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Abstract 

Understanding how distributed neuronal circuits integrate sensory information and generate 

behavior is a central goal of neuroscience. Yet, studying neuronal networks at single-cell 

resolution across the entire adult brain has been difficult in vertebrates due to their size and 

opacity. We address this challenge by introducing the fish Danionella translucida as a model 

organism to neuroscience. This teleost remains small and transparent even in adulthood, 

when neural circuits and behavior have matured. Despite its small brain, Danionella displays 

a rich set of complex behaviors, including courtship, shoaling, schooling and acoustic 

communication. To enable optical activity measurements and perturbations with genetically 

encoded tools, we established CRISPR/Cas9 genome editing and Tol2 transgenesis 

techniques. These features make Danionella translucida a promising model organism for the 

study of adult vertebrate brain function at single-cell resolution. 
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Introduction 

Information processing in the brain is based on the complex interplay of large populations of 

neurons that are distributed across the nervous system. When neurons are integrated into 

circuits, functions emerge that cannot be predicted from the properties of individual cells. The 

study of neural networks is therefore essential for our understanding of higher brain functions 

such as perception, motor control, learning and social behavior. 

Elucidating network function with cellular resolution is technically challenging. Technical 

advances in imaging resolution and speed, labelling and optogenetics 1-7 have extended the 

use of optical techniques for measuring and perturbing neuronal population activity. Yet the 

size and opacity of vertebrate brains have prevented researchers from accessing the majority 

of neurons in the brain and forced them to focus on smaller regions. 

An exception are zebrafish larvae which – with their genetic accessibility, small size and optical 

transparency – have become a successful vertebrate model system for studying distributed 

neuronal network function at whole-brain scale with single-cell resolution. This enabled 

network activity measurements and circuit analyses at a scale that has not been possible in 

other vertebrates 8-16. However, larval networks are not yet mature and rewire over the course 

of development. Their early stage of brain development limits the study of complex behaviors 

that require an adult brain – including learning of complex tasks, courtship, communication 

and other social behaviors. 

An ideal model organism would combine the advantages of invertebrates and zebrafish larvae 

– small brain size and optical access – with the behavioral and neural complexity of an adult 

vertebrate. Furthermore, such an organism should be easy to breed and amenable to genetic 

manipulation, including targeted gene knockout as well as insertion of transgenes. Here, we 

demonstrate that a freshwater Danionin fish species from Myanmar, Danionella translucida 

(DT), combines these properties. DT adults are among the smallest living vertebrates 17, with 

a body length of about 12 mm (Figure 1A). . Bone anatomy studies 18-21 suggested that the 

miniaturization in the genus Danionella is enabled by paedomorphic bone development.   

Here, we show that DT adults have, to our knowledge, the smallest vertebrate brain. Despite 

their small size, we found a rich behavioral repertoire, including schooling, shoaling and other 

social behaviors. We report that DT males generate vocalizations with complex temporal 
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structure. We genetically manipulated DT by adapting the Tol2 transposase system for gene 

insertion and by enabling CRISPR/Cas9 mediated inactivation of genes of interest by creating 

a sequencing library, which we aligned to the zebrafish genome. Using these tools, we created 

transgenic fish expressing the fluorescent calcium indicator GCaMP6f, and in proof-of-

principle experiments we recorded spontaneous and auditory stimulus-evoked calcium 

signals. 

Results 

Brain anatomy 

DT heads are transparent when observed under a stereomicroscope (Figure 1B): the 

hemispheres of the telencephalon and the optic tectum are visible in the intact head. The back 

of the eyes can be seen through the brain. This extent of optical clarity likely results from the 

absence of skull above the brain. Nissl-stained coronal sections through the head, which is 

covered only by skin, show that the skull surrounds the brain only laterally and ventrally (Figure 

1C, Supplementary Video 1, and ref. 22). We estimated the total number of neurons in the DT 

brain to be 650 000  (see Methods), which is over an order of magnitude lower than in adult 

zebrafish 23. We next asked whether the reduction in neuron number is accompanied by a 

corresponding reduction of brain weight. However, attempting to weigh the brain or to 

determine brain volume from histological sections would lead to measurement errors resulting 

from a liquid film or from tissue shrinkage, respectively. We therefore resorted to 7T MRI of 

an intact DT specimen at 35 µm isotropic resolution and determined the brain volume to be 

0.6 mm3 (Supplementary Video 2, and ref. 22). A comparison with the literature 24-26 confirmed 

that DT has the smallest known adult vertebrate brain (Figure 1D). 

Behavior 

Although DT’s small brain size and low number of neurons are desirable qualities for the 

optical study of neuronal networks, they raise the question of whether DT is capable of 

complex behaviors. We thus tested whether DT display behaviors known to require maturity 

in other fish species, such as courtship, shoaling, schooling and intra-species communication. 

DT live in large schools and are communal breeders. We observed courtship episodes in 

silicon tubes in undisturbed community tanks during the first 5 hours of the light period. 
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Typically, females linger inside the tubes when they are ready to spawn. Males approach 

females almost instantly after entering the tube and engage in apparent courtship behavior. 

