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A NORMALIZATION THEOREM

IN ASYMPTOTIC DIFFERENTIAL ALGEBRA

MATTHIAS ASCHENBRENNER, LOU VAN DEN DRIES, AND JORIS VAN DER HOEVEN

Abstract. We define the universal exponential extension of an algebraically

closed differential field and investigate its properties in the presence of a nice
valuation and in connection with linear differential equations. Next we prove

normalization theorems for algebraic differential equations over H-fields, as

a tool in solving such equations in suitable extensions. The results in this
monograph are essential in our work on Hardy fields in [6].
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[The] field that is normally classified as algebra really consists of two
quite separate fields. Let us call them algebra one and algebra two,
for lack of a better language. Algebra one is the algebra whose
bottom lines are algebraic geometry or algebraic number theory.
Algebra one has by far a better pedigree than algebra two, and has
reached a high degree of sophistication and breadth. [ . . . ] Algebra
two has had a more accidented history. It can be traced back to
George Boole, who was the initiator of three well-known branches
of algebra two, namely: in the first place, Boolean algebra, in the
second place, the operational calculus that views the derivative as
an operator D, on which Boole wrote two books of great beauty,
and finally, invariant theory [ . . . ] G. H. Hardy subtly condemned
algebra two in England in the latter half of the nineteenth century,
with the exclamation ‘Too much f(D)!’ G. H. Hardy must be turn-
ing in his grave now.

— Gian-Carlo Rota, Combinatorics, representation theory and
invariant theory: the story of a ménage à trois [26].



Introduction

This monograph follows up on our book [ADH]. That book contains a model-
theoretic analysis of the ordered differential field T of transseries (introduced by

Écalle [12] in connection with his work on Dulac’s Problem), including an explicit
complete axiomatization and a quantifier elimination.

In 2021 we settled one of the main open problems left in [ADH] (see also [4]),
by proving that all maximal Hardy fields are elementarily equivalent, as ordered
differential fields, to T. Here, a Hardy field is a differential field of germs at +∞ of
differentiable one-variable real-valued functions defined on intervals (a,+∞). Hardy
fields were introduced by Bourbaki [10], revived in the 1980s by Boshernitzan and
Rosenlicht [9, 25], and became important in the study of o-minimal expansions
of the real field [18]. A Hardy field is maximal if it has no proper Hardy field
extension. By Zorn, every Hardy field extends to a maximal one. (There are in
fact very many maximal Hardy fields.)

The full solution of this problem takes a lot of space and is in the unwieldy
manuscript [5]. In the present monograph we have extracted the main differential-
algebraic (that is, non-analytic) parts, because we intend to use this material also
for other purposes. It has four parts, each including its own introduction, with the
following dependencies:

Part 4
Slots in H-Fields

Part 2
The Universal
Exponential Extension

55

Part 3
Normalizing Holes
and Slots

ii

Part 1
Preliminaries

gg 88

The application to Hardy fields requires in addition a good dose of analysis and
some model theory, and is presented in [6].

To explain the overall aim of this monograph, consider an arbitrary algebraic
differential equation with transseries coefficients, for example

y7 − ee
x

y′′y3 + 7Γ(xx) y′y′′′ − ζ(x)

x+ log x+ 1
= 0 (x > R).

By the general theory from [ADH] this equation happens to have a solution y ∈ T.
(Indeed, this follows from the differential polynomial on the left-hand side of this
equation having odd degree, see [ADH, pp. 17–18].) However, a concrete solution
cannot be derived in a transparent and direct way from the equation. It is even
less clear why there should also be a solution in a Hardy field.

Our main goal is to reduce algebraic differential equations such as the one above
to normal forms that can be solved more easily and explicitly in various contexts.
Some of this can be accomplished using existing tools from [ADH], but for [6] we
need more precision. After laying the groundwork in Parts 1, 2, 3 we prove the
main results of this monograph in Part 4. Some ideas from Parts 3 and 4 also occur
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in [16] in the more restricted context of grid-based transseries solutions to algebraic
differential equations over R. However, several shortcuts apply in this case that are
not available for [6].

In the rest of this introduction we illustrate some key ideas informally by a
few examples, before stating the main result in detail. We make frequent refer-
ence to [ADH]; the section Concepts and Results from [ADH] at the end of this
introduction should help in consulting this source.

Solving Quasilinear Equations

Our book [ADH] contains a differential analogue of the Newton diagram method
to reduce arbitrary univariate algebraic differential equations with asymptotic side
conditions (asymptotic equations, for short) over certain valued differential fields
such as T to quasilinear equations, which can be considered as a first, crude kind
of normal form for asymptotic equations. An example of a quasilinear equation is

(E) y′ − y = x−1yy′′ − e−x y2 + x−1, y ≺ 1.

“Quasilinear” means that the linear part of the equation (that is, the homogeneous
part of degree 1, placed here on the left-hand side) dominates the rest in a certain
sense. It is straightforward to compute a formal transseries solution of a quasilinear
equation such as (E) by transfinite recursion: we first determine its dominant term,
in this case f := −x−1, and then substitute f + y for y, with asymptotic side
condition y ≺ f , in the equation. This yields a new quasilinear equation

(E+f ) x−2 y′′ + y′ + (−1 + 2x−4 − 2x−1 e−x) y =

x−1 y y′′ − e−x y2 − x−2 + 2x−5 − x−2 e−x, y ≺ x−1.

Such an asymptotic equation obtained by an additive change of variables together
with the imposition of a possibly stricter asymptotic constraint is called a refinement
of (E). Applying this method recursively, we obtain a particular solution

y∗ := −x−1 + x−2 − 2x−3 + 6x−4 − 26x−5 + · · ·+ x−2 e−x −2x−3 e−x + · · ·
to (E). This process is really transfinite: computing the first ω terms of y∗ gives

f := −x−1 + x−2 − 2x−3 + 6x−4 − 26x−5 + · · ·
and then we refine the original (E) by substituting f + y for y, with the new side
condition y ≺ xN. Likewise for other limit ordinals. In order to obtain the general
solution to (E), we refine (E) by substituting y∗ + y for y, with asymptotic side
condition y ≺ 1, which yields

(E∗) (x−2 − x−3 + 2x−4 − 6x−5 + · · · )y′′ + y′ + (−1 + 2x−4 − 6x−5 + · · · )y =

x−1 yy′′ − e−x y2, y ≺ 1.

The first term of a non-zero solution to this asymptotic equation is necessarily the
first term of a zero of the linear part of this equation. Further computations show

that such a dominant term is of the form cm with c ∈ R× and m := x−5 e−x3/3−x2/2.
It follows that the general solution of (E) has the form

yc = y∗ + cm+ εc where c ∈ R and εc ≺ m.

However, this form of the general solution cannot be read off directly from the
original equation (E), and not even from (E+f ). This is due to the fact that the
shape of the linear part of the equation may drastically change under refinement.
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Only after the computation of the first three terms of y∗ do we obtain a refinement
that is sufficiently similar to (E∗) to allow us to safely determine the form of the
general solution. Here we note that a particular solution y∗ is generally not yet
available during the resolution process. This prevents us from working directly
with (E∗). We thus aim to always operate with sufficiently good approximations
to y∗ and to (E∗) instead.

Things become even worse if we introduce a parameter ε to perturb (E) to

(Eε) y′ − y = x−1 yy′′ − e−x y2 + ε, y ≺ 1,

This equation is quasilinear for every ε ≺ 1. For ε = x−1 it has continuum many
solutions in T, as explained above. However, (Eε) has only one solution in T
for ε = −x−1. Indeed, in the latter case a particular solution is given by

y∗∗ = x−1 − x−2 + 2x−3 − 6x−4 + 22x−5 + · · ·+ x−2 e−x −2x−3 e−x + · · · ,

and replacing y by y∗∗ + y in (Eε) leads to the following counterpart of (E∗):

(−x−2+x−3−2x−4+6x−5−26x−6+ · · · )y′′+y′+(−1−2x−4+6x−5+ · · · )y =

x−1yy′′ − e−x y2, y ≺ 1.

One can show that y = 0 is the only solution to this refinement of (Eε), again by
examining its linear part. That the general solution of a quasilinear equation is
not transparent from the equation and that the resolution process is not uniform
under small perturbations are two major reasons why it is desirable to normalize
asymptotic equations beyond quasilinearity.

The Role of Factoring Linear Differential Operators

Here is an example of the kind of nicely normalized equation that we are after:

y′ = e−x +x−1y2, y ≺ 1.

This equation can formally be solved by iterated integration:

y =
∫
e−x +

∫
x−1y2

=
∫
e−x +

∫
x−1

( ∫
e−x +

∫
x−1y2

)
2

= · · ·

=
∫
e−x +

∫
x−1

(∫
e−x
)
2 + 2

∫
x−1

(∫
e−x
) (∫

x−1
(∫

e−x
)
2
)
+ · · · .

It turns out that this expansion converges in the formal transseries setting, but
also analytically to a germ that belongs to a Hardy field. In the formal setting,
this requires so-called distinguished integration, where all integration constants are
taken to be zero. To obtain a Hardy field solution, we systematically integrate
from +∞. For details we refer respectively to [15, Section 6.5] and [6].

Let us consider more generally a quasilinear equation

(Q) L(y) = R(y), y ≺ 1,

where L ∈ T[∂] ̸= is a monic linear differential operator andR ∈ T{Y } is a differential
polynomial. (For greater flexibility, R is allowed to have a non-zero linear part.)
First of all, this requires the (distinguished) integration operator ∂

−1 :=
∫

to be
replaced by a more general right inverse L−1 to the R-linear map y 7→ L(y) : T → T
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defined by L. For L = ∂ − f (f ∈ T) of order 1, this is easy: identifying each g ∈ T
with the R-linear map y 7→ gy : T → T, we may take

L−1 = (∂ − f)−1 := e
∫
f ◦ ∂

−1 ◦ e−
∫
f .

More generally, if L splits over T, that is, if

L = (∂ − f1) · · · (∂ − fr) where f1, . . . , fr ∈ T,

then we may take

L−1 := (∂ − fr)
−1 ◦ · · · ◦ (∂ − f1)

−1.

Now L might not split over T, but it does factor into a product of order 1 and
order 2 operators over T. And if ∂

2 + a∂+ b ∈ T[∂] (a, b ∈ T) is irreducible, it splits
over the complexification T[i] of T: there are f, g ∈ T with g ̸= 0 and

∂
2 + a∂ + b =

(
∂ − (f − gi + g†)

)(
∂ − (f + gi)

)
,

a = −(2f + g†),

b = f2 + g2 − f ′ + fg†,

so that we can formally invert this second-order operator as

(∂2 + a∂ + b)−1 := (e
∫
(f+gi) ◦ ∂

−1 e−
∫
(f+gi)) ◦ (e

∫
(f−gi) g ◦ ∂

−1 ◦ e−
∫
(f−gi) g−1)

= e
∫
(f+gi) ◦ ∂

−1 ◦ e−2
∫
gi g ◦ e−

∫
(f−gi) g−1.

This discussion is to suggest that factoring linear differential operators plays a key
role in our normalization program, and that it will involve transseries in T[i], and
even oscillatory transseries in T[i][eTi] when inverting such operators.

The framework of asymptotic differential algebra in [ADH] was introduced in
anticipation of this kind of developments, but the Hardy fields in [6] require a very
detailed and explicit treatment. Part 2 of this monograph is dedicated to this task in
the abstract setting ofH-fields as in [ADH], while relying on Part 1 for miscellaneous
preliminary material. (An H-field is an ordered valued differential field subject to
certain first-order laws. Ordered differential subfields of T extending R as well as
Hardy field extensions of R are H-fields.)

In Part 2, we introduce the universal exponential extension of an algebraically
closed differential field and investigate its connection to linear differential equations,
especially in the presence of a compatible valuation on the field. The universal
exponential extension of T[i] can be identified with T[i][eiT]: see Section 2.4 as
well as [15, Sections 7.7 and 7.8] for this and the connection with factorization of
linear differential operators over T[i]. For a Liouville closed Hardy field H ⊇ R one
can identify the universal exponential extension of its algebraic closure K = H[i]
with K[eiH ], an integral domain of germs of C-valued functions. This is a key point
in [6] and is proved there. (An H-field H is said to be Liouville closed if H is real
closed and for all f, g ∈ H, there exists y ∈ H× with y′ + fy = g.)

Desiderata for a Normal Form

Returning to the quasilinear equation (Q), assume now that the coefficients of L
and R lie in an arbitrary H-field H (instead of T). Ideally, when should we consider
this equation to be in normal form? Three natural requirements are:

(R1) L does not significantly change under refinement.
(R2) L splits over K := H[i].
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(R3) The equation (Q) has a solution which is as unique as possible.

The first requirement amounts to L strongly dominating R. What significantly
and strongly dominating mean here is made precise in terms of the span v = v(L)
of L, which measures how far L is from being “regular singular”. (For example,
the span of the operator on the left-hand side of (E+f ) is equal to the quotient of the
coefficients of y′′ and y, which is asymptotic to x−2.) It turns out that (R1) holds
if R is dominated by vmL for a large enough m, under some additional assumptions
such as orderR ⩽ orderL and y ≺ 1 as the asymptotic side condition in (Q); more
general side conditions y ≺ m where m ∈ H> can be reduced to this case via a
multiplicative change of variables (replacing y by ym).

Concerning (R2), the condition on H that all monic linear operators in H[∂]̸=

split over K is very strong. Fortunately, for our main application in [6] and the
particular operators L needed there, such factorizations come almost for free. To
sketch this, consider an immediate (in the sense of valued fields) differentially al-

gebraic H-field extension Ĥ of H and an H-field embedding ι of H into a Hardy

field. Our main goal in [6] is to extend ι to an embedding of Ĥ into a Hardy field.

Suppose ŷ ∈ K̂ \K, where K̂ := Ĥ[i], and we want to extend ι to an embedding

of H⟨Re ŷ, Im ŷ ⟩ ⊆ Ĥ into some Hardy field. Now the trick is to choose Ĥ and ŷ
such that the minimal annihilator P ∈ K{Y } of ŷ over K is of minimal complexity.
This means in particular that P is of minimal order over K, say r, and so K con-
tains all zeros of differential polynomials over K of order < r, as long as these zeros
live in an extension of K of the form E[i] for some immediate H-field extension E
of H. Consequently, all A ∈ K[∂]̸= of order ⩽ r split over K, since their associated
Riccati polynomials are of order < r.

This minimality argument relies on working over K instead of H. The interplay
between H and K is subtle: we need minimal elements to be taken in K, but
actual extensions to be done on the level of H-fields. The length of this monograph
is partly due to the fact that some of the material applies to differential-valued
fields, and thus to both H and K, whereas other results need to be developed
separately for H and K, often with minor though crucial differences.

In the present monograph we do not set ourselves the task to actually solve
any asymptotic equations. Instead, we wish to prepare them as much as possible
in the purely algebraic and abstract setting of H-fields. The resulting normalized
asymptotic equations should then be easier to deal with in suitable contexts (Hardy
fields, various kinds of transseries, surreal numbers, etc.).

On a technical level, this is implemented using the notion of a hole in H, that
is, an asymptotic equation P (y) = 0, y ≺ m over H that comes with a solution ŷ in

an immediate H-field extension Ĥ of H, but outside H itself; notation: (P,m, ŷ).
For our purposes, this asymptotic equation can be arranged to be quasilinear, and
even non-singular in a certain sense. (This corresponds to the notion of deep holes.)
Therefore, roughly speaking, a hole in H is a witness that H is not (yet) newtonian.
(In [ADH] we defined H to be newtonian if every quasilinear equation (Q) has a
solution in H; this is really the most fundamental first-order property of T, given
by an axiom scheme.) We then try to modify such a hole (P,m, ŷ) further to bring
the associated asymptotic equation into a normal form P (f + y) = 0, y ≺ n, for
some choice of f ∈ H and n ≼ m. This new equation should satisfy versions
of (R1), (R2), (R3) above, and hence be more amenable to solving in the kind of

extension we are really interested in, rather than in the abstractly given extension Ĥ
5



where a solution ŷ− f is already given. For example, if H ⊇ R is a Hardy field, we
wish to solve this equation in an immediate Hardy field extension of H.

Turning now to the last requirement (R3), we saw that in T, the equation (Eε)
has the unique solution y∗∗ for ε = −x−1 and an infinite family (yc) of solutions
if ε = x−1. There are cases in which the existence of more than one solution is
unavoidable. For instance, assume that we start with an H-field H = R(x, ex) with
constant field R over which the equation (E) makes sense. Then H contains no
element f with f − y∗ ≺ x−N. (This follows from the fact that the first ω terms
of y∗ form a divergent power series in x−1, as can be checked using techniques

from [11, 12, 14].) Now consider an immediate H-field extension Ĥ of H that
contains all solutions yc. Each yc realizes the same cut in the ordered set H and
also satisfies the same algebraic differential equations over H. In model theoretic
terms, this means that all yc realize exactly the same quantifier-free 1-type over H
(in the language of valued ordered differential fields). Therefore no quantifier-free
first-order condition over H can distinguish between two distinct solutions and
there is consequently no first-order normalization process over H for which the

normal form would have a particular yc as its unique solution in Ĥ. This kind
of indistinguishability does not necessarily survive under H-field extensions. For

instance, consider an H-field extension H1 := H⟨f, e−x3/3−x2/2⟩ of H where f ≺ 1
satisfies f ′ − f = x−1ff ′′ + x−1. Then for c1 ̸= c2, the solutions yc1 and yc2 realize
distinct quantifier-free 1-types over H1.

In view of the above discussion, a more precise formulation of (R3) would be to
require all solutions of (Q) to realize the same quantifier-free 1-type over H. In
this monograph, we introduce an even more stringent requirement. The idea is to
investigate closely how distinguishable and indistinguishable solutions arise. The
linear part of the equation is again the key here, as we already saw when obtaining
the general solution yc from the linear part of (E∗). Under the assumption (R1),
the asymptotic behavior of the non-zero solutions to the linear differential equa-

tion L(h) = 0 does not change under refinement. Now assume that ŷ ∈ Ĥ \ H
satisfies (Q). Roughly speaking, (R3) holds if ŷ and ŷ + |h| realize the same cut
in H, for all h ≺ 1 satisfying L(h) = 0. Here h typically belongs to the universal
exponential extension of H[i].

The Main Theorem

Before we state our main result we introduce a few more concepts and motivate
some hypotheses of this theorem. Again, we only do this on an informal level; the
precise definitions are given at the appropriate places in the monograph.

First, in light of (R2), our H-field H better be sufficiently rich from the out-
set, say Liouville closed and ω-free. Here, the property of ω-freeness is a certain
first-order condition about linear differential equations of order 2, satisfied by T,
which plays a crucial role in [ADH]. With an eye towards factorizations over the
complexification K = H[i] of H, we also assume that K is 1-linearly newtonian:
each quasilinear equation y′ + fy = g (f, g ∈ K) has a solution y ≺ 1 in K. Minor
assumptions are that the constant field of H is archimedean and the derivation
of H is small in the sense that h ≺ 1 ⇒ h′ ≺ 1 for all h ∈ H. Both conditions hold
for H = T and any Hardy field.

Since our aim is to solve quasilinear equations that do not already have a solution
in H, we will further assume that H is not newtonian. This hypothesis yields a
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quasilinear hole (Q, 1, b̂) in H, that is, a quasilinear equation Q(y) = 0, y ≺ 1 and

a solution b̂ /∈ H thereof in some immediate extension of H. We call such a hole
minimal if Q has minimal complexity (among all holes in H), and we say that

it is special if b̂ is a pseudo-limit of a pseudo-cauchy sequence in H exhibiting a
power-type rate of pseudo-convergence.

One important feature of the general theory of H-fields from [ADH] is that
many important asymptotic properties are eventual. This means that they hold
upon replacing the derivation ∂ of H by a small derivation ϕ−1

∂ with sufficiently
small ϕ ∈ H, ϕ > 0. This corresponds to replacing the underlying “time” variable x
by faster times, like ex or ee

x

. We say that ϕ ∈ H with ϕ > 0 is active in H if
the derivation ϕ−1

∂ remains small. For such ϕ the ordered field H equipped with
the derivation ϕ−1

∂ is again an H-field, denoted by Hϕ, and rewriting a differential
polynomial P over H in terms of the new derivation ϕ−1

∂, we obtain an equivalent
differential polynomial Pϕ over Hϕ. Thus any hole (P,m, ŷ) in H naturally gives
rise to a hole (Pϕ,m, ŷ) in Hϕ.

The precise formalization of the requirements (R1), (R2), (R3) from above is
done stepwise, via the introduction of progressively stronger normalization proper-
ties of holes. We actually work also with slots: a bit more general than holes and
useful intermediate stages in the normalization of holes. Likewise, instead of mini-
mal holes we often deal with somewhat more general Z-minimal holes and slots.

At the end of the day, the requirements (R1), (R2) and (R3) are formalized
through the concepts of strongly repulsive-normal and ultimate holes. Normality
corresponds to the requirement (R1). The notion repulsive takes care of (R2) and
part of (R3); the terminology is motivated by analytic considerations in [6]. The
qualifier strongly and the property ultimate indicate further contributions to (R3).

Let us now state our main result with all the necessary fine print:

Normalization Theorem. Let H be an ω-free Liouville closed H-field with small
derivation, archimedean ordered constant field C, and 1-linearly newtonian algebraic
closure H[i]. Suppose H is not newtonian. Then for some Z-minimal special

hole (Q, 1, b̂) in H with orderQ ⩾ 1 and some active ϕ > 0 in H with ϕ ≼ 1, the

hole (Qϕ, 1, b̂) in Hϕ is deep, strongly repulsive-normal, and ultimate.

The assumption on H that C is archimedean is not first-order in the logical sense; it
can perhaps be dropped. (Corollary 4.3.41 characterizes newtonianity is a less sharp
way, but without this hypothesis on C.) As already mentioned, this Normalization
Theorem is an essential tool in [6]. The example (Eε) also illustrates that stronger
normal forms are mandatory for the uniform resolution of asymptotic equations
depending on parameters. We expect this to play an important role for a deeper
understanding of definable functions and better effective versions of our quantifier
elimination result from [ADH].

Concepts and Results from [ADH]

This section includes notation and terminology used throughout this monograph.
Thus m, n always range over the set N = {0, 1, 2, . . . } of natural numbers. Given
an additively written abelian group A we set A ̸= := A\{0}. Rings (usually, but not
always, commutative) are associative with identity 1. For a ring R we let R× be the
multiplicative group of units of R (consisting of the a ∈ R such that ab = ba = 1

7



for some b ∈ R). Let S be a totally ordered set and A ⊆ S. We set

A↓ := {s ∈ S : s ⩽ a for some a ∈ A}, A↑ := {s ∈ S : s ⩾ a for some a ∈ A}
where ⩽ is the ordering of S. We say that A is downward closed in S if A = A↓

and upward closed in S if A = A↑. For a ∈ S we also let S>a := {s ∈ S : s > a}.
Ordered abelian groups and ordered fields are totally ordered, by convention. Let Γ
be an ordered abelian group, written additively. Then Γ> := Γ>0, and likewise
with ⩾, <, or ⩽ in place of >. The ordered divisible hull of Γ is denoted by QΓ.

Differential rings and fields. Let R be a differential ring , that is, a commuta-
tive ring R containing (an isomorphic copy of) Q as a subring and equipped with
a derivation ∂ : R → R. When its derivation ∂ is clear from the context, then
for a ∈ R we denote ∂(a), ∂

2(a), . . . , ∂
n(a), . . . by a′, a′′, . . . , a(n), . . . . If a ∈ R×,

then a† := a′/a denotes the logarithmic derivative of a, so (ab)† = a† + b† for
all a, b ∈ R×. We have a subring CR := ker ∂ of R, called the ring of constants of R,
with Q ⊆ CR. A differential field is a differential ring K whose underlying ring is
a field. In this case CK is a subfield of K, and if K is understood from the context
we often write C instead of CK . Note that a differential field has characteristic 0.

Often we are given a differential fieldH in which−1 is not a square, and thenH[i]
is a differential field extension with i2 = −1: the derivation ∂ on H uniquely
extends to a derivation on H[i], and this extension has i in its constant field.
For z = a + bi ∈ H[i] (a, b ∈ H) we set Re z := a, Im z := b, and z := a − bi.
Then z 7→ z is an automorphism of the differential field H[i]. If there is also
given a differential field extension F of H in which −1 is not a square, we always
tacitly arrange i to be such that H[i] is a differential subfield of the differential field
extension F [i] of F .

Differential polynomials. Let R be a differential ring. We have the differential
ring R{Y } = R[Y, Y ′, Y ′′, . . . ] of differential polynomials in a differential indeter-
minate Y over R. Let P = P (Y ) ∈ R{Y }. The order of P , denoted by order(P ),
is the least r ∈ N such that P ∈ R[Y, Y ′, . . . , Y (r)]. Let order(P ) ⩽ r. Then

P =
∑
i

PiY
i

with i ranging over tuples (i0, . . . , ir) ∈ N1+r, Y i := Y i0(Y ′)i1 · · · (Y (r))ir , coeffi-
cients Pi in R, and Pi ̸= 0 for only finitely many i. For such i we set

|i| := i0 + i1 + · · ·+ ir, ∥i∥ := i1 + 2i2 + · · ·+ rir.

The multiplicity of P (at 0) is

mulP := min
{
|i| : Pi ̸= 0

}
∈ N if P ̸= 0, mulP := +∞ if P = 0,

the degree of P is

degP := max
{
|i| : Pi ̸= 0

}
∈ N if P ̸= 0, degP := −∞ if P = 0,

and the weight of P is

wtP := max
{
∥i∥ : Pi ̸= 0

}
∈ N if P ̸= 0, wtP := −∞ if P = 0.

For d ∈ N we set Pd :=
∑

|i|=d PiY
i (the homogeneous part of degree d of P ),

so P =
∑

d Pd, and if P ̸= 0, then

mulP = min{d : Pd ̸= 0}, degP = max{d : Pd ̸= 0}.
8



For a ∈ R we let

P+a := P (a+ Y ) and P×a := P (aY )

be the additive conjugate and the multiplicative conjugate of P by a, respectively.
For ϕ ∈ R× we let Rϕ be the compositional conjugate of R by ϕ: the differential

ring with the same underlying ring as R but with derivation ϕ−1
∂ (usually denoted

by δ) instead of ∂. We have an R-algebra isomorphism P 7→ Pϕ : R{Y } → Rϕ{Y }
such that Pϕ(y) = P (y) for all y ∈ R; see [ADH, 5.7].

A differentially algebraic (for short: d-algebraic) extension of a differential fieldK
is a differential field extension L of K such that for all y ∈ L we have P (y) = 0 for
some differential polynomial P ∈ K{Y } ̸=. See [ADH, 4.1] for more on this.

