triangle 𝑂𝑖𝑅𝑖𝑅∗

𝑖 .
The Theorem 12 in Appendix A.3 provides a method to

check the conditions of Definition 8. Since there may be sev-
eral obstacles between 𝑅𝑖 and 𝑅∗

𝑖 , we define 𝑖bypass (𝑡) =
{

 𝑖,1obs,… ,  𝑖,𝐽obs
}

the list of obstacles on the path between
𝑅𝑖 and its target 𝑅∗

𝑖 at an instant 𝑡 with 𝐽 > 0 the number of

Figure 10: Intersection between the triangle 𝑂𝑖𝑅𝑖𝑅∗
𝑖 and the

ellipsoid obstacle 𝑖.

element of 𝑖bypass (𝑡). Note that 𝐽 changes with time and/or
position of 𝑅𝑖.
7.3. Bypass strategy

When at least one obstacle between 𝑅𝑖 and 𝑅∗
𝑖 is de-

tected, 𝑖.𝑒. 𝑖bypass (𝑡) ≠ ∅, the bypass strategy is applied.
The bypass strategy is divided in three steps, illustrated in
Figure 9:

1. Folding the system 𝑖 inside a folding circle area
𝑖bypass

(

𝑂𝑖, 𝑟𝑖bypass
)

of center 𝑂𝑖 and radius 𝑟𝑖bypass;
2. Go around the obstacle staying inside 𝑖bypass;
3. Go towards the target 𝑅∗

𝑖 once the obstacle has been
bypassed, 𝑖.𝑒. when 𝑖bypass (𝑡) = ∅.

The choice of the folding area 𝑖bypass is described in Sec-
tion 7.3.1. To perform the bypass strategy, the ROV will
follow sub-targets 𝑅̂∗

𝑖 (𝑡), where 𝑅̂∗
𝑖 (𝑡) = 𝑅∗

𝑖 if𝑖bypass (𝑡) =
∅. These sub-target are described in Section 7.3.2.
7.3.1. Definition of bypass circle 𝑖bypass

For each obstacle  𝑖,𝑗obs ∈ 𝑖bypass (𝑡), we can define
a circle 𝑖,𝑗tangent

(

 𝑖,𝑗obs, 𝑂𝑖, 𝑟
𝑖,𝑗
tangent

)

tangent to  𝑖,𝑗obs, centered
in 𝑂𝑖 and with a radius 𝑟𝑖,𝑗tangent, as illustrated in green in
Figure 9. The Theorem 13 in Appendix A.4 proposes a
method to evaluate 𝑖,𝑗tangent.Since the system 𝑖 (ROV+tether+anchor) stay inside
𝑖tangent, there is no risk of collision between 𝑖 and  𝑖,𝑗obs.
Note that depending of the tether length 𝐿𝑖, 𝐿𝑖 may be too
big to fit inside 𝑖,𝑗tangent even when 𝑅𝑖 = 𝑂𝑖: a reduction of
the length 𝐿𝑖 may be required to avoid collision. Remark
also that the smallest circle in which 𝑖 can be contained is
a circle of center 𝑂𝑖 and radius 𝑟min,𝑖 = 𝑎𝑂𝑖 + 2𝑎𝑅𝑖 where 𝑎𝑂𝑖and 𝑎𝑅𝑖 are the semi-main axis of 𝑂𝑖 and 𝑅𝑖 . Thus, we will
chose 𝑟𝑖bypass ≥ 𝑟min,𝑖 as minimum even if 𝑟min,𝑖 > 𝑟

𝑖,𝑗
tangent. In

this case, the second part of the bypass will be managed by
the repelling strategy presented in Section 6.1.

Then, 𝑟𝑖bypass can be expressed as

𝑟𝑖bypass = max
([

𝑎𝑂𝑖 + 2𝑎𝑅𝑖 , 𝑟
𝑖
tangent

])

(32)
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with 𝑎𝑂𝑖 and 𝑎𝑅𝑖 are the semi-main axis of 𝑂𝑖 and 𝑅𝑖 and

𝑟𝑖tangent = min
(

𝑖𝑟,tangent
)

(33)

where𝑖𝑟,tangent =
{

𝑟𝑖,𝑗tangent | 𝑗 ∈
[

1…𝑁obs
]

,𝑖
𝑗 ∈ 𝑖bypass (𝑡)

}

the list of radius 𝑟𝑖,𝑗tangent associated to the obstacles on the
path of 𝑖.
7.3.2. Choice of target 𝑅̂∗

𝑖 (𝑡)Based on previous sections and to perform the bypass
strategy if require, the sub-target 𝑅̂∗

𝑖 (𝑡) can be expressed as

𝑅̂∗
𝑖 (𝑡) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑃 𝑖1 (𝑡) if
(

‖

‖

𝑂𝑖𝑅𝑖‖‖ > 𝑟
𝑖
bypass (𝑡)

)

&
(

𝑖bypass (𝑡) ≠ ∅
)

𝑃 𝑖2 (𝑡) if
(

‖

‖

𝑂𝑖𝑅𝑖‖‖ < 𝑟
𝑖
bypass (𝑡)

)

&
(

𝑖bypass (𝑡) ≠ ∅
)

𝑅∗
𝑖 else

(34)

where

𝑃 𝑖1 (𝑡) =𝑂𝑖 +
⃗𝑂𝑖𝑅𝑖

‖

‖

𝑂𝑖𝑅𝑖‖‖

(

𝑟𝑖bypass (𝑡) −
𝑑𝑅𝑖
2

)

(35)

𝑃 𝑖2 (𝑡) =𝑂𝑖 +
⃗𝑂𝑖𝑅∗
𝑖

‖

‖

‖

𝑂𝑖𝑅∗
𝑖
‖

‖

‖

(

𝑟𝑖bypass (𝑡) −
𝑑𝑅𝑖
2

)

(36)

Note that the sub-target 𝑃 𝑖1 (𝑡) depends of the current
ROV position and so is adjustable with the eventual pertur-
bations due to the obstacle avoidance strategies.

The choice of 𝑅̂∗
𝑖 (𝑡) and the bypass strategy is summa-

rized in Algorithm 6 in Appendix A.5.

8. ROV motion
Based on methods exposed in previous sections, Algo-

rithm 2 exposes how to choose 𝑣𝑅𝑖
(

𝑡𝑘
) and 𝛼𝑅𝑖

(

𝑡𝑘
) such

that the ROV motion to reach its next position. One observes
that the proposed solution is distributed because it can be
evaluated by each ROV independently and does not consider
the decision of others ROVs or moving obstacles to choose
its trajectory.

When a ROV 𝑖 reaches its objective, it maintains its
position and thus is considered as immobile, 𝑖.𝑒. one takes
𝛼𝑅𝑖 = 0, but it can still adjust its umbilical length 𝐿𝑖.

For the ROV reaches its next position 𝑅𝑖
(

𝑡𝑘+1
), the

tether 𝐿𝑖 may need to be extended. The tether extension is
described in Section 8.1. In parallel, to guarantee that the
condition𝑖

(

𝑡𝑘+1
)

⊈ ̄𝑖
(

𝜂𝑖, 𝑡𝑘
) introduced in Section 5.5 to

prevent collisions is respected, two solutions are proposed:
reduce the length 𝐿𝑖 if possible (see Section 6.3), or limit
the velocity 𝛼𝑅𝑖 (see in Section 8.2). The combination of
tether management and velocity limitation is described in
Algorithm 4.

Algorithm 2 ROV motion
Require: 𝑅∗

𝑖 , 𝐿𝑖
(

𝑡𝑘
)

1: Estimate current target: Algorithm 6→ 𝑅̂∗
𝑖

2: For 𝑖
𝑗 ∈ 𝑖obs, estimation of potential collision using

layer ̄𝑖 and ̄𝑖
𝑗 → 𝑖

3: if max{𝑖} = 0, 𝑖.𝑒. there is no risk of collision then

4: 𝑣𝑅𝑖 =
⃗𝑅𝑖𝑅∗
𝑖

‖

‖

‖

⃗𝑅𝑖𝑅∗
𝑖
‖

‖

‖5: Need_Reduction_L = 𝐹𝑎𝑙𝑠𝑒
6: else
7: Obstacle avoidance Algorithm 1 → 𝑣𝑅𝑖 , 𝐿𝑖,Need_Reduction_L
8: end if
9: if ‖

‖

‖

𝑅𝑖𝑅∗
𝑖
‖

‖

‖

< 𝜀𝑖 then
10: 𝛼𝑅𝑖 = 0 % The target is reached
11: else
12: % Choice of 𝛼𝑅𝑖 and 𝐿𝑖 to guarantee 𝑖 (𝑡) ⊆

̄𝑖
(

𝜂𝑖, 𝑡𝑘
) using Algorithm 4 → 𝛼𝑅𝑖

(

𝑡𝑘+1
),𝐿𝑖

(

𝑡𝑘+1
)

13: end if
14: 𝑅𝑖

(

𝑡𝑘+1
) using (16) with 𝑣𝑅𝑖

(

𝑡𝑘+1
), 𝛼𝑅𝑖

(

𝑡𝑘+1
)

% New
position

15: return 𝑣𝑅𝑖
(

𝑡𝑘+1
), 𝛼𝑅𝑖

(

𝑡𝑘+1
) and 𝐿𝑖

(

𝑡𝑘+1
)

8.1. Tether length extension
When the estimate position 𝑅̂𝑖

(

𝑡𝑘, 𝛼∗𝑖 , 𝑣𝑖
) cannot be

reached in practice due to the tether length 𝐿𝑖, this one can
be extended such that

𝐿𝑖
(

𝑡𝑘+1
)

= min
{

𝐿𝑖
(

𝑡𝑘
)

+ Δ𝐿,𝐿𝑖,max
} (37)

with Δ𝐿 = min
([

𝑉𝑅𝑖maxΔ𝑇 , 𝛿𝐿max

])

the maximum roll-
out. 𝐿𝑖 is extended iff

• 𝐿𝑖
(

𝑡𝑘
)

< ‖

‖

‖

𝑂𝑖𝑅̂𝑖
(

𝑡𝑘, 𝛼∗𝑖 , 𝑣𝑖
)

‖

‖

‖

, 𝑖.𝑒. the tether is too
short to reach the next position, where (

𝛼∗𝑖 , 𝑣𝑖
) are

defined in Algorithm 1;
• 𝐿𝑖

(

𝑡𝑘+1
)

< min
{

‖

‖

‖

𝑂𝑖𝑅∗
𝑖
‖

‖

‖

+ 𝛿𝐿, 𝐿𝑖,max

}

with 𝛿𝐿 >
0 a chosen parameter, 𝑖.𝑒. the cable is not extended
any further than is necessary to reach its target (or
its maximal length) since bends in the cable are very
limited in this study. ;

• 𝐿𝑖 has not been reduced during time interval [𝑡𝑘, 𝑡𝑘+1
];

• the new length𝐿𝑖
(

𝑡𝑘+1
) does not lead to 𝐿𝑖

(

𝑡𝑘+1
)

⊈
̄𝐿𝑖

(

𝜂𝑖, 𝑡𝑘
).

In the case where 𝐿𝑖
(

𝑡𝑘+1
) is still too short to reach

𝑅̂𝑖
(

𝑡𝑘, 𝛼∗𝑖 , 𝑣𝑖
) (or cannot be extend), the target position is

readjusted to obtain a reachable one:

𝑅̂𝑖 =
𝐿𝑖

(

𝑡𝑘+1
)

‖

‖

‖

𝑂𝑖𝑅̂∗
𝑖
‖

‖

‖

⃗𝑂𝑖 ̂ 𝑖𝑅 + 𝑂𝑖. (38)

These rules are summarized in Algorithm 3.
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Algorithm 3 Extend 𝐿𝑖
Require: 𝐿𝑖

(

𝑡𝑘
), 𝑅̂𝑖, Need_Reduction_L

1: 𝐿̃𝑖 = 𝐿𝑖
2: if 𝐿𝑖

(

𝑡𝑘
)

< ‖

‖

‖

𝑂𝑖𝑅̂𝑖
‖

‖

‖

then
3: % The target is unreachable because 𝐿𝑖 too short
4: if (𝐿𝑖

(

𝑡𝑘
)

< min
{

‖

‖

‖

𝑂𝑖𝑅∗
𝑖
‖

‖

‖

+ 𝛿𝐿, 𝐿𝑖,max

}

)
&(Need_Reduction_L = False) then

5: % It is possible to extend 𝐿𝑖
6: 𝐿̃𝑖 = min

{

𝐿𝑖
(

𝑡𝑘
)

+ Δ𝐿,𝐿𝑖,max
} with Δ𝐿 =

min
([

𝑉𝑅𝑖maxΔ𝑇 , 𝛿𝐿max

])

7: end if
8: % If 𝐿̃𝑖 still too short, the estimate position is read-

justed
9: if 𝐿̃𝑖 <

‖

‖

‖

𝑂𝑖𝑅̂𝑖
‖

‖

‖

then

10: 𝑅̂𝑖 =
𝐿̃𝑖

‖

‖

‖

𝑂𝑖𝑅̂∗
𝑖
‖

‖

‖

⃗𝑂𝑖 ̂ 𝑖𝑅 + 𝑂𝑖
11: end if
12: end if
13: return 𝐿̃𝑖, 𝑅̂𝑖

8.2. Choice of velocity 𝛼𝑅𝑖If 𝑖
(

𝑡𝑘+1
)

⊈ ̄𝑖
(

𝜂𝑖, 𝑡𝑘
) and the reduction of 𝐿𝑖 is

not enough/possible, the velocity 𝛼𝑅𝑖 is reduced to limit
the motion of 𝑅𝑖, as described in Algorithm 4. This one is
reduced several time but such as never reach 𝛼𝑅𝑖 = 0, where
the situation would be blocked.