After a short sequence of rapid back-and-forth movements and changes in orientation, the 

male and female come to rest with the male pushing against the posterior part of the female‘s 

body (time from male approach to egg release: median = 2 s; range: 1 to 38 s; n = 6), and 

eggs are released (Supplementary Video 3). Females leave the tube shortly after spawning 

(time from spawning to female exit: median = 6 s; range: 1 to 10 s), while the male remains 

positioned on the egg clutch for several tens of seconds (time from spawning to male exit: 

median = 39 s; range: 1 to 83 s). 

Shoaling and schooling are behaviours that play a key role in foraging, predator avoidance 

and mating strategies in fish 27. Shoaling refers to groups of fish that remain together, while 

schooling describes shoals in which individuals show coordinated movement and aligned body 

orientation. We tested for shoaling and schooling in a group of 12 adult DT (aged 5 to 7 

months) by monitoring their collective behavior in a shallow tank (24x24 cm2, Figure 2A). To 

quantify the extent of shoaling we calculated the nearest-neighbor-distances for each pair and 

found that the average distance (1.9 ± 0.5 cm, mean ± SD, n = 15000 frames, repeated twice 

with similar results, Figure 2B) was significantly smaller than the nearest-neighbor distance 

calculated under the assumption of complete spatial randomness (3.6 cm, p = 1.2∙10-3Clark-

Evans Test) and average distance extracted from the shuffled dataset (3.4 ± 0.8 cm, p << 

1∙10-5, Kolmogorov-Smirnov test). Additionally, fish coordinated their orientations as 

demonstrated by the non-uniform distribution of relative body orientations (Figure 2C). To test 

whether shoaling and schooling behaviors are visually mediated, we repeated the collective 

behavior recordings in darkness (under infrared illumination). Absence of visual cues 

abolished both shoaling and schooling (Supplementary Figure 1). In summary, DT adults 

showed visually mediated shoaling and schooling behavior. 

A hallmark of social behavior is intra-species communication. While the majority of teleost fish 

communicate visually, hydrophone recordings confirmed that DT communicate via an 

additional modality: they generate vocalizations (Figure 2D-F, Supplementary Audio 1-2) 

consisting of short pulses (< 2 ms) that are characterized by a sharp signal onset (Figure 2D) 

and amplitudes of around 140 dB (reference pressure: 1 µPa, measured at distances < 13 cm; 

max: 160 dB) – acoustic signals audible without amplification even outside the tank. Pulses 
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are generated predominantly at frequencies of about 60 and 120 Hz, corresponding to peaks 

in the interpulse-interval histogram at about 8 and 17 ms (Figure 2E,G). They are structured 

in bursts ranging from about 30 ms up to minutes in duration (Figure 2E,F; distribution peak 

at ~50 ms, Supplementary Figure 2). Many bursts occur in clusters in which they are separated 

by intervals between about 60 to 300 ms and with total durations from tens of milliseconds up 

to minutes (distribution peak at ~500 ms, Figure 2E and Supplementary Figure 2B). In 

undisturbed DT community tanks, vocalizations occur frequently during the day, with 

emphasis on the first half of the day and coinciding with the hours of most frequent egg 

spawning, and only infrequently at night (Figure 2H). 

Only DT males generate vocalizations. We confirmed this by monitoring the vocalization 

behavior of small groups of defined sexes and found that female-only groups do not generate 

sounds (Figure 2I), in contrast to groups consisting of a single male and four females or of five 

males. 

To investigate the potential function of vocalizations we next tested whether they are 

modulated by social context. If vocalizations were unrelated to social factors, their number 

would scale linearly with the number of fish in the tank. A nonlinear dependence would suggest 

social factors. To distinguish between these alternative hypotheses, we varied the number of 

males per tank and quantified the amount of vocalizations. The number of pulses generated 

by groups of males increases non-linearly with group size (Figure 2J), supporting a role of 

vocalizations in social behavior. Further quantification of behavior showed a notable co-

occurrence of fighting behavior and vocalizations, suggesting a link between vocalizations and 

male-male aggression (Supplementary Figure 3). 

Genetic modification 

Genetic modification has become indispensable for biomedical research and is critical for 

widespread adoption of a new model organism. We therefore set out to develop transgenic 

techniques for DT. Our first goal was to express the genetically encoded calcium indicator 

GCaMP6f 4 in neurons. We aimed to establish techniques already developed for other 

organisms with the hope of encouraging the adoption of DT by an existing community. A widely 

used tool for gene insertion in zebrafish and other teleosts is the Tol2-transposase system 28. 

