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ABSTRACT: A series of three compounds [Fe(salEen-5-I)2]Cl 1, [Fe(salEen-5-I)2]Br 2, and
[Fe(salEen-5-I)2]I 3 in which salEen-5-I = 2-{[(2-(ethylamino)ethyl]imino)methyl}-4-
iodophenolate is reported. Magnetic studies reveal that 2 exhibits an abrupt 2-step spin
crossover close to room temperature around 288 K, while 1 and 3 exhibit gradual incomplete
spin crossover spanning over 200 K. The use of structural parameters A−C to describe the
nearest and next nearest neighbor contacts allows us to rationalize not only the abruptness of
the spin crossover but also the stepped nature of the spin crossover in 2. Comparisons with
previously reported [Fe(salEen-5-Br)2]ClO4 and [Fe(salEen-5-I)2]ClO4 reveal that this
magnetostructural relationship is applicable to a wider range of members of this family of
complexes.

■ INTRODUCTION
Spin crossover (SCO) materials can interchange between low
spin (LS) and high spin (HS) states, relying on a d4−d7 metal
center exposed to changes in temperature, pressure, or light
irradiation.1,2 Spin crossover is accompanied by changes in the
material properties, including, color, magnetism, and dielectric
constants.2 Octahedral complexes are typically used in SCO
research with Mn(III),3−5 Fe(II),6,7 Fe(III),8−11 and Co-
(II)12,13 all widely explored. Among these systems, Fe(III)
complexes are often air-stable, exhibit good magnetic perform-
ance, and have been successfully employed in devices.14,15 In
the case of Fe(III), the most common coordination sphere is
an N4O2 donor set.

16−18 While this can be achieved with a
hexadentate ligand, the use of two tridentate ligands such as
Hqsal-X,16,19−21 Hthsa-X22−28 and Hsal-R-en-X29−32 {Hqsal-X
= X-2-[(8-quinolylimino)methyl]phenol, Hthsa = 2-(2-
hydroxybenzylidene)hydrazine-1-carbothioamide and Hsal-R-
en = 2-{[(2-(R-amino)ethyl)imino]methyl}phenol} is more
common. The reason is that these ligands can be easily
modified and permit control over the supramolecular contacts
in the solid state, which is critical for the magnetic performance
of SCO compounds.
Of particular relevance to the current work is the Hsal-R-en-

X ligand class.33−35 With these ligands, abrupt SCO in
[Fe(salEen-3-OMe)2]PF6,

36,37 SCO with 8 K hysteresis in
[Fe(salEen-4-OMe)2]NO3,

30 or near room temperature spin
crossover in [Fe(salEen-3,5-Br2)2]BPh4 have been reported.31

Large structural contraction upon SCO has been reported in

[Fe(salEen-4-Br)2]ClO4 and [Fe(salEen-5-I)2]ClO4, resulting
in thermosalient properties.38−40 These reports demonstrate
the effect of the halide substituents, but the effect of the anion
is still largely unexplored. In this report, we systematically
explore [Fe(salEen-5-I)2]halide including, Cl 1, Br 2, and I 3
and establish the key structural parameters which are able to
rationalize the magnetic behavior of these compounds.

■ RESULTS AND DISCUSSION
Synthesis and Characterization. The ligand HsalEen-5-I

was prepared (see Supporting Information (SI)) and used in
situ following the reported synthesis of HnaphEen and
HnaphBzen.41,42 The synthesis of [Fe(salEen-5-I)2]Cl 1 and
[Fe(salEen-5-I)2]Br 2 was carried out by reacting the ligand
with the corresponding Fe(III) salt in the presence of a base in
ethanol (Scheme 1). The resulting blue solid was further
purified by recrystallization from CH2Cl2/hexane to give 1 and
2 as black crystals. Synthesis of 3 was achieved by
postcomplexation anionic exchange from the nitrate complex
(Scheme 1), followed by recrystallization to yield the product
as black crystals. All the complexes were characterized by
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infrared (IR) and ultraviolet (UV)−visible spectroscopy, mass
spectrometry, and elemental analysis (see SI).
IR spectroscopy of 1−3 (Table S1 and Figure S1) shows

peaks corresponding to the amino group, aromatic rings,
aliphatic backbone, and coordinating imine. The imine stretch
is observed between 1616 and 1629 cm−1. This is lower than
the value of 1632 cm−1 reported in [Fe(salEen-5-I)2]ClO4,

39

especially in the case of chloride 1. The values are found to
increase as the size of the anion becomes larger; reflecting the
ability of each anion to form a N−H···anion interaction, which
affects the strength of the imine bond via the Fe center. The
absorption spectra of each complex (Figure S2) in dichloro-
methane (CH2Cl2) exhibit a broad peak corresponding to the
π−π* transition and the LMCT band. The presence of LMCT
bands at approximately 590 and 670 nm matches the reported
value for [Fe(salEen-5-I)2]ClO4,

39 [Fe(salEen-5-Br)2]ClO4
38

and [Fe(salMeen-5-Br)2]ClO4.
43 The position of λmax is also

consistent with HS Fe(III) as found in a range of [Fe-
(salRen)2]+ and [Fe(naphRen)2]+ complexes, exemplified by
[Fe(naphEen)2]halide.