Complexity and the separant. Let K be a differential field and P ∈ K{Y }\K,
and set r = orderP , s = degY (r) P , and t = degP . Then the complexity of P
is the triple c(P ) = (r, s, t) ∈ N3; we order N3 lexicographically. Let a ∈ K.
Then c(P+a) = c(P ), and c(P×a) = c(P ) if a ̸= 0. The differential polyno-
mial SP := ∂P

∂Y (r) is called the separant of P ; thus c(SP ) < c(P ) (giving com-
plexity (0, 0, 0) to elements of K), and SaP = aSP if a ̸= 0. Moreover,

(0.1) SP+a
= (SP )+a, SP×a

= a · (SP )×a, SPϕ = ϕr(SP )
ϕ for ϕ ∈ K×.

(For SP+a
and SP×a

this is from [ADH, p. 216]; for SPϕ , express P as a polynomial

in Y (r) and use (Y (r))ϕ = ϕrY (r) + lower order terms.)

Linear differential operators. Let R be a differential ring. We associate to R
the ring R[∂] of linear differential operators over R; see [ADH, 5.1]. This is the ring
extension of R generated over R by an element ∂: we use here the same symbol
that denotes the derivation of R, impose ∂

m ̸= ∂
n for all m ̸= n, require R[∂] to be

free as a left R-module with basis 1 = ∂
0, ∂ = ∂

1, ∂
2, ∂

3, . . . , and impose ∂a = a∂+a′

(in R[∂]) for a ∈ R. Each A ∈ R[∂] has accordingly the form

(0.2) A = a0 + a1∂ + · · ·+ an∂
n (a0, . . . , an ∈ R),

and for such A and y ∈ R we put

A(y) := a0y + a1y
′ + · · ·+ any

(n) ∈ R.

Then (AB)(y) = A
(
B(y)

)
for all A,B ∈ R[∂] and y ∈ R. The kernel of A ∈ R[∂] is

the CR-submodule

kerA =
{
y ∈ R : A(y) = 0

}
of R. If we want to stress the dependence on R, we also write kerRA for kerA.
For A ∈ R[∂]̸= there are unique elements a0, . . . , an of R with an ̸= 0 such that (0.2)
holds. Then order(A) := n is the order of A, and we say that A is monic if an = 1.
Let u ∈ R×. For A ∈ R[∂] we set A⋉u := u−1Au ∈ R[∂], the twist of A by u. If A is
monic, then so is A⋉u, and A 7→ A⋉u is an automorphism of the ring R[∂] which is
the identity on R [ADH, p. 243]; its inverse is B 7→ B⋉u−1). Let ϕ ∈ R×. Then we
have the ring Rϕ[δ] of linear differential operators over the differential ring Rϕ (with
derivation δ = ϕ−1

∂), and we have a ring isomorphism A 7→ Aϕ : R[∂] → Rϕ[δ]; it
is the identity on R, with ∂

ϕ = ϕδ.

The linear part of P ∈ R{Y } is the linear differential operator

LP :=
∑
n

∂P

∂Y (n)
(0)∂n ∈ R[∂], so LP+a =

∑
n

∂P

∂Y (n)
(a)∂n for a ∈ R.

9



We have LP (y) = P1(y) for all y ∈ R.

Suppose now K is a differential field. Then A ∈ K[∂] is said to split over K
if A = c(∂ − f1) · · · (∂ − fr) for some c ∈ K×, f1, . . . , fr ∈ K; cf. [ADH, 5.1]. If A
splits over K, then so does aAb for a, b ∈ K×, and Aϕ splits over Kϕ for ϕ ∈ K×.
In [ADH, 5.2] we defined the functions

(0.3) ω : K → K, ω(z) := −(2z′ + z2)

and

(0.4) σ : K× → K, σ(y) := ω(z) + y2 where z := −y†.
Then for A = 4∂

2 + f (f ∈ K) we have

(0.5) A splits over K ⇐⇒ f ∈ ω(K)

and if −1 is not a square in K, then

(0.6) A splits over K[i] ⇐⇒ f ∈ ω(K) ∪ σ(K×).

We say that K is linearly closed if every A ∈ K[∂] ̸= splits over K. By [ADH, 5.8.9]
this holds if K is weakly differentially closed : each P ∈ K{Y } \K has a zero in K
(hence K is also linearly surjective, that is, A(K) = K for all A ∈ K[∂] ̸=).

Valued fields. For a field K we have K× = K ̸=, and a (Krull) valuation on K is
a surjective map v : K× → Γ onto an ordered abelian group Γ (additively written)
satisfying the usual laws, and extended to v : K → Γ∞ := Γ ∪ {∞} by v(0) = ∞,
where the ordering on Γ is extended to a total ordering on Γ∞ by γ < ∞ for
all γ ∈ Γ. A valued field K is a field (also denoted by K) together with a valuation
ring O of that field, and the corresponding valuation v : K× → Γ on the underlying
field is such that O = {a ∈ K : va ⩾ 0} as explained in [ADH, 3.1].

Let K be a valued field with valuation ring OK and valuation v : K× → ΓK .
Then OK is a local ring with maximal ideal OK = {a ∈ K : va > 0} and residue
field res(K) = OK/OK . If res(K) has characteristic zero, then K is said to be of
equicharacteristic zero. When, as here, we use the capital K for the valued field
under consideration, then we denote ΓK , OK , OK , by Γ, O, O, respectively. A very
handy alternative notation system in connection with the valuation is as follows.
With a, b ranging over K, set

a ≍ b :⇔ va = vb, a ≼ b :⇔ va ⩾ vb, a ≺ b :⇔ va > vb,

a ≽ b :⇔ b ≼ a, a ≻ b :⇔ b ≺ a, a ∼ b :⇔ a− b ≺ a.

It is easy to check that if a ∼ b, then a, b ̸= 0 and a ≍ b, and that ∼ is an equivalence
relation on K×. Given a valued field extension L of K, we identify in the usual
way res(K) with a subfield of res(L), and Γ with an ordered subgroup of ΓL. Such
a valued field extension is called immediate if res(K) = res(L) and Γ = ΓL. We use
pc-sequence to abbreviate pseudocauchy sequence, and aρ ⇝ a indicates that (aρ)
is a pc-sequence pseudoconverging to a; here the aρ and a lie in a valued field
understood from the context, see [ADH, 2.2, 3.2].

Next we summarize the complementary processes of coarsening and specialization
of a valued field, which play an important role in Parts 3 and 4. (For more de-
tails see [ADH, 3.4].) Let K be a valued field and ∆ a convex subgroup of its

value group Γ. Equip Γ̇ := Γ/∆ with the unique ordering making it an ordered

abelian group such that the residue morphism Γ → Γ̇ is increasing. Then the
10



map v̇ = v∆ : K× → Γ̇ given by v̇f := vf +∆ is a valuation on K, called the coars-
ening of v by ∆, or just the ∆-coarsening of v. We denote the asymptotic relations
associated with v̇ by a subscript ∆, so ≼∆, ≺∆, etc., or just by ≼̇, ≺̇, etc., if ∆
is clear from the context. The valuation ring of v̇ is Ȯ :=

{
a ∈ K : va ∈ ∆↑} with

maximal ideal Ȯ :=
{
a ∈ K : va > ∆

}
. The valued field (K, Ȯ) is called the coars-

ening of the valued field K by ∆, or simply the ∆-coarsening of K. Let K̇ := Ȯ/Ȯ
be the residue field of (K, Ȯ), with residue morphism a 7→ a+ Ȯ : Ȯ → K̇. Then

for a ∈ Ȯ \ Ȯ, the value va only depends on ȧ, and we obtain a valuation v : K̇× → ∆

on K̇ with vȧ := va for a ∈ Ȯ \ Ȯ. The valuation ring of this valuation on K̇

is OK̇ := {ȧ : a ∈ O}. The valued field (K̇,OK̇), called the ∆-specialization of K,

is also denoted by K̇. The composed map O → OK̇ → res(K̇) has kernel O, and

thus induces a field isomorphism res(K) → res(K̇); we use it to identify res(K)

with res(K̇).

Valued differential fields. As in [ADH], a valued differential field is a valued
field of equicharacteristic zero together with a derivation, generally denoted by ∂,
on the underlying field. (Unlike [3] we do not assume in this definition that ∂ is
continuous with respect to the valuation topology.) Let K be a valued differential
field and K⟨Y ⟩ the fraction field of K{Y }. We extend the valuation v : K → Γ∞
and the corresponding relations ≺,≼, etc., first to K{Y } by

v(P ) := min
{
v(Pi) : i ∈ N1+r

}
for P ∈ K{Y } of order ⩽ r,

and then (uniquely) to a valuation v : K⟨Y ⟩ → Γ∞ (the gaussian extension). We
also define the dominant degree ddegP for P ∈ K{Y } by

ddegP := max
{
d : v(Pd) = v(P )

}
∈ N if P ̸= 0, ddegP := −∞ if P = 0.

The dominant weight dwtP of P is defined in the same way, and so is the dominant
multiplicity dmulP of P (at 0), with dmulP = +∞ if P = 0.

The derivation ∂ of a valued differential fieldK is said to be small if ∂O ⊆ O; then ∂ is
continuous with respect to the valuation topology of K, and ∂O ⊆ O [ADH, 4.4.2],
so ∂ induces a derivation on res(K) making the residue map O → res(K) into a
morphism of differential rings.

We say that K is differential-henselian (d-henselian for short) if its derivation
is small, the differential residue field res(K) is linearly surjective, and for ev-
ery P ∈ O{Y } with P0 ≺ P1 ≍ 1 there exists y ≺ 1 in K such that P (y) = 0.
See [ADH, Chapter 7] for more, and for the weaker notions of r-d-henselian, r ∈ N.
Suppose now the derivation of K is small, and A =

∑
i ai∂

i ∈ K[∂] (all ai ∈ K).
In [ADH, 5.6] we defined v(A) := mini v(ai) ∈ Γ∞, extending accordingly the
relations ≺,≼, etc., on K to K[∂]. For A ̸= 0 we set

dwmA := min
{
i : v(ai) = v(A)

}
∈ N, dwtA := max

{
i : v(ai) = v(A)

}
∈ N,

the dominant weighted multiplicity of A and the dominant weight of A, respectively.
Let y range over K×. Then v(Ay) only depends on vy, not on y, and we can thus
define vA(γ) := v(Ay) for γ := vy. The quantity dwt(Ay) also only depends
on vy, so we can define dwtA(γ) := dwt(Ay) for γ = vy. Likewise, if ∂O ⊆ O,
then dwm(Ay) only depends on vy, and we define dwmA(γ) := dwm(Ay) for γ = vy.
The set of exceptional values of A is

E (A) = EK(A) :=
{
vy : dwm(Ay) > 0

}
⊆ Γ;

11



it contains v(ker ̸=A), where ker̸=A := (kerA) ̸=; cf. [ADH, 5.6.7].

Ordered differential fields. An ordered differential field is a differential field K
with an ordering on K making K an ordered field. Likewise, an ordered valued
differential field is a valued differential field K equipped an ordering on K mak-
ing K an ordered field (no relation between derivation, valuation, or ordering being
assumed). Let K be an ordered differential field. Then we have the convex subring

O :=
{
g ∈ K : |g| ⩽ c for some c ∈ C

}
,

which is a valuation ring of K and has maximal ideal

O =
{
g ∈ K : |g| < c for all positive c ∈ C

}
.

We call K an H-field if for all f ∈ K with f > C we have f ′ > 0, and O = C + O.
We view such an H-field K as an ordered valued differential field with its valuation
given by O. Pre-H-fields are the ordered valued differential subfields of H-fields.
See [ADH, 10.5] for basic facts about (pre-)H-fields. An H-field K is said to
be Liouville closed if K is real closed and for all f, g ∈ K there exists y ∈ K×

with y′ + fy = g. Every H-field extends to a Liouville closed one; see [ADH, 10.6].

Let K be a pre-H-field. In [ADH, p. 520] we singled out the following subsets:

Γ(K) := (K≻1)†, Λ(K) := −
[
(K≻1)††

]
, ∆(K) := −

[
(K ̸=,≺1)′†

]
.

If K is Liouville closed, then the restriction of ω to Λ(K) is strictly increasing
with ω

(
Λ(K)

)
= ω

(
∆(K)

)
. The restriction of σ to Γ(K) is strictly increasing,

and ω
(
Λ(K)

)
< σ

(
Γ(K)

)
; see [ADH, 11.8]. We call K Schwarz closed if K is

Liouville closed and K = ω
(
Λ(K)

)
∪ σ
(
Γ(K)

)
[ADH, 11.8.33].

We alert the reader that in a few places we refer to the Liouville closed H-field Tg

of grid-based transseries from [15], which is denoted there by T. Here we adopt
the notation of [ADH] where T is the larger field of logarithmic-exponential series,
which is also a Liouville closed H-field.

Asymptotic fields. In their capacity as valued differential fields, H-fields and
pre-H-fields are among so-called asymptotic fields, which also include the algebraic
closure of any pre-H-field (where this algebraic closure is equipped with the unique
derivation extending the derivation of the pre-H-field and any valuation extending
the valuation of the pre-H-field). That is one of the reasons (not the only one)
to consider this notion more closely: An asymptotic field is a valued differential
field K such that for all nonzero f, g ≺ 1 in K we have: f ≺ g ⇐⇒ f ′ ≺ g′. Let K
be an asymptotic field. Then Kϕ with ϕ ∈ K× is also asymptotic. We associate
to K its asymptotic couple (Γ, ψ), where ψ : Γ ̸= → Γ is given by

ψ(vg) = v(g†) for g ∈ K× with vg ̸= 0.

So the asymptotic couple of K is the ordered abelian value group Γ with a function
on it that is induced by the derivation of K; it serves a similar purpose as the
value group of a mere valued field. We put Ψ := ψ(Γ̸=), and if we want to stress
the dependence on K we also write (ΓK , ψK) and ΨK instead of (Γ, ψ) and Ψ,
respectively. See [ADH, 9.1, 9.2] for more on asymptotic couples, in particular the
taxonomy of asymptotic fields introduced via their asymptotic couples: having a
gap, being grounded, having asymptotic integration, and having rational asymptotic
integration. We now consider various conditions on our asymptotic field K, some
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mentioned in the last sentence. To define those conditions, let f , g range over K,
and c over the constant field C of K:

H-asymptotic (or of H-type): 0 ̸= f ≺ g ≺ 1 ⇒ f† ≽ g†. (Pre-H-fields and their
algebraic closures are H-asymptotic. If K is H-asymptotic and ϕ ∈ K×, then Kϕ

is H-asymptotic.)

Differential-valued (or d-valued): for all f ≍ 1 there exists c with f ∼ c. (H-fields
and their algebraic closures are d-valued.)

Pre-differential-valued (or pre-d-valued): f ≼ 1 & 0 ̸= g ≺ 1 ⇒ f ′ ≺ g†. (Pre-H-
fields are pre-d-valued. Every pre-d-valued field has a canonical d-valued extension,
its d-valued hull dv(K), by [ADH, 10.3].)

Grounded : there is a nonzero f ̸≍ 1 such that for all nonzero g ̸≍ 1 we have g† ≽ f†.

Asymptotic integration: for all f ̸= 0 there exists g ̸≍ 1 with g′ ≍ f . (If K
has asymptotic integration, then K is ungrounded with Γ ̸= {0}. Liouville closed
H-fields have asymptotic integration.)

λ-free: H-asymptotic, ungrounded, and for all f there exists g ≻ 1 with f−g†† ≽ g†.

ω-free: H-asymptotic, ungrounded, and for all f there exists g ≻ 1 such that
f − ω(g††) ≽ (g†)2, where ω is as in (0.3).

Here we note that ω-freeness is very robust, and powerful, and that T is ω-free. For
more on this, see [ADH, 13.6] and Section 1.3 below.

Flattening. This is from [ADH, 9.4]. SupposeK is H-asymptotic with asymptotic
couple (Γ, ψ). Then we have a convex subgroup Γ♭ :=

{
γ ∈ Γ : ψ(γ) > 0

}
of Γ, and

the Γ♭-coarsening v♭ : K× → Γ/Γ♭ of v is called the flattening of v. The differential
field K together with the valuation ring of v♭ is H-asymptotic. We denote the
relations ≍, ∼, ≼, ≺ associated to v♭ by ≍♭, ∼♭, ≼♭, ≺♭, respectively. For ϕ ∈ K×

we denote the flattened objects v♭ϕ, Γ
♭
ϕ, ≍♭

ϕ, ∼♭
ϕ, ≼

♭
ϕ, ≺♭

ϕ associated to Kϕ by a

subscript ϕ. In particular, Γ♭
ϕ =

{
γ ∈ Γ : ψ(γ) > vϕ

}
.

Newtonianity. In order to define newtonian, assume the asymptotic field K is
ungrounded with Γ ̸= {0}. Then an element ϕ ∈ K is said to be active in K if ϕ ̸= 0
and ϕ ≽ f† for some nonzero f ̸≍ 1. If ϕ is active in K, then the derivation ϕ−1

∂

of Kϕ is small. Let ϕ range over the active elements of K. A property S(ϕ) of
(active) elements ϕ is said to hold eventually if there is an active ϕ0 in K such
that S(ϕ) holds for all ϕ ≼ ϕ0; cf. [ADH, p. 479]. The way to understanding
Liouville closed H-fields such as T involves often eventual behavior of this kind.
For example, in [ADH, 11.1] we showed that for P ∈ K{Y }, dmulPϕ, ddegPϕ,
and dwtPϕ are eventually constant. The eventual values of these quantities are
denoted by nmulP , ndegP , and nwtP , respectively, and are called the Newton
multiplicity of P , the Newton degree of P , and the Newton weight of P . We call P
quasilinear if ndegP = 1.

Definition 0.1. An asymptotic field K is said to be newtonian if K is ungrounded
of H-type with Γ ̸= {0}, and every quasilinear P ∈ K{Y } has a zero in O.
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We now list some properties of this notion from [ADH] that we shall frequently
use. For this, assume as before that K is an ungrounded H-asymptotic field
with Γ ̸= {0}. First a consequence of [ADH, 14.0.1 and the remarks after it]:

If K is ω-free, then K has an immediate d-algebraic
extension which is newtonian and ω-free.

[ADH, 14.0.1](0.7)

For d-valued K we often need the following:

If K is d-valued, ω-free, newtonian, and algebraically
closed, then K is weakly differentially closed.

[ADH, 14.5.3](0.8)

For more on d-valued K, see [ADH, 14.5.4] and [21, Theorem B].

If K is newtonian, then K is linearly surjective. [ADH, 14.4.2](0.9)

Next, supposeK is ω-free and d-valued with divisible value group, and L is a valued
differential field extension of K and algebraic over K. Then:

If K is newtonian, then so is L. [ADH, 14.5.7](0.10)

K is newtonian if L is newtonian and L = K(CL). [ADH, 14.5.6](0.11)

For example, the valued differential field T is newtonian by [ADH, 15.0.2], hence
its algebraic closure T[i] is also newtonian by (0.10), and thus T[i] is linearly closed
by (0.8) and linearly surjective by (0.9).

See also [ADH, 14.2] for r-newtonian and r-linearly newtonian, useful weakenings
of newtonian that allow for induction on r ∈ N.

Closed H-fields. A closed H-field (or H-closed field) is a Liouville closed, ω-
free, and newtonian H-field. A fundamental fact from [ADH] about the elementary
theory of T as an ordered valued differential field is that it is completely axiomatized
by the requirements of being a closed H-field with small derivation. Moreover, the
closed H-fields are exactly the existentially closed models of the theory of H-fields.
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Part 1. Preliminaries

After generalities on linear differential operators and differential polynomials in
Section 1.1, we investigate the group of logarithmic derivatives in valued differential
fields of various kinds (Section 1.2). We also assemble some basic preservation
theorems for λ-freeness and ω-freeness (Section 1.3) and continue the study of
linear differential operators over H-asymptotic fields initiated in [ADH, 5.6, 14.2]
(Section 1.4). In our analysis of the solutions of algebraic differential equations over
H-asymptotic fields in Part 3, special pc-sequences in the sense of [ADH, 3.4] play
an important role; Section 1.5 explains why. A cornerstone of [ADH] is the concept
of newtonianity , an analogue of henselianity appropriate for H-asymptotic fields
with asymptotic integration [ADH, Chapter 14]. Related to this is differential-
henselianity [ADH, Chapter 7], which makes sense for a broader class of valued
differential fields. In Sections 1.6 and 1.7 we further explore these notions. Among
other things, we study their persistence under taking the completion of a valued
differential field with small derivation (as defined in [ADH, 4.4]).

1.1. Linear Differential Operators and Differential Polynomials

This section gathers miscellaneous facts of a general nature about linear differential
operators and differential polynomials, sometimes in a valued differential setting.
We discuss splittings and least common left multiples of linear differential operators,
and then prove some useful estimates for derivatives of exponential terms and for
Riccati transforms.

Splittings. In this subsection K is a differential field. Let A ∈ K[∂]̸= be monic
of order r ⩾ 1. A splitting of A over K is a tuple (g1, . . . , gr) ∈ Kr such
that A = (∂ − g1) · · · (∂ − gr). If (g1, . . . , gr) is a splitting of A over K and n ∈ K×,
then (g1 − n†, . . . , gr − n†) is a splitting of A⋉n = n−1An over K.

Suppose A = A1 · · ·Am where every Ai ∈ K[∂] is monic of positive order ri (so r =
r1 + · · ·+ rm). Given any splittings

(g11, . . . , g1r1), . . . , (gm1, . . . , gmrm)

of A1, . . . , Am, respectively, we obtain a splitting(
g11, . . . , g1r1 , . . . , gm1, . . . , gmrm

)
of A by concatenating the given splittings of A1, . . . , Am in the order indicated, and
call it a splitting of A induced by the factorization A = A1 · · ·Am. For B ∈ K[∂]
of order r ⩾ 1 we have B = bA with b ∈ K× and monic A ∈ K[∂], and then a
splitting of B over K is by definition a splitting of A over K. A splitting of B
over K remains a splitting of aB over K, for any a ∈ K×. Thus:

Lemma 1.1.1. If B ∈ K[∂] has order r ⩾ 1, and (g1, . . . , gr) is a splitting of B
over K and n ∈ K×, then (g1 − n†, . . . , gr − n†) is a splitting of B⋉n over K and a
splitting of Bn over K.

Let A ∈ K[∂]̸= and r := order(A). From [ADH, 5.1, 5.7] we know that if A splits
over K, then for any ϕ ∈ K× the operator Aϕ ∈ Kϕ[δ] splits over Kϕ; here is how
a splitting of A over K transforms into a splitting of Aϕ over Kϕ:
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Lemma 1.1.2. Let ϕ ∈ K× and

A = c(∂ − a1) · · · (∂ − ar) with c ∈ K× and a1, . . . , ar ∈ K.

Then in Kϕ[δ] we have

Aϕ = cϕr(δ − b1) · · · (δ − br) where bj := ϕ−1
(
aj − (r − j)ϕ†

)
(j = 1, . . . , r).

Proof. Induction on r. The case r = 0 being obvious, suppose r ⩾ 1, and set B :=
(∂ − a2) · · · (∂ − ar). By inductive hypothesis

Bϕ = ϕr−1(δ − b2) · · · (δ − br) where bj := ϕ−1
(
aj − (r − j)ϕ†

)
for j = 2, . . . , r.

Then

Aϕ = cϕ
(

δ − (a1/ϕ)
)
Bϕ = cϕr

(
δ − (a1/ϕ)

)
⋉ϕr−1 (δ − b2) · · · (δ − br)

with (
δ − (a1/ϕ)

)
⋉ϕr−1 = δ − (a1/ϕ) + (r − 1)ϕ†/ϕ

by [ADH, p. 243]. □

A different kind of factorization, see for example [19], reduces the process of solving
the differential equation A(y) = 0 to repeated multiplication and integration:

Lemma 1.1.3. Let A ∈ K[∂] ̸= be monic of order r ⩾ 1. If b1, . . . , br ∈ K× and

A = b1 · · · br−1br(∂b
−1
r )(∂b−1

r−1) · · · (∂b
−1
1 ),

then (ar, . . . , a1), where aj := (b1 · · · bj)† for j = 1, . . . , r, is a splitting of A over K.
Conversely, if (ar, . . . , a1) is a splitting of A over K and b1, . . . , br ∈ K× are such

that b†j = aj − aj−1 for j = 1, . . . , r with a0 := 0, then A is as in the display.

This follows easily by induction on r.

Real splittings. Let H be a differential field in which −1 is not a square. Then
we let i denote an element in a differential field extension of H with i2 = −1, and
consider the differential field K = H[i]. Suppose A ∈ H[∂] is monic of order 2 and
splits over K, so

A = (∂ − f)(∂ − g), f, g ∈ K.

Then
A = ∂

2 − (f + g)∂ + fg − g′,

and thus f ∈ H iff g ∈ H. One checks easily that if g /∈ H, then there are
unique a, b ∈ H with b ̸= 0 such that

f = a− bi + b†, g = a+ bi,

and thus
A = ∂

2 − (2a+ b†)∂ + a2 + b2 − a′ + ab†.

Conversely, if a, b ∈ H and b ̸= 0, then for f := a − bi + b† and g := a + bi we
have (∂ − f)(∂ − g) ∈ H[∂].

Let now A ∈ H[∂] be monic of order r ⩾ 1. Recall: A is irreducible iff there are no
monic A1, A2 ∈ K[∂] of positive order with A = A1A2; cf. [ADH, p. 250].

Lemma 1.1.4. Suppose A splits over K. Then A = A1 · · ·Am for some A1, . . . , Am

in H[∂] that are monic and irreducible of order 1 or 2 and split over K.

Proof. By [ADH, 5.1.35], A = A1 · · ·Am, where every Ai ∈ H[∂] is monic and
irreducible of order 1 or 2. By [ADH, 5.1.22], such Ai split over K. □
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Definition 1.1.5. A real splitting of A (over K) is a splitting of A over K that
is induced by a factorization A = A1 · · ·Am where every Ai ∈ H[∂] is monic of
order 1 or 2 and splits over K. (Note that we do not require the Ai of order 2 to
be irreducible in H[∂].)

Thus if A splits over K, then A has a real splitting over K by Lemma 1.1.4. Note
that if (g1, . . . , gr) is a real splitting of A and n ∈ H×, then (g1 − n†, . . . , gr − n†)
is a real splitting of A⋉n.

It is convenient to extend the above slightly: for B ∈ H[∂] of order r ⩾ 1 we
have B = bA with b ∈ H× and monic A ∈ H[∂], and then a real splitting
of B (over K) is by definition a real splitting of A (over K).

In later use, H is a valued differential field with small derivation such that −1
is not a square in the differential residue field res(H). For such H, let O be the
valuation ring of H. We make K a valued differential field extension of H with
small derivation by taking OK = O + Oi as the valuation ring of K. We have
the residue map a 7→ res a : OK → res(K), so res(K) = res(H)[i], writing here i
for res i. We extend this map to a ring morphism B 7→ resB : OK [∂] → res(K)[∂]
by sending ∂ ∈ O[∂] to ∂ ∈ res(K)[∂].

Lemma 1.1.6. Suppose (g1, . . . , gr) ∈ res(K)r is a real splitting of a monic oper-
ator D ∈ res(H)[∂] of order r ⩾ 1. Then there are b1, . . . , br ∈ OK such that

B := (∂ − b1) · · · (∂ − br) ∈ O[∂],

(b1, . . . , br) is a real splitting of B, and res bj = gj for j = 1, . . . , r.