9. ROVs personality
9.1. The main idea

As stated by [9], introducing personality in a robot fleet
can help to resolve conflicts because it introduces different
behaviors in the group. When several robots try to avoid each
other, having the exact same behavior and rules can lead to
an impasse, as illustrated in Figure 11. In opposite, different
behaviors can unlock situation by for example by giving the
priority to another robot in all circumstances, even if in some
situation it would be more efficient if all robot would be
equal.
9.2. ROV’s personality traits

An ROV/obstacle 𝑖 is defined by three kind of personality
traits HAL (𝑖) =

{H𝑖,A𝑖,L𝑖} with H𝑖 ≥ 0 the Hazardous-
ness, A𝑖 ≥ 0 the Aggressiveness and L𝑖 ≥ 0 the Laziness.
By default, an ROV 𝑖 has a personality equal to HAL (𝑖) =
{0, 0, 0}. Personality traits are defined as follow:

• Hazardousness: the more dangerous the ROV/obstacle 𝑖,
the more ROVs try to keep their distance from it
→ when an other ROV 𝑗 tests the collision with
the ROV/object 𝑖, an additional layer ̄𝑖

(

𝜂𝑖 + H𝑖) is
considered.

• Aggressiveness: if an ROV 𝑖 is more aggressive that
an ROV/obstacle 𝑗 AND at least as hazardous, it will

Algorithm 4 Choice of 𝛼𝑅𝑖
(

𝑡𝑘+1
)

Require: 𝑣𝑅𝑖 , 𝐿𝑖, Need_Reduction_L
1: 𝛼∗𝑖 = 1, 𝐿̃𝑖 = 𝐿𝑖 % by default
2: test = False, 𝑛 = 0
3: while (test = False)&(𝑛 < 7) do
4: Calculation of 𝑅̂𝑖

(

𝑡𝑘+1, 𝛼∗𝑖 , 𝑣𝑅𝑖
)

using (17) % esti-
mation next position of 𝑅𝑖

5: Extend 𝐿𝑖 if need/possible using Algorithm 3 → 𝐿̃𝑖and 𝑅̂𝑖
6: Calculation of 𝑖

(

𝑡𝑘+1
) using 𝑅̂𝑖 and 𝐿̃𝑖

7: if 𝑖
(

𝑡𝑘+1
)

⊈ ̄𝑖
(

𝜂𝑖, 𝑡𝑘
)

then
8: % reduction length 𝐿𝑖 if possible
9: if (Need_Reduction_L = False)&(𝐿𝑖

(

𝑡𝑘+1
)

∩
̄𝐿𝑖

(

𝜂𝑖, 𝑡𝑘
)

≠ ∅) then
10: if

(

𝐿𝑖
(

𝑡𝑘
)

− 𝛿𝐿max
)

< ‖

‖

𝑂𝑖𝑅𝑖‖‖
(

𝑡𝑘
)

+
𝑉𝑅𝑖maxΔ𝑇 then

11: 𝐿̃𝑖 = 𝐿𝑖 − 𝛿𝐿max
12: end if
13: Need_Reduction_L = 𝐹𝑎𝑙𝑠𝑒
14: else
15: % Reduction velocity 𝛼∗𝑖
16: 𝑛 = 𝑛 + 1
17: 𝛼∗𝑖 = 0.6𝑛 % Reduction of the velocity
18: end if
19: else
20: test = True % end of the loop
21: end if
22: end while
23: 𝐿𝑖

(

𝑡𝑘+1
)

= 𝐿̃𝑖 % Update the length 𝐿𝑖
24: 𝛼𝑅𝑖

(

𝑡𝑘+1
)

= 𝛼∗𝑖
25: return 𝛼𝑅𝑖

(

𝑡𝑘+1
) and 𝐿𝑖

(

𝑡𝑘+1
)

go straight to its target without try to bypass it → no
bypass strategy if the ROV 𝑖 is more aggressive than
an ROV/obstacle 𝑗.

• Laziness: if an ROV 𝑖 is lazier that an other ROV/obstacle 𝑗
AND at least as aggressive, it will slow down during
the collision avoidance to let the other makes the
most part of the avoidance → reduction of the initial
velocity 𝛼∗𝑖 depending of the collision avoidance.

Different personalities can be arbitrarily assigned to help
resolve potential conflicts. However, one can observe that

• A fixed ROV/obstacle 𝑗 (Definition 4) have a person-
ality of HAL (𝑗) =

{H𝑗 ,∞,∞
} with H𝑗 ≥ 0 because

it will never move, so the ROVs must bypass and
avoid it. Same for obstacles which do not respect anti-
collision strategies developed in this paper.

• A large hazardousness H can be given to
– Items with a high velocity, 𝑖.𝑒. larger risk of

collision;
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Figure 11: In this configuration, if all the cars want to go
straight ahead but respect the rule “right of way” rule, the
situation will remain eternally blocked. The same applies if
all cars decide to ignore the rule and pass at the same time
(crash). But if just one “aggressive” car forces its way through
while the others stay “passive”, the situation will be unblocked.
Having different behavior can help to solve conflict.

– Items whose collision must be avoided at all
costs because they are truly hazardous like sharpest
rock, an underwater mine, etc... or conversely a
fragile item which must not be damaged;

– A priority ROV whose we don’t want to interfere
the trajectory. Ideed, if H𝑖 > H𝑗 , ROV 𝑗 will start
to avoid ROV 𝑖 before this one starts to react. A
high aggressiveness can also be recommended
in this case.

• Laziness can be used for ROV/vehicle which have
difficulty maneuvering.

Remark 5. Aggressiveness was created to avoid that sev-
eral ROVs try indefinitely to bypass each other (frequent
when three or more ROVs are involved). The Laziness was
created to avoid large displacement which could lead to
more collisions when several closed ROVs try to avoid
each others. The Hazardousness was created to delay the
detection of collision between several ROVs: the ROV with
the smallest hazardousness will start to avoid the others
before the other.

Note that an aggressive ROV 𝑖 compensates its absence of
bypass strategy with a less aggressive ROV 𝑗 by “pushing”
the ROV 𝑗 when it comes in contact: the ROV 𝑗 will
move from the ROV 𝑖 using the repelling collision-avoidance
strategy, bypassing ROV 𝑖 if need. That’s also why Haz-
ardousness have the priority on Aggressiveness: an ROV 𝑖
with a lower Hazardousness, and so layer, will react before
ROV 𝑗 and so cannot push the ROV 𝑗 from its trajectory.
9.3. Personality rules

For two ROVs/obstacles (𝑖, 𝑗), two tests of aggressive-
ness and laziness Aggro (𝑖, 𝑗) and Lazy (𝑖, 𝑗) are defined:

Aggro (𝑖, 𝑗) = Trueif (A𝑖 > A𝑗)&
(H𝑖 ≥ H𝑗) (39)

Lazy (𝑖, 𝑗) = Trueif (L𝑖 > L𝑗)& (A𝑖 ≥ A𝑗) (40)
Based on these tests, the influences of the personality can

be considered by adding the following rules:

• Hazardousness: the collision between an ROV 𝑖 and
an obstacle 𝑖

𝑗 is tested using ̄𝑖
(

𝜂𝑖
)

∩ ̄𝑖
𝑗
(

𝜂𝑗 + H𝑗);
• Aggressiveness: the condition Aggro (𝑖, 𝑗) = True is

added to the “if” condition in line 5 in Algorithm 6;
• Laziness: for a chosen reduced velocity 0 < 𝛼lazy < 1,

the Algorithm 5 is used to choose 𝛼∗𝑖 at line 1 in
Algorithm 4.

Note also that
• The initial and final positions of the ROVs must con-

sider the layer of the Hazardousness H such that there
is not collisions between ROVs (see Section 7.1 with
the layer 𝜂).

• When an ROV 𝑖 has reached its final position, it is
recommend to change its layer 𝜂𝑖 and hazardousness
H𝑖 to take it as small as possible to give space to others
ROVs (𝜂 = H𝑖 = 0 if possible).

• The reduced velocity 𝛼lazy must be strictly positive
so that the ROV retains a minimum of movement
between two iterations, otherwise the configuration
may get stuck.

Remark 6. (1) Aggressiveness is a way out of certain block-
ing situations, but there’s no guarantee that it will lead to
faster convergence.

(2) If one takes HAL (𝑖) = {0, 0, 0} for all ROVs, 𝑖.𝑒.
aggressiveness and laziness of all ROVs are equal, rules
described in this section can be ignored.

Algorithm 5 Velocity with laziness
Require: 𝑖

1: 𝐿𝛼∗𝑖 = []
2: if 𝑖 = ∅ then
3: 𝛼∗𝑖 = 1 % if no collision, maximum velocity
4: else
5: for 𝑗 in 1 ∶ 𝑁obs do
6: if 𝑄𝑖𝑗 > 0 then
7: if Lazy (𝑖, 𝑗) = True then
8: % If ROV lazier, we take a slower velocity
9: 𝐿𝛼∗𝑖 = [𝐿𝛼∗𝑖 ; 𝛼lazy]

10: else
11: 𝐿𝛼∗𝑖 = [𝐿𝛼∗𝑖 ; 1]
12: end if
13: end if
14: end for
15: % We take the average velocity
16: 𝛼∗𝑖 = mean

(

𝐿𝛼∗𝑖

)

17: end if
18: return 𝛼∗𝑖
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10. Simulations
To illustrate the proposed strategy, several simulations

were performed using one to three ROVs and several obsta-
cles. First simulations were made without ROV personality
(HAL = {0, 0, 0} for all ROVs) to show the performance
of the model, then the personalities were added to show
the interest of them. The simulations have been made with
Matlab2022b. The ROVs are modeled using the discret
model (16) with the samping time Δ𝑇 = 1 and maximal
velocity 𝑉𝑅𝑖max = 0.25: we can so consider each iteration of
the system with the variable 𝑘 ∈ ℕ.

Consider the following TMS parameters with the maxi-
mum roll-out/roll-in 𝛿𝐿max = 0.3 of the TMS, the maximum
chosen roll-out Δ𝐿 = 0.25, and 𝛿𝐿 = 0.5 such that ∀𝑡 > 0,
𝐿𝑖 (𝑡) <

‖

‖

‖

𝑂𝑖𝑅∗
𝑖
‖

‖

‖

+ 𝛿𝐿. Due to the last condition, we don’t
need to put a limit of tether length: 𝐿𝑖,max = ∞.

A target𝑅∗
𝑖 is considered as reached if one has ‖‖

‖

𝑅𝑖 − 𝑅∗
𝑖
‖

‖

‖

<
0.3, so a little larger than the maximum distance perform
during an iteration: 𝑉𝑅𝑖maxΔ𝑇 = 0.25.

By default, the layer is taken equal to 𝜂𝑖 = 0.3 for the
ROV 𝑖 ∈  and 𝜂𝑖 = 0 for the fixed obstacles. Once
an ROV 𝑖 has reached its target, it is considered as a fixed
obstacles (A𝑖 = ∞ and 𝛼𝑖 = 0, 𝑖.𝑒. cannot move), its layer
becomes equal to 𝜂𝑖 = 0 until a new target is assigned to it,
but it can still modify its tether’s length𝐿𝑖 if required. For all
system 𝑖, we consider the ellipsoid 𝑂𝑖 and 𝑅𝑖 containing
𝑂𝑖 and 𝑅𝑖 are sphere of radius 𝑟 = 0.1. The layers of 𝑂𝑖 ,
𝐿𝑖 and 𝑅𝑖 are equal to 𝜂𝑖. No collision has been detected in
simulations performed.
10.1. One ROV and fixed obstacles

In this section, one ROV tries to reach its target 𝑅∗

using collision avoidance strategies described in the paper.
Seven examples of scenario are presented, illustrated in
Figure 12. A video of these simulations is available at
https://youtu.be/l8kwkpFDTKY with additional examples.
Example 1: Park between boats type “full-obstacle”
In Figure 12a, the ROV 1 (in blue) tries to reach its target
between two full obstacles on the surface, modeling two
boats. The repelling strategy allows to avoid collision with
the first boat, and the reduction of tether length allows to not
come in contact with both boat when the ROV is between
them.
Example 2 and 3: Fixed “tether obstacle” In Fig-
ures 12b and 12c, the ROV 1 (blue) uses the bypass strategy
to avoid an other fixed ROV 2 (magenta) to reach its target.
Intersection between 𝐿1 and 𝐿2 are allowed, but since the
main axis of 𝐿2 is on the way of the ROV, it must bypass it
to reach its target. In Figure 12c, repelling strategy used in
parallel of bypass strategy allows to avoid collision with the
seafloor (blue plane).
Example 4: square full-obstacle In Figure 12d, the only
way to reach the ROV’s target requires to pass inside a square

obstacle (modeled by four ellipsoids): the bypass strategy
has been automatically used to bypass one side of the square,
𝑖.𝑒. center the ROV with the target, then the cable length is
managed to pass inside without 𝐿 touch the obstacles.
Example 5, 6 and 7: Bypass two vertical “tether obsta-
cles” In Figure 12a, two fixed tethers block the path and
cannot change their length. The tether of ROV 1 can touch
them but the ROV itself cannot pass through. The bypass
strategy cannot be activated because the main axis of both
ellipsoids are not on the way. However, using the repelling
strategy, the ROV runs along the surface of the two ellipsoids
to pass over them.