It requires the co-injection of Tol2 mRNA with a donor DNA plasmid into a single-cell stage 
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embryo. To visualize activity in the adult DT brain, we used a construct expressing GCaMP6f 

under the zebrafish neurod1 promoter, which has previously been shown to lead to 

widespread expression in the adult zebrafish brain 29. Injection of the DNA construct with Tol2 

transposase into single-cell stage DT embryos (Figure 3A) led to mosaic expression in the 

nervous system (Figure 3B) in 40% of injections (298 out of 735 fertilized embryos injected 

during a period of 6 months). Expression was prominent in the telencephalon and the 

cerebellum. We raised F0 larvae to adulthood (survival rate: ~20%), bred them in groups in 

home tanks, and confirmed germline transmission in the F1 generation (Figure 3C). We 

collected GCaMP6f-positive F1 from a permanent communal breeding tank with 30 adult F0 

individuals exhibiting strong GCaMP6f expression. Over the course of 5 months, we collected 

471 embryos in 40 clutches, of which 10 embryos in 6 clutches were GCaMP6f-positive (15% 

of clutches and 2% of embryos). We did not perform single-pair matings as DT are communal 

breeders. 

Having demonstrated transgene expression, we next sought to establish a gene knock-out 

strategy. We targeted pigmentation genes: while DT are mostly transparent, they have 

pigmented eyes and are sparsely covered by melanophores, which strongly absorb light 

(Figure 1). In zebrafish, a number of genes are known to control melanin pigmentation, 

including tyr (encoding tyrosinase), which can be inactivated using CRISPR/Cas9 30,31. To test 

whether we can use a similar strategy to remove the pigmentation in DT, we searched for a 

tyr gene homologue in the DT genome. We generated a short-read paired-end (100 bp) 

Illumina sequencing library and mapped reads to the zebrafish reference genome 

(Supplementary Figure 4). We found that DT reads aligned to at least one exon in over 85% 

of zebrafish genes, allowing for potential disruption of DT gene expression. To look for 

potential CRISPR/Cas9 targets in the DT tyr gene, we generated a consensus sequence of 

the first exon and selected two target sequences, tyr gRNA 1 and 2 (Figure 3D). To increase 

the probability of gene inactivation, we injected a mixture of these two gRNAs (Figure 3E). In 

68% (49 out of 72) of embryos injected with tyr gRNA1+2 at the one-cell stage, we observed 

complete depigmentation (Figure 3F). We observed partial depigmentation when embryos 

were injected at the 2-4 cell stage (n = 6). We sequenced the targeted region in depigmented 

animals to confirm the knock-out in the tested gRNA combination. The gRNA target region 

was successfully cut with an efficiency of nearly 100% (Supplementary Figure 5). Furthermore, 
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the injection of the gRNA pair led also to deletions between the two target sites of the expected 

size as determined by gel electrophoresis, which we also confirmed by sequencing 

(Supplementary Figure 5). To establish germline transmission of the genetic modifications, we 

assessed the depigmentation phenotype in F1 animals. Within 2 months, a breeding tank of 

11 gRNA1+2 injected F0 adults laid 13 fertilized clutches with a total of 157 embryos. 12 

clutches (92%) containing 141 embryos were fully unpigmented (Figure 3G).  

Functional imaging 

To monitor neuronal activity throughout the brain in vivo, we performed two-photon microscopy 

in adult (3-6 months old) DT transiently expressing GCaMP6f under the neurod1 promoter. In 

order to keep brains stationary under the microscope, we devised an immobilisation strategy 

for DT. Zebrafish larvae are typically embedded inside a drop of agarose gel and continue to 

breathe through their skin. However, DT juveniles and adults require ventilation of the gills. 

We therefore used a modified strategy of partial agarose embedding to keep the gills free and 

employed low-level sedation to reduce motion artefacts without suppressing self-generated 

gill ventilation (Figure 4A-B). 

With this strategy, we imaged individual GCaMP6f-expressing neurons down to a depth of 300 

µm below the brain surface. As expected, Tol2 injected F0 individuals exhibited mosaic 

expression patterns (Figure 4C). In proof-of-principle calcium imaging experiments, we 

observed fluorescence intensity fluctuations in the telencephalon (Figure 4D,E) in 8 out of 18 

animals. Of particular interest to us were hindbrain areas involved in auditory processing. In 

addition to mosaic expression, this area is difficult to image as it is covered by patches of 

melanophores above the hindbrain, since these individuals were wild type for tyr (see Figure 

3G, left). In one F0 individual selected for expression in the medial hindbrain, 2 of 30 

fluorescent cells exhibited auditory-evoked responses. We observed calcium activity of a 

neuron in the medial hindbrain reliably responding to auditory stimuli (bursts of 10 pulses at 

125 Hz, resembling bursts observed in natural vocalizations, Figure 4F,G). 

Data Resources 

In order to aid future research on DT, we make available three data resources alongside this 

publication: (1) a high-resolution 35 µm isovoxel MRI scan of a DT specimen (83 MB), (2) 

Nissl-stained histological sections across the head, covering the entire brain (1.4 GB) and (3) 
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the short-read genome sequencing alignment (3.6 GB, NCBI SRA #SRP136594). Files and 

detailed descriptors can be found at http://danionella.org and ref. 22. 