Proof. We can assume r ∈ {1, 2}. The case r = 1 is obvious, so let r = 2. Then the
case where g1, g2 ∈ res(H) is again obvious, so let g1 = res(a) − res(b)i + (res b)†,
g2 = res(a) + res(b)i where a, b ∈ O, res b ̸= 0. Set b1 := a − bi + b†, b2 := a + bi.
Then b1, b2 ∈ OK with res b1 = g1, res b2 = g2, and B := (∂ − b1)(∂ − b2) ∈ O[∂]
have the desired properties. □

Least common left multiples and complex conjugation. In this subsec-
tion H is a differential field. Recall from [ADH, 5.1] the definition of the least
common left multiple lclm(A1, . . . , Am) of operators A1, . . . , Am ∈ H[∂] ̸=, m ⩾ 1:
this is the monic operator A ∈ H[∂] such that H[∂]A1 ∩ · · · ∩ H[∂]Am = H[∂]A.
For A,B ∈ H[∂] ̸= we have:

max
{
order(A), order(B)

}
⩽ order

(
lclm(A,B)

)
⩽ order(A) + order(B).

For the inequality on the right, note that the natural H[∂]-module morphism

H[∂] →
(
H[∂]/H[∂]A

)
×
(
H[∂]/H[∂]B

)
has kernel H[∂] lclm(A,B), and for D ∈ H[∂]̸=, the H-linear space H[∂]/K[∂]D has
dimension orderD.

We now assume that −1 is not a square in H; then we have a differential field ex-
tension H[i] where i2 = −1. The automorphism a+bi 7→ a+ bi := a−bi (a, b ∈ H)
of the differential field H[i] extends uniquely to an automorphism A 7→ A of the
ring H[i][∂] with ∂ = ∂. Let A ∈ H[i][∂]; then A = A⇐⇒ A ∈ H[∂]. Hence if A ̸= 0
is monic, then L := lclm(A,A) ∈ H[∂] and thus L = BA = BA where B ∈ H[i][∂].

Example 1.1.7. Let A = ∂ − a where a ∈ H[i]. If a ∈ H, then lclm(A,A) = A, and
if a /∈ H, then lclm(A,A) = (∂ − b)(∂ − a) = (∂ − b)(∂ − a) where b ∈ H[i] \H.
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Let now F be a differential field extension of H in which −1 is not a square; we
assume that i is an element of a differential ring extension of F .

Lemma 1.1.8. Let A ∈ H[i][∂]̸= be monic, b ∈ H[i], and f ∈ F [i] such
that A(f) = b. Let B ∈ H[i][∂] be such that L := lclm(A,A) = BA.
Then L(f) = B(b) and hence L

(
Re(f)

)
= Re

(
B(b)

)
and L

(
Im(f)

)
= Im

(
B(b)

)
.

In [6] we shall need a slight extension of this lemma:

Remark 1.1.9. Let F be a differential ring extension ofH in which−1 is not a square
and let i be an element of a commutative ring extension of F such that i2 = −1 and
the F -algebra F [i] = F+F i is a free F -module with basis 1, i. For f = g+hi ∈ F [i]
with g, h ∈ F we set Re(f) := g and Im(f) := h. We make F [i] into a differential
ring extension of F in the only way possible (which has i′ = 0). Then Lemma 1.1.8
goes through.

Estimates for derivatives of exponential terms. In this subsection K is an
asymptotic differential field with small derivation, and ϕ ∈ K. We also fix m ∈ K×

with m ≺ 1. Here is a useful bound:

Lemma 1.1.10. Let r ∈ N and y ∈ K satisfy y ≺ mr+m ≺ 1. Then P (y) ≺ mmµP
for all P ∈ K{Y }̸= of order at most r with µ = mul(P ) ⩾ 1.

Proof. Note that 0 ̸= m ≺ 1 and r +m ⩾ 1. Hence

y′ ≺ (mr+m)′ = (r +m)mr+m−1m′ ≺ mr−1+m,

so by induction y(i) ≺ mr−i+m for i = 0, . . . , r. Hence yi ≺ m(r+m)|i|−∥i∥ ≼ mm|i|

for nonzero i = (i0, . . . , ir) ∈ N1+r, which yields the lemma. □

Corollary 1.1.11. If f ∈ K and f ≺ mn, then f (k) ≺ mn−k for k = 0, . . . , n.

Proof. This is a special case of Lemma 1.1.10. □

Corollary 1.1.12. Let f ∈ K× and n ⩾ 1 be such that f ≼ mn. Then f (k) ≺ mn−k

for k = 1, . . . , n.

Proof. Note that mn ̸= 0, so f ′ ≼ (mn)′ = nmn−1m′ ≺ mn−1 [ADH, 9.1.3]. Now
apply Corollary 1.1.11 with f ′, n− 1 in place of f , n. □

In the remainder of this subsection we let ξ ∈ K× and assume ξ ≻ 1 and ζ := ξ† ≽ 1.

Lemma 1.1.13. The elements ξ, ζ ∈ K have the following asymptotic properties:

(i) ζn ≺ ξ for all n;
(ii) ζ(n) ≼ ζ2 for all n.

Thus for each P ∈ O{Z} there is an N ∈ N with P (ζ) ≼ ζN , and hence P (ζ) ≺ ξ.

Proof. Part (i) follows from [ADH, 9.2.10(iv)] for γ = v(ξ). As to (ii), if ζ ′ ≼ ζ,
then ζ(n) ≼ ζ by [ADH, 4.5.3], and we are done. Suppose ζ ′ ≻ ζ and set γ := v(ζ).
Then γ, γ† < 0, so γ† = o(γ) by [ADH, 9.2.10(iv)] and hence v(ζ(n)) = γ + nγ† >
2γ = v(ζ2) by [ADH, 6.4.1(iv)]. □

Recall from [ADH, 5.8] that for a homogeneous differential polynomial P ∈ K{Y }
of degree d ∈ N the Riccati transform Ri(P ) ∈ K{Z} of P satisfies

Ri(P )(z) = P (y)/yd for y ∈ K×, z = y†.
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We put Rn := Ri(Y (n)) ∈ Q{Z}, so

R0 = 1, R1 = Z, R2 = Z2 + Z ′, . . . .

For A = a0 + a1∂ + · · ·+ an∂
n ∈ K[∂] (a0, . . . , an ∈ K) we also let

Ri(A) := a0R0 + a1R1 + · · ·+ anRn ∈ K{Z}.

In the next two corollaries, l ∈ Z, ξ = ϕ′, and eϕ denotes a unit of a differential
ring extension of K with multiplicative inverse e−ϕ and such that (eϕ)′ = ϕ′ eϕ.

Corollary 1.1.14. (ξl eϕ)(n) = ξl+n(1 + ε) eϕ where ε ∈ K, ε ≺ 1.

Proof. By Lemma 1.1.13(i) we have lζ + ξ ∼ ξ ≻ 1. Now use (ξl eϕ)(n)/(ξl eϕ) =
Rn(lζ + ξ) for Rn = Ri(Y (n)) in combination with [ADH, 11.1.5]. □

Applying the corollary above with ϕ, ξ replaced by −ϕ, −ξ, respectively, we obtain:

Corollary 1.1.15. (ξl e−ϕ)(n) = (−1)nξl+n(1 + δ) e−ϕ where δ ∈ K, δ ≺ 1.

Estimates for Riccati transforms. In this subsection K is a valued differential
field with small derivation. For later use we prove variants of [ADH, 11.1.5].

Lemma 1.1.16. If z ∈ K≻1, then Rn(z) = zn(1+ε) with vε ⩾ v(z−1)+o(vz) > 0.

Proof. This is clear for n = 0 and n = 1. Suppose z ≻ 1, n ⩾ 1, and Rn(z) =
zn(1 + ε) with ε as in the lemma. As in the proof of [ADH, 11.1.5],

Rn+1(z) = zn+1

(
1 + ε+ n

z†

z
(1 + ε) +

ε′

z

)
.

Now v(z†) ⩾ o(vz): this is obvious if z† ≼ 1, and follows from ▽(γ) = o(γ) for γ ̸= 0
if z† ≻ 1 [ADH, 6.4.1(iii)]. This gives the desired result in view of ε′ ≺ 1. □

Lemma 1.1.17. Suppose ∂O ⊆ O. If z ∈ K≽1, then Rn(z) = zn(1+ ε) with ε ≺ 1.

Proof. The case z ≻ 1 follows from Lemma 1.1.16. For z ≍ 1, proceed as in the
proof of that lemma, using ∂O ⊆ O. □

By [ADH, 9.1.3 (iv)] the condition ∂O ⊆ O is satisfied ifK is d-valued, or asymptotic
with Ψ ∩ Γ> ̸= ∅. The following observation is not used later:

Lemma 1.1.18. Suppose K is asymptotic, and z ∈ K with 0 ̸= z ≼ z′ ≺ 1.
Then Rn(z) ∼ z(n−1) for n ⩾ 1.

Proof. Induction on n gives z ≼ z′ ≼ · · · ≼ z(n) ≺ 1 for all n. We now show Rn(z) ∼
z(n−1) for n ⩾ 1, also by induction. The case n = 1 is clear from R1 = Z, so
suppose n ⩾ 1 and Rn(z) ∼ z(n−1). Then

Rn+1(z) = zRn(z) +Rn(z)
′

where Rn(z)
′ ∼ z(n) by [ADH, 9.1.4(ii)] and zRn(z) ≍ zz(n−1) ≺ z(n−1) ≼ z(n).

Hence Rn+1(z) ∼ z(n). □
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1.2. The Group of Logarithmic Derivatives

Let K be a differential field. The map y 7→ y† : K× → K is a morphism from the
multiplicative group of K to the additive group of K, with kernel C×. Its image

(K×)† =
{
y† : y ∈ K×}

is an additive subgroup ofK, which we call the group of logarithmic derivatives
of K. The morphism y 7→ y† induces an isomorphism K×/C× → (K×)†. To
shorten notation, set 0† := 0, so K† = (K×)†. For ϕ ∈ K× we have ϕ(Kϕ)† = K†.
The group K× is divisible iff both C× and K† are divisible. If K is algebraically
closed, then K× and hence K† are divisible, making K† a Q-linear subspace of K.
Likewise, ifK is real closed, then the multiplicative subgroupK> ofK× is divisible,
so K† = (K>)† is a Q-linear subspace of K.

Lemma 1.2.1. Suppose K† is divisible, L is a differential field extension of K
with L† ∩ K = K†, and M is a differential field extension of L and algebraic
over L. Then M† ∩K = K†.

Proof. Let f ∈M× be such that f† ∈ K. Then f† ∈ L, so for n := [L(f) : L],

nf† = trL(f)|L(f
†) = NL(f)|L(f)

† ∈ L†

by an identity in [ADH, 4.4]. Hence nf† ∈ K†, and thus f† ∈ K†. □

In particular, if K† is divisible and M is a differential field extension of K and
algebraic over K, then M† ∩K = K†.

In the next two lemmas a, b ∈ K; distinguishing whether or not a ∈ K† helps to
describe the solutions to the differential equation y′ + ay = b:

Lemma 1.2.2. Suppose ∂K = K, and let L be differential field extension of K
with CL = C. Suppose also a ∈ K†. Then for some y0 ∈ K× and y1 ∈ K,

{y ∈ L : y′ + ay = b} = {y ∈ K : y′ + ay = b} = Cy0 + y1.

Proof. Take y0 ∈ K× with y†0 = −a, so y′0 + ay0 = 0. Twisting ∂ + a ∈ K[∂]
by y0 (see [ADH, p. 243]) transforms the equation y′ + ay = b into z′ = y−1

0 b.
This gives y1 ∈ K with y′1 + ay1 = b. Using CL = C, these y0, y1 have the desired
properties. □

Lemma 1.2.3. Let L be a differential field extension of K with L† ∩ K = K†.
Assume a /∈ K†. Then there is at most one y ∈ L with y′ + ay = b.

Proof. If y1, y2 are distinct solutions in L of the equation y′ + ay = b, then we
have −a = (y1 − y2)

† ∈ L† ∩K = K†, contradicting a /∈ K†. □

Logarithmic derivatives under algebraic closure. In this subsection K is a
differential field. We describe for real closedK howK† changes if we pass fromK to
its algebraic closure. More generally, suppose the underlying field of K is euclidean;
in particular, −1 is not a square in K. We equip K with the unique ordering
making K an ordered field. For y = a + bi ∈ K[i] (a, b ∈ K) we let |y| ∈ K⩾ be
such that |y|2 = a2 + b2. Then y 7→ |y| : K[i] → K⩾ is an absolute value on K[i],
i.e., for all x, y ∈ K[i],

|x| = 0 ⇐⇒ x = 0, |xy| = |x||y|, |x+ y| ⩽ |x|+ |y|.
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For a ∈ K we have |a| = max{a,−a}. We have the subgroup

S :=
{
y ∈ K[i] : |y| = 1

}
=
{
a+ bi : a, b ∈ K, a2 + b2 = 1

}
of the multiplicative group K[i]×. By an easy computation all elements of K[i]
are squares in K[i]; hence K[i]† is 2-divisible. The next lemma describes K[i]†; it
partly generalizes [ADH, 10.7.8]. For a, b ∈ K, put wr(a, b) := ab′−a′b [ADH, 4.1].

Lemma 1.2.4. We have K[i]× = K> · S with K> ∩ S = {1}, and
K[i]† = K† ⊕ S† (internal direct sum of subgroups of K[i]†).

For a, b ∈ K with a+ bi ∈ S we have (a+ bi)† = wr(a, b)i. Thus K[i]† ∩K = K†.

Proof. Let y = a + bi ∈ K[i]× (a, b ∈ K), and take r ∈ K> with r2 = a2 + b2;
then y = r · (y/r) with y/r ∈ S. Thus K[i]× = K> · S, and clearly K> ∩ S = {1}.
Hence K[i]† = K† + S†. Suppose a ∈ K×, s ∈ S, and a† = s†; then a = cs
with c ∈ CK[i], and CK[i] = C[i] by [ADH, 4.6.20] and hence max{a,−a} = |a| =
|c| ∈ C, so a ∈ C and thus a† = s† = 0; therefore the sum is direct. Now if a, b ∈ K
and |a+ bi| = 1, then

(a+ bi)† = (a′ + b′i)(a− bi)

= (aa′ + bb′) + (ab′ − a′b)i

= 1
2

(
a2 + b2

)′
+ (ab′ − a′b)i = (ab′ − a′b)i = wr(a, b)i. □

Corollary 1.2.5. For y ∈ K[i]× we have Re(y†) = |y|†, and the group mor-
phism y 7→ Re y† : K[i]× → K has kernel C>S.

If K is real closed and O a convex valuation ring of K, then O[i] = O +Oi is the
unique valuation ring of K[i] that lies over O, and so S ⊆ O[i]×, hence y ≍ |y| for
all y ∈ K[i]×. Thus by [ADH, 10.5.2(i)] and Corollary 1.2.5:

Corollary 1.2.6. If K is a real closed pre-H-field, then for all y, z ∈ K[i]×,

y ≺ z =⇒ Re y† < Re z†.

We also have a useful decomposition for S:

Corollary 1.2.7. Suppose K is a real closed H-field. Then

S = SC ·
(
S ∩ (1 + OK[i])

)
where SC := S ∩ C[i]× and S ∩ (1 + OK[i]) are subgroups of O[i]×.

Proof. The inclusion ⊇ is clear. For the reverse inclusion, let a, b ∈ K, a2 + b2 = 1
and take the unique c, d ∈ C with a − c ≺ 1 and b − d ≺ 1. Then c2 + d2 = 1
and a+ bi ∼ c+ di, and so (a+ bi)/(c+ di) ∈ S ∩ (1 + OK[i]). □

Logarithmic derivatives in asymptotic fields. Let K be an asymptotic field.
If K is henselian and k := resK, then by [ADH, remark before 3.3.33], K× is
divisible iff the groups k× and Γ are both divisible. Recall that in [ADH, 14.2] we
defined the O-submodule

I(K) = {y ∈ K : y ≼ f ′ for some f ∈ O}
of K. We have ∂O ⊆ I(K), hence (1 + O)† ⊆ (O×)† ⊆ I(K). One easily verifies:

Lemma 1.2.8. Suppose K is pre-d-valued. If I(K) ⊆ ∂K, then I(K) = ∂O.
If I(K) ⊆ K†, then I(K) = (O×)†, with I(K) = (1 + O)† if K is d-valued.
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If K is d-valued or K is pre-d-valued without a gap, then

I(K) = {y ∈ K : y ≼ f ′ for some f ∈ O}.

For ϕ ∈ K× we have ϕ I(Kϕ) = I(K). If K has asymptotic integration and L is an
asymptotic extension of K, then I(K) = I(L) ∩K. The following is [ADH, 14.2.5]:

Lemma 1.2.9. If K is H-asymptotic, has asymptotic integration, and is 1-linearly
newtonian, then it is d-valued and ∂O = I(K) = (1 + O)†.

We now turn our attention to the condition I(K) ⊆ K†. If I(K) ⊆ K†, then
also I(Kϕ) ⊆ (Kϕ)† for ϕ ∈ K×, where

(Kϕ)† := {ϕ−1f ′/f : f ∈ K×} = ϕ−1K†.

By [ADH, Section 9.5 and 10.4.3]:

Lemma 1.2.10. Let K be of H-type. If K is d-valued, or pre-d-valued without a
gap, then K has an immediate henselian asymptotic extension L with I(L) ⊆ L†.

Corollary 1.2.11. Suppose K has asymptotic integration. Let L be an asymptotic
field extension of K such that L× = K×C×

L (1 + OL). Then L† = K† + (1 + OL)
†,

and if I(K) ⊆ K†, then L† ∩K = K†.

Proof. Let f ∈ L×, and take b ∈ K×, c ∈ C×
L , g ∈ OL with f = bc(1 + g);

then f† = b† + (1 + g)†, showing L† = K† + (1 + OL)
†. Next, suppose I(K) ⊆ K†,

let b, c, f , g be as before, and assume a := f† ∈ K; then

a− b† ∈ (1 + OL)
† ∩K ⊆ I(L) ∩K = I(K) ⊆ K†

and hence a ∈ K†. This shows L† ∩K = K†. □

Two cases where the assumption on L in Corollary 1.2.11 is satisfied: (1) L is an
immediate asymptotic field extension of K, because then L× = K×(1 + OL); and
(2) L is a d-valued field extension of K with Γ = ΓL.

If F is a henselian valued field of residue characteristic 0, then clearly the sub-
group 1 + OF of F× is divisible. Hence, if K and L are as in Corollary 1.2.11 and
in addition K† is divisible and L is henselian, then L† is divisible.

Example 1.2.12. Let C be a field of characteristic 0 and Q be a subgroup of Q
with 1 ∈ Q. The Hahn field C((tQ)) = C[[xQ]], with x = t−1, is given the natural
derivation with c′ = 0 for all c ∈ C and x′ = 1: this derivation is defined by(∑

q∈Q

cqx
q

)′

:=
∑
q∈Q

qcqx
q−1 (all cq ∈ C).

Then C((tQ)) has constant field C, and is d-valued of H-type. Thus K := C((tQ))
satisfies I(K) ⊆ K† by Lemma 1.2.10. Hence by Lemma 1.2.8,

I(K) = (1 + O)† =
{
f ∈ K : f ≺ x† = t

}
= O t.

It follows easily that K† = Qt⊕ I(K) (internal direct sum of subgroups of K†) and
thus (Kt)† = Q ⊕ O ⊆ O. In particular, if Q = Z (so K = C((t))), then (Kt)† =
Z ⊕ tC[[t]]. Moreover, if L := P(C) ⊆ C((tQ)) is the differential field of Puiseux
series over C, then (Lt)† = Q⊕ OL.
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The real closed case. In this subsection H is a real closed asymptotic field whose
valuation ring O is convex with respect to the ordering of H. (In later use H is
often a Hardy field, which is why we use the letter H here.) The valuation ring of
the asymptotic field extension K = H[i] of H is then OK = O + Oi, from which
we obtain I(K) = I(H)⊕ I(H)i. Let

S :=
{
y ∈ K : |y| = 1

}
, W :=

{
wr(a, b) : a, b ∈ H, a2 + b2 = 1

}
,

so S is a subgroup of O×
K with S† = W i and K† = H† ⊕W i by Lemma 1.2.4.

Since ∂O ⊆ I(H), we have W ⊆ I(H), and thus: W = I(H) ⇐⇒ I(H)i ⊆ K†.

Lemma 1.2.13. The following are equivalent:

(i) I(K) ⊆ K†;
(ii) W = I(H) ⊆ H†.

Proof. Assume (i). Then I(H) i ⊆ I(K) ⊆ K†, so W = I(H) by the equivalence
preceding the lemma. Also I(H) ⊆ I(K) and K† ∩ H = H† (by Lemma 1.2.4),
hence I(H) ⊆ H†, so (ii) holds. For the converse, assume (ii). Then

I(K) = I(H)⊕ I(H)i ⊆ H† ⊕W i = K†. □

Applying now Lemma 1.2.9 we obtain:

Corollary 1.2.14. If H is H-asymptotic and has asymptotic integration, and K is
1-linearly newtonian, then K is d-valued and I(K) ⊆ K†; in particular, W = I(H).

Corollary 1.2.15. Suppose H has asymptotic integration and W = I(H). Let F
be a real closed asymptotic extension of H whose valuation ring is convex. Then

F [i]† ∩K = (F † ∩H)⊕ I(H)i.

If in addition H† = H, then F [i]† ∩K = H ⊕ I(H)i = K†.

Proof. We have

F † ∩H ⊆ F [i]† ∩K and I(H)i =W i ⊆ K† ∩Hi ⊆ F [i]† ∩K,
so (F †∩H)⊕ I(H)i ⊆ F [i]†∩K. For the reverse inclusion, F [i]† = F †⊕WF i, with

WF :=
{
wr(a, b) : a, b ∈ F, a2 + b2 = 1

}
⊆ I(F ),

hence

F [i]† ∩K = (F † ∩H)⊕ (WF ∩H)i

⊆ (F † ∩H)⊕
(
I(F ) ∩H

)
i = (F † ∩H)⊕ I(H)i,

using I(F ) ∩ H = I(H), a consequence of H having asymptotic integration.
If H† = H then clearly F † ∩H = H, hence F [i]† ∩K = K†. □

Trigonometric closure. In this subsection H is a real closed H-field. Let O be
its valuation ring and O the maximal ideal of O. The algebraic closure K = H[i]
of H is a d-valued H-asymptotic extension with valuation ring OK = O +Oi. We
have the “complex conjugation” automorphism z = a+ bi 7→ z = a− bi (a, b ∈ H)
of the valued differential field K. For such z, a, b we have

|z| =
√
zz =

√
a2 + b2 ∈ H⩾.

Lemma 1.2.16. Suppose θ ∈ H and θ′i ∈ K†. Then θ′ ∈ ∂O, and there is a
unique y ∼ 1 in K such that y† = θ′i. For this y we have |y| = 1, so y−1 = y.
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Proof. From θ′i ∈ K† we get θ′ ∈ W ⊆ I(H), so θ ≼ 1, hence θ′ ∈ ∂O = ∂O.
Let z ∈ K× and z† = θ′i. Then Re z† = 0, so by Corollaries 1.2.5 and 1.2.7 we
have z = cy with c ∈ C×

K and y ∈ S ∩ (1 + OK) where S = {a ∈ K : |a| = 1}.
Hence y ∼ 1, |y| = 1, and y† = θ′i. If also y1 ∈ K and y1 ∼ 1, y†1 = θ′i,
then y1 = c1y with c1 ∈ C×

K , so c1 = 1 in view of y ∼ y1. □

By [ADH, 10.4.3], if y in an H-asymptotic extension L of K satisfies y ∼ 1
and y† ∈ ∂OK , then the asymptotic field K(y) ⊆ L is an immediate extension of K,
and so is any algebraic asymptotic extension of K(y).

Call H trigonometrically closed if for all θ ≺ 1 in H there is a (necessarily
unique) y ∈ K such that y ∼ 1 and y† = θ′i. (By convention “trigonometrically
closed” includes “real closed”.) For such θ and y we think of y as eiθ and accordingly

of the elements y+y
2 = y+y−1

2 and y−y
2i = y−y−1

2i of H as cos θ and sin θ; this explains
the terminology. By Lemma 1.2.16 the restrictions θ ≺ 1 and y ∼ 1 are harmless.
Our aim in this subsection is to construct a canonical trigonometric closure of H.

Our interest in this notion comes from the condition I(K) ⊆ K†, which appears
as a natural hypothesis at many points in Part 4, especially in Section 4.4). Note
that if I(K) ⊆ K†, then H is trigonometrically closed. As a partial converse,
if I(H) ⊆ H† ∩ ∂H and H is trigonometrically closed, then I(K) ⊆ K†; this is an
easy consequence of I(K) = I(H) + I(H)i. Thus for Liouville closed H we have:

H is trigonometrically closed ⇐⇒ I(K) ⊆ K†.

Note also that for trigonometrically closed H there is no y in any H-asymptotic
extension of K such that y /∈ K, y ∼ 1, and y† ∈ (∂O)i. If H is Schwarz closed,
then H is trigonometrically closed by the next lemma:

Lemma 1.2.17. Suppose H is Liouville closed and ω(H) is downward closed.
Then H is trigonometrically closed.

Proof. Let 0 ̸= θ ≺ 1 in H. By Lemma 1.2.16 it suffices to show that then θ′i ∈ K†.
Note that h := θ′ ∈ I(H )̸=; we arrange h > 0. Now

f := ω(−h†) + 4h2 = σ(2h), 2h ∈ H> ∩ I(H),

hence 2h ∈ H>\Γ(H) by [ADH, 11.8.19]. So f ∈ ω(H)↓ = ω(H) by [ADH, 11.8.31],
and thus dimCH

ker 4∂
2 + f ⩾ 1 by [ADH, p. 258]. Put A := ∂

2 − h†∂ + h2 ∈ H[∂].

The isomorphism y 7→ y
√
h : ker(4∂

2 + f) → kerA of CH -linear spaces [ADH,

5.1.13] then yields an element of ker̸=A that for suggestiveness we denote by cos θ.
Put sin θ := −(cos θ)′/h. Then

(sin θ)′ = −(cos θ)′′/h+ (cos θ)′h†/h

=
(
−h†(cos θ)′ + h2 cos θ

)
/h+ (cos θ)′h†/h = h cos θ

and thus y† = θ′i for y := cos θ + i sin θ ∈ K×. □

If H is H-closed, then H is Schwarz closed by [ADH, 14.2.20], and thus trigono-
metrically closed. Using also Lemma 1.2.13 and remarks preceding it this yields:

Corollary 1.2.18. If H is H-closed, then I(K) ⊆ K† = H ⊕ I(H)i.
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Suppose now that H is not trigonometrically closed; so we have θ ≺ 1 in H
with θ′i /∈ K†. Then [ADH, 10.4.3] provides an immediate asymptotic exten-
sionK(y) ofK with y ∼ 1 and y† = θ′i. To simplify notation and for suggestiveness
we set

cos θ :=
y + y−1

2
, sin θ :=

y − y−1

2i
,

so y = cos θ + i sin θ and (cos θ)2 + (sin θ)2 = 1. Moreover (cos θ)′ = −θ′ sin θ
and (sin θ)′ = θ′ cos θ. It follows that H+ := H(cos θ, sin θ) is a differential subfield
of K(y) with K(y) = H+[i], and thus H+, as a valued differential subfield of H(y),
is an asymptotic extension of H.