41,44 It is also interesting that, despite
being identical cationic complexes, the distribution of the HS
and LS states in solutions of 1−3 is not the same. The intensity
of the peaks corresponding to the LS state is higher than the
HS in 1 and 2, while the trend is opposed in 3. This is likely a
result of the differing strengths of the N−H···anion
interactions in the solution state which favors different spin
states at the metal center.
Solid-State Structure. Suitable black crystals for single

crystal X-ray diffraction (SCXRD) of 1−3 were prepared from
the slow diffusion of CH2Cl2 to hexane. Compound 1 is
difficult to crystallize with the samples generally microcrystal-
line in appearance. The complexes are isostructural crystalliz-
ing in orthorhombic Pbcn at all temperatures (see Table S2 for
the full crystallographic details). The asymmetric unit contains

one salEen-5-I ligand with the halide counteranion and Fe(III)
center sitting in special positions with half-occupancy (Figure
1). Consequently, the coordination sphere is octahedral with
two crystallographically identical salEen-5-I ligands meridio-
nally disposed to one another. The anion is held in place by
N−H···X interactions with distances ranging from 2.21 to
almost 2.63 Å, and dependent on the size of the anion.
The structures of 1−3 were recorded at different temper-

atures (Table 1). At 150 K, the average Fe−O and Fe−N bond
lengths in 1 are 1.928 and 2.164 Å, respectively, indicative of
HS Fe(III). In contrast, at 123 K, the Fe−N/O bond lengths
in 2 are typical of LS Fe(III). The unusual magnetic profile of
2 (vide inf ra) led us to record structures at 275, 280, 293, and
305 K. Between 123 and 275 K, there is only a small increase
in the average Fe−N/O bond lengths suggesting that the
Fe(III) center remains mostly LS. At 280 K, the Fe−ligand
bonds continue to lengthen and are ca. 0.04 Å longer than at
123 K, suggesting that the Fe(III) center is now 30% HS. At
293 K, the Fe−N/O bonds reach 2.08 Å indicative of the full
HS state. Further heating to 305 K shows minimal change,
confirming that SCO is complete. This demonstrates that SCO
occurs mostly over 13 K consistent with abrupt SCO. These
conclusions are supported by the Σ and Θ parameters, which
have been measured with OctaDist.38,45,46 Meanwhile, the
average Fe−O/N bond lengths in 3 increase gradually from
1.97 to 2.05 Å upon heating from 293 to 425 K; nevertheless,
the value is still a little lower than that expected for a full HS
state. This indicates an incomplete gradual SCO within the
studied temperature range. Note that heating beyond 425 K
led to loss of crystallinity and slow degradation of the
compound.
Magnetic Studies. The magnetic profiles of 1−3 were

evaluated by SQUID and VSM magnetometry and displayed as
magnetic susceptibility (χMT, cm3 mol−1 K) versus temper-
ature (K) plots in Figure 2. While SCXRD data suggest that 1
should remain in the HS state, at least down to 150 K, we
observe a very gradual increase in susceptibility from 0.80 cm3

K mol−1 at 10 K to 1.81 cm3 K mol−1 at 300 K consistent with
incomplete SCO from a mostly LS state. We synthesized the
sample multiple times and observed the same profile each time.
The powder XRD (PXRD) data are broad and, in the case of 1,
almost amorphous. We have been able to obtain a reasonable
PXRD of 1 from an extremely fresh sample, but as noted
above, this compound is hard to crystallize and most samples,
on which all bulk measurements were done, are amorphous
(Figure S7). We hypothesize that two phases exist in 1 with
the HS phase, for which we have the crystal structure, being a
minor phase. Despite repeated attempts picking multiple
crystals, we have been unable to collect SCXRD data on this
major phase, which appears to be much less crystalline than the

Scheme 1. Synthesis of [Fe(salEen-5-I)2] Halide 1−3

Figure 1. Coordination sphere of 1 (150 K), 2 (123 K), and 3 (293 K) viewed along the a-axis.
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orthorhombic phase discussed above. Such polymorphism and
divergent magnetic behavior have also been observed in
[Fe(salEen-5-Br)2]ClO4,

47 where the orthorhombic and
monoclinic phases are accessible by altering the reaction
temperature and hence the crystallization rate. We made
similar attempts, but we are unable to separate the two phases
in 1.