In the other examples exposed in Figure 13c (video at
https://youtu.be/ztTy3B6FP5o), the same configuration is
proposed but where the two ROVs obstacles can change their
tether’s length. The solution found is different: the two ROVs
reduce their tethers and allow to let the first ROV passes
between them.

However, some limits of the method can be shown with
a similar configuration: in example illustrated in Figure 13d,
an additional horizontal plane has been added below the two
obstacles (which cannot change their tether’s length here)
and target has been slightly down. The ROV tries to reach
it by the shortest path leading by the bottom to the two
obstacles, but it is blocked by the seafloor and cannot find
an escape. This problem is unfortunately common to all
APF as the repulsive forces used in the repelling strategy.
A method of type “path-planing” would be required to solve
this problem.

10.2. Two ROVs simulations
Four scenarios with two moving ROVs avoiding them-

selves are illustrated in Figure 17. The video of these sim-
ulations is available at https://youtu.be/MVhnOfxujIY . In
these examples, the ROVs try to reach two successive target
𝑅∗: when all ROVs have reached their first target, the second
target is activated.

The Figure 14 shows a scenario where the cable between
an ROV 𝑖 ∈ {1, 2} and the boat is modeled in two parts: a
first part considering the cable between the ROV 𝑅𝑖 and the
anchor 𝑂𝑖 as a system 𝑖, and a second part considering the
cable between the anchor 𝑂𝑖 and a boat on the surface as a
full obstacle 𝑖′ noted 𝑖′ (same color on the figure that 𝑖).One has 𝑂𝑖 = 𝑂𝑖′ , collisions between 𝐿𝑖 , 𝐿𝑖′ , 𝑂𝑖 and 𝑂𝑖′are not considered, but collisions between 𝑅𝑖 and 𝑖′ are.
Case 1: without personality In Figure 14a, personalities
are not considered. The two ROVs try to reach their first
target placed behind the other ROV: they need first to avoid
each other, inducing one of the two ROVs 𝑗 will be trapped
between 𝑖 and 𝑖′ . Then, to reach the second target, the
paths of the two ROVs must cross again. In this case, the
ROV 1 must bypass the ROV 2 which takes the shortest path
and so is on ROV 1’s path. Then, when the path is clear,
ROV 1 can go straight to its target.
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(a) ROV 1 avoiding two boats
(black obstacles) on the surface
to reach the target between them.

(b) ROV 1 avoiding an other fixed
ROV to reach its target.

(c) ROV 1 avoiding an other fixed
ROV to reach its target.

(d) ROV avoiding a square obsta-
cle to reach its target.

Figure 12: Simulations with one moving ROV and several obstacles. Blue ellipsoid: tether 1. Magenta ellipsoid: tether 2 obstacle.
Black ellipsoids: full-obstacles. Blue plane: sea surface.

(a) Initial position (b) ROV 1 bypass two fixed tether
obstacles which cannot change
their lengths

(c) Tethers 2 and 3 s are allowed
to reduce their tethers: the target
is reached faster because they let
through tether 1

(d) Here, the target is a little
lower: the shortest path leads to
the bottom of the two tether
obstacles. ROV 1 is blocked by
the seafloor and cannot find an
escape.

Figure 13: ROV 1 bypassing two ROVs 2 and 3. Blue ellipsoid: tether 1. Magenta ellipsoids: tethers 2 and 3. Blue planes: sea
surface and seafloor.

Case 2: Laziness When the personalities are added to
ROVs, the paths follow by ROVs differ. In Figure 14b,
Laziness has been added to ROV 1 (L1 = 4 and L2 = 3).
The distance between ROVs and their targets (Figure 14f)
shows that for 𝑘 ∈ [40, 60] the distance between ROV 1 and
its target reduces faster than in case 1: the slowdown gives
ROV 2 time to pass, so that it deviates less from the most
direct trajectory. Note the contribution of this personality
trait is minimal: it is more interesting when more ROVs are
involve.
Case 3: Hazardousness In Figure 14c, a higher Haz-
ardousness has been given to ROV 1(H1 = 0.45 and
H2 = 0.3). The distance between ROVs and their targets
(Figure 14g) shows that for 𝑘 ∈ [0, 40], 𝑖.𝑒. when ROVs
try to reach their first target, ROV 1 go straight to its target
while ROV 2 must move away for a time (𝑘 ∈ [15, 30]) to
avoid ROV 1: the addition of Hazardousness has changed the
priority because ROV 2 tries to avoid ROV 1 before this one
did. Note that the path to the second target remains globally
unchanged because ROV 1 still try to bypass ROV 2 on this
path.

Case 4: Aggressiveness In Figure 14d, a higher Aggres-
siveness has been given to ROV 1 (A1 = 4 and A2 = 3). The
the distance between ROVs and their targets (Figure 14h)
shows that the path to the first target remains unchanged
compare to case 1, but ROV 1 goes straight to its second
target (𝑘 ∈ [45, 90]) while ROV 2 must avoid it (𝑘 ∈
[55, 65]): due the Aggressiveness, ROV 1 does not use the
bypass strategy and pushes ROV 2 back from its shortest
path.

A case not shown here but tested is the fusion of all
personality traits: HAL (1) = {0.45, 4, 4} and HAL (2) =
{0.3, 3, 3}. In this case, the ROV 1 goes straight to these
two targets with very small deviations while the ROV 2 must
avoid it by reaching its target by a longest path.
10.3. Three ROVs simulations
Three ROVs with “tether obstacle” collisions In Fig-
ure 17a, three ROVs tries to reach simultaneously their
targets to form the bisectors of a triangle, then switch their
positions to reach the target position of the ROV on its
right. It leads to several path intersections, each one trying
to avoid/bypassing each other. The collision between ROVs
are considered as “tether obstacle”, so intersection between
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(a) Without ROV’s personality (b) Addition of Laziness.. (c) Addition of Hazardousness. (d) Addition of Aggressiveness.

(e) Without ROV’s personality (f) Addition of Laziness.. (g) Addition of Hazardousness. (h) Addition of different Aggres-
siveness.

Figure 14: Simulations with two ROVs. Both ROVs must reach a first target, then a second one. The targets always induce to
cross the trajectory of the other ROV. Magenta ellipsoid: tether 1. Blue ellipsoid: tether 2.

ellipsoids 𝐿 are allowed. An equilibrium can be found after
some time, but this one is difficult to find.

The introduction of the personalities, illustrated in Fig-
ure 17f, leads to a faster solution: by taking HAL (1) =
{0.6, 3, 3}, HAL (2) = {0.45, 2, 2} and HAL (3) = {0.3, 1, 1},
ROV 1 finds this way first, then ROV 2 and finally ROV 3.
Each time an ROV reaches its target and so stops to move, it
is easier for other ROVs to find their way.

The video of these simulations is available at
https://youtu.be/No91xVVsZv4 .

Three ROVs with “full obstacle” collisions In this sec-
ond examples illustrate in Figure 17k and Figure 17p, the
collisions between ROVs are now considered as “full ob-
stacle”, so intersections between systems  are not allowed.
This situation is much more complex because tethers have
to keep greater distances between them. The depth of targets
have been adapted such that there is not collision between
ROVs when they have reached their target. However, in the
scenario without personality in Figure 17k, the ROVs cannot
reach their targets because they block each other. However,
by adding the personalities as in Figure 17k, a solution is
found because some ROVs have priority over others.

Note an other modification has been made compare to
previous examples: the velocity 𝑉𝑅𝑖max has been reduced
such that 𝑉𝑅𝑖max = 0.125 (and so Δ𝐿 = 0.125) to take
a smaller layer 𝜂 = 0.15. Indeed, a too large layer is
more a disadvantage than a help, because it induces a larger
collision area to avoid, which can block the path to the target.
Reducing speed reduces layer size, and so help to solve some
configurations. A method to chose the most adapted velocity
in function of the configuration (and not only during the

avoidance like the Laziness), will be the subject of future
studies.

The video of these simulations is available at
https://youtu.be/AL9_agE7frQ .

11. Conclusion
This paper proposes a guarantee ellipsoid model of

the ROV’s tether and its obstacles to perform a collision
avoidance method for a fleet of ROVs low in calculation.
This model, which assimilate the ROV and its tether as a
set of ellipsoids, guarantees that if an obstacle is not inside
or partially inside the ellipsoid model, then the tether is
guarantee to not collide with that obstacle. This model is
pessimist but simple and can provide a guaranteed proof of
non-collision without any knowledge of the tether shape or
its dynamic, only its two attachments point and its length. A
collision avoidance strategy has been developed specifically
for ROVs and their tethers: it is based on potential field meth-
ods, tether’s length management, and a bypass strategy. The
bypass strategy allows to detect and get around an obstacle
when this one is directly on the path between the system
ROV+tether and its target position. Simulations show that
these simple mechanisms can solve complex situations as
long as it is not require to bend the cable on an obstacle
(behavior forbidden in this study) to reach the target. When
several ROVs are involved, personalities are added to ROV’s
to obtain different behaviors in the same configuration, and
so limit the case of minimal local during collisions avoid-
ance. Three kind of personality traits have been proposed:
Hazardousness, Aggressiveness and Laziness. Simulations
show Hazardousness and Aggressiveness allows to change
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the priority between ROVs and solve configurations which
could remain blocked, while the Laziness allows to smooth
the collision avoidance but without offer an alternative
solution.

Next studies will try to combine the proposed model
with the path planing methods based on homotopy to solve
more complex configurations. In case where a bend would
be allowed with an obstacle, the model could also be divided
into two ellipsoids to obtain a more flexible model.
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A. Mathematical tools
A.1. Calculation closest points between segments

In this section, a method to evaluate the two closest
points between two segments is proposed, summarized in
Theorem 10. To increase the clarity of the results, the results
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have been separated into several small theorems and defini-
tions described below. Theorem 8 provides the closest points
between two lines. Definition 9 provides a test to check if a
point on a line is inside a segment. Theorem 9 provides the
closest point on a line or segment to another single point.
Proves of these theorems can be found in Appendix B.4.1.
Theorem 8. For two lines

(

𝑂1𝑅1
)

and
(

𝑂2𝑅2
)

, let 𝑉𝑘 =
𝑅𝑘 − 𝑂𝑘 be the main vectors with 𝑘 ∈ [1, 2]. Let define
𝑉3 = 𝑉2 ∧ 𝑉1 the mutual orthogonal vector to

(

𝑂1𝑅1
)

and
(

𝑂2𝑅2
)

. The closest points between the two lines 𝑄1 ∈
(

𝑂1𝑅1
)

and 𝑄2 ∈
(

𝑂2𝑅2
)

can be expressed as

𝑄1 = 𝑂1 + 𝑡1𝑉1 (41)
𝑄2 = 𝑂2 + 𝑡2𝑉2 (42)

where
{

𝑡1, 𝑡2
}

∈ ℝ2 are solutions of the following system

⎧

⎪

⎨

⎪

⎩

𝑡3𝑣𝑥3 − 𝑡2𝑣𝑥2 + 𝑡1𝑣𝑥1 = 𝑥𝑂,2 − 𝑥𝑂,1
𝑡3𝑣𝑦3 − 𝑡2𝑣𝑦2 + 𝑡1𝑣𝑦1 = 𝑦𝑂,2 − 𝑦𝑂,1
𝑡3𝑣𝑧3 − 𝑡2𝑣𝑧2 + 𝑡1𝑣𝑧1 = 𝑧𝑂,2 − 𝑧𝑂,1

(43)

with ∀𝑖 ∈ [1, 2, 3] 𝑉𝑖 =
[

𝑣𝑥,𝑖 𝑣𝑦,𝑖 𝑣𝑧,𝑖
]𝑇 and 𝑂𝑖 =

[

𝑥𝑂,𝑖 𝑦𝑂,𝑖 𝑧𝑂,𝑖
]𝑇 , and where 𝑡3 the third unknown vari-

able of (43).

Proof of Theorem 8 is provided in Appendix B.4.1.
The following Definition 9 provides a test to check if a

point 𝑃1 is on a segment [𝑂1𝑅1
].

Definition 9. Suppose 𝑃1 ∈
(

𝑂1𝑅1
)

a point on the line
(

𝑂1𝑅1
)

. One can deduce that
(1) If

(

‖

‖

𝑃1𝑂1
‖

‖

≤ ‖

‖

𝑂1𝑅1
‖

‖

)

&
(

‖

‖

𝑃1𝑅1
‖

‖

≤ ‖

‖

𝑂1𝑅1
‖

‖

)

, 𝑃1
is a point of the segment

[

𝑂1𝑅1
]

, i.e. 𝑃1 ∈
[

𝑂1𝑅1
]

;
(2) If

(

‖

‖

𝑃1𝑂1
‖

‖

> ‖

‖

𝑃1𝑅1
‖

‖

)

&
(

‖

‖

𝑃1𝑂1
‖

‖

> ‖

‖

𝑂1𝑅1
‖

‖

)

, 𝑃1
is not on the segment , i.e. 𝑃1 ∉

[

𝑂1𝑅1
]

, and the closest
extremity is 𝑅1;

(3) If
(

‖

‖

𝑃1𝑂1
‖

‖

< ‖

‖

𝑃1𝑅1
‖

‖

)

&
(

‖

‖

𝑃1𝑅1
‖

‖

> ‖

‖

𝑂1𝑅1
‖

‖

)

, 𝑃1
is not on the segment , i.e. 𝑃1 ∉

[

𝑂1𝑅1
]

, and the closest
extremity is 𝑂1.