Lemma 1.2.19. H+ is an immediate extension of H.

Proof. Since (y−1)† = −θ′i, the uniqueness property stated in [ADH, 10.4.3] allows
us to extend the complex conjugation automorphism of K (which is the identity
on H and sends i to −i) to an automorphism σ of the valued differential field K(y)
such that σ(y) = y−1. Then σ(cos θ) = cos θ and σ(sin θ) = sin θ, so H+ = Fix(σ).
Let k be the residue field of H; so k[res i] is the residue field of K and of its
immediate extension K(y). Now σ(OK(y)) = OK(y), so σ induces an automorphism
of this residue field k[res i] which is the identity on k and sends res i to − res i.
Hence res i does not lie in the residue field of H+, so this residue field is just k. □

Equip H+ with the unique field ordering making it an ordered field extension of H
in which OH+ is convex; see [ADH, 10.5.8]. Then H+ is an H-field, and its real
closure is an immediate real closed H-field extension of H.

Lemma 1.2.20. The H-field H+ embeds uniquely over H into any trigonometri-
cally closed H-field extension of H.

Proof. Let H∗ be a trigonometrically closed H-field extension of H. Take the
unique z ∼ 1 in H∗ such that z† = θ′i. Then any H-field embedding H+ → H∗

over H extends to a valued differential field embedding H+[i] = K(y) → H∗[i]
sending i ∈ K to i ∈ H∗[i], and this extension must send y to z. Hence there is
at most one H-field embedding H+ → H∗ over H. For the existence of such an
embedding, the uniqueness properties from [ADH, 10.4.3] yield a valued differential
field embedding K(y) → H∗[i] over H sending i ∈ K to i ∈ H∗[i] and y to z. This
embedding maps H+ into H∗. The uniqueness property of the ordering on H+

shows that this embedding restricts to an H-field embedding H+ → H∗. □

By iterating the extension step that leads from H to H+, alternating it with taking
real closures, and taking unions at limit stages we obtain:

Proposition 1.2.21. H has a trigonometrically closed H-field extension Htrig that
embeds uniquely over H into any trigonometrically closed H-field extension of H.

This is an easy consequence of Lemma 1.2.20. Note that the universal property
stated in Proposition 1.2.21 determines Htrig up-to-unique-isomorphism of H-fields
overH. We refer to suchHtrig as the trigonometric closure ofH. Note thatHtrig

is an immediate extension of H, by Lemma 1.2.19, and that Htrig[i] is a Liouville
extension of K and thus of H.

A trigonometric extension of H is a real closed H-field extension E of H such
that for all a ∈ E there are real closed H-subfields H0 ⊆ H1 ⊆ · · · ⊆ Hn of E such
that
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(1) H0 = H and a ∈ Hn;
(2) for j = 0, . . . , n − 1 there are θj ∈ Hj and yj ∈ Hj+1[i] ⊆ E[i] such

that yj ∼ 1, θ′ji = y†j , and Hj+1[i] is algebraic over Hj [i](yj).

If E is a trigonometric extension of H, then E is an immediate extension of H
and E[i] is an immediate Liouville extension of K and thus of H. The next lemma
states some further easy consequences of the definition above:

Lemma 1.2.22. If E is a trigonometric extension of H, then E is a trigonometric
extension of any real closed H-subfield F ⊇ H of E. If H is trigonometrically
closed, then H has no proper trigonometric extension.

Induction on m shows that if E is a trigonometric extension of H, then for any
a1, . . . , am ∈ E there are real closed H-subfields H0 ⊆ H1 ⊆ · · · ⊆ Hn of E such
that H0 = H, a1, . . . , am ∈ Hn and (2) above holds. This helps in proving:

Corollary 1.2.23. A trigonometric extension of a trigonometric extension of H
is a trigonometric extension of H, and Htrig is a trigonometric extension of H.

Asymptotic fields of Hardy type. Let (Γ, ψ) be an asymptotic couple, Ψ :=
ψ(Γ ̸=), and let γ, δ range over Γ. Recall that [γ] denotes the archimedean class
of γ [ADH, 2.4]. Following [24, Section 3] we say that (Γ, ψ) is of Hardy type if
for all γ, δ ̸= 0 we have [γ] ⩽ [δ] ⇐⇒ ψ(γ) ⩾ ψ(δ). Note that then (Γ, ψ) is of
H-type, and ψ induces an order-reversing bijection [Γ ̸=] → Ψ. If Γ is archimedean,
then (Γ, ψ) is of Hardy type. If (Γ, ψ) is of Hardy type, then so is (Γ, ψ + δ) for
each δ. We also say that an asymptotic field is of Hardy type if its asymptotic couple
is. Every asymptotic subfield and every compositional conjugate of an asymptotic
field of Hardy type is also of Hardy type. Moreover, every Hardy field is of Hardy
type [ADH, 9.1.11]. Let now ∆ be a convex subgroup of Γ. Note that ∆ contains
the archimedean class [δ] of each δ ∈ ∆. Hence, if δ ∈ ∆ ̸= and γ /∈ ∆, then [δ] < [γ]
and thus:

Lemma 1.2.24. If (Γ, ψ) is of Hardy type and γ /∈ ∆, δ ∈ ∆ ̸=, then ψ(γ) < ψ(δ).

Corollary 1.2.25. Suppose (Γ, ψ) is of Hardy type with small derivation, γ, δ ̸= 0,
ψ(δ) ⩽ 0, and [γ′] > [δ]. Then ψ(γ) < ψ(δ).

Proof. Let ∆ be the smallest convex subgroup of Γ with δ ∈ ∆; then γ′ /∈ ∆,
and ψ(δ) ∈ ∆ by [ADH, 9.2.10(iv)]. Thus γ /∈ ∆ by [ADH, 9.2.25]. □

In [1, Section 7] we say that an H-field H is closed under powers if for all c ∈ C
and f ∈ H× there is a y ∈ H× with y† = cf†. (Think of y as f c.) Thus if H is
Liouville closed, then H is closed under powers. In the rest of this subsection we
let H be an H-field closed under powers, with asymptotic couple (Γ, ψ) and constant
field C. We recall some basic facts from [1, Section 7]. First, we can make the value
group Γ into an ordered vector space over the constant field C:

Lemma 1.2.26. For all c ∈ C and γ = vf with f ∈ H× and each y ∈ H×

with y† = cf†, the element vy ∈ Γ only depends on (c, γ) (not on the choice of f
and y), and is denoted by c · γ. The scalar multiplication (c, γ) 7→ c · γ : C × Γ → Γ
makes Γ into an ordered vector space over the ordered field C.

Let G be an ordered vector space over the ordered field C. From [ADH, 2.4] recall
that the C-archimedean class of a ∈ G is defined as

[a]C :=
{
b ∈ G : 1

c |a| ⩽ |b| ⩽ c|a| for some c ∈ C>
}
.
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Thus if C = Q, then [a]Q is just the archimedean class [a] of a ∈ G. Moreover,
if C∗ is an ordered subfield of C, then [a]C∗ ⊆ [a]C for each a ∈ G, with equality
if C∗ is cofinal in C. Hence if C is archimedean, then [a] = [a]C for all a ∈ G.
Put [G]C :=

{
[a]C : a ∈ G

}
and linearly order [G]C by

[a]C < [b]C :⇐⇒ [a]C ̸= [b]C and |a| < |b|.

Thus [G]C has smallest element [0]C = {0}. We also set [G̸=]C := [G]C \
{
[0]C

}
.

From [1, Proposition 7.5] we have:

Proposition 1.2.27. For all γ, δ ̸= 0 we have

[γ]C ⩽ [δ]C ⇐⇒ ψ(γ) ⩾ ψ(δ).

Hence ψ induces an order-reversing bijection [Γ̸=]C → Ψ = ψ(Γ̸=).

Proposition 1.2.27 yields:

Corollary 1.2.28. H is of Hardy type ⇐⇒ [γ] = [γ]C for all γ. Hence if C is
archimedean, then H is of Hardy type; if Γ ̸= {0}, then the converse also holds.

1.3. λ-freeness and ω-freeness

This section contains preservation results for the important properties of λ-freeness
and ω-freeness from [ADH]. Let K be an ungrounded H-asymptotic field such
that Γ ̸= {0}, and as in [ADH, 11.5], fix a logarithmic sequence (ℓρ) forK and define
the pc-sequences (λρ) = (−ℓ††ρ ) and (ωρ) =

(
ω(λρ)

)
in K, where ω(z) := −2z′− z2.

Recall that K is λ-free iff (λρ) does not have a pseudolimit in K, and K is ω-free
iff (ωρ) does not have a pseudolimit in K. If K is ω-free, then K is λ-free. We refer
to [ADH, 11.6, 11.7] for this and other basic facts about λ-freeness and ω-freeness
used below. As in [ADH], L being λ-free or ω-free includes L being an ungrounded
H-asymptotic field with ΓL ̸= {0}.

Preserving λ-freeness and ω-freeness. In this subsection K is an ungrounded
H-asymptotic field with Γ ̸= {0}, and (ℓρ), (λρ), (ωρ) are as above. If K has a
λ-free H-asymptotic field extension L such that Γ< is cofinal in Γ<

L , then K is
λ-free, and similarly with “ω-free” in place of “λ-free” [ADH, remarks after 11.6.4,
11.7.19]. The property of ω-freeness is very robust; indeed, by [ADH, 13.6.1]:

Theorem 1.3.1. If K is ω-free and L is a pre-d-valued d-algebraic H-asymptotic
extension of K, then L is ω-free and Γ< is cofinal in Γ<

L .

In contrast, λ-freeness is more delicate: Theorem 1.3.1 fails with “λ-free” in place
of “ω-free”, as the next example shows.

Example 1.3.2. The H-field K = R⟨ω⟩ from [ADH, 13.9.1] is λ-free, but its H-field
extension L = R⟨λ⟩ is not, and this extension is d-algebraic: 2λ′ + λ2 + ω = 0.

In the rest of this subsection we consider cases where parts of Theorem 1.3.1 do
hold. Recall from [ADH, 11.6.8] that ifK is λ-free, thenK has (rational) asymptotic
integration, and K is λ-free iff its algebraic closure is λ-free. Moreover, λ-freeness
is preserved under adjunction of constants:

Proposition 1.3.3. Suppose K is λ-free and L = K(D) is an H-asymptotic ex-
tension of K with D ⊇ C a subfield of CL. Then L is λ-free with ΓL = Γ.
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We are going to deduce this from the next three lemmas. Recall that K is pre-d-
valued, by [ADH, 10.1.3]. Let dv(K) be the d-valued hull of K (see [ADH, 10.3]).

Lemma 1.3.4. Suppose K is λ-free. Then L := dv(K) is λ-free and ΓL = Γ.

Proof. The first statement is [13, Theorem 10.2], and the second statement follows
from [ADH, 10.3.2(i)]. □

If L = K(D) is a differential field extension of K with D ⊇ C a subfield of CL,
then D = CL, and K and D are linearly disjoint over C [ADH, 4.6.20]. If K is
d-valued and L = K(D) is an H-asymptotic extension of K with D ⊇ C a subfield
of CL, then L is d-valued and ΓL = Γ [ADH, 10.5.15].

Lemma 1.3.5. Suppose K is d-valued and λ-free, and L = K(D) is an H-
asymptotic extension of K with D ⊇ C a subfield of CL. Then L is λ-free.

Proof. First, (λρ) is of transcendental type over K: otherwise, [ADH, 3.2.7] would
give an algebraic extension of K that is not λ-free. Next, our logarithmic se-
quence (ℓρ) for K remains a logarithmic sequence for L.

Zorn and the ∀∃-form of the λ-freeness axiom [ADH, 1.6.1(ii)] reduce us to the
case D = C(d), d /∈ C, d transcendental over K, so L = K(d). Suppose L is
not λ-free. Then λρ ⇝ λ ∈ L, and such λ is transcendental over K and gives an
immediate extension K(λ) of K by [ADH, 3.2.6]. Hence L is algebraic over K(λ),
so resL is algebraic over resK(λ) = resK ∼= C and thus d is algebraic over C, a
contradiction. □

Lemma 1.3.6. Suppose K is λ-free and L is an H-asymptotic extension of K,
where L = K(d) with d ∈ CL. Then L is pre-d-valued.

Proof. Let La be an algebraic closure of the H-asymptotic field L, and let Ka be
the algebraic closure of K inside La. Then Ka is pre-d-valued by [ADH, 10.1.22].
Replacing K, L by Ka, Ka(d) we arrange that K is algebraically closed. We may
assume d /∈ C, so d is transcendental over K by [ADH, 4.1.1, 4.1.2].

Suppose first that res(d) ∈ res(K) ⊆ res(L), and take b ∈ O such that y :=
b − d ≺ 1. Then b′ /∈ ∂O: otherwise y′ = b′ = δ′ with δ ∈ O, so y = δ ∈ K and
hence d ∈ K, a contradiction. Also vb′ ∈ (Γ>)′: otherwise vb′ < (Γ>)′, by [ADH,
9.2.14], and vb′ would be a gap inK, contradicting λ-freeness ofK. Hence L = K(y)
is pre-d-valued by [ADH, 10.2.4, 10.2.5(iii)] applied to s := b′.

If res(d) /∈ res(K), then res(d) is transcendental over res(K) by [ADH, 3.1.17],
hence ΓL = Γ by [ADH, 3.1.11], and so L has asymptotic integration and thus is
pre-d-valued by [ADH, 10.1.3]. □

Proof of Proposition 1.3.3. By Zorn we reduce to the case L = K(d) with d ∈ CL.
Then L is pre-d-valued by Lemma 1.3.6. By Lemma 1.3.4, the d-valued hull K1 :=
dv(K) of K is λ-free with ΓK1 = Γ, and by the universal property of d-valued hulls
we may arrange that K1 is a d-valued subfield of L1 := dv(L) [ADH, 10.3.1]. The
proof of [ADH, 10.3.1] gives L1 = L(E) where E = CL1

, and so L1 = K1(E). Hence
by Lemma 1.3.5 and the remarks preceding it, L1 is λ-free with ΓL1

= ΓK1
= Γ.

Thus L is λ-free with ΓL = Γ. □

Lemma 1.3.7. Let H be a λ-free real closed H-field. Then the trigonometric
closure Htrig of H is λ-free.
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Proof. We show that H+ as in Lemma 1.2.19 is λ-free. There H+[i] = K(y)
where K is the H-asymptotic extension H[i] of H and y ∼ 1, y† /∈ K†, y† ∈ i∂OH .
Then K is λ-free, so K(y) is λ-free by [13, Proposition 7.2], hence H+ is λ-free. □

In Example 1.3.2 we have a λ-free K and an H-asymptotic extension L of K that
is not λ-free, with trdeg(L|K) = 1. The next proposition shows that the second
part of the conclusion of Theorem 1.3.1 nevertheless holds for such K, L.

Proposition 1.3.8. The following are equivalent:

(i) K has rational asymptotic integration;
(ii) for every H-asymptotic extension L of K with trdeg(L|K) ⩽ 1 we have

that Γ< is cofinal in Γ<
L .

Proof. For (i) ⇒ (ii), assume (i), and let L be an H-asymptotic extension of K
with trdeg(L|K) ⩽ 1. Towards showing that Γ< is cofinal in Γ<

L we can arrange
thatK and L are algebraically closed. Suppose towards a contradiction that γ ∈ ΓL

and Γ< < γ < 0. Then Ψ < γ′ < (Γ>)′, and so Γ is dense in Γ + Qγ′ by [ADH,
2.4.16, 2.4.17], in particular, γ /∈ Γ + Qγ′. Thus γ, γ′ are Q-linearly independent
over Γ, which contradicts trdeg(L|K) ⩽ 1 by [ADH, 3.1.11].

As to (ii) ⇒ (i), we prove the contrapositive, so assume K does not have rational
asymptotic integration. We arrange again that K is algebraically closed. Then K
has a gap vs with s ∈ K×, and so [ADH, 10.2.1 and its proof] gives anH-asymptotic
extension K(y) of K with y′ = s and 0 < vy < Γ>. □

Recall from [ADH, 11.6] that Liouville closed H-fields are λ-free. To prove the next
result we also use Gehret’s theorem [13, Theorem 12.1(1)] that an H-field H has
up to isomorphism over H exactly one Liouville closure iff H is grounded or λ-free.
Here isomorphism means of course isomorphism of H-fields, and likewise with the
embeddings referred to in the next result:

Proposition 1.3.9. Let H be a grounded or λ-free H-field. Then H has a trigono-
metrically closed and Liouville closed H-field extension Htl that embeds over H
into any trigonometrically closed Liouville closed H-field extension of H.

Proof. We build real closed H-fields H0 ⊆ H1 ⊆ H2 ⊆ · · · as follows: H0 is a real
closure of H, and, recursively, H2n+1 is a Liouville closure of H2n, and H2n+2 :=

Htrig
2n+1 is the trigonometric closure of H2n+1. Then H

∗ :=
⋃

nHn is a trigonomet-
rically closed Liouville closed H-field extension of H. Induction using Lemma 1.3.7
shows that all Hn with n ⩾ 1 are λ-free, and that H2n has for all n up to iso-
morphism over H a unique Liouville closure. Given any trigonometrically closed
Liouville closed H-field extension E of H we then use the embedding properties
of Liouville closure and trigonometric closure to construct by a similar recursion
embeddings Hn → E that extend to an embedding H∗ → E over H. □

ForH as in Proposition 1.3.9, theH∗ constructed in its proof is minimal: Let E ⊇ H
be any trigonometrically closed Liouville closed H-subfield of H∗. Then induction
on n yields Hn ⊆ E for all n, so E = H∗. It follows that any Htl as in Proposi-
tion 1.3.9 is isomorphic overH toH∗, and we refer to suchHtl as a trigonometric-
Liouville closure of H. Here are some useful facts about Htl:

Corollary 1.3.10. Let H be a λ-free H-field. Then CHtl is a real closure of CH ,
the H-asymptotic extension Ktl := Htl[i] of Htl is a Liouville extension of H

29



with I(Ktl) ⊆ (Ktl)†, and Γ<
H is cofinal in Γ<

Htl . Moreover,

H is ω-free ⇐⇒ Htl is ω-free.

Proof. The construction of H∗ in the proof of Proposition 1.3.9 gives that CH∗ is
a real closure of CH , and that the H-asymptotic extension K∗ := H∗[i] of H∗ is
a Liouville extension of H with I(K∗) ⊆ (K∗)†. Induction using Lemma 1.3.7 and
Proposition 1.3.8 shows that Hn is λ-free and Γ<

H is cofinal in Γ<
Hn

, for all n, so Γ<
H

is cofinal in Γ<
H∗ .

The final equivalence follows from Theorem 1.3.1 and a remark preceding it. □

Proposition 1.3.8 and [ADH, remarks after 11.6.4 and after 11.7.19] yield:

Corollary 1.3.11. Suppose K has rational asymptotic integration, and let L be an
H-asymptotic extension of K with trdeg(L|K) ⩽ 1. If L is λ-free, then so is K,
and if L is ω-free, then so is K.

We also have a similar characterization of λ-freeness:

Proposition 1.3.12. The following are equivalent:

(i) K is λ-free;
(ii) every H-asymptotic extension L of K with trdeg(L|K) ⩽ 1 has asymptotic

integration.

Proof. Assume K is λ-free, and let L be an H-asymptotic extension of K such
that trdeg(L|K) ⩽ 1. By Proposition 1.3.8, Γ< is cofinal in Γ<

L , so L is un-
grounded. Towards a contradiction, suppose vf (f ∈ L×) is a gap in L. Passing to
algebraic closures we arrange that K and L are algebraically closed. Set λ := −f†.
Then for all active a in L we have λ + a† ≺ a by [ADH, 11.5.9] and hence λρ ⇝ λ

by [ADH, 11.5.6]. By λ-freeness of K and [ADH, 3.2.6, 3.2.7], the valued field ex-
tension K(λ) ⊇ K is immediate of transcendence degree 1, so L ⊇ K(λ) is algebraic
and Γ = ΓL. Hence vf is a gap in K, a contradiction. This shows (i) ⇒ (ii).

To show the contrapositive of (ii)⇒ (i), suppose λ ∈ K is a pseudolimit of (λρ). If
the algebraic closureKa ofK does not have asymptotic integration, then clearly (ii)
fails. If Ka has asymptotic integration, then −λ creates a gap over K by [ADH,
11.5.14] applied to Ka in place of K, hence (ii) also fails. □

The next two lemmas include converses to Lemmas 1.3.4 and 1.3.5.

Lemma 1.3.13. Let E be a pre-d-valued H-asymptotic field. Then:

(i) if E is not λ-free, then dv(E) is not λ-free;
(ii) if E is not ω-free, then dv(E) is not ω-free.

Proof. This is clear if E has no rational asymptotic integration, because then dv(E)
has no rational asymptotic integration either, by [ADH, 10.3.2]. Assume E has ra-
tional asymptotic integration. Then dv(E) is an immediate extension of E by [ADH,
10.3.2], and then (i) and (ii) follow from the characterizations of λ-freeness and ω-
freeness in terms of nonexistence of certain pseudolimits. □

Lemma 1.3.14. Let E be a d-valued H-asymptotic field and F an H-asymptotic
extension of E such that F = E(CF ). Then:

(i) if E is not λ-free, then F is not λ-free;
(ii) if E is not ω-free, then F is not ω-free.
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Proof. By [ADH, 10.5.15] E and F have the same value group. The rest of the
proof is like that for the previous lemma, with F instead of dv(E). □

In the rest of this subsection K is in addition a pre-H-field and L a pre-H-field
extension of K. The following is shown in the proof of [13, Lemma 12.5]:

Proposition 1.3.15 (Gehret). Suppose K is a λ-free H-field and L is a Liouville
H-field extension of K. Then L is λ-free and Γ< is cofinal in Γ<

L .

Example 1.3.16. Let K = R⟨ω⟩ be the λ-free but non-ω-free H-field from [ADH,
13.9.1]. ThenK has a unique Liouville closure L, up to isomorphism overK, by [13,
Theorem 12.1(1)]. By Proposition 1.3.15, L is not ω-free; another proof of this fact
is in [2]. By [ADH, 13.9.5] we can take here K to be a Hardy field, and then L is
isomorphic over K to a Hardy field extension of K [ADH, 10.6.11].

Applying Corollary 1.3.10 to H := R⟨ω⟩ yields a Liouville closed H-field Htl

that is not ω-free but does satisfy I(Ktl) ⊆ (Ktl)† for Ktl := Htl[i].

Lemma 1.3.17. Suppose K is λ-free, λ ∈ Λ(L)↓, ω := ω(λ) ∈ K, and sup-
pose ω

(
Λ(K)

)
< ω < σ

(
Γ(K)

)
. Then λρ ⇝ λ, and the pre-H-subfield K⟨λ⟩ = K(λ)

of L is an immediate extension of K (and so K⟨λ⟩ is not λ-free).

Proof. From Λ(L) < ∆(L) [ADH, p. 522] and ∆(K) ⊆ ∆(L) we obtain λ < ∆(K).
The restriction of ω to Λ(L)↓ is strictly increasing [ADH, p. 526] and Λ(K) ⊆ Λ(L),
so ω

(
Λ(K)

)
< ω = ω(λ) gives Λ(K) < λ. Hence λρ ⇝ λ by [ADH, 11.8.16].

Also ωρ ⇝ ω by [ADH, 11.8.30]. Thus K⟨λ⟩ is an immediate extension of K
by [ADH, 11.7.13]. □

Achieving ω-freeness for pre-H-fields. In the rest of this section H is a pre-
H-field and L is a Liouville closed d-algebraic H-field extension of H. Thus if H
is ω-free, then so is L, by Theorem 1.3.1. The lemmas below give conditions
guaranteeing that L is ω-free, while H is not.

Lemma 1.3.18. Suppose H is grounded or has a gap. Then L is ω-free.

Proof. Suppose H is grounded. Let Hω be the ω-free pre-H-field extension of H
introduced in connection with [ADH, 11.7.17] (where we use the letter F instead
of H). Identifying Hω with its image in L under an embedding Hω → L over H of
pre-H-fields, we apply Theorem 1.3.1 to K := Hω to conclude that L is ω-free.

Next, suppose H has a gap β = vb, b ∈ H×. Take a ∈ L with a′ = b and a ̸≍ 1.
Then α := va satisfies α′ = β, and so the pre-H-field H(a) ⊆ L is grounded,
by [ADH, 9.8.2 and remarks following its proof]. Now apply the previous case
to H(a) in place of H. □

Lemma 1.3.19. Suppose H has asymptotic integration and divisible value group,
and s ∈ H creates a gap over H. Then L is ω-free.

Proof. Take f ∈ L× with f† = s. Then by [ADH, remark after 11.5.14], vf is a gap
in H⟨f⟩ = H(f), so L is ω-free by Lemma 1.3.18 applied to H⟨f⟩ in place of H. □

Lemma 1.3.20. Suppose H is not λ-free. Then L is ω-free.

Proof. By [ADH, 11.6.8], the real closure Hrc of H inside L is not λ-free, hence
replacing H by Hrc we arrange that H is real closed. If H does not have asymptotic
integration, then we are done by Lemma 1.3.18. So suppose H has asymptotic
integration. Then some s ∈ H creates a gap over H, by [ADH, 11.6.1], so L is
ω-free by Lemma 1.3.19. □
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Corollary 1.3.21. Suppose H is λ-free and λ ∈ Λ(L)↓ is such that ω := ω(λ) ∈ H
and ω

(
Λ(H)

)
< ω < σ

(
Γ(H)

)
. Then L is ω-free.

Proof. By Lemma 1.3.17, the pre-H-subfield H⟨λ⟩ = H(λ) of L is an immediate
non-λ-free extension of H. Now apply Lemma 1.3.20 to H⟨λ⟩ in place of H. □

1.4. Complements on Linear Differential Operators

In this section we tie up loose ends from the material on linear differential operators
in [ADH, 14.2] and [3, Section 8]. Throughout K is an ungrounded asymptotic field
with Γ = v(K×) ̸= {0}, a, b, f , g, h range over arbitrary elements of K, and ϕ over
those active in K, in particular, ϕ ̸= 0. Recall our use of the term “eventually”: a
property S(ϕ) of ϕ is said to hold eventually if for some active ϕ0 in K, S(ϕ) holds
for all ϕ ≼ ϕ0.