Discussion 

In this work, we introduced a new model species with promising features for the study of 

vertebrate neural circuits.  

DT generate vocalizations that are strongly modulated by social context, suggesting a function 

in communication. Intra-species communication signals are relevant, natural stimuli that in 

other fish species are employed in sex- and species-recognition, courtship behavior, mate 

assessment, resource defense, appeasement, alarm, and aggression 33,34. Our finding that 

only males communicate is consistent with observations in Danionella dracula that only males 

have a putative sound generating organ, the “drumming apparatus” 21. The basic unit of DT 

vocalizations is a single pulse. Pulses are arranged in a rich temporal structure spanning 

timescales from milliseconds to minutes, including bursts, burst sequences, and slow and fast 

pulse rates. We expect that this structure contains behaviorally relevant features and motifs 

that are extracted, detected and represented by dedicated circuits across auditory processing 

stages. The discrete nature of DT vocalizations makes them well suited for experimental 

manipulations. For example, behaviorally effective and ineffective abstractions of 

vocalizations will provide a powerful tool for investigating the neuronal computations 

underlying auditory feature detection. We note that auditory circuits are conserved across 

vertebrates 35, and homologies between mammalian and fish brains have been suggested for 

the major auditory processing centers 36-40. 

Using conventional two-photon microscopy, we could discern individual GCaMP6f expressing 

neurons down to a depth of 300 µm below the brain surface – reaching almost half of the brain 

volume. We expect that future work employing adaptive optics 41-44 and longer wavelength 

light sources 45,46 will be able to reach the entire brain at cellular resolution. 

Having the smallest known adult vertebrate brain makes DT particularly attractive for 

investigations of vertebrate neuronal connectivity by volume electron microscopy (EM) 47,48. At 

0.6 mm3, the adult DT brain is only about 8x larger than the Drosophila brain 49 and contains 

about 6x as many neurons. A complete high-resolution EM volume of the Drosophila brain 
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has been acquired within 16 months 50. For DT, resolution requirements may be lower given 

that vertebrate synapses are monadic rather than polyadic and neuronal processes are larger 
16. DT thus brings the first adult vertebrate brain connectome within reach of existing imaging 

technology. 

Not only biological factors influence the choice of model organism. Regardless of how suitable 

the biological features of a model species may be, one important consideration for its 

widespread adoption is the existence of established methods and a research community. 

When choosing an established model system, an investigator can benefit from available 

resources such as a body of literature, techniques and transgenic lines. As our work 

demonstrated, with DT we can take advantage of methods already developed by the zebrafish 

community. DT can be held in the same type of aquaria as zebrafish and fed the same food. 

Transgenic techniques are similar to zebrafish, and for gene insertion via Tol2, we could use 

identical plasmids for injection. CRISPR/Cas9 mediated gene editing cannot be performed 

with identical guide RNAs, but gRNA sequences can be designed based on the sequence 

library published with this paper 22. Future work on de novo DT genome assembly and 

annotation will further expand the DT genetic toolkit. 

In conclusion, an ultra-small brain, optical access and rich behavioral repertoire make DT 

particularly promising for investigations of neuronal network function in an adult vertebrate.  
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Figure captions 

Figure 1 | Danionella translucida body size, transparency and miniature brain. (A) 

Images of a gravid female and male individual. (B) Image of the head. Black triangles indicate 

the position of brain sections shown in C. (C) Coronal sections of the DT brain. (D) Comparison 

of vertebrate brain weights versus body weights. Outlines are modified from 26. Blue dots 

represent known adult fish, using data from 24,25. Red dot: DT. Green dot: Zebrafish. 

Abbreviations. DM: dorsomedial telencephalon, DL: dorsolateral telencephalon, DC: central 

division of dorsal telencephalon, SP: subpallium, TeO: optic tectum, TS: torus semicircularis, 

CCe: corpus cerebelli, Hypo: hypothalamus, DFL: nucleus diffusus lateralis, CC: crista 

cerebellaris, nM: nucleus medialis, DON: dorsal octavolateral nucleus, RF: reticular formation. 

Figure 2 | Behavioral repertoire of Danionella translucida: (A) Motion traces of a DT school 

in a 24x24 cm2 tank. (B) Nearest neighbor distances (blue). Bootstrapped distribution shown 

in red. The expected mean distance under the assumption of spatial randomness (see 

Methods) is shown as a gray line; n=12 fish. (C) Distribution of fish orientations relative to the 

mean orientation of all fish for each frame during schooling. Bootstrapped distribution shown 

in red, n=12 fish. D-F) Waveforms of vocalizations on different time scales. (D) DT males 

generate sequences of short, evenly spaced pulses. (E) Waveform of vocalizations of 

presumably a single male. The vocalizations are organized in sequences of bursts. (F) 

Vocalizations of various durations are frequent among groups of undisturbed animals. (G) 

Example distribution of intervals between the generated pulses. Example taken from a group 

of 5 animals. (H) Diurnal distribution of vocalizations generated in community tanks. Shaded 

area depicts dark period, n=7 groups with 15-25 fish each. (I) Number of vocalization pulses 

generated over 24 hours by 5 animals versus sex composition of the studied group, n=2 

groups for females and n=4 groups for mixed and male categories. (J) Number of vocalization 

pulses generated over 24 hours by males versus the size of the studied group, n=4 for each 

category. Bars and error bars in I,J indicate mean and standard deviation. See also 

Supplementary Figure 1 and 2. 