Compound 2 shows an increase in the magnetic
susceptibility from 0.85 at 220 K to 4.73 cm3 K mol−1 at
300 K, indicating complete SCO (T1/2 at ca. 288 K). This
agrees well with SCXRD results and reports of SCO active
Fe(III) complex within the same ligand family.38,39,48,49

However, a first derivative also reveals a small peak at 278
K, indicating that the SCO is stepped occurring over ca. 40 K.
Repeated measurements on several different samples of 2

Table 1. Selected Bond Lengths and Octahedral Distortion Parameters for [Fe(salEen-5-I)2]X Complexes Where X = Cl, 1, Br,
2 and I, 3

1 2 3

T (K) 150 123 275 280 293 305 293 400 425
Fe1−Oave (Å) 1.928(3) 1.886(7) 1.878(4) 1.884(4) 1.913(13) 1.919(4) 1.877(3) 1.896(5) 1.904(5)
Fe1−Nimine (Å) 2.109(3) 1.933(8) 1.971(4) 1.987(4) 2.112(14) 2.088(4) 1.939(3) 2.052(4) 2.064(5)
Fe1−Namine (Å) 2.219(3) 2.031(8) 2.080(4) 2.105(4) 2.210(13) 2.214(4) 2.061(3) 2.167(5) 2.182(5)
Fe1−N/Oave (Å) 2.09 1.950 1.976 1.992 2.078 2.074 1.97 2.04 2.05
ΔFe−O/N (Å) 0.026 0.016 0.086 −0.004 0.07 0.01
Σ (deg) 66 34 36 39 55 61 36 49 53
Θ (deg) 264 99 120 135 229 240 109 191 208
ΔΣ, ΔΘ (deg) 2, 21 3, 15 16, 94 6, 11 13, 82 4, 17

Figure 2. Solid-state magnetic susceptibility (cm3 K mol−1) against the temperature (K) of 1−3 and the first derivative plot of 2.

Figure 3. Spacefill packing of [Fe(salEen-5-I)2]halide; 1 (left), 2 (center), and 3 (right) viewed along the c-axis in the HS state with the changes in
the normalized N−H···anion contacts upon spin crossover.
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reveal the same behavior confirming that the SCO is indeed
stepped. In the case of 3, χMT is 0.70 cm3 K mol−1 at 230 K
and indicative of LS Fe(III), while it is 3.50 cm3 K mol−1 at
425 K. This value is a little lower than that reported in fully HS
complexes38,39,48,49 and consistent with the SCXRD data
previously discussed. It follows that 3 exhibits a gradual and
incomplete SCO from LS to mHS over this temperature range.
It is also noteworthy that the T1/2 values of these compounds
increase as the anionic radii increase, indicating that larger
anions stabilize the LS state. This is consistent with the [Fe(4-
OH-sal-N-1,4,7,10)]halide family (4-OH-sal-N-1,4,7,10 = 1,8-
bis(4-hydroxysalicylaldiminato)-3,6-diazaoctane) where T1/2
increases from 275 to 375 K moving from chloride to iodide.50

In contrast, [Fe(atrz)3](halide)2 (atrz = 4-amino-1,2,4-
triazole) shows the opposite trend with the heavier halides
exhibiting lower T1/2 favoring the HS state,51 indicating that
the impact of the anion appears to be system specific.52

Magnetostructural Relationship. In an attempt to better
understand the different SCO profiles of the compounds, we
examined the packing in the structures. Note that we assume
that the orthorhombic phase of 1 remains in the HS state,
which is reasonable given that the magnetic studies suggest
that even at low temperature a small fraction of the bulk
material remains HS. This reveals that the packing in 1−3 is
dominated by robust N−H···anion and C−H···anion inter-
actions forming two-dimensional (2D) sheets in the ab plane
(Figure 3). The normalized N−H···anion contacts are between
0.76 and 0.82 (Table S3), indicating strong interactions, with 1
being the strongest.53,54 The values also increase gradually
upon warming and do not appear to be related to SCO from
LS to HS and level out throughout the period. The C−H···
anion contacts are clearly weaker with normalized contact
values around 1.0 and, in contrast, become slightly stronger