We shall consider linear differential operators A ∈ K[∂] ̸= and set r := order(A).
In [ADH, 11.1] we showed that for each γ ∈ Γ the quantity dwtAϕ(γ) is eventually
constant; its eventual value is denoted by nwtA(γ). We also introduced the set

E e(A) = E e
K(A) :=

{
γ ∈ Γ : nwtA(γ) ⩾ 1

}
=
⋂
ϕ

E (Aϕ)

of eventual exceptional values of A. For a ̸= 0 we have E e(aA) = E e(A) and
E e(Aa) = E e(A) − va. An easy consequence of the definitions: E e(Af ) = E e(A)
for f ̸= 0. A key fact about E e(A) is that if y ∈ K×, vy /∈ E e(A), then A(y) ≍ Aϕy,

eventually. Since Aϕy ̸= 0 for y ∈ K×, this gives v(ker ̸=A) ⊆ E e(A).

Lemma 1.4.1. If L is an ungrounded asymptotic extension of K, then we have
E e
L(A) ∩ Γ ⊆ E e(A), with equality if Ψ is cofinal in ΨL.

Proof. For the inclusion, use that dwt(Aϕ) decreases as vϕ strictly increases [ADH,
11.1.12]. Thus its eventual value nwt(A), evaluated in K, cannot strictly increase
when evaluated in an ungrounded asymptotic extension of K. □

In the rest of this section we assume in addition that K is H-asymptotic with
asymptotic integration. Then by [ADH, 14.2.8]:

Proposition 1.4.2. If K is r-linearly newtonian, then v(ker ̸=A) = E e(A).

Remark 1.4.3. If K is d-valued, then |v(ker ̸=A)| = dimC kerA ⩽ r by [ADH, 5.6.6],
using a reduction to the case of “small derivation” by compositional conjugation.

Corollary 1.4.4. Suppose K is d-valued, E e(A) = v(ker ̸=A), and 0 ̸= f ∈ A(K).
Then A(y) = f for some y ∈ K with vy /∈ E e(A).

Proof. Let y ∈ K, A(y) = f , with vy maximal. Then vy /∈ E e(A): otherwise we
have z ∈ kerA with z ∼ y, so A(y − z) = f and v(y − z) > vy. □

Corollary 1.4.5. Suppose K is ω-free. Then
∑

γ∈Γ nwtA(γ) = |E e(A)| ⩽ r.

Proof. By (0.7) we have an immediate newtonian asymptotic extension L of K.
Then L is d-valued by Lemma 1.2.9, hence |E e(A)| = |E e

L(A)| ⩽ r by Proposi-
tion 1.4.2 and Remark 1.4.3. By [ADH, 13.7.10] we have nwtA(γ) ⩽ 1 for all γ ∈ Γ,
thus

∑
γ∈Γ nwtA(γ) = |E e(A)|. □
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In [ADH, 11.1] we defined veA : Γ → Γ by requiring that for all γ ∈ Γ:

(1.4.1) vAϕ(γ) = veA(γ) + nwtA(γ)vϕ, eventually.

We recall from that reference that for a ̸= 0 and γ ∈ Γ we have

veaA(γ) = va+ veA(γ), veAa(γ) = veA(va+ γ).

As an example from [ADH, p. 481], ve
∂
(γ) = γ+ψ(γ) for γ ∈ Γ \ {0} and ve

∂
(0) = 0.

By [ADH, 14.2.7 and the remark preceding it] we have:

Lemma 1.4.6. The restriction of veA to a function Γ \ E e(A) → Γ is strictly
increasing, and v

(
A(y)

)
= veA(vy) for all y ∈ K with vy ∈ Γ \ E e(A). Moreover,

if K is ω-free, then veA
(
Γ \ E e(A)

)
= Γ.

A differential field F is said to be r-linearly surjective (r ∈ N) if A(F ) = F for
every A ∈ F [∂]̸= of order at most r. The following is [ADH, 14.2.10] without the
hypothesis of ω-freeness:

Corollary 1.4.7. Suppose K is r-linearly newtonian. Then for each f ̸= 0 there
exists y ∈ K× such that A(y) = f , vy /∈ E e(A), and veA(vy) = vf .

Proof. If r = 0, then E e(A) = ∅ and our claim is obviously valid. Suppose r ⩾ 1.

Then K is d-valued by Lemma 1.2.9, and v(ker ̸=A) = E e(A) by Proposition 1.4.2,
Moreover, by [ADH, 14.2.2], K is r-linearly surjective, hence f ∈ A(K). Now
Corollary 1.4.4 yields y ∈ K× with A(y) = f and vy /∈ E e(A). By Lemma 1.4.6 we
have veA(vy) = v

(
A(y)

)
= vf . □

From the proof of [ADH, 14.2.10] we extract the following:

Corollary 1.4.8. Suppose K is r-linearly newtonian with small derivation,
and A ∈ O[∂] with a0 := A(1) ≍ 1, and f ≍♭ 1. Then there is y ∈ K× such
that A(y) = f and y ∼ f/a0. For any such y we have vy /∈ E e(A) and veA(vy) = vf .

Proof. The case r = 0 is trivial. Assume r ⩾ 1, so K is d-valued by Lemma 1.2.9.
Hence f† ≺ 1, that is, f ′ ≺ f , so f (n) ≺ f for all n ⩾ 1 by [ADH, 4.4.2].
Then Af ≼ f by [ADH, (5.1.3), (5.1.2)], and A(f) ∼ a0f , so A⋉f ∈ O[∂]
and A⋉f (1) ∼ a0. Thus we may replace A, f by A⋉f , 1 to arrange f = 1.
Now a0 ≍ 1 gives dwm(A) = 0, so dwt(Aϕ) = 0 eventually, by [ADH, 11.1.11(ii)],
that is, nwt(A) = 0. Also Aϕ(1) = A(1) = a0 ≍ 1, so ve(A) = 0. Arguing as in the
proof of [ADH, 14.2.10] we obtain y ∈ K× with A(y) = 1 and y ∼ 1/a0. It is clear
that vy = 0 /∈ E e(A) and veA(vy) = ve(A) = 0 = vf for any such y. □

In the next few subsections below we consider more closely the case of order r = 1,
and in the last subsection the case of arbitrary order.

First-order operators. In this subsection A = ∂ − g. By [ADH, p. 481],

E e(A) = E e
K(A) =

{
vy : y ∈ K×, v(g − y†) > Ψ

}
has at most one element. We also have |v(ker ̸=A)| = dimC kerA ⩽ 1 in view
of C× ⊆ O×. Proposition 1.4.2 holds under a weaker assumption on K for r = 1:

Lemma 1.4.9. Suppose I(K) ⊆ K†. Then v(ker ̸=A) = E e(A).

Proof. It remains to show “⊇”. Suppose E e(A) = {0}. Then g − y† ∈ I(K)
with y ≍ 1 in K, hence g ∈ I(K) ⊆ K†, so g = h† with h ≍ 1, and thus 0 = vh ∈
v(ker ̸=A). The general case reduces to the case E e(A) = {0} by twisting. □
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Lemma 1.4.10. Suppose L is an ungrounded H-asymptotic extension of K. Then
E e
L(A) ∩ Γ = E e(A).

Proof. Lemma 1.4.1 gives E e
L(A) ∩ Γ ⊆ E e(A). Next, let vy ∈ E e(A), y ∈ K×.

Then v(g − y†) > Ψ and so v(g − y†) ∈ (Γ>)′ since K has asymptotic integration.
Hence v(g − y†) > ΨL and thus vy ∈ E e

L(A), by [ADH, p. 481]. □

Recall also from [ADH, 9.7] that for an ordered abelian group G and U ⊆ G, a
function η : U → G is said to be slowly varying if η(α) − η(β) = o(α − β) for
all α ̸= β in U ; then the function γ 7→ γ + η(γ) : U → G is strictly increasing. The
quintessential example of a slowly varying function is ψ : Γ ̸= → Γ [ADH, 6.5.4(ii)].

Proposition 1.4.11. There is a unique slowly varying function ψA : Γ\E e(A) → Γ
such that for all y ∈ K× with vy /∈ E e(A) we have v

(
A(y)

)
= vy + ψA(vy).

Proof. For d-valuedK, use [3, 8.4]. In general, pass to the d-valued hull L := dv(K)
of K from [ADH, 10.3] and use ΓL = Γ [ADH, 10.3.2]. □

If b ̸= 0, then E e(A⋉b) = E e(A)−vb and ψA⋉b
(γ) = ψA(γ+vb) for γ ∈ Γ\E e(A⋉b).

Example. We have E e(∂) = {0} and ψ∂ = ψ. More generally, if g = b†, b ̸= 0,
then A⋉b = ∂ and so E e(A) = {vb} and ψA(γ) = ψ(γ − vb) for γ ∈ Γ \ {vb}.

If Γ is divisible, then Γ\v
(
A(K)

)
has at most one element by [ADH, 11.6.16]. Also,

K is λ-free iff v
(
A(K)

)
= Γ∞ for all A = ∂ − g by [ADH, 11.6.17].

Lemma 1.4.12. Suppose K is λ-free and f ̸= 0. Then for some y ∈ K× we
have A(y) ≍ f and vy /∈ E e(A). (Hence γ 7→ γ + ψA(γ) : Γ \ E e(A) → Γ is surjec-
tive.)

Proof. [ADH, 11.6.17] gives y ∈ K× with Aϕy ≍ f eventually. Now

Aϕy = ϕyδ − (g − y†)y in Kϕ[δ], δ := ϕ−1
∂.

Since v(Aϕy) = vf eventually, this forces g− y† ≻ ϕ eventually, so vy /∈ E e(A). □

Call A steep if g ≻♭ 1, that is, g ≻ 1 and g† ≽ 1. If K has small derivation and A
is steep, then g† ≺ g by [ADH, 9.2.10].

Lemma 1.4.13. Suppose K has small derivation, A is steep, and y ∈ K× such
that A(y) = f ̸= 0, g ≻ f†, and vy /∈ E e(A). Then y ∼ −f/g.

Proof. We have

(f/g)† − g = f† − g† − g ∼ −g ≻ g†,

hence v(f/g) /∈ E e(A), and

A(f/g) = (f/g)′ − (f/g)g = (f/g) ·
(
f† − g† − g

)
∼ (f/g) · (−g) = −f.

Since A(y) = f ∼ A(−f/g) and vy, v(f/g) ∈ Γ \ E e(A), this gives y = u · f/g
where u ≍ 1, by Proposition 1.4.11. Now u† ≺ 1 ≺ g and (f/g)† = f† − g† ≺ g,
hence y† ≺ g and so

f = A(y) = y · (y† − g) ∼ −yg.
Therefore y ∼ −f/g. □

Lemma 1.4.14. Suppose K has small derivation and y ∈ K× is such that A(y) =
f ̸= 0, g − f† ≻♭ 1 and vy /∈ E e(A). Then y ∼ f/(f† − g).
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Proof. From g − f† ≻ 1 we get vf /∈ E e(A). Now A(y) = f ≺ f(f† − g) = A(f),
so y ≺ f by [ADH, 5.6.8], and v(y/f) /∈ E e(A⋉f ) = E e(A) − vf . Since A⋉f =
∂− (g−f†) is steep, Lemma 1.4.13 applies to A⋉f , y/f , 1 in the role of A, y, f . □

Suppose K is λ-free and f ̸= 0. Then [ADH, 11.6.1] gives an active ϕ0 in K
with f† − g − ϕ† ≽ ϕ0 for all ϕ ≺ ϕ0. The convex subgroups Γ♭

ϕ of Γ become

arbitrarily small as we let vϕ increase cofinally in Ψ↓, so ϕ ≺♭
ϕ ϕ0 eventually, and

hence f† − g − ϕ† ≻♭
ϕ ϕ eventually, that is, ϕ−1(f/ϕ)† − g/ϕ ≻♭

ϕ 1 eventually. So

replacing K by Kϕ, A by ϕ−1Aϕ = δ−(g/ϕ) in Kϕ[δ], and f and g by f/ϕ and g/ϕ,
for suitable ϕ, we arrange f† − g ≻♭ 1. Thus by Lemma 1.4.14:

Corollary 1.4.15. If K is λ-free, y ∈ K×, A(y) = f ̸= 0, and vy /∈ E e(A),
then y ∼ f/

(
(f/ϕ)† − g

)
, eventually.

Example. If K is λ-free and y ∈ K, y′ = f ̸= 0 with y ̸≍ 1, then y ∼ f/(f/ϕ)†,
eventually.

From K to K[i]. In this subsection K is a real closed H-field. ThenK[i] (i2 = −1)
is anH-asymptotic extension ofK, with ΓK[i] = Γ. Consider a linear differential op-

erator B = ∂−(g+hi) over K[i]. Note that g+hi ∈ K[i]† iff g ∈ K† and hi ∈ K[i]†,
by Lemma 1.2.4. Under further assumptions onK, the next two results give explicit
descriptions of ψB when g ∈ K†.

Proposition 1.4.16. Suppose K[i] is 1-linearly newtonian and g ∈ K†. Then:

(i) if hi ∈ K[i]†, then for some β ∈ Γ we have

E e(B) = {β}, ψB(γ) = ψ(γ − β) for all γ ∈ Γ \ {β};

(ii) if hi /∈ K[i]† and g = b†, b ̸= 0, then

E e(B) = ∅, ψB(γ) = min
(
ψ(γ − vb), vh

)
for all γ ∈ Γ.

Proof. As to (i), apply the example following Proposition 1.4.11 toK[i], B, g+hi in
the roles of K, A, g. For (ii), assume hi /∈ K[i]†, g = b†, b ̸= 0. Replacing B by B⋉b

we arrange g = 0, b = 1, B = ∂ − hi. Corollary 1.2.14 gives K[i]† = K† ⊕ I(K)i,
so h /∈ I(K), and thus vh ∈ Ψ↓. Let y ∈ K[i]×, and take z ∈ K× and s ∈ I(K)
with y† = z† + si. Then vh < vs, hence

v(y† − hi) = min
(
v(z†), v(s− h)

)
= min

(
v(z†), vs, vh

)
= min

(
v(y†), vh

)
,

where the last equality uses v(y†) = min
(
v(z†), vs

)
. Thus v(y† − hi) ∈ Ψ↓ and

v
(
B(y)

)
− vy = v(y† − hi) = min

(
v(y†), vh

)
= min

(
ψ(vy), vh

)
,

which gives the desired result. □

Corollary 1.4.17. Suppose K is ω-free, g ∈ K†, g = b†, b ̸= 0. Then either for
some β ∈ Γ we have E e(B) = {β} and ψB(γ) = ψ(γ − β) for all γ ∈ Γ \ {β},
or E e(B) = ∅ and ψB(γ) = min

(
ψ(γ − vb), vh

)
for all γ ∈ Γ.

Proof. By (0.7) we have an immediate newtonian extension L of K. Then L is
still a real closed H-field [ADH, 10.5.8, 3.5.19], and L[i] is newtonian by (0.10), so
Proposition 1.4.16 applies to L in place of K. □
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Higher-order operators. We begin with the following observation:

Lemma 1.4.18. Let B ∈ K[∂]̸= and γ ∈ Γ. Then nwtAB(γ) ⩾ nwtB(γ), and

γ /∈ E e(B) =⇒ nwtAB(γ) = nwtA
(
veB(γ)

)
and veAB(γ) = veA

(
veB(γ)

)
.

Proof. We have nwtAB(γ) = dwt(AB)ϕ(γ) eventually, and (AB)ϕ = AϕBϕ. Hence
by [ADH, 5.6] and the definition of veB(γ) in (1.4.1):

nwtAB(γ) = dwtAϕ

(
vBϕ(γ)

)
+ dwtBϕ(γ)

= dwtAϕ

(
veB(γ) + nwtB(γ)vϕ

)
+ nwtB(γ), eventually,

so nwtAB(γ) ⩾ nwtB(γ). Now suppose γ /∈ E e(B). Then nwtB(γ) = 0, so

nwtAB(γ) = dwtAϕ

(
veB(γ)

)
= nwtA

(
veB(γ)

)
, eventually.

Moreover, v(AB)ϕ = vAϕBϕ = vAϕ ◦ vBϕ , hence using (1.4.1):

v(AB)ϕ(γ) = vAϕ

(
vBϕ(γ)

)
= vAϕ

(
veB(γ)

)
, eventually,

and thus eventually

veAB(γ) = v(AB)ϕ(γ)− nwtAB(γ)vϕ

= vAϕ

(
veB(γ)

)
− nwtA

(
veB(γ)

)
vϕ = veA

(
veB(γ)

)
. □

Lemmas 1.4.6 and 1.4.18 yield:

Corollary 1.4.19. Let B ∈ K[∂]̸=. Then

E e(AB) = (veB)
−1
(
E e(A)

)
∪ E e(B)

and hence |E e(AB)| ⩽ |E e(A)|+ |E e(B)|, with equality if veB
(
Γ \ E e(B)

)
= Γ.

As an easy consequence we have a variant of Corollary 1.4.5:

Corollary 1.4.20. If A splits over K, then |E e(A)| ⩽ r.

To study veA in more detail we introduce the function

ψA : Γ \ E e(A) → Γ, γ 7→ veA(γ)− γ.

For monic A of order 1 this agrees with ψA as defined in Proposition 1.4.11.
For A = a (a ̸= 0) we have E e(A) = ∅ and ψA(γ) = va for all γ ∈ Γ.

Lemma 1.4.21. Let B ∈ K[∂]̸= and γ ∈ Γ \ E e(AB). Then

ψAB(γ) = ψA

(
veB(γ)

)
+ ψB(γ).

Proof. We have γ /∈ E e(B) and veB(γ) /∈ E e(A) by Corollary 1.4.19, hence

ψAB(γ) = veA
(
veB(γ)

)
− γ = veB(γ) + ψA

(
veB(γ)

)
− γ = ψA

(
veB(γ)

)
+ ψB(γ)

by Lemma 1.4.18. □

Thus for a ̸= 0 and γ ∈ Γ we have

ψaA(γ) = va+ψA(γ) if γ /∈ E e(A), ψAa(γ) = ψA(va+ γ) + va if γ /∈ E e(A)− va.

Example. Suppose K has small derivation and x ∈ K, x′ ≍ 1. Then vx < 0
and E e(∂2) = {vx, 0}, and ψ∂2(γ) = ψ

(
γ + ψ(γ)

)
+ ψ(γ) for γ ∈ Γ \ E e(∂2).

Lemma 1.4.22. Suppose ψA is slowly varying. Let ∆ be a convex subgroup of Γ
and let y, z ∈ K× be such that vy, vz /∈ E e(A). Then

v∆(y) < v∆(z) ⇐⇒ v∆
(
A(y)

)
< v∆

(
A(z)

)
.
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Proof. By Lemma 1.4.6 we have

v
(
A(y)

)
− v
(
A(z)

)
= veA(vy)− veA(vz) = vy − vz + ψA(vy)− ψA(vz)

and ψA(vy)− ψA(vz) = o(vy − vz) if vy ̸= vz. □

Call A asymptotically surjective if veA
(
Γ\E e(A)

)
= Γ and ψA is slowly varying.

If A is asymptotically surjective, then so are aA and Aa for a ̸= 0, and if A has
order 0, then A is asymptotically surjective. IfK is λ-free and A has order 1, then A
is asymptotically surjective, thanks to Proposition 1.4.11 and Lemma 1.4.12.
The next lemma has an obvious proof.

Lemma 1.4.23. Let G be an ordered abelian group and U, V ⊆ G. If η1, η2 : U → G
are slowly varying, then so is η1+η2. If η : U → G and ζ : V → G are slowly varying
and γ + ζ(γ) ∈ U for all γ ∈ V , then the function γ 7→ η

(
γ + ζ(γ)

)
: V → G is also

slowly varying.

Lemma 1.4.24. If A and B ∈ K[∂]̸= are asymptotically surjective, then so is AB.

Proof. Let A, B be asymptotically surjective and γ ∈ Γ. This gives α ∈ Γ \ E e(A)
with veA(α) = γ and β ∈ Γ \ E e(B) with veB(β) = α. Then β /∈ E e(AB) by
Corollary 1.4.19, and veAB(β) = γ by Lemma 1.4.18. Moreover, ψAB is slowly
varying by Lemmas 1.4.21 and 1.4.23. □

A straightforward induction on r using this lemma yields:

Corollary 1.4.25. If K is λ-free and A splits over K, then A is asymptotically
surjective.

We can now add to Lemma 1.4.6:

Corollary 1.4.26. Suppose K is ω-free. Then A is asymptotically surjective.

Proof. By the second part of Lemma 1.4.6 it is enough to show that ψA is slowly
varying. For this we may replace K by any ω-free extension L of K with Ψ cofinal
in ΨL. Thus we can arrange by (0.7) and (0.10) that K is newtonian, and by
passing to the algebraic closure, algebraically closed. Then A splits over K by (0.8)
and Lemma 1.2.9, so A is asymptotically surjective by Corollary 1.4.25. □

1.5. Special Elements

Let K be a valued field and let â be an element of an immediate extension of K
with â /∈ K. Recall that

v(â−K) =
{
v(â− a) : a ∈ K

}
is a nonempty downward closed subset of Γ := v(K×) without a largest ele-
ment. Call â special over K if some nontrivial convex subgroup of Γ is cofinal
in v(â−K) [ADH, p. 167]. In this case v(â−K) ∩ Γ> ̸= ∅, and there is a unique
such nontrivial convex subgroup ∆ of Γ, namely

∆ =
{
δ ∈ Γ : |δ| ∈ v(â−K)

}
.

We also call â almost special over K if â/m is special over K for some m ∈ K×.
If Γ ̸= {0} is archimedean, then â is special over K iff v(â −K) = Γ, iff â is the
limit of a divergent c-sequence in K. (Recall that “c-sequence” abbreviates “cauchy
sequence” [ADH, p. 82].) In the next lemma a ranges over K and m, n over K×.
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Lemma 1.5.1. Suppose â ≺ m and â/m is special over K. Then for all a, n,
if â− a ≺ n ≼ m, then (â− a)/n is special over K.

Proof. Replacing â, a, m, n by â/m, a/m, 1, n/m, respectively, we arrange m = 1.
So let â be special over K with â ≺ 1. It is enough to show: (1) â − a is special
over K, for all a; (2) for all n, if â ≺ n ≼ 1, then â/n is special over K. Here (1)
follows from v(â− a−K) = v(â−K). For (2), note that if â ≺ n ≼ 1, then vn ∈ ∆
with ∆ as above, and so v(â/n−K) = v(â−K)− vn = v(â−K). □

The remainder of this section is devoted to showing that (almost) special elements
arise naturally in the analysis of certain immediate d-algebraic extensions of valued
differential fields. We first treat the case of asymptotic fields with small derivation,
and then focus on the linearly newtonian H-asymptotic case.

We recall some notation: for an ordered abelian group Γ and α ∈ Γ∞, β ∈ Γ,
γ ∈ Γ> we mean by “α ⩾ β + o(γ)” that α ⩾ β − (1/n)γ for all n ⩾ 1,
while “α < β + o(γ)” is its negation, that is, α < β − (1/n)γ for some n ⩾ 1;
see [ADH, p. 312]. Here and later inequalities are in the sense of the ordered
divisible hull QΓ of the relevant Γ.

A source of special elements. In this subsection K is an asymptotic field with
small derivation, value group Γ = v(K×) ̸= {0}, and differential residue field k;
we also let r ∈ N⩾1. Below we use the notion neatly surjective from [ADH, 5.6]:
A ∈ K[∂]̸= is neatly surjective iff for all b ∈ K× there exists a ∈ K× with A(a) = b
and vA(va) = vb. For use in the next proof, recall from [ADH, 7.1] the notion of a
valued differential field being r-differential-henselian (or r-d-henselian, for short).

We often let f̂ be an element in an immediate asymptotic extension K̂ of K, but

in the statement of the next lemma we take f̂ ∈ K:

Lemma 1.5.2. Assume k is r-linearly surjective, A ∈ K[∂]̸= of order ⩽ r is neatly

surjective, γ ∈ QΓ, γ > 0, f̂ ∈ K×, and v
(
A(f̂)

)
⩾ v(Af̂) + γ. Then A(f) = 0

and v(f̂ − f) ⩾ v(f̂) + γ + o(γ) for some f ∈ K.

Proof. Set B := g−1Af̂ , where we take g ∈ K× such that vg = v(Af̂). Then B ≍ 1,

B is still neatly surjective, and B(1) = g−1A(f̂), v
(
B(1)

)
⩾ γ. It suffices to

find y ∈ K such that B(y) = 0 and v(y − 1) ⩾ γ + o(γ), because then f := f̂y has
the desired property. If B(1) = 0, then y = 1 works, so assume B(1) ̸= 0. By [ADH,

7.2.7] we have an immediate extension K̂ of K that is r-differential henselian.

Then K̂ is asymptotic by [ADH, 9.4.2 and 9.4.5]. Set R(Z) := Ri(B) ∈ K{Z}.
Then the proof of [ADH, 7.5.1] applied to K̂ and B in the roles of K and A

yields z ≺ 1 in K̂ with R(z) = 0. Now R(0) = B(1), hence by [ADH, 7.2.2] we can
take such z with v(z) ⩾ β+o(β) where β := v

(
B(1)

)
⩾ γ. As in the proof of [ADH,

7.5.1] we next take y ∈ K̂ with v(y−1) > 0 and y† = z to get B(y) = 0, and observe
that then v(y − 1) ⩾ β + o(β), by [ADH, 9.2.10(iv)], hence v(y − 1) ⩾ γ + o(γ). It
remains to note that y ∈ K by [ADH, 7.5.7]. □

By a remark following the proof of [ADH, 7.5.1] the assumption that k is r-linearly
surjective in the lemma above can be replaced for r ⩾ 2 by the assumption that k
is (r − 1)-linearly surjective.
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Next we establish a version of the above with f̂ in an immediate asymptotic ex-
tension of K. Recall that an asymptotic extension of K with the same value group
as K has small derivation, by [ADH, 9.4.1].

Lemma 1.5.3. Assume k is r-linearly surjective, A ∈ K[∂]̸= of order ⩽ r is neatly

surjective, γ ∈ QΓ, γ > 0, K̂ is an immediate asymptotic extension of K, f̂ ∈ K̂×,

and v
(
A(f̂)

)
⩾ v(Af̂) + γ. Then for some f ∈ K we have

A(f) = 0, v(f̂ − f) ⩾ v(f̂) + γ + o(γ).

Proof. By extending K̂ we can arrange that K̂ is r-differential henselian, so A

remains neatly surjective as an element of K̂[∂], by [ADH, 7.1.8]. Then by Lem-

ma 1.5.2 with K̂ in the role of K we get f ∈ K̂ such that A(f) = 0 and v(f̂ − f) ⩾
v(f̂) + γ + o(γ). It remains to note that f ∈ K by [ADH, 7.5.7]. □

We actually need an inhomogeneous variant of the above:

Lemma 1.5.4. Assume k is r-linearly surjective, A ∈ K[∂]̸= of order ⩽ r is neatly

surjective, b ∈ K, γ ∈ QΓ, γ > 0, v(A) = o(γ), v(b) ⩾ o(γ), K̂ is an immediate

asymptotic extension of K, f̂ ∈ K̂, f̂ ≼ 1, and v
(
A(f̂)− b

)
⩾ γ + o(γ). Then

A(f) = b, v(f̂ − f) ⩾ (1/2)γ + o(γ)

for some f ∈ K.