Figure 3 | Tol2 transgenesis and CRISPR/Cas9-mediated gene editing. (A) Schematic of 

Tol2-transposase mediated transgenesis. (B) Tol2 injected larvae showing transient GCaMP6f 

labeling. (C) F1 larva (16 dpf) carrying Tol2-mediated NeuroD:GCaMP6f transgene. Note that 

we used a bicistronic construct expressing RFP under the cryAA promoter in the lens as visible 

in the right eye (white star). The experiment was repeated more than 100 times with similar 

results. (D) Mapping of sequencing reads of DT to the Danio rerio reference genome at the 

first exon of the tyr gene (Coverage plot: grey - matching base, color - base mismatch). Target 

sequences for the CRISPR/Cas9 knockout are indicated by orange arrows. (E) Schematic of 
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CRISPR/Cas9 and guide RNA injection into the single-cell stage embryo. (F) Melanin 

pigmentation of 3 dpf wild-type DT larvae (left) and larvae injected with tyr gRNA1+2 target 

sequences and Cas9 at the 1-cell stage (middle, image was mirrored horizontally) and at the 

multiple (2-4) cell stage (right). (G) Pigmented wild type (left) and unpigmented tyr-mutant 

(right) DT individuals at 2 months post fertilization. 

Figure 4 | Functional imaging of neural activity in GCaMP6f expressing Danionella 
translucida. (A) Schematic of the imaging setup (B) In vivo two-photon image of a DT 

specimen stained with the vital lipid dye Coumarin 6 to visualize brain regions (OB: olfactory 

bulb; Tel: Telencephalon; TeO: optic tectum; CB: cerebellum; HB: hindbrain) (C) 

Epifluorescence images of Tol2-injected DT adults expressing GCaMP6f (with labeled 

anterior-posterior axis and brain region outlines). (D) Two-photon image of GCaMP6f-positive 

neurons in the dorsolateral telencephalon. (E) Two-photon image of neurons in the medial 

hindbrain. (F) Spontaneous activity of GCaMP6f-positive neurons in the dorsolateral 

telencephalon. (G) Acoustically evoked calcium-activity of neuron circled in E (arrows indicate 

sound stimulus timing) recorded at 13.4 Hz. Scale bars: 200 µm in B, 500 µm in C, 10 µm in 

D and E.  
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Methods 

Preparation of paraffin transverse sections 

Male DT were sacrificed with an overdose of tricaine methanesulfonate (MS-222, 500 mg/l) 

by prolonged immersion. The samples were then placed into ice-cold 4% paraformaldehyde 

for fixation, stored for at least two weeks at 4 °C for tissue permeation, and then prepared for 

sectioning according to the following procedure in collaboration with an external histology 

company (Morphisto GmbH, Germany): fixative was washed out in phosphate buffered saline 

(PBS, 2.5h), 25% EDTA solution for decalcification (72h), washing in PBS (2.5h), slow 

dehydration in ethanol in vacuum (30%, 50%, 60%, 70%, 80%: 1.5h each; 90%: 3.5h, 96%: 

5h), isopropanol (4h), xylol (6h), paraffin/xylol solution (1:1, 5h), paraffin (14h). Transverse 8 

µm sections were prepared on a rotary microtome (RM2255, Leica, Germany), stained with 

cresyl violet, and scanned on an Axio Scan.Z1 (Zeiss, Germany) at 40x resolution. 

Brain volume 

We used preclinical 7T MRI (BioSpec 70/20 USR; Bruker, Ettlingen) with a 20 cm horizontal 

bore magnet and a 12 cm (inner diameter) shielded gradient with a 1H-resonance-frequency 

of 300 MHz and a maximum gradient strength of 440 mT/m. Data acquisition was carried out 

with the Bruker software Paravision (version 6.0.1) at 35 µm3 isovoxel resolution. The brain 

volume was visualized, outlined and measured in OsiriX Lite (version 8; osirix-viewer.com). 

For comparing brain volume information to existing fish brain data, we obtained a digital copy 

of the FishBase 25, kindly provided by Rainer Froese. To exclude potential records from larval 

or juvenile brains, we excluded entries that did not contain a literature reference or a body 

length measurement. 