The following Theorem 9 provides the closest point on a line
or segment to another single point.
Theorem 9. Consider a point 𝑃2. Let define 𝑂1 and 𝑅1
defining a line

(

𝑂1𝑅1
)

or a segment
[

𝑂1𝑅1
]

with 𝑉1 =
⃗𝑂1𝑅1 = 𝑂1 − 𝑅1 the main vector of the line/segment. One

can define
(1) 𝑆1 the closest point of 𝑃2 on the line

(

𝑂1𝑅1
)

where

𝑆1 = 𝑂1 +

(

𝑉1.𝑃2−𝑉1.𝑂1
‖

‖

‖

𝑉1
‖

‖

‖

2

)

𝑉1 ;

(2) 𝑆̄1 the closest point of 𝑃2 on the segment
[

𝑂1𝑅1
]

where

𝑆̄1 =

⎧

⎪

⎨

⎪

⎩

𝑅1 if
(

‖

‖

𝑆1𝑂1
‖

‖

> ‖

‖

𝑂1𝑅1
‖

‖

)

&
(

‖

‖

𝑆1𝑂1
‖

‖

> ‖

‖

𝑆1𝑅1
‖

‖

)

𝑂1 if
(

‖

‖

𝑆1𝑅1
‖

‖

> ‖

‖

𝑂1𝑅1
‖

‖

)

&
(

‖

‖

𝑆1𝑂1
‖

‖

< ‖

‖

𝑆1𝑅1
‖

‖

)

𝑆1 else.
(44)

Proof of Theorem 9 is provided in Appendix B.4.2.
Combining previous definitions and theorems, following

Theorem 10 provides a method to evaluate the two closest
points between two segments.
Theorem 10. Let define the two segments

[

𝑂1𝑅1
]

and
[

𝑂2𝑅2
]

with 𝑂1 ≠ 𝑅1 and 𝑂2 ≠ 𝑅2. Let define 𝑄1and
𝑄2 the closest points between the two lines

(

𝑂1𝑅1
)

and
(

𝑂2𝑅2
)

as defined in Theorem 8. The two closest points
𝑆̄1 ∈

[

𝑂1𝑅1
]

and 𝑆̄2 ∈
[

𝑂2𝑅2
]

between
[

𝑂1𝑅1
]

and
[

𝑂2𝑅2
]

can be expressed as following:
(1) If 𝑄1 ∈

[

𝑂1𝑅1
]

and 𝑄2 ∈
[

𝑂2𝑅2
]

, then one has
𝑆̄1 = 𝑄1 and 𝑆̄2 = 𝑄2.

(2) If 𝑄1 ∉
[

𝑂1𝑅1
]

or 𝑄2 ∉
[

𝑂2𝑅2
]

, at least one of 𝑆̄1
and 𝑆̄2 is an extremity of segments

[

𝑂1𝑅1
]

and
[

𝑂2𝑅2
]

. The
couple of closest points can so be expressed as

(

𝑆̄1, 𝑆̄2
)

=

⎧

⎪

⎨

⎪

⎩

(

𝑆̄(1)
1 , 𝑆̄(1)

2

)

if ‖

‖

‖

𝑆̄(1)
1 𝑆̄(1)

2
‖

‖

‖

< ‖

‖

‖

𝑆̄(2)
1 𝑆̄(2)

2
‖

‖

‖

(

𝑆̄(2)
1 , 𝑆̄(2)

2

)

else.
(45)

where

𝑆̄(1)
1 =

⎧

⎪

⎨

⎪

⎩

𝑅1 if
(

‖

‖

𝑄1𝑂1
‖

‖

> ‖

‖

𝑂1𝑅1
‖

‖

)

&
(

‖

‖

𝑄1𝑂1
‖

‖

> ‖

‖

𝑄1𝑅1
‖

‖

)

𝑂1 if
(

‖

‖

𝑄1𝑅1
‖

‖

> ‖

‖

𝑂1𝑅1
‖

‖

)

&
(

‖

‖

𝑄1𝑂1
‖

‖

< ‖

‖

𝑄1𝑅1
‖

‖

)

𝑄1 else
(46)

𝑆̄(2)
2 =

⎧

⎪

⎨

⎪

⎩

𝑅2 if
(

‖

‖

𝑄2𝑂2
‖

‖

> ‖

‖

𝑂2𝑅2
‖

‖

)

&
(

‖

‖

𝑄2𝑂2
‖

‖

> ‖

‖

𝑄2𝑅2
‖

‖

)

𝑂2 if
(

‖

‖

𝑄2𝑅2
‖

‖

> ‖

‖

𝑂2𝑅2
‖

‖

)

&
(

‖

‖

𝑄2𝑂2
‖

‖

< ‖

‖

𝑄2𝑅2
‖

‖

)

𝑄2 else
(47)

and 𝑆̄(1)
2 ∕𝑆̄(2)

1 are evaluated using Theorem 9 with 𝑆̄(1)
1 ∕𝑆̄(2)

2 .

Proof of Theorem 10 is provided in Appendix B.4.3.
A.2. Theorem Intersection between plane and

ellipsoid
The intersection between a plane  and an ellipsoid 𝑖,if it exists, is an ellipse in the plane  : the Theorem 11

provides a test which check if this ellipse exists, and so
deduce if 𝑖 ∩  ≠ ∅.
Theorem 11. Consider a plane 

(

𝑃 , 𝑛
)

as expressed in
Definition 5 and an ellipsoid of revolution 𝑖 as defined in
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Definition 2. The intersection between  and 𝑖 exist, 𝑖.𝑒.
𝑖 ∩  ≠ ∅, if the following condition (48) is satisfied:

(

𝑇1 ≥ 0
)

&
(

𝑇2 ≥ 0
) (48)

where

𝑇1 = 𝐴0𝐶0 − 𝐵2
0 (49)

𝑇2 =
(

𝐵0𝐷0 − 𝐴0𝐸0
)2 −

(

𝐷2
0 − 𝐴0𝐹0

) (

𝐵2
0 − 𝐴0𝐶0

)

(50)
with

𝐴0 =
𝛼̄2

𝛾̄2
+ 𝑐2

𝑎2
𝐵0 =

𝛼̄𝛽
𝛾̄2

𝐶0 =
𝛽2

𝛾̄2
+ 𝑐2

𝑏2
𝐷0 =

𝛼̄𝛿
𝛾̄2

𝐸0 =
𝛽𝛿
𝛾̄2

𝐹0 =
𝛿2

𝛾̄2
− 𝑐2

and 𝛿 = −
(

𝛼̄𝑥̄𝑃 + 𝛽𝑦̄𝑃 + 𝛾̄ 𝑧̄𝑃
)

evaluated using ⃗̄𝑛 =
[

𝛼̄ 𝛽 𝛾̄
]𝑇 and 𝑃 =

[

𝑥̄𝑃 , 𝑦̄𝑃 , 𝑧̄𝑃
]𝑇 expressed as

𝑃𝑖
= 𝑴𝒄

𝑖 (𝑃 − 𝐶𝑖|
) (51)

⃗̄𝑛𝑖
= 𝑴𝒄

𝑖𝑛 (52)
where 𝑴𝒄

𝑖 associated to 𝑖 as be defined in Definition 2.
Else, if (48) not satisfy, one has 𝑖 ∩  = ∅.

Proof of Theorem 11 is provided in Appendix B.5.
A.3. Theorem obstacle on the path

The following Theorem 12 provides a method to check
the conditions of Definition 8, 𝑖.𝑒. if there is an obstacle on
the path.
Theorem 12. For a system 𝑖 and following Definition 8,
an ellipsoid obs is on the path between 𝑅𝑖 and its target 𝑅∗

𝑖
if the three following conditions are satisfied:

(1) 𝑉obs.𝑛𝑘 ≠ 0 where 𝑉obs = ⃗𝐹1,obs𝐹2,obs and 𝑛𝑘 =
⃗𝑂𝑖𝑅𝑖 ∧ ⃗𝑂𝑖𝑅∗

𝑖 ;
(2) 𝑃𝑎 ∈

[

𝐹1,obs𝐹2,obs
]

where 𝑃𝑎 =
[

𝑥𝑎 𝑦𝑎 𝑧𝑎
]𝑇 is

the solution of the system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝑣𝑥 + 𝑥𝐹1,obs
= 𝑥𝑎

𝑡𝑣𝑦 + 𝑦𝐹1,obs
= 𝑦𝑎

𝑡𝑣𝑧 + 𝑧𝐹1,obs
= 𝑧𝑎

𝛼𝑘𝑥𝑎 + 𝛽𝑘𝑦𝑎 + 𝛾𝑘𝑧𝑎 = 0

(53)

where 𝑥𝑎, 𝑦𝑎, 𝑧𝑎 and 𝑡 are the unknown variables with
𝐹1,obs =

[

𝑥𝐹1,obs
𝑦𝐹1,obs

𝑧𝐹1,obs

]𝑇 ,
⃗𝐹1,obs𝐹2,obs =

[

𝑣𝑥 𝑣𝑦 𝑣𝑧
]

, 𝑛𝑘 =
[

𝛼𝑘 𝛽𝑘 𝛾𝑘
]𝑇

and 𝛿𝑘 = −
(

𝛼𝑘𝑥𝑂,𝑖 + 𝛽𝑘𝑦𝑂,𝑖 + 𝛾𝑘𝑧𝑂,𝑖
)

;

(3) 𝑇3 = 0 with

𝑇3 = 𝑂𝑖𝑅𝑖𝑅∗
𝑖
−
(

𝑂𝑖𝑅𝑖𝑃𝑎 +𝑂𝑖𝑃𝑎𝑅∗
𝑖
+𝑃𝑎𝑅𝑖𝑅∗

𝑖

)

(54)

where 𝐴𝐵𝐶 =
‖

‖

‖

𝐴𝐵∧𝐴𝐶‖‖
‖

2 is the area of a triangle 𝐴𝐵𝐶 .

Proof of Theorem 12 is provided in Appendix B.6. The test
𝑃𝑎 ∈

[

𝐹1,obs𝐹2,obs
] can be performed using Definition 9 in

Appendix A.1.
A.4. Theorem calculation of the tangent circle

𝑖,𝑗tangent
For each obstacle  𝑖,𝑗obs ∈ 𝑖bypass (𝑡), we can define a

circle 𝑖,𝑗tangent
(

 𝑖,𝑗obs, 𝑂𝑖, 𝑟
𝑖,𝑗
tangent

)

tangent to  𝑖,𝑗obs, centered in
𝑂𝑖 and with a radius 𝑟𝑖,𝑗tangent, as illustrated in green in Figure 9
and which can be evaluated using Theorem 13.
Theorem 13. For a system 𝑖 and an ellipsoid obstacle 𝑗 ,
the circle 𝑖,𝑗tangent

(

𝑗 , 𝑂𝑖, 𝑟
𝑖,𝑗
tangent

)

center in 𝑂𝑖 is tangent to

𝑗 with the radius 𝑟𝑖,𝑗tangent expressed as

𝑟𝑖,𝑗tangent = min
𝑋(𝑘)∈𝑆𝑋

(√

𝑋𝑇
(𝑥)𝑋𝑐

)

(55)

where𝑋𝑐 = 𝑴𝒄
𝑗 (𝑂𝑖| − 𝐶𝑗|

)

the coordinate of𝑂𝑖 in 𝑗 ,
𝑆𝑋 =

{

𝑋(𝑘)| 𝑘 ∈
[

1…𝑁𝑠
]

, Im
(

𝑋(𝑘)
)

= 0
}

is the set of the
𝑁𝑠 possible solution of the following system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏2𝑗
(

𝑦(𝑘) − 𝑦𝑐
) (

𝑧(𝑘) − 𝑧𝑐
)

= 𝑐2𝑗
(

𝑧(𝑘) − 𝑧𝑐
) (

𝑦(𝑘) − 𝑦𝑐
)

𝑐2𝑗
(

𝑧(𝑘) − 𝑧𝑐
) (

𝑥(𝑘) − 𝑥𝑐
)

= 𝑎2𝑗
(

𝑥(𝑘) − 𝑥𝑐
) (

𝑧(𝑘) − 𝑧𝑐
)

(𝑥(𝑘)−𝑥𝑐)2
𝑎2𝑗

+ (𝑦(𝑘)−𝑦𝑐)2
𝑏2𝑗

= 1 − (𝑧(𝑘)−𝑧𝑐)2
𝑐2𝑗

(56)

with𝑋𝑐 =
[

𝑥𝑐 𝑦𝑐 𝑧𝑐
]𝑇 and𝑋(𝑘) =

[

𝑥(𝑘) 𝑦(𝑘) 𝑧(𝑘)
]𝑇 .

The proof of Theorem 13 is provided in Appendix B.8. Note
that 𝑗 must be replaced by ̄𝑗 in Theorem 13 to avoid the
detection of collision.
A.5. Algorithm summarized target choice

The choice of 𝑅̂∗
𝑖 (𝑡) and the bypass strategy is summa-

rized in Algorithm 6 in Appendix .