Proof. Take y ∈ K with A(y) = b and v(y) ⩾ o(γ). Then A(ĝ) = A(f̂) − b

for ĝ := f̂ − y, so v
(
A(ĝ)

)
⩾ γ + o(γ) and v(ĝ) ⩾ o(γ). We distinguish two cases:

(1) v(ĝ) ⩾ (1/2)γ + o(γ). Then v(f̂ − y) ⩾ (1/2)γ + o(γ), so f := y works.

(2) v(ĝ) < (1/2)γ + o(γ). Then by [ADH, 6.1.3],

v(Aĝ) < (1/2)γ + o(γ), v
(
A(ĝ)

)
⩾ γ + o(γ),

so v
(
A(ĝ)

)
⩾ v(Aĝ) + (1/2)γ. Then Lemma 1.5.3 gives an element g ∈ K such

that A(g) = 0 and v(ĝ − g) ⩾ (1/2)γ + o(γ). Hence f := y + g works. □

Recall from [ADH, 7.2] that O is said to be r-linearly surjective if for every A
in K[∂] ̸= of order r with v(A) = 0 there exists y ∈ O with A(y) = 1.

Proposition 1.5.5. Assume O is r-linearly surjective, P ∈ K{Y }, order(P ) ⩽ r,
ddegP = 1, and P (â) = 0, where â ≼ 1 lies in an immediate asymptotic extension
of K and â /∈ K. Then â is special over K.

Proof. The hypothesis on O yields: k is r-linearly surjective and all A ∈ K[∂]̸= of
order ⩽ r are neatly surjective. Let 0 < γ ∈ v(â − K); we claim that v(â − K)
has an element ⩾ (4/3)γ. We arrange P ≍ 1. Take a ∈ K with v(â − a) = γ.
Then P+a ≍ 1, ddegP+a = 1, so

P+a,1 ≍ 1, P+a,>1 ≺ 1, P+a = P (a) + P+a,1 + P+a,>1

and

0 = P (â) = P+a(â− a) = P (a) + P+a,1(â− a) + P+a,>1(â− a),

with

v
(
P+a,1(â− a) + P+a,>1(â− a)

)
⩾ γ + o(γ),
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and thus v(P (a)) ⩾ γ + o(γ). Take g ∈ K× with vg = γ and set Q := g−1P+a,×g,
so Q = Q0 +Q1 +Q>1 with

Q0 = Q(0) = g−1P (a), Q1 = g−1(P+a,1)×g, Q>1 = g−1(P+a,>1)×g,

hence

v(Q0) ⩾ o(γ), v(Q1) = o(γ), v(Q>1) ⩾ γ + o(γ).

We set f̂ := g−1(â−a), soQ(f̂) = 0 and f̂ ≍ 1, andA := LQ ∈ K[∂]. ThenQ(f̂) = 0
gives

Q0 +A(f̂) = Q0 +Q1(f̂) = −Q>1(f̂), with v
(
Q>1(f̂)

)
⩾ γ + o(γ),

so v
(
Q0 + A(f̂)

)
⩾ γ + o(γ). Since v(A) = v(Q1) = o(γ), Lemma 1.5.4 then

gives f ∈ K with v(f̂ − f) ⩾ (1/3)γ. In view of â− a = gf̂ , this yields

v
(
â− (a+ gf)

)
= γ + v(f̂ − f) ⩾ (4/3)γ,

which proves our claim. It gives the desired result. □

A source of almost special elements. In this subsection K, Γ, k, and r are as
in the previous subsection, and we assume that O is r-linearly surjective. (So k is
r-linearly surjective, and supΨ = 0 by [ADH, 9.4.2].) Let â be an element in an
immediate asymptotic extension of K such that â /∈ K and K⟨â⟩ has transcendence
degree ⩽ r over K. We shall use Proposition 1.5.5 to show:

Proposition 1.5.6. If Γ is divisible, then â is almost special over K.

Towards the proof we first note that â has a minimal annihilator P (Y ) over K
of order ⩽ r. We also fix a divergent pc-sequence (aρ) in K such that aρ ⇝ â.
(See [ADH, 4.1] for “minimal annihilator”, and [ADH, 4.4] for “minimal differential
polynomial of (aρ) over K”.) We next show how to improve â and P (without
assuming divisibility of Γ):

Lemma 1.5.7. For some b̂ in an immediate asymptotic extension of K we have:

(i) v(â−K) = v(̂b−K);
(ii) (aρ) has a minimal differential polynomial Q over K of order ⩽ r such

that Q is also a minimal annihilator of b̂ over K.

Proof. By [ADH, 6.8.1, 6.9.2], (aρ) is of d-algebraic type over K with a minimal
differential polynomial Q over K such that orderQ ⩽ orderP ⩽ r. By [ADH,

6.9.3, 9.4.5] this gives an element b̂ in an immediate asymptotic extension of K

such that Q is a minimal annihilator of b̂ over K and aρ ⇝ b̂. Then Q and b̂ have
the desired properties. □

Proof of Proposition 1.5.6. Replace â and P by b̂ and Q from Lemma 1.5.7 (and
rename) to arrange that P is a minimal differential polynomial of (aρ) over K.
Now assuming Γ is divisible, [22, Proposition 3.1] gives a ∈ K and g ∈ K× such
that â− a ≍ g and ddegP+a,×g = 1.

Set F := P+a,×g and f̂ := (â − a)/g. Then ddegF = 1, F (f̂) = 0, and f̂ ≼ 1.

Applying Proposition 1.5.5 to F and f̂ in the role of P and â yields a nontrivial

convex subgroup ∆ of Γ that is cofinal in v(f̂ − K). Setting α := vg, it follows
that α+∆ is cofinal in v

(
(â− a)−K

)
= v(â−K). □
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We can trade the divisibility assumption in Proposition 1.5.6 against a stronger
hypothesis on K, the proof using [22, 3.3] instead of [22, 3.1]:

Corollary 1.5.8. If K is henselian and k is linearly surjective, then â is almost
special over K.

The linearly newtonian setting. In this subsection K is an ω-free r-linearly
newtonian H-asymptotic field, r ⩾ 1. Thus K is d-valued by Lemma 1.2.9. We
let ϕ range over the elements active in K. We now mimick the material in the

previous two subsections. Note that for A ∈ K[∂]̸= and any element f̂ in an

asymptotic extension of K we have A(f̂) ≼ Aϕf̂ , since A(f̂) = Aϕ(f̂).

Lemma 1.5.9. Assume that A ∈ K[∂]̸= has order ⩽ r, γ ∈ QΓ, γ > 0, f̂ ∈ K×,

and v
(
A(f̂)

)
⩾ v(Aϕf̂) + γ, eventually. Then there exists an f ∈ K with A(f) = 0

and v(f̂ − f) ⩾ v(f̂) + γ + o(γ).

Proof. Take ϕ such that vϕ ⩾ γ† and v
(
A(f̂)

)
⩾ v(Aϕf̂) + γ. Next, take β ∈ Γ

such that β ⩾ γ and v
(
A(f̂)

)
⩾ v(Aϕf̂) + β. Then vϕ ⩾ β†, so β > Γ♭

ϕ, hence the

valuation ring of the flattening (Kϕ, v♭ϕ) is r-linearly surjective, by [ADH, 14.2.1].
We now apply Lemma 1.5.2 to

(Kϕ, v♭ϕ), Aϕ, β̇ := β + Γ♭
ϕ

in the role of K, A, γ to give f ∈ K with A(f) = 0 and v♭ϕ(f̂−f) ⩾ v♭ϕ(f̂)+β̇+o(β̇).
Then also v(f̂ − f) ⩾ v(f̂) + β + o(β), and thus v(f̂ − f) ⩾ v(f̂) + γ + o(γ). □

Lemma 1.5.10. Assume A ∈ K[∂] ̸= has order ⩽ r, K̂ is an immediate d-algebraic

asymptotic extension of K, γ ∈ QΓ, γ > 0, f̂ ∈ K̂×, and v
(
A(f̂)

)
⩾ v(Aϕf̂) + γ

eventually. Then A(f) = 0 and v(f̂ − f) ⩾ v(f̂) + γ + o(γ) for some f ∈ K.

Proof. Since K is ω-free, so is K̂ by Theorem 1.3.1. By (0.7) we can extend K̂ to

arrange that K̂ is also newtonian. Then by Lemma 1.5.9 with K̂ in the role of K

we get f ∈ K̂ with A(f) = 0 and v(f̂ − f) ⩾ v(f̂) + γ + o(γ). Now use that f ∈ K
by [ADH, line before 14.2.10]. □

Lemma 1.5.11. Assume A ∈ K[∂] ̸= has order ⩽ r, b ∈ K, γ ∈ QΓ, γ > 0, K̂

is an immediate d-algebraic asymptotic extension of K, and f̂ ∈ K̂, v(f̂) ⩾ o(γ).

Assume also that eventually v(b) ⩾ v(Aϕ)+o(γ) and v
(
A(f̂)−b

)
⩾ v(Aϕ)+γ+o(γ).

Then for some f ∈ K we have A(f) = b and v(f̂ − f) ⩾ (1/2)γ + o(γ).

Proof. We take y ∈ K with A(y) = b as follows: If b = 0, then y := 0. If b ̸= 0, then
Corollary 1.4.7 yields y ∈ K× such that A(y) = b, vy /∈ E e(A), and veA(vy) = vb.
In any case, vy ⩾ o(γ): when b ̸= 0, the sentence preceding [ADH, 14.2.7]
gives vAϕ(vy) = vb, eventually, to which we apply [ADH, 6.1.3].

Now A(ĝ) = A(f̂)− b for ĝ := f̂ − y, so v(ĝ) ⩾ o(γ), and eventually v
(
A(ĝ)

)
⩾

v(Aϕ) + γ + o(γ). We distinguish two cases:

(1) v(ĝ) ⩾ (1/2)γ + o(γ). Then v(f̂ − y) ⩾ (1/2)γ + o(γ), so f := y works.

(2) v(ĝ) < (1/2)γ + o(γ). Then by [ADH, 6.1.3] we have eventually

v(Aϕĝ) < v(Aϕ) + (1/2)γ + o(γ), v
(
A(ĝ)

)
⩾ v(Aϕ) + γ + o(γ),
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so v(A(ĝ)) ⩾ v(Aϕĝ) + (1/2)γ, eventually. Lemma 1.5.10 gives an element g ∈ K
with A(g) = 0 and v(ĝ − g) ⩾ (1/2)γ + o(γ). Hence f := y + g works. □

Proposition 1.5.12. Suppose that P ∈ K{Y }, orderP ⩽ r, ndegP = 1,
and P (â) = 0, where â ≼ 1 lies in an immediate asymptotic extension of K
and â /∈ K. Then â is special over K.

The proof is like that of Proposition 1.5.5, but there are some differences that call
for further details.

Proof. Given 0 < γ ∈ v(â−K), we claim that v(â−K) has an element ⩾ (4/3)γ.
Take a ∈ K with v(â − a) = γ. Then ndegP+a = 1 by [ADH, 11.2.3(i)], so
eventually we have

P (a) ≼ Pϕ
+a,1 ≻ Pϕ

+a,>1, Pϕ
+a = P (a) + Pϕ

+a,1 + Pϕ
+a,>1

and

0 = P (â) = Pϕ
+a(â− a)

= P (a) + Pϕ
+a,1(â− a) + Pϕ

+a,>1(â− a),

v
(
Pϕ
+a,1(â− a) + Pϕ

+a,>1(â− a)
)
⩾ v(Pϕ

+a,1) + γ + o(γ),

and thus eventually v
(
P (a)

)
⩾ v(Pϕ

+a,1) + γ + o(γ). Take g ∈ K× with vg = γ

and set Q := g−1P+a,×g, so Q = Q0 +Q1 +Q>1 with

Q0 = Q(0) = g−1P (a), Q1 = g−1(P+a,1)×g, Q>1 = g−1(P+a,>1)×g.

Then v(Q0) = v
(
P (a)

)
− γ ⩾ v(Pϕ

+a,1) + o(γ), eventually. By [ADH, 6.1.3],

v(Qϕ
1 ) = v(Pϕ

+a,1) + o(γ), v(Qϕ
>1) ⩾ v(Pϕ

+a,>1) + γ + o(γ)

for all ϕ. Since Pϕ
+a,>1 ≼ Pϕ

+a,1, eventually, the last two displayed inequalities

give v(Qϕ
>1) ⩾ v(Qϕ

1 ) + γ + o(γ), eventually. We set f̂ := g−1(â− a), so Q(f̂) = 0

and f̂ ≍ 1. Set A := LQ ∈ K[∂]. Then Q(f̂) = 0 gives

Q0 +A(f̂) = Q0 +Q1(f̂) = −Qϕ
>1(f̂),

with v
(
Qϕ

>1(f̂)
)
⩾ v(Qϕ

1 ) + γ + o(γ), eventually, so

v
(
Q0 +A(f̂)

)
⩾ v(Aϕ) + γ + o(γ), eventually.

Moreover, v(Q0) ⩾ v(Aϕ) + o(γ), eventually. Lemma 1.5.11 then gives f ∈ K

with v(f̂ − f) ⩾ (1/3)γ. In view of â− a = gf̂ , this yields

v
(
â− (a+ gf)

)
= γ + v(f̂ − f) ⩾ (4/3)γ,

which proves our claim. □

In the rest of this subsection we assume that â /∈ K lies in an immediate asymptotic
extension of K and K⟨â⟩ has transcendence degree ⩽ r over K.

Proposition 1.5.13. If Γ is divisible, then â is almost special over K.

Towards the proof, we fix a minimal annihilator P (Y ) of â over K, so orderP ⩽ r.
We also fix a divergent pc-sequence (aρ) in K such that aρ ⇝ â. We next show
how to improve â and P if necessary:

Lemma 1.5.14. For some b̂ in an immediate asymptotic extension of K we have:
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(i) v(â− a) = v(̂b− a) for all a ∈ K;
(ii) (aρ) has a minimal differential polynomial Q over K of order ⩽ r such

that Q is also a minimal annihilator of b̂ over K.

Proof. By the remarks following the proof of [ADH, 11.4.3] we have P ∈ Z(K, â).
Take Q ∈ Z(K, â) of minimal complexity. Then orderQ ⩽ orderP ⩽ r, and Q is a
minimal differential polynomial of (aρ) over K by [ADH, 11.4.13]. By [ADH, 11.4.8

and its proof] this gives an element b̂ in an immediate asymptotic extension of K

such that (i) holds and Q is a minimal annihilator of b̂ over K. Then Q and b̂ have
the desired properties. □

Proof of Proposition 1.5.13. Assume Γ is divisible. Replace â, P by b̂, Q from
Lemma 1.5.14 and rename to arrange that P is a minimal differential polynomial
of (aρ) over K. By [ADH, 14.5.1] we have a ∈ K and g ∈ K× such that â− a ≍ g

and ndegP+a,×g = 1. Set F := P+a,×g and f̂ := (â − a)/g. Then ndegF = 1,

F (f̂) = 0, and f̂ ≼ 1. Applying Proposition 1.5.12 to F and f̂ in the role of P

and â yields a nontrivial convex subgroup ∆ of Γ that is cofinal in v(f̂ − K).
Setting α := vg, it follows that α+∆ is cofinal in v

(
(â− a)−K

)
= v(â−K). □

Corollary 1.5.15. If K is henselian, then â is almost special over K.

The proof is like that of Proposition 1.5.13, using [21, 3.3] instead of [ADH, 14.5.1].

The case of order 1. We show here that Proposition 1.5.12 goes through in the
case of order 1 under weaker assumptions: in this subsection K is a 1-linearly
newtonian H-asymptotic field with asymptotic integration. Then K is d-valued
with I(K) ⊆ K†, by Lemma 1.2.9, and λ-free, by [ADH, 14.2.3]. We let ϕ range
over elements active in K. In the next two lemmas A ∈ K[∂]̸= has order ⩽ 1,

γ ∈ QΓ, γ > 0, and K̂ is an immediate asymptotic extension of K.

Lemma 1.5.16. Let f̂ ∈ K̂× be such that v
(
A(f̂)

)
⩾ v(Aϕf̂)+γ eventually. Then

there exists f ∈ K such that A(f) = 0 and v(f̂ − f) ⩾ v(f̂) + γ.

Proof. Note that order(A) = 1; we arrange A = ∂ − g (g ∈ K). If A(f̂) = 0, then f̂

is in K [ADH, line before 14.2.10], and f := f̂ works. Assume A(f̂) ̸= 0. Then

v
(
Aϕ(f̂)

)
= v
(
A(f̂)

)
⩾ v(Aϕf̂) + γ > v(Aϕf̂), eventually,

so v(f̂) ∈ E e(A), and Lemma 1.4.9 yields an f ∈ K with f ∼ f̂ and A(f) = 0. We

claim that this f has the desired property. Set b := A(f̂). By the remarks preceding

Corollary 1.4.15 we can replace K, K̂, A, b by Kϕ, K̂ϕ, ϕ−1Aϕ, ϕ−1b, respectively,
for suitable ϕ, to arrange that K has small derivation and b† − g ≻♭ 1. Using the

hypothesis of the lemma we also arrange vb ⩾ v(Af̂) + γ. It remains to show that

for ĝ := f̂ − f ̸= 0 we have v(ĝ) ⩾ v(f̂) + γ. Now A(ĝ) = b with v(ĝ) /∈ E e(A),

hence ĝ ∼ b/(b†−g) ≺♭ b by Lemma 1.4.14, and thus v(ĝ) > vb ⩾ v(Af̂)+γ, so it is

enough to show v(Af̂) ⩾ v(f̂). Now b = A(f̂) = f̂(f̂† − g) and Af̂ = f̂
(

∂+ f̂† − g
)
.

As vb ⩾ v(Af̂) + γ > v(Af̂), this yields v(f̂† − g) > 0, so v(Af̂) = v(f̂). □

Lemma 1.5.17. Let b ∈ K and f̂ ∈ K̂ with v(f̂) ⩾ o(γ). Assume also that

eventually v(b) ⩾ v(Aϕ) + o(γ) and v
(
A(f̂) − b

)
⩾ v(Aϕ) + γ + o(γ). Then for

some f ∈ K we have A(f) = b and v(f̂ − f) ⩾ (1/2)γ + o(γ).
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The proof is like that of Lemma 1.5.11, using Lemma 1.5.16 instead of Lemma 1.5.10.
In the same way Lemma 1.5.11 gave Proposition 1.5.12, Lemma 1.5.17 now yields:

Proposition 1.5.18. If P ∈ K{Y }, orderP ⩽ 1, ndegP = 1, and P (â) = 0,
where â ≼ 1 lies in an immediate asymptotic extension of K and â /∈ K, then â is
special over K.

Remark. Proposition 1.5.13 does not hold for r = 1 under present assumptions. To
see this, let K be a Liouville closed H-field which is not ω-free, as in Example 1.3.16
or [2]. Then K is 1-linearly newtonian by Corollary 1.7.29 below. Consider the
pc-sequences (λρ) and (ωρ) in K as in [ADH, 11.7], let ω ∈ K with ωρ ⇝ ω,
and P = 2Y ′ + Y 2 + ω. Then [ADH, 11.7.13] gives an element λ in an immediate
asymptotic extension of K but not in K with λρ ⇝ λ and P (λ) = 0. However, λ is
not almost special over K [ADH, 3.4.13, 11.5.2].

Relating Z(K, â) and v(â −K) for special â. In this subsection K is a valued
differential field with small derivation ∂ ̸= 0 such that Γ ̸= {0} and Γ> has no least
element. We recall from [3] that a valued differential field extension L of K is said
to be strict if for all ϕ ∈ K×,

∂O ⊆ ϕO ⇒ ∂OL ⊆ ϕOL, ∂O ⊆ ϕO ⇒ ∂OL ⊆ ϕOL.

(IfK is asymptotic, then any immediate asymptotic extension ofK is automatically
strict, by [3, 1.11].) Let â lie in an immediate strict extension of K such that â ≼ 1,
â /∈ K, and â is special over K. We adopt from [3, Sections 2, 4] the definitions
of ndegP for P ∈ K{Y }̸= and of the set Z(K, â) ⊆ K{Y }̸=. Also recall that Γ(∂) :=
{vϕ : ϕ ∈ K×, ∂O ⊆ ϕO}.

Lemma 1.5.19. Let P ∈ Z(K, â) and P ≍ 1. Then v
(
P (â)

)
> v(â−K).

Proof. Take a divergent pc-sequence (aρ) in O with aρ ⇝ â, and as in [ADH, 11.2]
let a := cK(aρ). Then ndega P ⩾ 1 by [3, 4.7]. We arrange γρ := v(â − aρ) to be
strictly increasing as a function of ρ, with 0 < 2γρ < γs(ρ) for all ρ. Take gρ ∈ O

with gρ ≍ â−aρ; then 1 ⩽ d := ndega P = ndegP+aρ,×gρ for all sufficiently large ρ,
and we arrange that this holds for all ρ. We have â = aρ + gρyρ with yρ ≍ 1, and

P (â) = P+aρ,×gρ(yρ) =
∑
i

(P+aρ,×gρ)i(yρ).

Pick for every ρ an element ϕρ ∈ K× such that 0 ⩽ v(ϕρ) ∈ Γ(∂) and (P
ϕρ

+aρ,×gρ)i ≼

(P
ϕρ

+aρ,×gρ)d for all i. Then for all ρ and i,

(P+aρ,×gρ)i(yρ) = (P
ϕρ

+aρ,×gρ)i(yρ) ≼ (P
ϕρ

+aρ,×gρ)i ≼ (P
ϕρ

+aρ,×gρ)d with

v
(
(P

ϕρ

+aρ,×gρ)d
)
⩾ dγρ + o(γρ) ⩾ γρ + o(γρ),

where for the next to last inequality we use [ADH, 11.1.1, 5.7.1, 5.7.5, 6.1.3].
Hence v

(
P (â)

)
⩾ γρ + o(γρ) for all ρ, and thus v

(
P (â)

)
> v(â−K). □

We also have a converse under extra assumptions:

Lemma 1.5.20. Assume K is asymptotic and Ψ ⊆ v(â −K). Let P ∈ K{Y } be
such that P ≍ 1 and v

(
P (â)

)
> v(â−K). Then P ∈ Z(K, â).
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Proof. Let ∆ be the nontrivial convex subgroup of Γ that is cofinal in v(â − K).
Let κ := cf(∆). Take a divergent pc-sequence (aρ)ρ<κ in K such that aρ ⇝ â. We
arrange γρ := v(â − aρ) is strictly increasing as a function of ρ, with γρ > 0 for
all ρ; thus aρ ≼ 1 for all ρ. Consider the ∆-coarsening v̇ = v∆ of the valuation v

of K; it has valuation ring Ȯ with differential residue field K̇. Consider likewise the
∆-coarsening of the valuation of the immediate extension L = K⟨â⟩ of K. Let a∗

be the image of â in the differential residue field L̇ of (L, v̇). Note that L̇ is an

immediate extension of K̇. The pc-sequence (aρ) then yields a sequence (ȧρ) in K̇

with v(a∗ − ȧρ) = γρ for all ρ. Thus (ȧρ) is a c-sequence in K̇ with ȧρ → a∗,

so Ṗ (ȧρ) → Ṗ (a∗) by [ADH, 4.4.5]. From v
(
P (â)

)
> ∆ we obtain Ṗ (a∗) = 0,

and so Ṗ (ȧρ) → 0. So far we have not used our assumption that K is asymptotic
and Ψ ⊆ v(â−K). Using this now, we note that for α ∈ ∆> we have 0 < α′ = α+α†,

so α′ ∈ ∆, hence the derivation of K̇ is nontrivial. Thus we can apply [ADH,

4.4.10] to K̇ and modify the aρ without changing γρ = v(a∗ − ȧρ) to arrange that

in addition Ṗ (ȧρ) ̸= 0 for all ρ. Since κ = cf(∆), we can replace (aρ) by a cofinal
subsequence so that P (aρ)⇝ 0, hence P ∈ Z(K, â) by [3, 4.6]. □

To elaborate on this, let ∆ be a convex subgroup of Γ and K̇ the valued differential
residue field of the ∆-coarsening v∆ of the valuation v of K. We view K̇ in the

usual way as a valued differential subfield of the valued differential residue field
˙̂
K

of the ∆-coarsening of the valuation of K̂ by ∆; see [ADH, pp. 159–160 and 4.4.4].

Corollary 1.5.21. Suppose K is asymptotic, Ψ ⊆ v(â − K), and ∆ is cofinal

in v(â−K). Let P ∈ K{Y } with P ≍ 1. Then P ∈ Z(K, â) if and only if Ṗ ( ˙̂a) = 0

in
˙̂
K. Also, P is an element of Z(K, â) of minimal complexity if and only if Ṗ is

a minimal annihilator of ˙̂a over K̇ and Ṗ has the same complexity as P .

Proof. The first statement is immediate from Lemmas 1.5.19 and 1.5.20. For the
rest use that for R ∈ Ȯ{Y } we have c(Ṙ) ⩽ c(R) and that for all Q ∈ K̇{Y } there

is an R ∈ Ȯ{Y } with Q = Ṙ and Qi ̸= 0 iff Ri ̸= 0 for all i, so c(Ṙ) = c(R). □

1.6. Differential Henselianity of the Completion

Let K be a valued differential field with small derivation. We let Γ := v(K×) be
the value group of K and k := res(K) be the differential residue field of K, and we
let r ∈ N. The following summarizes [ADH, 7.1.1, 7.2.1]:

Lemma 1.6.1. The valued differential field K is r-d-henselian iff for each P
in K{Y } of order ⩽ r with ddegP = 1 there is a y ∈ O with P (y) = 0.

Recall that the derivation of K being small, it is continuous [ADH, 4.4.6], and
hence extends uniquely to a continuous derivation on the completion Kc of the
valued field K [ADH, 4.4.11]. We equip Kc with this derivation, which remains
small [ADH, 4.4.12], so Kc is an immediate valued differential field extension of K
with small derivation, in particular, k = res(Kc).

Below we characterize in a first-order way when Kc is r-d-henselian. We shall
use tacitly that for P ∈ K{Y } we have P (g) ≼ P×g for all g ∈ K; to see this,
replace P by P×g to reduce to g = 1, and observe that P (1) =

∑
∥σ∥=0 P[σ] ≼ P .

Lemma 1.6.2. Let P ∈ Kc{Y }, b ∈ Kc with b ≼ 1 and P (b) = 0, and γ ∈ Γ>.
Then there is an a ∈ O with v

(
P (a)

)
> γ.
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Proof. To find an a as claimed we take f ∈ K satisfying f ≍ P and replace P , γ
by f−1P , γ − vf , respectively, to arrange P ≍ 1 and thus P+b ≍ 1. We also
assume b ̸= 0. Since K is dense in Kc we can take a ∈ K such that a ∼ b
(so a ∈ O) and v(a− b) > 2γ. Then with g := a− b, using [ADH, 4.5.1(i) and 6.1.4]
we conclude

v
(
P (a)

)
= v
(
P+b(g)

)
⩾ v
(
(P+b)×g

)
⩾ v(P+b) + vg + o(vg) = vg + o(vg) > γ

as required. □

Recall that if K is asymptotic, then so is Kc by [ADH, 9.1.6].