Counting neurons in brain sections 

In order to estimate the total number of neurons, 28 brain slices (8 µm thick, the 28 slices were 

80 µm apart from each other) were processed in the following manner: The images were 

convolved with a two-dimensional Gaussian envelope (full width at half-maximum: 1 µm). The 

images were individually thresholded, and the limits of the brain were manually determined on 

each of them. We finally counted the local maxima located within the brain regions above 

threshold, which yielded a total number of 89,327 cells. We then extrapolated to the entire 
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brain volume. To prevent us from counting cells twice, we assessed the effective thickness of 

one brain slice to be its actual thickness (8 µm) to which we added one cell diameter (~3 µm; 

after sample dehydration). We then multiplied the previous number by the total thickness of 

the brain (280*8 µm) divided by the effective thickness of all slices in which we counted cells 

(28*11 µm). We therefore estimate the DT brain to contain approximately 650,000 cells 

(89,327*280*8/(28*11) = 649,651).  In order to estimate the precision of the automatic cell 

detection scheme, we manually counted 4,486 cells in two slices. Within these slices we 

compared 10000 randomly chosen areas and computed the mean relative difference, given 

by |𝑁!"#$ −𝑁%!&"!'|/𝑁%!&"!', repeating the measurement when no cell was detected in the 

area. In order to correct for a putative effect of the size of the randomly picked region on the 

result, we repeated this operation with 10 different region sizes (from 11 to 111 µm, evenly 

spaced). Finally, we averaged over the resulting mean relative differences and obtained a 

precision estimation of 14%. 

Shoaling and schooling 

Fish were tested in a behavioral room at 27 ºC (the same as in the housing tanks), in a 

transparent acrylic 24 cm square tank (experimental tank). The tank was filled with 1 l system 

water and was illuminated with infrared light from below. Behavioral videos were acquired with 

a CMOS camera at 25 fps, using an infrared longpass filter. On the days of the experiments, 

fish were removed from their housing tanks and placed in the experimental tank. Fish were 

left to habituate in the experimental tank for 10 minutes, after which a 10 minutes video 

recording was initiated. To test whether shoaling and schooling behavior in DT is visually 

mediated, we repeated the same test without room light. Each group of fish consisted of 12 

male individuals. 

Fish positions and orientations were extracted using custom written MATLAB (Mathworks) 

software. Background-subtracted frames were thresholded and binarized. Fish positions were 

computed as the coordinates of the centroids of each contiguous region. We also computed 

the weighted centroids as the centroids of the thresholded intensity-weighted image. The 

direction of each fish was computed from the vectors linking both centroids. Nearest-neighbor 

distances were calculated for each fish in each frame, and an average nearest-neighbor 

distance was calculated for a random subset of m = 6 fish per frame (to ensure statistical 
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independence, see 51). The histogram of fish directions across all frames was computed after 

subtraction of the mean direction for each frame. For comparison, both nearest-neighbor 

distances and direction statistical analyses were run on a shuffled data set, where sets of m 

fish were randomly picked across frames in the entire video. 

If fish were randomly distributed in the tank (complete spatial randomness or ‘CSR’ 

hypothesis), their nearest-neighbor distances (nnd) would be described by a Rayleigh 

distribution 51. The mean and standard deviation of the averaged nnd values would be: 𝜇 =

(
)√+

, 𝜎 = ( ,-.
,%.+

, where 𝜆 is the fish density (number per area). Testing the CSR hypothesis 

against an experimentally measured average nearest-neighbor distance d (Clark-Evans test), 

we calculated the p-value as 𝑝	 = 𝛷 -/-0
1
., where 𝛷 is the cumulative distribution function of 

the normal distribution. Next, we tested if the distribution of measured nearest neighbor 

distances and the distances calculated from the shuffled data set were drawn from the same 

continuous distribution using the two-sided Kolmogorov-Smirnov test. Each shoaling and 

schooling observation (under light and dark condition) was replicated twice (always 

successfully). 

Code availability 

All custom code used for fish motion tracking, cell counting and vocalization analysis is 

available for download at https://github.com/danionella/schulze-henninger2018 

Recording and analysis of vocalizations 

DT vocalizations were recorded with a hydrophone (H2a-XLR, Aquarian Audio, WA, USA) and 

standard audio equipment (UR22 or UR44, Steinberg Media Technologies). To detect the 

discrete pulses of vocalizations, the waveform traces were bandpass-filtered (1-10 kHz) and 

the waveform-envelope was extracted using a root-mean-square filter (t = 1.5 ms). Single 

pulses were detected using the peak-detection algorithm of Todd 52 and characteristics as 

time, peak amplitude and width were stored. Vocalizations are highly structured and pulses 

were generated predominantly at frequencies of about 60 and 120 Hz. We defined a category 

„bursts“ as groups of pulses that are separated by intervals shorter than 30 ms and „burst 

clusters“ as groups of bursts that are separated by less than 300 ms. We estimated the 

vocalization intensity (pulse peak amplitudes) from a recording of a community tank (26x22x16 
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cm) with 20 fish over two hours acquired with a data acquisition card (USB-6211, National 

Instruments, Austin, Texas, USA) connected to the UR44 amplifier for access to absolute 

voltage measurements. 