B. Prove of theorems
B.1. Proof Definition 2

The coordinate of 𝐹 𝑖1 and 𝐹 𝑖2 are supposed known in .
The ellipsoid of revolution 𝑖 can be expressed in 𝑖 as

𝑥2𝑖

𝑎2𝑖
+
𝑦2𝑖

𝑏2𝑖
+
𝑧2𝑖

𝑐2𝑖
= 1. (57)
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Algorithm 6 Choice of target 𝑅̂∗
𝑖 : bypass strategy

Require: 𝑖obs
1: 𝑖bypass (𝑡) = ∅
2: 𝑖𝑟,tangent (𝑡) = ∅
3: % Creation of the list of obstacles on the path
4: for 𝑗 in 1 ∶ 𝑁obs do
5:  𝑖,𝑗obs = 𝑖obs(𝑗)
6: if ( 𝑖,𝑗obs ∉ 𝑃 )&(𝑑𝑗 ∩ 𝑂𝑖𝑅𝑖𝑅∗

𝑖 ≠ ∅) then
7: 𝑖bypass (𝑡) ←  𝑖,𝑗obs
8: Evaluation of 𝑟𝑖,𝑗tangent using (55)
9: 𝑖𝑟,tangent (𝑡) ← 𝑟𝑖,𝑗tangent

10: end if
11: end for
12: % Choice of the target
13: if 𝑖bypass (𝑡) = ∅ then
14: 𝑅̂∗

𝑖 = 𝑅∗
𝑖 % if no obstacle on the path

15: else
16: Evaluation of 𝑟𝑖bypass using (32)
17: Evaluation of 𝑅̂∗

𝑖 (𝑡) using (34)
18: end if
19: return 𝑅̂∗

𝑖

Evaluation of matrix 𝑴𝒄
𝑖 Let’s define 𝜃𝑖 and 𝜓𝑖 the

orientation of vector ⃗𝐹1𝐹2 in  such that
𝜃𝑖 = atan2

(

𝑦𝐹2,𝑖 − 𝑦𝐹1,𝑖, 𝑥𝐹2,𝑖 − 𝑥𝐹1,𝑖
)

(58)

𝜓𝑖 =

{asin
( 𝑧𝐹2 ,𝑖−𝑧𝐹1 ,𝑖
‖𝐹1,𝑖𝐹2,𝑖‖

)

if ‖

‖

𝐹1,𝑖𝐹2,𝑖‖‖ > 0

0 else
(59)

and note that ⃗𝐹1,𝑖𝐹2,𝑖
‖

‖

‖

⃗𝐹1,𝑖𝐹2,𝑖
‖

‖

‖

= 𝑎𝑖
‖𝑎𝑖‖

. Since 𝑖 is an ellipsoid
of revolution around 𝑎, 𝑖.𝑒. 𝑏𝑖 = 𝑐𝑖, a third rotation is
unnecessary.

Let’s define the vector 𝑋𝑖
=

[

𝑥𝑖
𝑦𝑖

𝑧𝑖

] and
the rotation matrices 𝑹

(

𝜃𝑖
)

𝑦𝑖
and 𝑹

(

𝜓𝑖
)

𝑧𝑖
around axis 𝑏⃗𝑖

and 𝑐𝑖 such that

𝑹
(

𝜃𝑖
)

𝑦𝑖
=
⎡

⎢

⎢

⎣

cos
(

𝜃𝑖
)

0 − sin
(

𝜃𝑖
)

0 1 0
sin

(

𝜃𝑖
)

0 cos
(

𝜃𝑖
)

⎤

⎥

⎥

⎦

(60)

𝑹
(

𝜓𝑖
)

𝑧𝑖
=
⎡

⎢

⎢

⎣

cos
(

𝜓𝑖
)

− sin
(

𝜓𝑖
)

0
sin

(

𝜓𝑖
)

cos
(

𝜓𝑖
)

0
0 0 1

⎤

⎥

⎥

⎦

. (61)

Let define 𝐶𝑖 =
[

𝑥𝑐,𝑖, 𝑦𝑐,𝑖, 𝑧𝑐,𝑖
]𝑇
 the center of 𝑖 ex-

pressed in  such that

𝐶𝑖 =
⃗𝐹1,𝑖𝐹2,𝑖
2

+ 𝐹1,𝑖. (62)
To pass from the referential 𝑖 to , let first define

the intermediate frame of reference (2)
𝑖 where (2)

𝑖 is a

translation of referential  such that its origin is center in𝐶𝑖.
One can get 𝑋(2)

𝑖
in (2)

𝑖 from 𝑋𝑖
, 𝑹 (

𝜃𝑖
)

𝑦𝑖
and 𝑹

(

𝜓𝑖
)

𝑧𝑖such that
𝑋(2)

𝑖
= 𝑹

(

𝜓𝑖
)

𝑧𝑹
(

𝜃𝑖
)

𝑦𝑋𝑖

=
⎡

⎢

⎢

⎣

cos
(

𝜃𝑖
)

cos
(

𝜓𝑖
)

− sin
(

𝜓𝑖
)

− sin
(

𝜃𝑖
)

cos
(

𝜓𝑖
)

cos
(

𝜃𝑖
)

sin
(

𝜓𝑖
)

cos
(

𝜓𝑖
)

− sin
(

𝜃𝑖
)

sin
(

𝜓𝑖
)

sin
(

𝜃𝑖
)

0 cos
(

𝜃𝑖
)

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

𝑥𝑖
𝑦𝑖
𝑧𝑖

⎤

⎥

⎥

⎦

(63)

and 𝑋 in  can be obtained with 𝑋 = 𝑋(2)
𝑖

+ 𝐶𝑖.
Let’s find now an expression of 𝑖 in . In the same

way that (63) provides𝑋(2)
𝑖

from𝑋𝑖
, on can get𝑋𝑖

from
𝑋(2)

𝑖
using the opposite transformation

𝑋𝑖
= inv

(

𝑹
(

−𝜓𝑖
)

𝑧𝑖
𝑹
(

−𝜃𝑖
)

𝑦𝑖

)

𝑋(2)
𝑖

= 𝑴𝒄
𝑖 (𝑋 − 𝐶𝑖

) (64)

where 𝑴𝒄
𝑖 =

⎡

⎢

⎢

⎣

𝑑 𝑒 𝑓
𝑔 ℎ 𝑖
𝑗 𝑘 𝑙

⎤

⎥

⎥

⎦

with

𝑑 = cos
(

𝜃𝑖
)

cos
(

𝜓𝑖
) (65)

𝑒 = cos
(

𝜃𝑖
)

sin
(

𝜓𝑖
) (66)

𝑓 = sin
(

𝜃𝑖
) (67)

𝑔 = − sin
(

𝜓𝑖
) (68)

ℎ = cos
(

𝜓𝑖
) (69)

𝑖 = 0 (70)
𝑗 = − sin

(

𝜃𝑖
)

cos
(

𝜓𝑖
) (71)

𝑘 = − sin
(

𝜃𝑖
)

sin
(

𝜓𝑖
) (72)

𝑙 = cos
(

𝜃𝑖
) (73)

Evaluation of matrices 𝑴𝒂 and 𝑴𝒃 Consider first 𝐶𝑖 =
03×1, so (2)

𝑖 = . Based on (64), one has
⎧

⎪

⎨

⎪

⎩

𝑥2𝑖
= (𝑥𝑑 + 𝑦𝑒 + 𝑧𝑓 )2

𝑦2𝑖
= (𝑥𝑔 + 𝑦ℎ + 𝑧𝑖)2

𝑧2𝑖
= (𝑥𝑗 + 𝑦𝑘 + 𝑧𝑙)2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥2𝑖
= 𝑥2𝑑2 + 𝑦2𝑒2 + 𝑧2𝑓 2

+2𝑥𝑦𝑑𝑒 + 2𝑥𝑧𝑑𝑓 + 2𝑦𝑧𝑒𝑓
𝑦2𝑖

= 𝑥2𝑔2 + 𝑦2ℎ2 + 𝑧2𝑖2

+2𝑥𝑦𝑔ℎ + 2𝑥𝑧𝑔𝑖 + 2𝑦𝑧ℎ𝑖
𝑧2𝑖

= 𝑥2𝑗2 + 𝑦2𝑘2 + 𝑧2𝑙2

+2𝑥𝑦𝑗𝑘 + 2𝑥𝑧𝑗𝑙 + 2𝑦𝑧𝑘𝑙

(74)
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Injecting (74) inside (57), one gets
𝑥2𝑖

𝑎2
+
𝑦2𝑖

𝑏2
+
𝑧2𝑖

𝑐2
= 1 (75)

𝑥2
(

𝑑2

𝑎2𝑖
+
𝑔2

𝑏2𝑖
+
𝑗2

𝑐2𝑖

)

+ 𝑦2
(

𝑒2

𝑎2𝑖
+ ℎ2

𝑏2𝑖
+ 𝑘2

𝑐2𝑖

)

+𝑧2
(

𝑓 2

𝑎2𝑖
+ 𝑖2

𝑏2𝑖
+ 𝑙2

𝑐2𝑖

)

+ 2𝑥𝑦

(

𝑑𝑒
𝑎2𝑖

+
𝑔ℎ
𝑏2𝑖

+
𝑗𝑘
𝑐2𝑖

)

+2𝑥𝑧

(

𝑑𝑓
𝑎2𝑖

+
𝑔𝑖
𝑏2𝑖

+
𝑗𝑙
𝑐2𝑖

)

+ 2𝑦𝑧

(

𝑒𝑓
𝑎2𝑖

+ ℎ𝑖
𝑏2𝑖

+ 𝑘𝑙
𝑐2𝑖

)

= 1

(76)

𝑥2𝑨 + 𝑦2𝑩 + 𝑧2𝑪 + 2𝑥𝑦𝑫 + 2𝑥𝑧𝑬 + 2𝑦𝑧𝑭 = 1
(77)

with
𝑨 = 𝑑2

𝑎2𝑖
+
𝑔2

𝑏2𝑖
+
𝑗2

𝑐2𝑖
(78)

𝑩 = 𝑒2

𝑎2𝑖
+ ℎ2

𝑏2𝑖
+ 𝑘2

𝑐2𝑖
(79)

𝑪 =
𝑓 2

𝑎2𝑖
+ 𝑖2

𝑏2𝑖
+ 𝑙2

𝑐2𝑖
(80)

𝑫 = 𝑑𝑒
𝑎2𝑖

+
𝑔ℎ
𝑏2𝑖

+
𝑗𝑘
𝑐2𝑖

(81)

𝑬 =
𝑑𝑓
𝑎2𝑖

+
𝑔𝑖
𝑏2𝑖

+
𝑗𝑙
𝑐2𝑖

(82)

𝑭 =
𝑒𝑓
𝑎2𝑖

+ ℎ𝑖
𝑏2𝑖

+ 𝑘𝑙
𝑐2𝑖

(83)

The equation (77) can be rewritten as
0 =𝑋̄𝑇𝑴𝒂𝑋̄ (84)

where 𝑋̄ =
[

𝑥 𝑦 𝑧 1
]𝑇 and

𝑴𝒂 =

⎡

⎢

⎢

⎢

⎣

𝑨 𝑫 𝑬 0
𝑫 𝑩 𝑭 0
𝑬 𝑭 𝑪 0
0 0 0 −1

⎤

⎥

⎥

⎥

⎦

. (85)

(77) and (84) are the general expression of 𝑖 in (2)
𝑖 .

To obtain the general expression of 𝑖 in , we must add
the translation of the center 𝐶𝑖 of 𝑖. This translation can be
accomplished using the matrix

𝑻 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0

−𝑥𝑖𝑐 −𝑦𝑖𝑐 −𝑧𝑖𝑐 1

⎤

⎥

⎥

⎥

⎦

(86)

such that
0 =𝑋̄𝑇𝑻𝑴𝒂𝑻 𝑇 𝑋̄ (87)

with 𝑋̄ =
[

𝑥 𝑦 𝑧 1
]𝑇 . We note 𝑴𝒃 = 𝑻𝑴𝒂𝑻 𝑇 .

B.2. Proof Definition 3
Let’s show the tether 𝑖 is include inside the ellipsoid of

revolution 𝑖 as defined in Definitions 1 and 2.
The tether is a cable attached in two points: 𝑂𝑖 and 𝑅𝑖.Based on the gardener’s method, it can be shown a cable can

drawn an ellipse corresponding to the maximum distances it
can reach, where the two stakes are here 𝑂𝑖 and 𝑅𝑖. In three
dimensions, this ellipse becomes an ellipsoid of revolution
named 𝑖. Thus, one can observe that 𝑂𝑖 and 𝑅𝑖 are the
two focal of 𝑖 such that 𝐹1 = 𝑂𝑖 and 𝐹2 = 𝑅𝑖. This
ellipsoid 𝑖 can be expressed using the parameters defined
in Definition 1 and 2, and so 𝜃𝑖 and 𝜓𝑖 can be evaluated
using (6) and (7) using 𝐹1 = 𝑂𝑖 and 𝐹2 = 𝑅𝑖. One also
has 𝑑𝑖 = ‖

‖

𝐹1𝐹2‖‖ = ‖

‖

𝑂𝑖𝑅𝑖‖‖ the distance between the two
focal.

Let’s find now the other parameters 𝑎𝑖,𝑏𝑖 and 𝑐𝑖 of 𝑖.First, since 𝑖 is an ellipsoid of revolution, one has 𝑏𝑖 = 𝑐𝑖and so we can study 𝑎𝑖 and 𝑏𝑖 in the plane with an ellipse. In
the following section, parameters used for the demonstration
are illustrated on Figure 15.