Lemma 1.6.3. Suppose K is asymptotic, Γ ̸= {0}, and for every P ∈ K{Y } of or-
der at most r with ddegP = 1 and every γ ∈ Γ> there is an a ∈ O with v

(
P (a)

)
> γ.

Then Kc is r-d-henselian.

Proof. The hypothesis applied to P ∈ O{Y } of order ⩽ r with ddegP = degP = 1
yields that k is r-linearly surjective. Let now P ∈ Kc{Y } be of order ⩽ r
with ddegP = 1. We need to show that there exists b ∈ Kc with b ≼ 1 and P (b) = 0.
First we arrange P ≍ 1. By [ADH, remarks after 9.4.11] we can take b ≼ 1 in an
immediate d-henselian asymptotic field extension L of Kc with P (b) = 0. We
prove below that b ∈ Kc. We may assume b /∈ K, so v(b −K) has no largest ele-
ment, since L ⊇ K is immediate. Note also that ddegP+b = 1 by [ADH, 6.6.5(i)];
since P (b) = 0 we thus have ddegP+b,×g = 1 for all g ≼ 1 in L× by [ADH, 6.6.7].

Claim : Let γ ∈ Γ> and a ∈ K with v(b − a) ⩾ 0. There is a y ∈ O such
that v

(
P (y)

)
> γ and v(b− y) ⩾ v(b− a).

To prove this claim, take g ∈ K× with vg = v(b−a). Then by [ADH, 6.6.6] and the
observation preceding the claim we have ddegP+a,×g = ddegP+b,×g = 1. Thanks
to density of K in Kc we may take Q ∈ K{Y } of order ⩽ r with P+a,×g ∼ Q
and v(P+a,×g − Q) > γ. Then ddegQ = 1, so by the hypothesis of the lemma
we have z ∈ O with v

(
Q(z)

)
> γ. Set y := a + gz ∈ O; then we have v

(
P (y)

)
=

v
(
P+a,×g(z)

)
> γ and v(b− y) = v(b− a− gz) ⩾ v(b− a) = vg as claimed.

Let now γ ∈ Γ>; to show that b ∈ Kc, it is enough by [ADH, 3.2.15, 3.2.16] to
show that then v(a − b) > γ for some a ∈ K. Let A := LP+b

∈ L[∂]; then A ≍ 1.

Since |EL(A)| ⩽ r by [ADH, 7.5.3], the claim gives an a ∈ O with v
(
P (a)

)
> 2γ

and 0 < v(b− a) /∈ EL(A). Put g := a− b and R := (P+b)>1. Then R ≺ 1 and

P (a) = P+b(g) = A(g) +R(g)

where by the definition of EL(A) and [ADH, 6.4.1(iii), 6.4.3] we have in QΓ:

v
(
A(g)

)
= vA(vg) = vg + o(vg) < vR+ (3/2)vg ⩽ vR(vg) ⩽ v

(
R(g)

)
and so v

(
P (a)

)
= vg + o(vg) > 2γ. Therefore v(a− b) = vg > γ as required. □

The last two lemmas yield an analogue of [ADH, 3.3.7] for r-d-henselianity and a
partial generalization of [ADH, 7.2.15]:

Corollary 1.6.4. Suppose K is asymptotic and Γ ̸= {0}. Then the following are
equivalent:

(i) Kc is r-d-henselian;
(ii) for every P ∈ K{Y } of order at most r with ddegP = 1 and every γ ∈ Γ>

there exists a ∈ O with v
(
P (a)

)
> γ.

In particular, if K is r-d-henselian, then so is Kc.
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1.7. Complements on Newtonianity

In this section K is an ungrounded H-asymptotic field with Γ = v(K×) ̸= {0}.
Note that then Kc is also H-asymptotic. We let r range over N and ϕ over the
active elements of K. Our first aim is a newtonian analogue of Corollary 1.6.4:

Proposition 1.7.1. For d-valued and ω-free K, the following are equivalent:

(i) Kc is r-newtonian;
(ii) for every P ∈ K{Y } of order at most r with ndegP = 1 and every γ ∈ Γ>

there is an a ∈ O with v
(
P (a)

)
> γ.

If K is d-valued, ω-free, and r-newtonian, then so is Kc.

The final statement in this proposition extends [ADH, 14.1.5]. Towards the proof
we first state a variant of [ADH, 13.2.2] which follows easily from [ADH, 11.1.4]:

Lemma 1.7.2. Assume K has small derivation and let P,Q ∈ K{Y }̸= and ϕ ≼ 1.
Then Pϕ ≍♭ P , and so we have the three implications

P ≼♭ Q =⇒ Pϕ ≼♭ Qϕ, P ≺♭ Q =⇒ Pϕ ≺♭ Qϕ, P ∼♭ Q =⇒ Pϕ ∼♭ Qϕ.

The last implication gives: P ∼♭ Q =⇒ ndegP = ndegQ and nmulP = nmulQ.

For Pϕ ≍♭ P and the subsequent three implications in the lemma above we can
drop the assumption that K is ungrounded.

Lemma 1.7.3. Suppose K is d-valued, ω-free, and for every P ∈ K{Y } of order
at most r with ndegP = 1 and every γ ∈ Γ> there is an a ∈ O with v

(
P (a)

)
> γ.

Then Kc is d-valued, ω-free, and r-newtonian.

Proof. By [ADH, 9.1.6 and 11.7.20], Kc is d-valued and ω-free. Let P ∈ Kc{Y } be
of order ⩽ r with ndegP = 1. We need to show that P (b) = 0 for some b ≼ 1 in Kc.
To find b we may replace K, P by Kϕ, Pϕ; in particular we may assume that K has
small derivation and Γ♭ ̸= Γ. By (0.7) we can take b ≼ 1 in an immediate newtonian
extension L of Kc such that P (b) = 0. We claim that b ∈ Kc. To show this we may
assume b /∈ K, so v(b −K) does not have a largest element. By [ADH, 11.2.3(i)]
we have ndegP+b = 1 and so ndegP+b,×g = 1 for all g ≼ 1 in L× by [ADH, 11.2.5],
in view of P (b) = 0.

Claim : Let γ ∈ Γ> and a ∈ K with v(b − a) ⩾ 0. There is a y ∈ O such
that v

(
P (y)

)
> γ and v(b− y) ⩾ v(b− a).

The proof is similar to that of the claim in the proof of Lemma 1.6.3: Take g ∈ K×

with vg = v(b−a). Then ndegP+a,×g = ndegP+b,×g = 1 by [ADH, 11.2.4] and the
observation preceding the claim. Density of K in Kc yields Q ∈ K{Y } of order ⩽ r
with v(P+a,×g −Q) > γ and P+a,×g ∼♭ Q, the latter using Γ♭ ̸= Γ. Then ndegQ =
ndegP+a,×g = 1 by Lemma 1.7.2, so the hypothesis of the lemma gives z ∈ O
with v

(
Q(z)

)
> γ. Setting y := a + gz ∈ O we have v

(
P (y)

)
= v

(
P+a,×g(z)

)
> γ

and v(b− y) = v(b− a− gz) ⩾ vg = v(b− a).

Let γ ∈ Γ>; to get b ∈ Kc, it is enough to show that then v(a − b) > γ for
some a ∈ K. Let A := LP+b

∈ L[∂]. Since |E e
L(A)| ⩽ r by [ADH, 14.2.9], by

the claim we can take a ∈ O with v
(
P (a)

)
> 2γ and 0 < v(b − a) /∈ E e

L(A).

Now put g := a − b and take ϕ with vg /∈ ELϕ(Aϕ); note that then Aϕ = LPϕ
+b
.

Replacing K, L, P by Kϕ, Lϕ, Pϕ we arrange vg /∈ EL(A), and (changing ϕ if
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necessary) ddegP+b = 1. We also arrange P+b ≍ 1, and then (P+b)>1 ≺ 1. As in
the proof of Lemma 1.6.3 above we now derive v(a− b) = vg > γ. □

Combining Lemmas 1.6.2 and 1.7.3 now yields Proposition 1.7.1. □

To show that newtonianity is preserved under specialization, we assume below
that Ψ ∩ Γ> ̸= ∅, so K has small derivation. Let ∆ ̸= {0} be a convex subgroup
of Γ with ψ(∆ ̸=) ⊆ ∆. Then 1 ∈ ∆ where 1 denotes the unique positive element
of Γ fixed by the function ψ: use that ψ(γ) ⩾ 1 for 0 < γ < 1. (Conversely, any
convex subgroup G of Γ with 1 ∈ G satisfies ψ(G̸=) ⊆ G.) Let v̇ be the coarsening

of the valuation v of K by ∆, with valuation ring Ȯ, maximal ideal Ȯ of Ȯ, and
residue field K̇ = Ȯ/Ȯ. The derivation of K is small with respect to v̇, and K̇ with

the induced valuation v : K̇× → ∆ and induced derivation as in [ADH, p. 405] is an
asymptotic field with asymptotic couple (∆, ψ|∆ ̸=), and so is of H-type with small

derivation. If K is d-valued, then so is K̇ by [ADH, 10.1.8], and if K is ω-free, then

so is K̇ by [ADH, 11.7.24]. The residue map a 7→ ȧ := a+Ȯ : Ȯ → K̇ is a differential

ring morphism, extends to a differential ring morphism P 7→ Ṗ : Ȯ{Y } → K̇{Y } of

differential rings sending Y to Y , and ddegP = ddeg Ṗ for P ∈ Ȯ{Y } with Ṗ ̸= 0.
We now restrict ϕ to range over active elements ofO. Then vϕ ⩽ 1+1, so vϕ ∈ ∆,

and hence ϕ is a unit of Ȯ. It follows that ϕ̇ is active in K̇, and every active element
of K̇ lying in its valuation ring is of this form. Moreover, the differential subrings Ȯ
of K and Ȯϕ := (Ȯ)ϕ of Kϕ have the same underlying ring, and the derivation

of Kϕ is small with respect to v̇. Thus the differential residue fields K̇ = Ȯ/Ȯ
and K̇ϕ := Ȯϕ/Ȯ have the same underlying field and are related as follows:

K̇ϕ = (K̇)ϕ̇.

For P ∈ Ȯ{Y } we have Pϕ ∈ Ȯϕ{Y }, and the image of Pϕ under the residue

map Ȯϕ{Y } → K̇ϕ{Y } equals Ṗ ϕ̇; hence ndegP = ndeg Ṗ for P ∈ Ȯ{Y } satisfy-

ing Ṗ ̸= 0. These remarks imply:

Lemma 1.7.4. If K is r-newtonian, then K̇ is r-newtonian.

Combining Proposition 1.7.1 and Lemmas 1.7.3 and 1.7.4 yields:

Corollary 1.7.5. Suppose K is d-valued, ω-free, and r-newtonian. Then K̇ and
its completion are d-valued, ω-free, and r-newtonian.

We finish with a newtonian analogue of [ADH, 7.1.7]:

Lemma 1.7.6. Suppose (K, Ȯ) is r-d-henselian and K̇ is r-newtonian. Then K
is r-newtonian.

Proof. Let P ∈ K{Y } be quasilinear of order ⩽ r; we need to show the existence
of b ∈ O with P (b) = 0. Replacing K, P by Kϕ, Pϕ for suitable ϕ (and renaming)
we arrange ddegP = 1; this also uses [ADH, 7.3, subsection on compositional con-

jugation]. We can further assume that P ≍ 1. Put Q := Ṗ ∈ K̇{Y }, so ndegQ = 1,

and thus r-newtonianity of K̇ yields an a ∈ O with Q(ȧ) = 0. Then P (a) ≺̇ 1,

P+a,1 ∼ P1 ≍ 1, and P+a,>1 ≺ 1. Since (K, Ȯ) is r-d-henselian, this gives y ∈ Ȯ

with P+a(y) = 0, and then P (b) = 0 for b := a+ y ∈ O. □

Lemmas 1.7.4, 1.7.6, and [ADH, 14.1.2] yield:

Corollary 1.7.7. K is r-newtonian iff (K, Ȯ) is r-d-henselian and K̇ is r-newto-
nian.
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Invariance of Newton quantities. In this subsection P ∈ K{Y }̸=. In [ADH,
11.1] we associated to P its Newton weight nwtP , Newton degree ndegP , and
Newton multiplicity nmulP at 0, all elements of N, as well as the element ve(P )
of Γ; these quantities do not change when passing to an H-asymptotic extension L
of K with Ψ cofinal in ΨL, cf. [ADH, p. 480], where the assumptions on K, L
are slightly weaker. Thus by Theorem 1.3.1, these quantities do not change for
ω-free K in passing to an H-asymptotic pre-d-valued d-algebraic extension of K.
Below we improve on this in several ways. First, for orderP ⩽ 1 we can drop Ψ
being cofinal in ΨL by a strengthening of [ADH, 11.2.13]:

Lemma 1.7.8. Suppose K is H-asymptotic with rational asymptotic integration
and P ∈ K[Y, Y ′ ]̸=. Then there are w ∈ N, α ∈ Γ>, A ∈ K[Y ]̸=, and an active ϕ0
in K such that for every asymptotic extension L of K and active f ≼ ϕ0 in L,

P f = fwA(Y )(Y ′)w +Rf , Rf ∈ Lf [Y, Y ′], v(Rf ) ⩾ v(P f ) + α.

For such w,A we have for any ungrounded H-asymptotic extension L of K,

nwtL P = w, ndegL P = degA+w, nmulL P = mulA+w, veL(P ) = v(A).

Proof. Let w be as in the proof of [ADH, 11.2.13]. Using its notations, this proof
yields an active ϕ0 in K such that

(1.7.1) wγ + v(Aw) < jγ + v(Aj)

for all γ ⩾ v(ϕ0) in Ψ↓ and j ∈ J \ {w}. This gives β ∈ QΓ such that β > Ψ
and (1.7.1) remains true for all γ ∈ Γ with v(ϕ0) ⩽ γ < β. Since (QΓ, ψ) has
asymptotic integration, β is not a gap in (QΓ, ψ), so β > β0 > Ψ with β0 ∈ QΓ.
This yields an element α ∈ (QΓ)> such that for all γ ∈ QΓ with v(ϕ0) ⩽ γ ⩽ β0
we have

(1.7.2) wγ + v(Aw) + α ⩽ jγ + v(Aj)

Since Γ has no least positive element, we can decrease α to arrange α ∈ Γ>.
Now (1.7.2) remains true for all elements γ of any divisible ordered abelian group
extending QΓ with v(ϕ0) ⩽ γ ⩽ β0. Thus w, α, A = Aw, and ϕ0 are as required.

For any ungrounded H-asymptotic extension L of K we obtain for active f ≼ ϕ0
in L that v(P f ) = v(A)+wv(f), so veL(P ) = v(A) in view of the identity in [ADH,
11.1.15] defining veL(P ). □

For quasilinear P we have:

Lemma 1.7.9. Suppose K is λ-free and ndegP = 1. Then there are active ϕ0
in K and a, b ∈ K with a ≼ b ̸= 0 such that either (i) or (ii) below holds:

(i) P f ∼♭
ϕ0

a+ bY for all active f ≼ ϕ0 in all H-asymptotic extensions of K;

(ii) P f ∼♭
ϕ0

f
ϕ0
b Y ′ for all active f ≼ ϕ0 in all H-asymptotic extensions of K.

In particular, for each ungrounded H-asymptotic extension L of K,

nwtL P = nwtP ⩽ 1, ndegL P = 1, nmulL P = nmulP, veL(P ) = ve(P ).

Proof. From [ADH, 13.7.10] we obtain an active ϕ0 in K and a, b ∈ K with a ≼ b
such that in Kϕ0{Y }, either Pϕ0 ∼♭

ϕ0
a + bY or Pϕ0 ∼♭

ϕ0
b Y ′ (so b ̸= 0). In the

first case, set A(Y ) := a+ bY , w := 0; in the second case, set A(Y ) := bY ′, w := 1.
Then Pϕ0 = A+R where R ≺♭

ϕ0
b ≍ Pϕ0 in Kϕ0{Y }.
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Let L be an H-asymptotic extension of K. Then R ≺♭
ϕ0

Pϕ0 remains true

in Lϕ0{Y }, and if f ≼ ϕ0 is active in L, then P f = (Pϕ0)f/ϕ0 = (f/ϕ0)
wA+Rf/ϕ0

where Rf/ϕ0 ≺♭
ϕ0

P f by Lemma 1.7.2 and the remark following its proof. As

to veL(P ) = ve(P ) for ungrounded L, the identity from [ADH, 11.1.15] defining
these quantities shows that both are vb in case (i), and v(b)−v(ϕ0) in case (ii). □

Lemma 1.7.9 has the following consequence, partly generalizing Corollary 1.4.5:

Corollary 1.7.10. Suppose K is λ-free, A ∈ K[∂]̸= and L is an ungrounded H-
asymptotic extension of K. Then for γ ∈ Γ the quantities nwtA(γ) ⩽ 1 and veA(γ)
do not change when passing from K to L; in particular,

E e(A) =
{
γ ∈ Γ : nwtA(γ) = 1

}
= E e

L(A) ∩ Γ.

This leads to a variant of Corollary 1.4.20:

Corollary 1.7.11. Suppose K is λ-free. Then |E e(A)| ⩽ orderA for all A ∈ K[∂]̸=.

Proof. By [ADH, 10.1.3],K is pre-d-valued, hence by [ADH, 11.7.18] it has an ω-free
H-asymptotic extension. It remains to appeal to Corollaries 1.4.5 and 1.7.10. □

For completeness we next state a version of Lemma 1.7.9 for ndegP = 0; the proof
using [ADH, 13.7.9] is similar, but simpler, and hence omitted.

Lemma 1.7.12. Suppose K is λ-free and ndegP = 0. Then there are an active ϕ0
in K and a ∈ K× such that P f ∼♭

ϕ0
a for all active f ≼ ϕ0 in all H-asymptotic

extensions of K.

In particular, for K, P as in Lemma 1.7.12, no H-asymptotic extension of K
contains any y ≼ 1 such that P (y) = 0.

For general P and ω-free K we can still do better than stated earlier:

Lemma 1.7.13. Suppose K is ω-free. Then there are w ∈ N, A ∈ K[Y ] ̸=, and an
active ϕ0 in K such that for all active f ≼ ϕ0 in all H-asymptotic extensions of K,

P f ∼♭
ϕ0

(f/ϕ0)
wA(Y )(Y ′)w.

For such w, A, ϕ0 we have for any ungrounded H-asymptotic extension L of K,

nwtL P = w, ndegL P = degA+ w,

nmulL P = mulA+ w, veL(P ) = v(A)− wv(ϕ0).

Proof. By [ADH, 13.6.11] we have active ϕ0 in K and A ∈ K[Y ] ̸= such that

Pϕ0 = A · (Y ′)w +R, w := nwtP, R ∈ Kϕ0{Y }, R ≺♭
ϕ0
Pϕ0 .

(Here ϕ0 and A are the e and aA in [ADH, 13.6.11].) The rest of the argument is
just like in the second part of the proof of Lemma 1.7.9. □

Remarks on newton position. For the next lemma we put ourselves in the
setting of [ADH, 14.3]: K is ω-free, P ∈ K{Y }̸=, and a ranges over K. Recall
that P is said to be in newton position at a if nmulP+a = 1.

Suppose P is in newton position at a; then A := LP+a
∈ K[∂]̸=. Recall the

definition of ve(P, a) = veK(P, a) ∈ Γ∞: if P (a) = 0, then ve(P, a) = ∞; if P (a) ̸= 0,

then ve(P, a) = vg where g ∈ K× satisfies P (a) ≍ (P+a)
ϕ
1,×g eventually, that is,

vAϕ(vg) = v
(
P (a)

)
eventually. In the latter case nwtA(vg) = 0, that is, vg /∈ E e(A),

and veA(vg) = v
(
P (a)

)
, since vAϕ(vg) = veA(vg) + nwtA(vg)vϕ eventually. For

50



any f ∈ K×, P f is also in newton position at a, and ve(P f , a) = ve(P, a). Note also
that P+a is in newton position at 0 and ve(P+a, 0) = ve(P, a). Moreover, in passing
from K to an ω-free extension, P remains in newton position at a and ve(P, a) does
not change, by Lemma 1.7.13.

In the rest of this subsection P is in newton position at a, and â is an element of

an H-asymptotic extension K̂ of K such that P (â) = 0. (We allow â ∈ K.) We
first generalize part of [ADH, 14.3.1], with a similar proof:

Lemma 1.7.14. ve(P, a) > 0 and v(â− a) ⩽ ve(P, a).

Proof. This is clear if P (a) = 0. Assume P (a) ̸= 0. Replace P , â, a by P+a, â−a, 0,
respectively, to arrange a = 0. Recall that Kϕ has small derivation. Set γ :=

ve(P, 0) ∈ Γ and take g ∈ K with vg = γ. Now (Pϕ
1 )×g ≍ P0, eventually,

and nmulP = 1 gives P (0) ≺ Pϕ
1 , eventually, hence g ≺ 1. Moreover, for j ⩾ 2,

Pϕ
1 ≽ Pϕ

j , eventually, so (Pϕ
1 )×g ≻ (Pϕ

j )×g, eventually, by [ADH, 6.1.3]. Thus

for j ⩾ 1 we have (Pϕ
×g)j = (Pϕ

j )×g ≼ P (0), eventually; in particular, there is

no y ≺ 1 in any H-asymptotic extension of K with P×g(y) = 0. Since P (â) = 0,
this yields v(â) ⩽ γ = ve(P, 0). □

Here is a situation where v(â− a) = ve(P, a):

Lemma 1.7.15. Suppose Ψ is cofinal in ΨK̂ , â − a ≺ 1, and v(â − a) /∈ E e
K̂
(A)

where A := LP+a
. Then v(â− a) = ve(P, a).

Proof. Note that K̂ is ungrounded, so E e
K̂
(A) is defined, and K̂ is pre-d-valued.

As in the proof of Lemma 1.7.14 we arrange a = 0. As an asymptotic subfield

of K̂, K⟨â⟩ is pre-d-valued. Hence K⟨â⟩ is ω-free by Theorem 1.3.1. The remarks
preceding Lemma 1.7.14 then allow us to replace K by K⟨â⟩ to arrange â ∈ K.
The case â = 0 is trivial, so assume 0 ̸= â ≺ 1. Now nmulP = 1 gives for j ⩾ 2

that Pϕ
1 ≽ Pϕ

j , eventually, hence (Pϕ
1 )×â ≻ (Pϕ

j )×â, eventually, by [ADH, 6.1.3].

Moreover, P1(â) = A(â) = Aϕ(â) ≍ Aϕâ, eventually, using v(â) /∈ E e
K̂
(A) in the

last step, so for j ⩾ 2, eventually

P1(â) ≍ (Pϕ
1 )×â ≻ (Pϕ

j )×â ≽ P
ϕ
j (â) = Pj(â).

Also P1(â) ̸= 0, sinceAϕâ ̸= 0. Then P (â) = 0 gives P (0) ≍ P1(â). Thus v
(
P (0)

)
=

vAϕ

(
v(â)

)
, eventually, so ve(P, 0) = v(â) by the definition of ve(P, 0). □

Corollary 1.7.16. Suppose K̂ is ungrounded and equipped with an ordering making
it a pre-H-field, and assume â − a ≺ 1 and v(â − a) /∈ E e

K̂
(A) where A := LP+a .

Then v(â− a) = ve(P, a).

Proof. In view of Lemma 1.4.1 and using [ADH, 14.5.11] we can extend K̂ to
arrange that it is an ω-free newtonian Liouville closed H-field. Next, let H be

the real closure of the H-field hull of K⟨â⟩, all inside K̂. Then H is ω-free, by

Theorem 1.3.1, and hence has a Newton-Liouville closure L inside K̂ [ADH, 14.5].

Since L ≼ K̂ by [ADH, 16.2.5], we have v(â− a) /∈ E e
L(A). Now L is d-algebraic

over K by [ADH, 14.5.9], so Ψ is cofinal in ΨL by Theorem 1.3.1. It remains to
apply Lemma 1.7.15. □
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Newton position in the order 1 case. In this subsection K is λ-free, P ∈ K{Y }
has order 1, and a ∈ K. We basically copy here a definition and two lemmas
from [ADH, 14.3] with the ω-free assumption there replaced by the weaker λ-
freeness, at the cost of restricting P to have order 1.

Suppose nmulP = 1, P0 ̸= 0. Then [ADH, 11.6.17] yields g ∈ K× such

that P0 ≍ Pϕ
1,×g, eventually. Since P0 ≺ Pϕ

1 , eventually, we have g ≺ 1. More-

over, if i ⩾ 2, then Pϕ
1 ≽ Pϕ

i , eventually, hence P
ϕ
1,×g ≻ Pϕ

i,×g, eventually. There-
fore ndegP×g = 1.

Define P to be in newton position at a if nmulP+a = 1. Suppose P is
in newton position at a; set Q := P+a, so Q(0) = P (a). If P (a) ̸= 0, then the

above yields g ∈ K× with P (a) = Q(0) ≍ Qϕ
1,×g, eventually; as vg does not

depend on the choice of such g, we set ve(P, a) := vg. If P (a) = 0, then we
set ve(P, a) := ∞ ∈ Γ∞. In passing from K to a λ-free extension, P remains in
newton position at a and ve(P, a) does not change, by Lemma 1.7.8. In the rest of
this subsection we assume P is in newton position at a.

Lemma 1.7.17. If P (a) ̸= 0, then there exists b ∈ K with the following properties:

(i) P is in newton position at b, v(a− b) = ve(P, a), and P (b) ≺ P (a);
(ii) for all b∗ ∈ K with v(a− b∗) ⩾ ve(P, a): P (b∗) ≺ P (a) ⇔ a− b ∼ a− b∗;
(iii) for all b∗ ∈ K, if a − b ∼ a − b∗, then P is in newton position at b∗

and ve(P, b∗) > ve(P, a).

This is shown as in [ADH, 14.3.2]. Next an analogue of [ADH, 14.3.3], with the
same proof, but using Lemma 1.7.17 in place of [ADH, 14.3.2]:

Lemma 1.7.18. If there is no b with P (b) = 0 and v(a−b) = ve(P, a), then there is
a divergent pc-sequence (aρ)ρ<λ in K, indexed by all ordinals ρ smaller than some
infinite limit ordinal λ, such that a0 = a, v(aρ−aρ′) = ve(P, aρ) for all ρ < ρ′ < λ,
and P (aρ)⇝ 0.

The next result is proved just like Lemma 1.7.14:

Lemma 1.7.19. If P (â) = 0 with â in an H-asymptotic extension of K,
then ve(P, a) > 0 and v(â− a) ⩽ ve(P, a).

Next an analogue of Lemma 1.7.15 using Propositions 1.3.8 and 1.3.12 in its proof:

Lemma 1.7.20. Suppose â in an ungrounded H-asymptotic extension K̂ of K
satisfies P (â) = 0, â − a ≺ 1, and v(â − a) /∈ E e

K̂
(A), where A := LP+a

.