upon SCO from LS to HS. The aforementioned sheets then
stack along the c-axis via weak C−H···π and C−H···I
interactions indicating that the key contacts are primarily
within the sheets.
To quantify the changes that occur due to SCO, three

structural parameters, A−C, describing the square arrangement
of the cationic complexes within the sheets around the anion
have been defined (Figure 4a). First, it is clear that the
parameters increase as the anion becomes larger, whatever the
spin state, reflecting the space which is occupied in the lattice
by the corresponding anions (Table 2). The small values
observed for 1 suggest that there are minimum values of A−C
beyond which SCO becomes impossible (Figure 4b). In the
two SCO complexes, 2 and 3, the values decrease with
increasing temperature indicating that the anion becomes more
tightly trapped as the cations undergo SCO. The change is the
most marked in 2, consistent with the more abrupt SCO.
Interestingly, between 275 and 280 K, B and C decrease by
0.31 and 0.15 Å and thereafter remain unchanged. This is in
the region of the first step in the SCO profile. Upon heating
further, A decreases by almost 0.2 Å, and as this is the shortest
Fe···Fe distance, it correlates with the more abrupt SCO
regime. By comparison, in [Fe(salEen-I)2]ClO4, the changes in
A, B, and C are between 0.14 and 0.61 Å, and even larger than
in 2, resulting in a dramatic explosion of the crystals when they
are cooled, following a further shrinking in A and B
independent of SCO activity.39 Large contractions and
expansions in A, B, and C are also observed in [Fe(salEen-
Br)2]ClO4.

38 In this case, there is a gigantic difference of 2.09
and 1.63 Å in B and C between the structures at 250 and 300
K, which leads to explosion upon warming above 337 K. The
enormous change in the parameters manifests as a coupled

Figure 4. (a) Simplified illustration of [Fe(salEen-5-I)2]halide 1−3 viewed along the c-axis showing the three structural parameters, A−C and (b)
the trend in their values versus temperature.
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SCO-thermosalient effect which happens over a small
temperature range, resulting in a large hysteretic SCO profile.
In contrast, the changes in compound 3 are more subtle and

limited to no more than 0.1 Å. The more compact packing in
the latter structure results in a more gradual SCO. The square
grid observed in 1−3 is also found in many Hoffmann SCO
networks in which modeling suggests that subtle differences in
the ratio of the nearest and next nearest neighbor contacts can
result in the appearance of stepped, hysteretic, and more
complex SCO phenomena.55−57 While the complexes here are
held together by supramolecular interactions, it appears that
similar rules apply to 1−3 and the previously reported and
closely related compounds.58−62

To date, the impact that anions have on SCO properties
remains problematic largely because anions have so many
different shapes and sizes.52 Spherical anions like halides differ
only in size and their intermolecular distances, making them
the best-studied systems. In most cases, the smaller anion will
create a more compact packing and favor the LS state. For
example, in [Fe(trim)2](halide)2 (trim = 4-(4-imidazolylmeth-
yl)-2-(2-imidazolylmethyl)imidazole), the size of the halide
modifies the ligand field through imidazole N−H···halide
interaction distances and modulates the T1/2 of each
compound.63 A similar trend is noted in [Fe(4-OH-sal-N-
1,4,7,10)]halide50 and [Fe(atrz)3](halide)2

51 with T1/2 in the
order of chloride, bromide, and iodide, respectively. This trend
has also been found in [Fe(qsal-4-F)2]anion

64 and [Fe(qsal-
3,5-Cl)2]anion,

65 which include nonspherical counterions.
While our compounds broadly follow this trend, the chloride
system becomes trapped in the HS state, while the iodide
compound exhibits a rather gradual SCO. The more abrupt
SCO in 2 seems to rely on a degree of complementarity in the
size of the bromide anion with the lattice site which enables a
more effective transition of the spin state change.

■ CONCLUSIONS
In this work, we report three isostructural Fe(III) complexes,
[Fe(salEen-5-I)2]halide 1−3. The lack of any lattice solvent
allows direct comparison between the complexes where we
observe that larger anions increasingly favor the LS state.
Intriguingly, [Fe(salEen-5-I)2]Br exhibits a stepped SCO that
is close to room temperature. Structural studies reveal that a
combination of N−H···anion and C−H···anion interactions
connect the cations into 2D rhomboidal sheets. The use of
structural parameters to describe the nearest and next nearest
neighbor contacts allows us to rationalize not only the
abruptness of spin crossover but also the stepped nature of
the SCO in 2.56,57 This is supported by comparisons with
previously reported compounds38,39 and may suggest a way to
improve the SCO characteristics in this family by careful
crystal engineering.
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