To assess whether vocalizations are linked to aggression we performed behavioral analysis 

in a small tank (24x24 cm) with shallow water. A group of four males was monitored over 24 

hours using audio and video recordings. We analyzed three consecutive hours during a period 

of frequent vocalization (from 10 am to 1 pm). We aimed to assess general aggression and 

therefore collected all aspects of fighting behavior (e.g., bites, chasing, striking and fleeing) in 

a single category. Fighting episodes were labeled manually using open source software 

(ANVIL, version 6, http://www.anvil-software.org/) using video only (“blindly”, without listening 

to the audio track). Vocalizations were detected and quantified using software as described 

above and vocalization episodes were defined as the onset and offset of burst clusters. The 

event lists for fighting and vocalizations were transformed into binary vectors resampled at 

100 Hz and the conditional probabilities P(vocalization|fighting) and P(fighting|vocalization) 

were calculated as 𝑃(𝑥|𝑦) = 𝑥 ∙ 𝑦	/	𝑥 ∙ 𝑥, where ∙ denotes the dot product. To assess the 

statistical significance of our measurements we generated a reference distribution of 

conditional probabilities from shuffled event lists (n = 20000) using the inter-event intervals 

and event durations of each list. Statistical significance was assessed using a one-sided one-

sample Student’s t-test on the shuffled distribution and our measurement. 

Transgenesis 

The NeuroD:GCaMP6f plasmid was obtained from Andrew Prendergast and Claire Wyart, 

who kindly shared their plasmid prior to publication 29. It is a bicistronic construct using 

mCherry under the crystallin promoter (expression in the lens) as an additional transgenesis 

marker. This plasmid was injected into 1-cell stage DT embryos in the following mixture: 35 

ng/μL Tol2 transposase mRNA, 15 ng/μL NeuroD:GCaMP6f, 0.1 M KCl, 0.1% phenol red. 

Larvae were screened for fluorescence and raised until adulthood (≥ 3 months). 

Husbandry and Breeding 

DT were kept in commercial zebrafish aquaria (Tecniplast) with the following water 

parameters: pH 7.3, conductivity 350 µS/cm, temperature 27 °C. Larvae were co-cultured with 

L-type rotifers  (Brachionus plicatilis, planktovie.biz) in static tanks from day 5 to 9 53. After 
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entering water circulation on day 10, DT were fed with artemia as well as with dry food 

(Gemma Micro 75 until 4 weeks, then Gemma Micro 150; Skretting, USA). The fraction of 

larvae surviving into adulthood was ~20%. DT were bred in communal tanks of 20-40 

individuals. Because they are crevice spawners, they need narrow spaces for mating. We 

added ~5 cm long silicone tubes to the breeding tanks, which were readily accepted as 

spawning environment (Supplementary Figure 1). Egg collection occurred during the first 3-5 

hours of daylight. DT reach adulthood within 3 months. To establish transgenic lines, we 

combined up to 30 F0 animals in breeding tanks, collected all clutches and optically screened 

F1 individuals for germline transmission.  

Sequencing and library preparation 

DNA was obtained from 5 DT larvae at 5 dpf using phenol-chloroform-isoamyl alcohol DNA 

extraction. The total number of reads in the obtained Illumina paired-end library was 1.347 

billion (Macrogen, average insert size 500 bp). Raw reads were filtered by quality and trimmed 

of Illumina adaptors by fastq-mcf 54 with parameters -C 1,000,000 -q 30 -u -l 35 -S. Filtered 

reads were mapped to the Danio rerio reference genome (GRCz10/danRer10) 55 using bbmap 
56 with minratio parameter defining alignment tolerance to mismatches of 0.45 (range 0 to 1). 

Mapped reads were sorted and indexed with SAMtools 57 and viewed in IGV 58.  

Genome editing 

A consensus sequence of the first exon of the DT tyr gene was generated using previously 

obtained DT read mapping to the zebrafish reference. Sequences tyr gRNA1 (5’-

GGCTACTTCGGTGCCAACTG-3’) and tyr gRNA2 (5’-TGAGATCCGGAAGCTGACAG-3’) 

were chosen with the help of Harvard ChopChop online tool 59 because of their predicted high 

efficiency.  

We used the Alt-R CRISPR/Cas9 system and guide RNAs from IDT DNA. gRNA and tracrRNA 

were resuspended at 100 µM, mixed in equal amounts and aliquoted. gRNA:tracrRNA 

complexes were formed by heating the mixture to 95 °C for 2 min and cooling to room 

temperature. Afterwards, 10 µL of the obtained complex mixture were combined with 1 µL of 

the Cas9 buffer (200 mM HEPES-NaOH at pH 7.5, 1.5 M KCl) to make a guide RNA mixture. 