Let’s studied first 𝑏𝑖 = ‖

‖

𝐶𝑖𝐵‖‖ with 𝐶𝑖 the center of
the ellipse. As illustrated in the top subfigure of Figure 15,
when the tether is stretched to the point 𝐵, it forms two
rectangular triangles 𝐶𝑖𝑂𝑖𝐵 and 𝐶𝑅𝐵. One has ‖

‖

𝑂𝑖𝐶𝑖‖‖ =
‖𝑂𝑖𝑅𝑖‖

2 = 𝑑𝑖
2 and ‖

‖

𝑂𝑖𝐵‖‖ = 𝐿𝑖
2 because the half of the

tether’s length 𝐿𝑖. Using Pythagoras theorem, one gets 𝑏𝑖 =
√

‖

‖

𝑂𝑖𝐵‖‖
2 − ‖

‖

𝑂𝑖𝐶𝑖‖‖
2 =

√

(

𝐿𝑖
2

)2
−
(

𝑑𝑖
2

)2.
Let’s studied now 𝑎𝑖 = ‖𝐴𝐶‖. As illustrated in the

bottom subfigure of Figure 15, when the tether is stretched
to the point 𝐴, one has 𝐿𝑖 = ‖

‖

𝑅𝑖𝐴‖‖ + ‖

‖

𝐴𝑖𝑂𝑖‖‖ = 𝑑𝑖 + 2𝑎̄𝑖.
Moreover, one has 𝑎𝑖 = ‖

‖

𝐴𝐶𝑖‖‖ = 𝑑𝑖
2 + 𝑎̄𝑖. Thus, one get

𝑎̄𝑖 = 𝑎𝑖 −
𝑑𝑖
2 and so

𝐿𝑖 = 𝑑𝑖 + 2𝑎̄𝑖

𝐿𝑖 = 𝑑𝑖 + 2
(

𝑎𝑖 −
𝑑𝑖
2

)

𝑎𝑖 =
𝐿𝑖
2
. (88)

B.3. Proof of Theorem 5
We desire to know if between two known instants 𝑡𝑘and 𝑡𝑘+1 there exist an instant 𝑡 ∈

[

𝑡𝑘, 𝑡𝑘+1
] such that the

segment [

𝑂𝑖𝑅𝑖
]

(𝑡) and the segment [

𝑂𝑗𝑅𝑗
]

(𝑡) are inter-
secting, 𝑖.𝑒. ∃𝑡𝑐𝑜𝑙𝑙𝑖 ∈

[

𝑡𝑘, 𝑡𝑘+1
] such that [𝑂𝑖𝑅𝑖

] (

𝑡𝑐𝑜𝑙𝑙𝑖
)

∩
[

𝑂𝑗𝑅𝑗
] (

𝑡𝑐𝑜𝑙𝑙𝑖
)

≠ ∅. We consider in this proof that the
system is discrete, so there is very few chance that the
instant 𝑡𝑐𝑜𝑙𝑙𝑖 corresponds to an instant 𝑡𝑘 and can therefore be
evaluated numerically: another way to detect the intersection
must be found.

Let’s first define 𝑆̄𝑖 (𝑡) ∈
[

𝑂𝑖𝑅𝑖
]

(𝑡) and 𝑆̄𝑗 (𝑡) ∈
[

𝑂𝑗𝑅𝑗
]

(𝑡) the closest points between the two main axis
between the ellipsoid 𝐿𝑖 (𝑡) and 𝐿𝑗 (𝑡) (Theorem 10 in
Appendix A.1 proposes a method to evaluate these points).
Let define the vector 𝑣𝑖𝑗 (𝑡) = 𝑆̄𝑗 (𝑡) − 𝑆̄𝑖 (𝑡).
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Figure 15: Ellipsoid parameters used for the proof.

Suppose there is an intersection between 𝑡𝑘 and 𝑡𝑘+1.
For 𝑡 ∈

[

𝑡𝑘, 𝑡𝑐𝑜𝑙𝑙𝑖
], the distance ‖

‖

‖

𝑆̄𝑗𝑆̄𝑖
‖

‖

‖

(𝑡) reduces since
becoming equal to zero. For 𝑡 ∈ [

𝑡𝑐𝑜𝑙𝑙𝑖, 𝑡𝑘+1
], the distance

‖

‖

‖

𝑆̄𝑗𝑆̄𝑖
‖

‖

‖

(𝑡) grows from zero to ‖

‖

‖

𝑆̄𝑗𝑆̄𝑖
‖

‖

‖

(

𝑡𝑘+1
). However, be-

tween 𝑡−𝑐𝑜𝑙𝑙𝑖 and 𝑡+𝑐𝑜𝑙𝑙𝑖, the direction of vector 𝑣𝑖𝑗 (𝑡) switches
to its opposite direction. Thus, one has 𝑣𝑖𝑗

(

𝑡−𝑐𝑜𝑙𝑙𝑖
)

.𝑣𝑖𝑗
(

𝑡+𝑐𝑜𝑙𝑙𝑖
)

≤
0. Then, if 𝑡𝑘 and 𝑡𝑘+1 induces a small displacement, 𝑖.𝑒.
|

|

|

‖

‖

‖

𝑣𝑖𝑗
(

𝑡𝑘
)

‖

‖

‖

− ‖

‖

‖

𝑣𝑖𝑗
(

𝑡𝑘+1
)

‖

‖

‖

|

|

|

< 𝜀 with 𝜀 > 0 relatively small,
then one has 𝑣𝑖𝑗

(

𝑡𝑘
)

.𝑣𝑖𝑗
(

𝑡𝑘+1
)

≤ 0.
B.4. Prove for theorems with closest points

between two lines and segments
B.4.1. Closest points between two lines

Let define two lines (𝑂1𝑅1
) and (

𝑂2𝑅2
) where𝑂1,𝑅1,

𝑂2 and 𝑅2 are points with coordinate expressed in . A
point 𝑃1 ∈

(

𝑂1𝑅1
) on the line (

𝑂1𝑅1
) can be expressed

as
𝑃1 = 𝑡1𝑉1 + 𝑂1 (89)
𝑉1 = 𝑅1 − 𝑂1 (90)

where 𝑡1 ∈ ]−∞,∞[ for a line (

𝑂1𝑅1
) and 𝑡1 ∈ [0, 1] for

the segment [𝑂1𝑅1
]. Similarly for a point 𝑃2 on line (𝑂2𝑅2

)

with parameters 𝑡2 and 𝑉2. Suppose the two lines are not
parallel, 𝑖.𝑒.

|

|

|

𝑉2.𝑉1
|

|

|

‖

‖

‖

𝑉2
‖

‖

‖

‖

‖

‖

𝑉1
‖

‖

‖

≠ 1.
The idea is that the shortest segment between two lines

must be perpendicular to the other lines. Let (𝑃1𝑃3
) be the

perpendicular line starting from a point 𝑃1 of the first line
and let define 𝑃3 such that

𝑃3 = 𝑡3𝑉3 + 𝑃1 (91)
where 𝑡3 ∈ ]−∞,∞[ and with 𝑉3 = 𝑉2 ∧ 𝑉1, 𝑖.𝑒. 𝑉3.𝑉2 = 0
and 𝑉3.𝑉1 = 0. Then, for this line (

𝑃1𝑃3
) meets also the

second line (

𝑂2𝑅2
), we need that 𝑃2 coincide with 𝑃3:

𝑃3 = 𝑃2
𝑡3𝑉3 + 𝑃1 = 𝑡2𝑉2 + 𝑂2

𝑡3𝑉3 +
(

𝑡1𝑉1 + 𝑂1
)

= 𝑡2𝑉2 + 𝑂2

𝑡3𝑉3 − 𝑡2𝑉2 + 𝑡1𝑉1 = 𝑂2 − 𝑂1 (92)
We have 𝑡1, 𝑡2 and 𝑡3 the unknown parameters, which can

be obtained by solving the system

𝑆3 =

⎧

⎪

⎨

⎪

⎩

𝑡3𝑣𝑥3 − 𝑡2𝑣𝑥2 + 𝑡1𝑣𝑥1 = 𝑥𝑂,2 − 𝑥𝑂,1
𝑡3𝑣𝑦3 − 𝑡2𝑣𝑦2 + 𝑡1𝑣𝑦1 = 𝑦𝑂,2 − 𝑦𝑂,1
𝑡3𝑣𝑧3 − 𝑡2𝑣𝑧2 + 𝑡1𝑣𝑧1 = 𝑧𝑂,2 − 𝑧𝑂,1

(93)

where for 𝑖 ∈ [1, 2, 3], 𝑉𝑖 =
[

𝑣𝑥,𝑖 𝑣𝑦,𝑖 𝑣𝑧,𝑖
]𝑇 and

𝑂𝑖 =
[

𝑥𝑂,𝑖 𝑦𝑂,𝑖 𝑧𝑂,𝑖
]𝑇 .

By solving the system (93) (resolution may depend of
presence of potential elements equal to zero), one can ex-
press the two closest points 𝑄1 and 𝑄2 of the lines (𝑂1𝑅1

)

and (

𝑂2𝑅2
) as

𝑄1 = 𝑂1 + 𝑡1𝑉1, (94)
𝑄2 = 𝑂2 + 𝑡2𝑉2. (95)

B.4.2. Closest points between a point and line or
segment

Following the same idea than in Appendix B.4.1, we
search the vector ⃗𝑆1𝑃2 orthogonal to 𝑉1. Since 𝑆1 can be
expressed as 𝑆1 = 𝑂1 + 𝑡1𝑉1 with 𝑡1 ∈ ℝ, one gets

𝑉1. ⃗𝑆1𝑃2 = 0

𝑉1.
(

𝑃2 − 𝑆1
)

= 0

𝑉1.
(

𝑃2 −
(

𝑂1 + 𝑡1𝑉1
))

= 0

𝑉1.𝑃2 − 𝑡1
‖

‖

‖

𝑉1
‖

‖

‖

2
− 𝑉1.𝑂1 = 0

𝑡1 =
𝑉1.𝑃2 − 𝑉1.𝑂1

‖

‖

‖

𝑉1
‖

‖

‖

2
(96)

and so
𝑆1 = 𝑂1 + 𝑡1𝑉1 (97)

is the closest point of 𝑃2 on the line (

𝑂1𝑅1
).

Let’s check now if this point 𝑆1 is on the segment
[

𝑂1𝑅1
]. Using Definition 9, one has

𝑆̄1 =

⎧

⎪

⎨

⎪

⎩

𝑅1 if (

‖

‖

𝑆1𝑂1
‖

‖

> ‖

‖

𝑂1𝑅1
‖

‖

)

&
(

‖

‖

𝑆1𝑂1
‖

‖

> ‖

‖

𝑆1𝑅1
‖

‖

)

𝑂1 if (

‖

‖

𝑆1𝑅1
‖

‖

> ‖

‖

𝑂1𝑅1
‖

‖

)

&
(

‖

‖

𝑆1𝑂1
‖

‖

< ‖

‖

𝑆1𝑅1
‖

‖

)

𝑆1 else.
(98)
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B.4.3. Closest points between two segments
Let define the two segments [

𝑂1𝑅1
] and [

𝑂2𝑅2
]. We

note 𝑆̄1 ∈
[

𝑂1𝑅1
] and 𝑆̄2 ∈

[

𝑂2𝑅2
] the two closest points

between [

𝑂1𝑅1
] and [

𝑂2𝑅2
].

Particular case: 𝑂1 = 𝑅1 and/or 𝑂2 = 𝑅2 Suppose
first that 𝑂1 = 𝑅1 and 𝑂2 = 𝑅2. Then the two closest points
are 𝑆̄1 = 𝑂1 and 𝑆̄2 = 𝑂2.

Suppose now that one of the two segments is a point,
𝑖.𝑒. 𝑂2 = 𝑅2. Then 𝑆̄2 = 𝑂2 and we can found 𝑆̄1 using
Theorem 9. Similarly if 𝑂1 = 𝑅1.
General case:𝑂1 ≠ 𝑅1 and𝑂2 ≠ 𝑅2 Suppose here that
𝑂1 ≠ 𝑅1 and 𝑂2 ≠ 𝑅2. Consider also 𝑄1and 𝑄2 the closest
points between the two lines (𝑂1𝑅1

) and (

𝑂2𝑅2
) as defined

in Theorem 8 and evaluated in Appendix B.4.3.
To find 𝑆̄1 and 𝑆̄2, let’s first evaluate 𝑄1and 𝑄2 and

consider the following cases:
1. If 𝑄1 ∈

[

𝑂1𝑅1
] and 𝑄2 ∈

[

𝑂2𝑅2
], 𝑖.𝑒. 𝑄1 and 𝑄2

are respectively on the segment [𝑂1𝑅1
] and [

𝑂2𝑅2
],

then one has 𝑆̄1 = 𝑄1 and 𝑆̄2 = 𝑄2.
2. If 𝑄1 ∉

[

𝑂1𝑅1
] or 𝑄2 ∉

[

𝑂2𝑅2
], one or both of

𝑆̄1 and 𝑆̄2 is an extremity of segments [

𝑂1𝑅1
] and

[

𝑂2𝑅2
]. We must perform the following tests to check

it.
Note that the test 𝑄1 ∈

[

𝑂1𝑅1
] and 𝑄2 ∈

[

𝑂2𝑅2
] can be

performed using Definition 9.
To find the solution in the second case, we must evaluate

1. the closest point 𝑆̄(2)
2 ∈

[

𝑂2𝑅2
] of the line (

𝑂1𝑅1
)

and then the closest point𝑆̄(2)
1 ∈

[

𝑂1𝑅1
] of 𝑆̄(2)

2 ,
2. the closest point 𝑆̄(1)

1 ∈
[

𝑂1𝑅1
] of the line (

𝑂2𝑅2
)

and then the closest point𝑆̄(1)
2 ∈

[

𝑂2𝑅2
] of 𝑆̄(1)

1 ,
3. Compare the distance ‖

‖

‖

𝑆̄(1)
1 𝑆̄(1)

2
‖

‖

‖

and ‖

‖

‖

𝑆̄(2)
1 𝑆̄(2)

2
‖

‖

‖

to
find the couple of solution corresponding to the short-
est distance.