The injection mixture consisted of total 2 µL guide RNA mixture, 1 µL nuclease-free water and 

1 µL of 61 µM Cas9 protein. 
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To sequence the injected embryos, they were fixed with 100% methanol and digested for 1 h 

at 55 °C with 10 µL of 20 mg/mL Proteinase K stock solution (Roche) diluted 1:20 in 1X TE 

solution. The proteinase K was then inactivated for 15 min at 95 °C. The digested embryos 

were shortly centrifuged and 1 µL was used as a PCR template. The primers that were used 

for the amplification of the exon 1 of the tyr locus were TCGCTCTCTCCAGCAGTTCC and 

CTTCCAGGAGGAGAAGACTGAGG. The obtained PCR products were run on a 1% agarose 

gel, cut, purified, and cloned into a TOPO-TA vector (Invitrogen). 10 clones per band were 

sequenced and used for the alignment in Geneious (version 7.1.5). 

Imaging 

Animals were anesthetized in 120 mg/l MS-222. Following onset of anesthesia, they were 

embedded in a drop of 3% agarose. As soon as the agarose gelled, hydrogel covering the 

mouth and gills was carefully removed with a scalpel without touching the fish. Once mouth 

and gills were free, animals were transferred to fish water containing a light sedation level of 

30 mg/l MS-222. Two-photon images were acquired using a custom-built two-photon 

microscope controlled by ScanImage 5.2.3 (Vidrio Technologies) and illuminated by a fs-

pulsed 80 MHz Ti:S laser (MaiTai DeepSee, SpectraPhysics). GCaMP6f fluorescence was 

imaged with a Nikon 16x 0.8 NA objective at an excitation wavelength of 930 nm and ! 10 

mW excitation power. Green fluorescence was collected using a 525/50 (Semrock) emission 

filter. 128x256 pixel frames were acquired at a rate of 13.4 Hz. For Coumarin staining, 1 µg/ml 

Coumarin 6 (Sigma) was added to a housing tank overnight. Coumarin was excited at a 

wavelength of 820 nm. To obtain the image in figure 4B, two fields-of-view were stitched using 

FIJI (http://fiji.sc). All animal experiments conformed to Berlin state, German federal as well 

as European Union animal welfare regulations and were approved by the LAGeSo, the Berlin 

admission authority for animal experiments. 

Detailed information on experimental design and reagents used can be found in the Life 

Sciences Reporting Summary, which is published alongside this manuscript. 

Statistics 

In the shoaling and schooling experiment (Fig. 2A-C and Supplementary Figure 1) we tested 

the experimentally measured average nearest-neighbor distance d (Clark-Evans test) against 
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the complete-spatial-randomness hypothesis and calculated the p-value as 𝑝	 = 𝛷 -/-0
1
., 

where 𝛷 is the cumulative distribution function of the normal distribution. We also tested if the 

distribution of measured nearest neighbor distances and the distances calculated from the 

shuffled data set were drawn from the same continuous distribution using the two-sided 

Kolmogorov-Smirnov test. In the analysis of fighting behavior we assessed statistical 

significance of the measured co-occurrence of fighting and vocalizations against a shuffled 

distribution using a one-sided one-sample Student’s t-test. 

Data Availability Statement 

Anatomical datasets are available at a GIN repository provided by the German 

Neuroinformatics Node 22 at https://web.gin.g-node.org/judkewitzlab/schulze-henninger2018.  

Sequence alignment data have been deposited in the NCBI SRA database with the accession 

number SRP136594. 

Data Descriptors 

(1) High-resolution 35 µm MRI of DT (83 MB zipped DICOM file): Data descriptor: Acquired 

with preclinical 7T MRT (BioSpec 70/20 USR; Bruker) with a 20 cm horizontal bore magnet 

and a 12 cm (inner diameter) shielded gradient with a 1H-resonance-frequency of 300 MHz 

and a maximum gradient strength of 440 mT/m. Protocol: T1_FLASH_3D at 35 µm3 isovoxel 

resolution. TR/TE = 50/9.5 ms, flip angle 20°, 8 averages, FOV (field of view) coronal 14.0 x 

12.6 x 12.6 mm, MD (matrix dimension) 400 x 360 x 360, scan time 14h24min. Data can be 

explored with any freely available DICOM viewer. Filename: DT_MRI.zip 

(2) Histological Nissl-stained sections of DT head (2.8 GB zip file): Data descriptor: 280 Nissl-

stained transverse sections (8 µm thickness) of the DT head scanned on an Axio Scan.Z1 

(Zeiss) at 40x resolution and stored in the CZI format of Zeiss, all metadata included. Data 

can be explored with any CZI viewer, such as ‘ZEN’ by Zeiss (tested on version 2.3 blue 

edition), FIJI and many others. A second file (TIFF)  includes the aligned coronal sections of 

the brain. Data can be explored with any TIFF viewer, such as FIJI. Filename: 

DT_coronal_sections.zip 

(3) DT sequencing reads aligned to the ZF genome (3.6 GB BAM file): deposited to the NCBI 

SRA database with accession number SRP136594. Data can be browsed with the freely 
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available Integrative Genomics Viewer 58 (see also Supplementary Figure 4). 

Filename: DT_GRCz10_SRA.bam 
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