Following section described the details of steps described
above.

Consider first 𝑄2. Based on Definition 9, the closest
point 𝑆̄(2)

2 of the segment [𝑂1𝑅1
] can be expressed as

𝑆̄(2)
2 =

⎧

⎪

⎨

⎪

⎩

𝑅2 if (

‖

‖

𝑄2𝑂2
‖

‖

> ‖

‖

𝑂2𝑅2
‖

‖

)

&
(

‖

‖

𝑄2𝑂2
‖

‖

> ‖

‖

𝑄2𝑅2
‖

‖

)

𝑂2 if (

‖

‖

𝑄2𝑅2
‖

‖

> ‖

‖

𝑂2𝑅2
‖

‖

)

&
(

‖

‖

𝑄2𝑂2
‖

‖

< ‖

‖

𝑄2𝑅2
‖

‖

)

𝑄2 else
(99)

Using Theorem 9, one gets 𝑆̄(2)
1 ∈

[

𝑂1𝑅1
] the closest

point of 𝑆̄(2)
2 to get the couple of solution

(

𝑆̄(2)
1 , 𝑆̄(2)

2

)

.
Consider now 𝑄1. Following the same calculation, one

can get a second couple of solution
(

𝑆̄(1)
1 , 𝑆̄(1)

2

)

.

We can now evaluate the distance ‖‖
‖

𝑆̄(1)
1 𝑆̄(1)

2
‖

‖

‖

and ‖‖
‖

𝑆̄(2)
1 𝑆̄(2)

2
‖

‖

‖to find the solution of our problem:

(

𝑆̄1, 𝑆̄2
)

=

⎧

⎪

⎨

⎪

⎩

(

𝑆̄(1)
1 , 𝑆̄(1)

2

)

if ‖

‖

‖

𝑆̄(1)
1 𝑆̄(1)

2
‖

‖

‖

< ‖

‖

‖

𝑆̄(2)
1 𝑆̄(2)

2
‖

‖

‖

(

𝑆̄(2)
1 , 𝑆̄(2)

2

)

else.
(100)

B.5. Proof intersection plane and ellipsoid
Consider a plane  as expressed in Definition 5 and an

ellipsoid of revolution 𝑖 as defined in Definition 2. The
intersection between  and 𝑖 is an ellipse: if this ellipse
exists, then there is a collision between  and 𝑖. Let’s find
the expression of the ellipse.

In the ellipsoid referential 𝑖 =
(

𝐶𝑖, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖
)

, 𝑖 can
be expressed as

𝑥2

𝑎2
+
𝑦2

𝑏2
+ 𝑧2

𝑐2
= 1 (101)

In the same way, based on Definition 1 and Definition 5,
the plane 

(

𝑃 , 𝑛
) can be expressed in 𝑖 such as

𝛼̄𝑥 + 𝛽𝑦 + 𝛾̄𝑧 + 𝛿 = 0 (102)

𝛿 = −
(

𝛼̄𝑥̄𝑃 + 𝛽𝑦̄𝑃 + 𝛾̄ 𝑧̄𝑃
) (103)

with ⃗̄𝑛 =
[

𝛼̄ 𝛽 𝛾̄
]𝑇 and 𝑃 =

[

𝑥̄𝑃 , 𝑦̄𝑃 , 𝑧̄𝑃
]𝑇 expressed

as

𝑃𝑖
= 𝑴𝒄

𝑖 (𝑃 − 𝐶𝑖|
) (104)

⃗̄𝑛𝑖
= 𝑴𝒄

𝑖𝑛 (105)
with 𝑴𝒄

𝑖 associated to 𝑖 as defined in Definition 2.
Consider first that 𝛾̄ ≠ 0. From (102), one gets 𝑧 =

−
(

𝛼̄
𝛾̄ 𝑥 +

𝛽
𝛾̄ 𝑦 +

𝛿
𝛾̄

)

and so

𝑧2 =
(

𝛼̄
𝛾̄
𝑥 +

𝛽
𝛾̄
𝑦 + 𝛿

𝛾̄

)2

=
(

𝛼̄
𝛾̄

)2
𝑥2 +

(

𝛽
𝛾̄

)2
𝑦2 +

(

𝛿
𝛾̄

)2

+ 2
𝛼̄𝛽
𝛾̄2
𝑥𝑦 + 2 𝛼̄𝛿

𝛾̄2
𝑥 + 2

𝛽𝛿
𝛾̄2
𝑦. (106)

Injecting (106) in (101), one gets

𝑥2

𝑎2
+
𝑦2

𝑏2
+

(

𝛼̄
𝛾̄ 𝑥 +

𝛽
𝛾̄ 𝑦 +

𝛿
𝛾̄

)2

𝑐2
− 1 = 0

(

𝛼̄2

𝛾̄2
+ 𝑐2

𝑎2

)

𝑥2 +
(

𝛽2

𝛾̄2
+ 𝑐2

𝑏2

)

𝑦2 +
(

𝛿2

𝛾̄2
− 𝑐2

)

+2
𝛼̄𝛽
𝛾̄2
𝑥𝑦 + 2 𝛼̄𝛿

𝛾̄2
𝑥 + 2

𝛽𝛿
𝛾̄2
𝑦 = 0
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𝐴0𝑥
2 + 2𝐵0𝑥𝑦 + 𝐶0𝑦

2 + 2𝐷0𝑥 + 2𝐸0𝑦 + 𝐹0 = 0
(107)

with

𝐴0 =
𝛼̄2

𝛾̄2
+ 𝑐2

𝑎2
𝐵0 =

𝛼̄𝛽
𝛾̄2

𝐶0 =
𝛽2

𝛾̄2
+ 𝑐2

𝑏2
𝐷0 =

𝛼̄𝛿
𝛾̄2

𝐸0 =
𝛽𝛿
𝛾̄2

𝐹0 =
𝛿2

𝛾̄2
− 𝑐2

(107) is the equation of the intersection between  and
𝑖, which is a conic equation. If there is an intersection,
then (107) is the equation of an ellipse. Finally (107) is the
equation of an ellipse if

(

𝑇1 > 0
)

&
(

𝑇2 > 0
) (108)

where
𝑇1 = 𝐴0𝐶0 − 𝐵2

0 (109)
𝑇2 =

(

𝐵0𝐷0 − 𝐴0𝐸0
)2 −

(

𝐷2
0 − 𝐴0𝐹0

) (

𝐵2
0 − 𝐴0𝐶0

)

.
(110)

The detail of this condition can be found here1 .
B.6. Proof of Theorem 12

Consider a tether system 𝑖 with an target position 𝑅∗
𝑖and an ellipsoid obstacle obs as defined in Definition 2, with

𝑑obs =
[

𝐹1,obs𝐹2,obs
] the vector of the main axis. obs is

considered on the path of 𝑖 if its main axis 𝑑obs will have to
intersect with the main axis 𝑑𝑖 of 𝐿𝑖 ∈ 𝑖.Consider a plane 𝑘 containing the triangle𝑂𝑖𝑅𝑖𝑃𝑖. The
intersection between  and the line (𝐹1,obs𝐹2,obs

) is an point
𝑃𝑎: one must check first if 𝑃𝑎 is on the segment 𝐹1,obs𝐹2,obs,then check if 𝑃𝑎 is inside the triangle 𝑂𝑖𝑅𝑖𝑅∗

𝑖 .
The plane 𝑘

(

𝑛𝑘, 𝑃𝑘
) which contain the triangle𝑂𝑖𝑅𝑖𝑃𝑖

can be expressed following Definition 5 with 𝑛𝑘 = ⃗𝑂𝑖𝑅𝑖 ∧
⃗𝑂𝑖𝑅∗
𝑖 and𝑃𝑘 = 𝑂𝑖. One can deduce 𝛼𝑘, 𝛽𝑘, 𝛾𝑘 such that 𝑛𝑘 =

[

𝛼𝑘 𝛽𝑘 𝛾𝑘
]𝑇 and 𝛿𝑘 = −

(

𝛼𝑘𝑥𝑂,𝑖 + 𝛽𝑘𝑦𝑂,𝑖 + 𝛾𝑘𝑧𝑂,𝑖
) .

A point 𝑃 on the line (

𝐹1,obs𝐹2,obs
) can be expressed as

𝑃 = 𝐹1,obs + 𝑡𝑉obs (111)
where 𝑉obs = ⃗𝐹1,obs𝐹2,obs =

[

𝑣𝑥 𝑣𝑦 𝑣𝑧
] and 𝑡 ∈ ℝ.

If 𝑉obs and 𝑛𝑘 are not orthogonal, 𝑖.𝑒. 𝑉obs.𝑛𝑘 ≠ 0, the
intersection 𝑃𝑎 =

[

𝑥𝑎 𝑦𝑎 𝑧𝑎
]𝑇 between (

𝐹1,obs𝐹2,obs
)

and 𝑘 is the solution of the following system
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝑣𝑥 + 𝑥𝐹1,obs = 𝑥𝑎
𝑡𝑣𝑦 + 𝑦𝐹1,obs = 𝑦𝑎
𝑡𝑣𝑧 + 𝑧𝐹1,obs = 𝑧𝑎
𝛼𝑘𝑥𝑎 + 𝛽𝑘𝑦𝑎 + 𝛾𝑘𝑧𝑎 = 0

(112)

1https://www.imo.universite-paris-saclay.fr/~daniel.perrin/CAPES/geometrie/ellipses.pdf

Figure 16: Repulsive vector 𝑣1 if it was generate using the
Jacobian of 𝑗 . Left: 𝑏𝑗 = 𝑐𝑗 = 0.8𝑎𝑗 . Right: 𝑏𝑗 = 𝑐𝑗 = 0.13𝑎𝑗

with 𝐹1,obs =
[

𝑥𝐹1,obs 𝑦𝐹1,obs 𝑧𝐹1,obs
]𝑇 and where 𝑥𝑎,

𝑦𝑎, 𝑧𝑎 and 𝑡 are the unknown variables.
Then, one must check if 𝑃𝑎 ∈

[

𝐹1,obs𝐹2,obs
] using for

example Definition 9. If 𝑃𝑎 ∉
[

𝐹1,obs𝐹2,obs
], main axis

𝑑obsof obs does not intersect with plane 𝑘 and so obs is
not on the path between 𝑅𝑖 and its target 𝑅∗

𝑖 .
If 𝑃𝑎 ∈

[

𝐹1,obs𝐹2,obs
], let’s check if 𝑃𝑎 is inside the

triangle 𝑂𝑖𝑅𝑖𝑅∗
𝑖 . The point 𝑃𝑎 is inside the triangle 𝑂𝑖𝑅𝑖𝑅∗

𝑖if the sum of the area of 𝑂𝑖𝑅𝑖𝑃𝑎, 𝑂𝑖𝑅∗
𝑖 𝑃𝑎 and 𝑅𝑖𝑅∗

𝑖 𝑃𝑎 is
equal to the area of the triangle 𝑂𝑖𝑅𝑖𝑅∗

𝑖 . Let’s note 𝐴𝐵𝐶the area of a triangle 𝐴𝐵𝐶 and one has

𝐴𝐵𝐶 =
‖

‖

‖

𝐴𝐵 ∧ 𝐴𝐶‖‖
‖

2
. (113)

So if one has 𝑇3 = 0 with 𝑇3 = 𝑂𝑖𝑅𝑖𝑅∗
𝑖

−
(

𝑂𝑖𝑅𝑖𝑃𝑎 +𝑂𝑖𝑃𝑎𝑅∗
𝑖
+𝑃𝑎𝑅𝑖𝑅∗

𝑖

)

, then 𝑃𝑎 is inside
the triangle 𝑂𝑖𝑅𝑖𝑅∗

𝑖 , and so obs is on the path between 𝑅𝑖and its target 𝑅∗
𝑖 . Else if 𝑇3 ≠ 0, obs is not on the path.

B.7. Calculation of vectors 𝑣1, 𝑣2 and 𝑣3
B.7.1. Choice of the repulsive field

The first idea to create the repulsive force 𝑣1 was to
use the Jacobian matrix𝑗 .While it offers an interesting
repulsion when the axes of the ellipsoid are more or less
equal, the repulsion created when the ellipsoid is flat makes
it more difficult for the ROV to go around the ellipsoid near
its extremities, as illustrated in Figure 16. Therefore, we
preferred to create our own repulsive field, which makes it
easier to get around the extremities of the ellipsoid while
pushing the ROV away from them. Moreover, the proposed
form is more adapted to bypass system 𝑗 which combine
several ellipsoids.
B.7.2. Description of calculation of 𝑣1

Consider first 𝑣0 = ⃗𝐶𝑗𝑅𝑖 = 𝑅𝑖 − 𝐶𝑗 the vector between
the center of 𝑗 and the ROV𝑅𝑖. Let’s also define 𝑣𝑑𝑗 =

𝑑𝑗
‖

‖

‖

𝑑𝑗
‖

‖

‖the unitary vector of the main axis 𝑗 . Let’s define 𝐸𝑗 and
𝐸̄𝑗 the nearest and farthest focal of 𝑗 from 𝑅𝑖 such as

𝐸𝑗 =

{

𝐹1,𝑗 if ‖

‖

‖

𝑅𝑖𝐹1,𝑗
‖

‖

‖

< ‖

‖

‖

𝑅𝑖𝐹2,𝑗
‖

‖

‖

𝐹2,𝑗 else (114)
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𝐸̄𝑗 =

{

𝐹2,𝑗 if ‖

‖

‖

𝑅𝑖𝐹1,𝑗
‖

‖

‖

< ‖

‖

‖

𝑅𝑖𝐹2,𝑗
‖

‖

‖

𝐹1,𝑗 else (115)

and let define 𝑣12 = 𝑅𝑖 − 𝐸𝑗 and 𝑣13 = 𝑅𝑖 − 𝐸̄𝑗 .
Let’s define𝐻 the projection of𝑅𝑖 on the line (𝐹1,𝑗𝐹2,𝑗

)

(of axis 𝑑𝑗) without need to calculate it. If ||
|

𝑣𝑑𝑗 .𝑣13
|

|

|

> 𝑑𝑗 ,
then 𝐻 is not on the segment [

𝐹1,𝑗𝐹2,𝑗
]. To create the

potential field 𝑣1 illustrated in Figure 16, three cases must
be considered: if 𝐻 ∈

[

𝐹1,𝑗𝐹2,𝑗
], then the ROV 𝑅𝑖 is

repulsed orthogonality to axis 𝑑𝑗 , which can be expressed
with 𝑣11 = 𝑣0 − 𝑣𝑑𝑗

(

𝑣𝑑𝑗 .𝑣0
)

. Else, the ROV 𝑅𝑖 is repulsed
from the closest focal 𝐸𝑗 , so in the direction 𝑣12.

One so have

⃗̄𝑣1 =

{

𝑣11 if 𝐻 ∈
[

𝐹1,𝑗𝐹2,𝑗
]

𝑣12 else (116)

which can be rewritten as

⃗̄𝑣1 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑅𝑖 − 𝐹1,𝑗 if
(

|

|

|

𝑣𝑑𝑗 .
⃗𝐹2,𝑗𝑅𝑖

|

|

|

> 𝑑𝑗
)

&
(

‖

‖

‖

𝑅𝑖𝐹1,𝑗
‖

‖

‖

< ‖

‖

‖

𝑅𝑖𝐹2,𝑗
‖

‖

‖

)

𝑅𝑖 − 𝐹2,𝑗 if
(

|

|

|

𝑣𝑑𝑗 .
⃗𝐹1,𝑗𝑅𝑖

|

|

|

> 𝑑𝑗
)

&
(

‖

‖

‖

𝑅𝑖𝐹1,𝑗
‖

‖

‖

> ‖

‖

‖

𝑅𝑖𝐹2,𝑗
‖

‖

‖

)

𝑣10 else.
(117)

with 𝑣10 = ⃗𝐶𝑗𝑅𝑖 − 𝑣𝑑𝑗
(

𝑣𝑑𝑗 .
⃗𝐶𝑗𝑅𝑖

)

.
Finally, we normalized 𝑣1 if this one is not equal to zero:

𝑣1 =

⎧

⎪

⎨

⎪

⎩

⃗̄𝑣1
‖

‖

‖

⃗̄𝑣1
‖

‖

‖

if ‖

‖

‖

⃗̄𝑣1
‖

‖

‖

≠ 0

03×1 else.
(118)

B.7.3. Description of calculation of 𝑣2 and 𝑣3The two 𝑣2 and 𝑣3 are “rotary” forces which help to
bypass the obstacle 𝑗 in direction of the objective 𝑅̂∗

𝑖 . Thus,
we desire to create potential field orthogonal to 𝑣1.

Since 𝑣1 is orthogonal to 𝑣𝑑𝑗 when 𝐻 ∈
[

𝐹1,𝑗𝐹2,𝑗
], let’s

define the three orthogonal axis 𝑣1, 𝑣𝑑𝑗 and 𝑣30 = 𝑣1 ∧ 𝑣𝑑𝑗 .
To consider the cases at the extremity where 𝑣1 and 𝑣𝑑𝑗 are
not orthogonal, we introduce 𝑣20 = 𝑣1 ∧ 𝑣30 and keep the
three vectors 𝑣1, 𝑣30 and 𝑣20.

𝑣1 pushes the ROV𝑅𝑖 away from the ellipsoid 𝑗 , so let’s
use 𝑣20 and 𝑣30 to lead the rotation around 𝑗 . However, we
would like that the rotation leads 𝑅𝑖 closer to 𝑅̂∗

𝑖 , so let’s
check if 𝑣20 and 𝑣30 turn in the right direction.

For 𝑣20, we use 𝑣30 as axis of rotation. Let 𝑣0 = 𝑅𝑖 −𝐶𝑗be the orientation of 𝑅𝑖 from the center of 𝑗 and 𝑣4 =

𝑅̂∗
𝑖 − 𝑅𝑖 be the shortest direction to the target 𝑅̂∗

𝑖 . We can
define the position 𝑅𝑖 as a point on the circle 2 of center
𝐶𝑗 , radius ‖

‖

𝑣0‖‖ and 𝑣30 as axis of rotation. So we can define
⃗̄𝑣rot2 = 𝑠

(

𝑣0 ∧ 𝑣30
) with 𝑠 ∈ {−1, 1} the tangents of 2,

and we define the direction 𝑠 of rotation 𝑣rot2 such that
⃗̄𝑣rot2.𝑣4 > 0, 𝑖.𝑒. in the shortest direction to the objective.
One gets

𝑣rot2 =
(

𝑣0 ∧ 𝑣30
) sign ((𝑣0 ∧ 𝑣30

)

.𝑣4
)

. (119)
We create so 𝑣2 based on vector 𝑣20 but with the direction

of 𝑣rot2 such that

𝑣2 =

{ 𝑣20
‖𝑣20‖

sign (𝑣20.𝑣rot2
) if ‖

‖

𝑣20‖‖ ≠ 0

03×1 else. (120)

In the same way for 𝑣30, using 𝑣𝑑𝑗 instead of 𝑣30 as axis
of rotation, one gets

𝑣rot3 =
(

𝑣0 ∧ 𝑣𝑑𝑗
)

sign
((

𝑣0 ∧ 𝑣𝑑𝑗
)

.𝑣4
)

(121)
and so

𝑣3 =

{ 𝑣30
‖𝑣30‖

sign (𝑣30.𝑣rot3
) if ‖

‖

𝑣30‖‖ ≠ 0

0⃗3 else.
(122)

Finally, the three forces are combined with the ration
𝑓 𝑖,𝑗𝑟 = 2𝑣1+𝑣2+𝑣3

‖2𝑣1+𝑣2+𝑣3‖
such that the action of 𝑣1 remains

dominant over 𝑣2 and 𝑣3 since it is 𝑣1 which guarantee the
absence of collision with 𝑗 .
B.8. Proof of Theorem 13

Consider the ellipsoid  𝑖,𝑗obs in its own frame 𝑗 as
defined in Definition 1. In 𝑗 , the equation of  𝑖,𝑗obs can be
expressed as

𝐸1 ∶
𝑥2

𝑎2𝑗
+
𝑦2

𝑏2𝑗
+ 𝑧2

𝑐2𝑗
= 1.

Evaluate now the position of𝑂𝑖|𝑗
, center of the tangent

sphere 𝑖,𝑗tangent, in the frame of reference 𝑗 :

𝑂𝑖|𝑗
= 𝑴𝒄

𝑗 (𝑂𝑖| − 𝐶𝑗|
)

with 𝐶𝑗| the center of  𝑖,𝑗obs. In 𝑗 the equation of sphere
𝑖,𝑗tangent can be expressed as

𝐸2 ∶
(

𝑥 − 𝑥𝑐
)2 +

(

𝑦 − 𝑦𝑐
)2 +

(

𝑧 − 𝑧𝑐
)2 = 𝑅2

with 𝑂𝑖|𝑗
=
[

𝑥𝑐 𝑦𝑐 𝑧𝑐
]𝑇
𝑗

and 𝑅 the radius we desire
to find.

At the common tangent point of the ellipse and the circle
noted 𝑋 =

[

𝑥 𝑦 𝑧
]𝑇 , the two volumes share a normal
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line 𝑛𝑖𝑗 . The vectors normal at point𝑋 =
[

𝑥 𝑦 𝑧
]𝑇 for

 𝑖,𝑗obs and 𝑖,𝑗tangent are

𝑛𝐸1
=

⎡

⎢

⎢

⎢

⎣

𝑑
𝑑𝑥𝐸1
𝑑
𝑑𝑦𝐸1
𝑑
𝑑𝑧𝐸1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

2 𝑥
𝑎2𝑗

2 𝑦
𝑏2𝑗

2 𝑧
𝑐2𝑗

⎤

⎥

⎥

⎥

⎥

⎦

𝑛𝐸2
=

⎡

⎢

⎢

⎢

⎣

𝑑
𝑑𝑥𝐸2
𝑑
𝑑𝑦𝐸2
𝑑
𝑑𝑧𝐸2

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

2
(

𝑥 − 𝑥𝑐
)

2
(

𝑦 − 𝑦𝑐
)

2
(

𝑧 − 𝑧𝑐
)

⎤

⎥

⎥

⎦

.

A solution to find 𝑛𝑖𝑗 is to solve 𝑛𝐸1
∧ 𝑛𝐸2

= 0:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

4
(

𝑦 − 𝑦𝑐
) 𝑧
𝑐2𝑗

− 4
(

𝑧 − 𝑧𝑐
) 𝑦
𝑏2𝑗

= 0

4
(

𝑧 − 𝑧𝑐
) 𝑥
𝑎2𝑗

− 4
(

𝑥 − 𝑥𝑐
) 𝑧
𝑐2𝑗

= 0

4
(

𝑥 − 𝑥𝑐
) 𝑦
𝑏2𝑗

− 4
(

𝑦 − 𝑦𝑐
) 𝑥
𝑎2𝑗

= 0

⎧

⎪

⎨

⎪

⎩

𝑏2𝑗
(

𝑦 − 𝑦𝑐
)

𝑧 − 𝑐2𝑗
(

𝑧 − 𝑧𝑐
)

𝑦 = 0
𝑐2𝑗

(

𝑧 − 𝑧𝑐
)

𝑥 − 𝑎2𝑗
(

𝑥 − 𝑥𝑐
)

𝑧 = 0
𝑎2𝑗

(

𝑥 − 𝑥𝑐
)

𝑦 − 𝑏2𝑗
(

𝑦 − 𝑦𝑐
)

𝑥 = 0
(123)

Moreover, 𝑋 must be on the ellipsoid, so
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏2𝑗
(

𝑦 − 𝑦𝑐
)

𝑧 − 𝑐2𝑗
(

𝑧 − 𝑧𝑐
)

𝑦 = 0
𝑐2𝑗

(

𝑧 − 𝑧𝑐
)

𝑥 − 𝑎2𝑗
(

𝑥 − 𝑥𝑐
)

𝑧 = 0
𝑎2𝑗

(

𝑥 − 𝑥𝑐
)

𝑦 − 𝑏2𝑗
(

𝑦 − 𝑦𝑐
)

𝑥 = 0
𝑥2

𝑎2𝑗
+ 𝑦2

𝑏2𝑗
+ 𝑧2

𝑐2𝑗
= 1

(124)

We have too many equations to solve the system: we can
delete one

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏2𝑗
(

𝑦 − 𝑦𝑐
) (

𝑧 − 𝑧𝑐2
)

− 𝑐2𝑗
(

𝑧 − 𝑧𝑐
) (

𝑦 − 𝑦𝑐2
)

= 0
𝑐2𝑗

(

𝑧 − 𝑧𝑐
) (

𝑥 − 𝑥𝑐2
)

− 𝑎2𝑗
(

𝑥 − 𝑥𝑐
) (

𝑧 − 𝑧𝑐2
)

= 0
(𝑥−𝑥𝑐2)2

𝑎2𝑗
+ (𝑦−𝑦𝑐2)2

𝑏2𝑗
+ (𝑧−𝑧𝑐2)2

𝑐2𝑗
= 1

(125)
𝑁𝑠 solution can be found from (125): we keep only the

real solutions in𝑆𝑋 =
{

𝑋(𝑘)| 𝑘 ∈
[

1…𝑁𝑠
]

, Im (

𝑋(𝑘)
)

= 0
}

with 𝑋(𝑘) =
[

𝑥(𝑘) 𝑦(𝑘) 𝑧(𝑘)
] solution of (125).

Once (123) solved, the radius 𝑅 = 𝑟𝑖,𝑗tangent can be
expressed as

𝑟𝑖,𝑗tangent = min
𝑋(𝑘)∈𝑆𝑋

(√

𝑋𝑇
(𝑘)𝑋𝑐

)

(126)

with 𝑋𝑐 = 𝑂𝑖|𝑗
=
[

𝑥𝑐 𝑦𝑐 𝑧𝑐
]𝑇
𝑗

.
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(b) Initial position (c) First target reached (d) Second target reached (e) Distance ROVs to current target

(e) Three ROVs’ tethers searching to reach a target to form the bisectors of a triangle, then switch its position to reach the target position of the
ROV on its right. Colored ellipsoid represented the tether. Intersection between ellipsoid 𝐿 are authorized (“ellipsoid obstacle”).

(g) Initial position (h) First target reached (i) Second target reached (j) Distance ROVs to current target

(j) Scenario of Figure 17a with addition of personality.

(l) Initial position (m) Going to the first target (n) Situation bloked (o) Distance ROVs to current target

(o) Three ROVs searching to reach crossed target. Intersection between ellipsoid 𝐿 are not authorized: each ROVs are considered as a “full obstacle”
by other. The situation is blocked and loop after 𝑘 > 100, with no solution to unblock it.

(q) Initial position (r) First target reached (s) Second target reached (t) Distance ROVs to current target

(t) Same scenario than in Figure 17k with personalities. A solution can be found.

Figure 17: Simulations with several ROVs.
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