Then v(â− a) = ve(P, a).

Proof. We arrange a = 0 and assume â ̸= 0. Then L := K⟨â⟩ has asymptotic
integration, by Proposition 1.3.12, and v(â) /∈ E e

L(A) by Lemma 1.4.10 (applied

with L, K̂ in place of K, L). Moreover, Ψ is cofinal in ΨL by Proposition 1.3.8.
As in the proof of Lemma 1.7.15 this leads to P1(â) = A(â) = Aϕ(â) ≍ Aϕâ,
eventually, and then as in the rest of that proof we derive ve(P, 0) = v(â). □

Zeros of differential polynomials of order and degree 1. In this subsection K
has asymptotic integration. We fix a differential polynomial

P (Y ) = a(Y ′ + gY − u) ∈ K{Y } (a, g, u ∈ K, a ̸= 0),

and set A := LP = a(∂ + g) ∈ K[∂]. Section 1.2 gives for y ∈ K the equiv-
alence y ∈ I(K) ⇔ vy > Ψ, so by Section 1.4, E e(A) = ∅ ⇔ g /∈ I(K) + K†,
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and v(ker ̸=
K̂
A) ⊆ E e(A) for each immediate H-asymptotic field extension K̂ of K.

Thus:

Lemma 1.7.21. If g /∈ I(K) +K†, then each immediate H-asymptotic extension
of K contains at most one y such that P (y) = 0.

If ∂K = K and g ∈ K†, then P (y) = 0 for some y ∈ K, and if moreover K is d-
valued, then any y in any immediate H-asymptotic extension of K with P (y) = 0
lies in K. (Lemma 1.2.2.) If y ≺ 1 in an immediate H-asymptotic extension of K
satisfies P (y) = 0, then by [ADH, 11.2.3(ii), 11.2.1] we have

nmulP = nmulP+y = mulP+y = 1.

Lemma 1.7.18 yields the following partial converse (a variant of [3, Lemma 8.5]):

Corollary 1.7.22. Suppose K is λ-free and nmulP = 1. Then there is a y ≺ 1 in
an immediate H-asymptotic extension of K with P (y) = 0.

Proof. ReplacingK by its henselization and using [ADH, 11.6.7], we arrange thatK
is henselian. Suppose that P has no zero in O. Then P is in newton position at 0,
and so Lemma 1.7.18 yields a divergent pc-sequence (aρ)ρ<λ in K, indexed by all
ordinals ρ smaller than some infinite limit ordinal λ, with a0 = 0, v(aρ − aρ′) =
ve(P, aρ) for all ρ < ρ′ < λ, and P (aρ) ⇝ 0. Since degP = orderP = 1 and K
is henselian, P is a minimal differential polynomial of (aρ) over K, and v(aρ) =
ve(P, 0) > 0 for all ρ > 0. Hence [ADH, 9.7.6] yields a pseudolimit y of (aρ) in an
immediate asymptotic extension of K with P (y) = 0 and y ≺ 1, as required. □

We say that P is proper if u ̸= 0 and g + u† ≻♭ 1. If P is proper, then so is bP
for each b ∈ K×. For m ∈ K× we have

P×m = am
(
Y ′ + (g +m†)Y − um−1

)
,

hence if P is proper, then so is P×m. If u ̸= 0, then P is proper iff a−1A⋉u =
∂ + (g + u†) is steep, as defined in Section 1.4. Note that

Pϕ = aϕ
(
Y ′ + (g/ϕ)Y − (u/ϕ)

)
.

Lemma 1.7.23. Suppose K has small derivation, and P is proper. Then Pϕ is
proper (with respect to Kϕ) for all ϕ ≼ 1.

Proof. Let ϕ ≼ 1. Then we have ϕ ≍♭ 1 and hence ϕ† ≍♭ ϕ′ ≼ 1 ≺♭ g + u†. Thus

g + (u/ϕ)† = (g + u†)− ϕ† ∼♭ g + u† ≻♭ 1 ≽ ϕ,

hence (g/ϕ) + ϕ−1(u/ϕ)† ≻♭ 1 and so (g/ϕ) + ϕ−1(u/ϕ)† ≻♭
ϕ 1. Therefore Pϕ is

proper (with respect to Kϕ). □

Lemma 1.7.24. Suppose K is λ-free and u ̸= 0. Then there is an active ϕ0 in K
such that for all ϕ ≺ ϕ0, P

ϕ is proper with g + (u/ϕ)† ∼ g + (u/ϕ0)
†.

Proof. The argument before Corollary 1.4.15 yields an active ϕ0 in K such

that u† + g − ϕ† ≽ ϕ0 for all ϕ ≺ ϕ0. For such ϕ we have ϕ†−ϕ†0 ≺ ϕ0 as noted just
before [ADH, 11.5.3], and so (u/ϕ)†+g ∼ (u/ϕ0)

†+g. The argument before Corol-
lary 1.4.15 also gives ϕ−1(u/ϕ)†+g/ϕ ≻♭

ϕ 1 eventually, and if ϕ−1(u/ϕ)†+g/ϕ ≻♭
ϕ 1,

then Pϕ is proper. □

Lemma 1.7.25. We have nmulP = 1 iff u ≺ g or u ∈ I(K). Moreover, if K is
λ-free, nmulP = 1, and u ̸= 0, then u ≺♭

ϕ g + (u/ϕ)†, eventually.
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Proof. For the equivalence, note that the identity above for Pϕ yields:

nmulP = 0 ⇐⇒ u ≽ g, and u/ϕ ≽ 1 eventually.

Suppose K is λ-free, nmulP = 1, and u ̸= 0. If u ∈ I(K), then u ≺ ϕ ≺♭
ϕ g+(u/ϕ)†,

eventually, by Lemma 1.7.24. Suppose u /∈ I(K). Then v(u) ∈ Ψ↓ and u ≺ g. Hence
by [ADH, 9.2.11] we have (u/ϕ)† ≺ u ≺ g, eventually, and thus u ≺ g ∼ g+(u/ϕ)†,
eventually. Thus u ≺♭

ϕ g + (u/ϕ)†, eventually. □

Assume now P (y) = 0 with y in an immediate H-asymptotic extension of K;
so A(y) = u. Note: if vy ∈ Γ \ E e(A), then u ̸= 0. From Lemma 1.4.14 we get:

Lemma 1.7.26. If K has small derivation, P is proper, and vy ∈ Γ \ E e(A),
then y ∼ u/(g + u†).

By Lemmas 1.7.24 and 1.7.26, and using Lemma 1.7.25 for the last part:

Corollary 1.7.27. If K is λ-free and vy ∈ Γ \ E e(A), then

y ∼ u/
(
g + (u/ϕ)†

)
eventually.

If in addition nmulP = 1, then y ≺ 1.

A characterization of 1-linear newtonianity. In this subsection K has asymp-
totic integration. We first expand [ADH, 14.2.4]:

Proposition 1.7.28. The following are equivalent:

(i) K is 1-linearly newtonian;
(ii) every P ∈ K{Y } with nmulP = degP = 1 and orderP ⩽ 1 has a zero

in O;
(iii) K is d-valued, λ-free, and 1-linearly surjective, with I(K) ⊆ K†.

Proof. The equivalence of (i) and (ii) is [ADH, 14.2.4], and the implication (i)⇒ (iii)
follows from [ADH, 14.2.2, 14.2.3, 14.2.5]. To show (iii) ⇒ (ii), suppose (iii) holds,
and let g, u ∈ K and P = Y ′ + gY − u with nmulP = 1. We need to find y ∈ O

such that P (y) = 0. Corollary 1.7.22 gives an element y ≺ 1 in an immediate
H-asymptotic extension L of K with P (y) = 0. It suffices to show that then y ∈ K
(and thus y ∈ O). If g /∈ K†, then this follows from Lemma 1.7.21, using I(K) ⊆ K†

and 1-linear surjectivity of K; if g ∈ K†, then this follows from Lemma 1.2.2
and ∂K = K. □

By the next corollary, each Liouville closed H-field is 1-linearly newtonian:

Corollary 1.7.29. Suppose K† = K. Then the following are equivalent:

(i) K is 1-linearly newtonian;
(ii) K is d-valued and 1-linearly surjective;
(iii) K is d-valued and ∂K = K.

Proof. Note that K is λ-free by [ADH, remarks following 11.6.2]. Hence the equiv-
alence of (i) and (ii) follows from Proposition 1.7.28. For the equivalence of (ii)
with (iii), see [ADH, example following 5.5.22]. □
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Linear newtonianity descends. In this subsection H is d-valued with valuation
ring O and constant field C. Let r ∈ N⩾1. If H is ω-free, Γ is divisible, and H has
a newtonian algebraic extension K = H(CK), then H is also newtonian, by (0.11).
Here is an analogue of this for r-linear newtonianity:

Lemma 1.7.30. Let K = H(CK) be an algebraic asymptotic extension of H which
is r-linearly newtonian. Then H is r-linearly newtonian.

Proof. Take a basis B of the C-linear space CK with 1 ∈ B, and let b range over B.
We haveH(CK) = H[CK ], andH is linearly disjoint from CK over C [ADH, 4.6.16],
so B is a basis of the H-linear space H[CK ]. Let P ∈ H{Y } with degP = 1
and order(P ) ⩽ r be quasilinear; then P as element of K{Y } remains quasilinear,
since ΓK = Γ by [ADH, 10.5.15]. Let y ∈ OK be a zero of P . Take yb ∈ H (b ∈ B)
with yb = 0 for all but finitely many b and y =

∑
b yb b. Then yb ∈ O for all b, and

0 = P (y) = P0 + P1(y) = P0 +
∑
b

P1(yb)b,

so P (y1) = P0 + P1(y1) = 0. □

Thus if H[i] with i2 = −1 is r-linearly newtonian, then H is r-linearly newtonian.

Cases of bounded order. In the rest of this section r ∈ N⩾1. Define K
to be strongly r-newtonian if K is r-newtonian and for each divergent pc-
sequence (aρ) in K with minimal differential polynomial G(Y ) over K of order ⩽ r
we have ndegaG = 1, where a := cK(aρ). Given P ∈ K{Y }̸=, a K-external

zero of P is an element â of some immediate asymptotic extension K̂ of K such
that P (â) = 0 and â /∈ K. Now [ADH, 14.1.11] extends as follows with the same
proof:

Lemma 1.7.31. Suppose K has rational asymptotic integration and K is strongly
r-newtonian. Then no P ∈ K{Y } ̸= of order ⩽ r can have a K-external zero.

The following is important in certain inductions on the order. A differential field F
is r-linearly closed (r ∈ N) if every A ∈ F [∂]̸= of order ⩽ r splits over F . So F is
linearly closed iff it is r-linearly closed for all r ∈ N.

Lemma 1.7.32. Suppose K has asymptotic integration, is 1-linearly newtonian,
and r-linearly closed. Then K is r-linearly newtonian.

Proof. Note that K is λ-free and d-valued by Proposition 1.7.28. Let P ∈ K{Y } be
such that nmulP = degP = 1 and orderP ⩽ r; by [ADH, 14.2.6] it suffices to show
that then P has a zero in O. By [ADH, proof of 13.7.10] we can compositionally
conjugate, pass to an elementary extension, and multiply by an element of K× to
arrange that K has small derivation, P0 ≺♭ 1, and P1 ≍ 1. Let A := LP . The
valuation ring of the flattening (K, v♭) is 1-linearly surjective by [ADH, 14.2.1], so
all operators in K[∂] of order 1 are neatly surjective in the sense of (K, v♭). Since A
splits over K, we obtain from [ADH, 5.6.10(ii)] that A is neatly surjective in the
sense of (K, v♭). As v♭(A) = 0 and v♭(P0) > 0, this gives y ∈ K with v♭(y) > 0
such that P0 +A(y) = 0, that is, P (y) = 0. □

Using the terminology of K-external zeros, we can add another item to the list of
equivalent statements in Proposition 1.7.28:
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Lemma 1.7.33. Suppose K has asymptotic integration. Then we have:

K is 1-linearly newtonian ⇐⇒ K is λ-free and no P ∈ K{Y } with degP = 1

and orderP = 1 has a K-external zero.

Proof. SupposeK is 1-linearly newtonian. Then by (i)⇒ (iii) in Proposition 1.7.28,
K is λ-free, d-valued, 1-linearly surjective, and I(K) ⊆ K†. Let P ∈ K{Y }
where degP = orderP = 1 and y in an immediate asymptotic extension L of K
with P (y) = 0. Then [ADH, 9.1.2] and Corollary 1.2.11 give L†∩K = K†, so y ∈ K
by Lemmas 1.2.2 and 1.2.3. This gives the direction ⇒. The converse follows from
Corollary 1.7.22 and (ii) ⇒ (i) in Proposition 1.7.28. □

Here is a higher-order version of Lemma 1.7.33:

Lemma 1.7.34. Suppose K is ω-free. Then

K is r-linearly newtonian ⇐⇒ no P ∈ K{Y } with degP = 1 and orderP ⩽ r

has a K-external zero.

Proof. Suppose K is r-linearly newtonian. Then K is d-valued by Lemma 1.2.9.
Let P ∈ K{Y } be of degree 1 and order ⩽ r, and let y be in an immediate as-
ymptotic extension L of K with P (y) = 0. Then A(y) = b for A := LP ∈ K[∂],
b := −P (0) ∈ K. By [ADH, 14.2.2] there is also a z ∈ K with A(z) = b,
hence y − z ∈ kerLA = kerA by [ADH, remarks after 14.2.9] and so y ∈ K. This
gives the direction ⇒. For the converse note that every quasilinear P ∈ K{Y } has
a zero â ≼ 1 in an immediate asymptotic extension of K by (0.7). □

We also have the following r-version of (0.7):

Proposition 1.7.35. If K is λ-free and no P ∈ K{Y }̸= of order ⩽ r has a K-
external zero, then K is ω-free and r-newtonian.

Proof. The ω-freeness follows as before from [ADH, 11.7.13]. The rest of the proof
is as in [ADH, p. 653] with P restricted to have order ⩽ r. □

Application to solving asymptotic equations. Here K is d-valued, ω-free,
with small derivation, and M is a monomial group of K. See [ADH, 3.3] for
“monomial group”, and [ADH, 13.8] for “asymptotic equation”. We let a, b, y
range over K. In addition we fix a P ∈ K{Y }̸= of order ⩽ r and a ≼-closed set
E ⊆ K×. (Recall that r ⩾ 1.) This gives the asymptotic equation

(E) P (Y ) = 0, Y ∈ E .

This gives the following r-version of [ADH, 13.8.8], with basically the same proof:

Proposition 1.7.36. Suppose Γ is divisible, no Q ∈ K{Y }̸= of order ⩽ r has a
K-external zero, d := ndegE P ⩾ 1, and there is no f ∈ E ∪ {0} with mulP+f = d.
Then (E) has an unraveler.

Here is an r-version of [ADH, 14.3.4] with the same proof:

Lemma 1.7.37. Suppose K is r-newtonian. Let g ∈ K× be an approximate zero
of P with ndegP×g = 1. Then there exists y ∼ g such that P (y) = 0.
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For the next three results we assume the following:

C is algebraically closed, Γ is divisible, and no Q ∈ K{Y }̸= of order ⩽ r has a
K-external zero.

These three results are r-versions of [ADH, 14.3.5, 14.3.6, 14.3.7] with the same
proofs, using Propositions 1.7.35 and 1.7.36 instead of (0.7) and [ADH, 13.8.8]:

Proposition 1.7.38. If ndegE P > mul(P ) = 0, then (E) has a solution.

Corollary 1.7.39. K is weakly r-differentially closed: for each Q ∈ K{Y } \K of
order ⩽ r there is a y ∈ K with Q(y) = 0.

Corollary 1.7.40. Suppose g ∈ K× is an approximate zero of P . Then P (y) = 0
for some y ∼ g.

A useful equivalence. Suppose K is ω-free. (No small derivation or monomial
group assumed.) Recall that r ⩾ 1. Here is an r-version of [21, 3.4]:

Corollary 1.7.41. The following are equivalent:

(i) K is r-newtonian;
(ii) K is strongly r-newtonian;
(iii) no P ∈ K{Y } ̸= of order ⩽ r has a K-external zero.

Proof. Since K is ω-free it has rational asymptotic integration [ADH, p. 515]. Also,
if K is 1-newtonian, then K is henselian [ADH, p. 645] and d-valued [ADH, 14.2.5].
For (i) ⇒ (ii), use [21, 3.3], for (ii) ⇒ (iii), use Lemma 1.7.31, and for (iii) ⇒ (i),
use Proposition 1.7.35. □

Next an r-version of (0.8):

Corollary 1.7.42. Suppose K is r-newtonian, Γ is divisible, and C is algebraically
closed. Then K is weakly r-differentially closed, so K is (r+1)-linearly closed and
thus (r + 1)-linearly newtonian.

Proof. To show that K is weakly r-differentially closed we arrange by composi-
tional conjugation and passing to a suitable elementary extension that K has small
derivation and K has a monomial group. Then K is weakly r-differentially closed
by Corollaries 1.7.39 and 1.7.41. The rest uses [ADH, 5.8.9] and Lemma 1.7.32. □
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Part 2. The Universal Exponential Extension

Let K be an algebraically closed differential field. In Section 2.2 below we extend K
in a canonical way to a differential integral domain U = UK whose differential frac-
tion field has the same constant field C as K, called the universal exponential
extension of K. (The universal exponential extension of T[i] appeared in [15] in
the guise of “oscillating transseries”; we explain the connection at the end of Sec-
tion 2.4.) The underlying ring of U is a group ring of a certain abelian group
over K, and we therefore first review some relevant basic facts about such group
rings in Section 2.1. The main feature of U is that if K is 1-linearly surjective,
then each A ∈ K[∂] of order r ∈ N which splits over K has r many C-linearly
independent zeros in U. This is explained in Section 2.4, after some differential-
algebraic preliminaries in Section 2.3, where we consider a novel kind of spectrum
of a linear differential operator over a differential field. In Section 2.5 we introduce
for H-asymptotic K with small derivation and asymptotic integration the ultimate
exceptional values of a given linear differential operator A ∈ K[∂]̸=. These help to
isolate the zeros of A in U much like the exceptional values of A help to locate the
zeros of A in immediate asymptotic extensions of K as in Section 1.4.

Of this part, only the construction of U (Sections 2.1 and 2.2) and the definition
of the set of ultimate exceptional values and its basic properties (Section 2.5) are
used later in this monograph in an essential way. In [6] we discuss the analytic
meaning of U when K is the algebraic closure of a Liouville closed Hardy field
containing R as a subfield. In a follow-up paper [7] we use the main theorem of [6]
together with the results from the remaining Sections 2.3 and 2.4 to study the
solutions of linear differential equations over Hardy fields.

2.1. Some Facts about Group Rings

In this section G is a torsion-free abelian group, written multiplicatively, K is a
field, and γ, δ range over G. For use in Section 2.2 below we recall some facts
about the group ring K[G]: a commutative K-algebra with 1 ̸= 0 that contains G
as a subgroup of its multiplicative group K[G]× and which, as a K-linear space,
decomposes as

K[G] =
⊕
γ

Kγ (internal direct sum).

Hence for any f ∈ K[G] we have a unique family (fγ) of elements of K, with fγ = 0
for all but finitely many γ, such that

(2.1.1) f =
∑
γ

fγγ.

We define the support of f ∈ K[G] as above by

supp(f) := {γ : fγ ̸= 0} ⊆ G.

In the rest of this section f , g, h range over K[G]. For any K-algebra R, every
group morphism G→ R× extends uniquely to a K-algebra morphism K[G] → R.

Clearly K[G]× ⊇ K×G; in fact:

Lemma 2.1.1. The ring K[G] is an integral domain and K[G]× = K×G.
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Proof. We take an ordering of Gmaking G into an ordered abelian group; see [ADH,
2.4]. Let f, g ̸= 0 and set

γ− := min supp(f), γ+ := max supp(f), δ− := min supp(g), δ+ := max supp(g);

so γ− ⩽ γ+ and δ− ⩽ δ+. We have (fg)γ−δ− = fγ−gδ− ̸= 0, and likewise
with γ+, δ+ in place of γ−, δ−. In particular, fg ̸= 0, showing that K[G] is an inte-
gral domain. Now suppose fg = 1. Then supp(fg) = {1}, hence γ−δ− = 1 = γ+δ+,
so γ− = γ+, and thus f ∈ K×G. □

Lemma 2.1.2. Suppose K has characteristic 0 and G ̸= {1}. Then the fraction
field Ω of K[G] is not algebraically closed.

Proof. Let γ ∈ G\{1} and n ⩾ 1. We claim that there is no y ∈ Ω with y2 = 1−γn.
For this, first replace G by its divisible hull to arrange that G is divisible. Towards
a contradiction, suppose f, g ∈ K[G]̸= and f2 = g2(1 − γn). Take a divisible
subgroup H of G that is complementary to the smallest divisible subgroup γQ of G
containing γ, so G = HγQ and G∩γQ = {1}. ThenK[G] ⊆ K(H)[γQ] (inside Ω), so
we may replaceK, G byK(H), γQ to arrange G = γQ. For suitablem ⩾ 1 we apply
the K-algebra automorphism of K[G] given by γ 7→ γm to arrange f, g ∈ K[γ, γ−1]
(replacing n by mn). Then replace f , g by γmf , γmg for suitable m ⩾ 1 to
arrange f, g ∈ K[γ]. Now use that 1−γ is a prime divisor of 1−γn of multiplicity 1
in the UFD K[γ] to get a contradiction. □

The K-linear map

f 7→ tr(f) := f1 : K[G] → K

is called the trace of K[G]. Thus

tr(fg) =
∑
γ

fγgγ−1 .

We claim that tr ◦σ = tr for every automorphism σ of the K-algebra K[G]. This
invariance comes from an intrinsic description of tr(f) as follows: given f we have
a unique finite set U ⊆ K[G]× = K×G such that f =

∑
u∈U u and u1/u2 /∈ K×

for all distinct u1, u2 ∈ U ; if U ∩ K× = {c}, then tr(f) = c; if U ∩ K× = ∅,
then tr(f) = 0. If G0 is a subgroup of G and K0 is a subfield of K, then K0[G0] is
a subring of K[G], and the trace of K[G] extends the trace of K0[G0].

The automorphisms of K[G]. For a commutative group H, written multiplica-
tively, Hom(G,H) denotes the set of group morphisms G → H, made into a
group by pointwise multiplication. Any χ ∈ Hom(G,K×)—sometimes called a
character—gives a K-algebra automorphism f 7→ fχ of K[G] defined by

(2.1.2) fχ :=
∑
γ

fγχ(γ)γ.

This yields a group action of Hom(G,K×) on K[G] by K-algebra automorphisms:

Hom(G,K×)×K[G] → K[G], (χ, f) 7→ fχ.

Sending χ ∈ Hom(G,K×) to f 7→ fχ yields an embedding of the group Hom(G,K×)
into the group Aut(K[G]|K) of automorphisms of the K-algebra K[G]; its image
is the (commutative) subgroup of Aut(K[G]|K) consisting of the K-algebra auto-
morphisms σ of K[G] such that σ(γ)/γ ∈ K× for all γ. Identify Hom(G,K×) with
its image under this embedding. From K[G]× = K×G we obtain σ(K×G) = K×G
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for all σ ∈ Aut(K[G]|K), and using this one verifies easily that Hom(G,K×) is a
normal subgroup of Aut(K[G]|K). We also have the group embedding

Aut(G) → Aut(K[G]|K)

assigning to each σ ∈ Aut(G) the unique automorphism of the K-algebra K[G]
extending σ. Identifying Aut(G) with its image in Aut(K[G]|K) via this embedding
we have Hom(G,K×)∩Aut(G) = {id} and Hom(G,K×) ·Aut(G) = Aut(K[G], |K)
inside Aut(K[G]|K), and thus Aut(K[G]|K) = Hom(G,K×)⋊Aut(G), an internal
semidirect product of subgroups of Aut(K[G]|K).

The gaussian extension. In this subsection v : K× → Γ is a valuation on the
field K. We extend v to a map vg : K[G]̸= → Γ by setting

(2.1.3) vgf := min
γ
vfγ (f ∈ K[G] ̸= as in (2.1.1)).

Proposition 2.1.3. The map vg : K[G] ̸= → Γ is a valuation on the domain K[G].

Proof. We can reduce to the case that G is finitely generated, since K[G] is
the directed union of its subrings K[G0] with G0 a finitely generated sub-
group of G. We then have a group isomorphism G → Zn inducing a K-
algebra isomorphism K[G] → K[X1, X

−1
1 , . . . , Xn, X

−1
n ] (with distinct indetermi-

nates X1, . . . , Xn) under which vg corresponds to the gaussian extension of the val-

uation of K to K(X1, . . . , Xn) restricted to its subring K[X1, X
−1
1 , . . . , Xn, X

−1
n ];

see [ADH, 3.1]. □

We call vg the gaussian extension of the valuation of K to K[G]. We denote
by ≼g the dominance relation on Ω := Frac(K[G]) associated to the extension
of vg to a valuation on the field Ω [ADH, (3.1.1)], with corresponding asymptotic
relations ≍g and ≺g. For the subring O[G] of K[G] generated by G over O we have

O[G] = {f : f ≼g 1}.

The residue morphism O → k := O/O extends to a surjective ring mor-
phism O[G] → k[G] with γ 7→ γ for all γ and whose kernel is the ideal

O[G] := {f : f ≺g 1}

of O[G]. Hence this ring morphism induces an isomorphism O[G]/O[G] ∼= k[G].
If G0 is subgroup of G and K0 is a valued subfield of K, then the restriction of vg
to a valuation onK0[G0] is the gaussian extension of the valuation ofK0 toK0[G0].

An inner product and two norms. In the rest of this section H is a real closed
subfield of K such that K = H[i] where i2 = −1. In later useH will be a Hardy field,
which is why we use the letter H here. Note that the only nontrivial automorphism
of the (algebraically closed) field K over H is complex conjugation:

z = a+ bi 7→ z := a− bi (a, b ∈ H).

For f as in (2.1.1) we set

f∗ :=
∑
γ

fγγ
−1,

so (f∗)∗ = f , and f 7→ f∗ lies in Aut
(
K[G]|H

)
. We define the function

(f, g) 7→ ⟨f, g⟩ : K[G]×K[G] → K
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by

⟨f, g⟩ := tr
(
fg∗
)

=
∑
γ

fγgγ .

One verifies easily that this is a “positive definite hermitian form” on the K-linear
space K[G]: it is additive on the left and on the right, and for all f , g and all λ ∈ K:

⟨λf, g⟩ = λ⟨f, g⟩, ⟨g, f⟩ = ⟨f, g⟩, ⟨f, f⟩ ∈ H⩾, and ⟨f, f⟩ = 0 ⇔ f = 0, and thus
also ⟨f, λg⟩ = λ⟨f, g⟩. (Hermitian forms are usually defined only on C-linear spaces
and are C-valued, which is why we used quote marks, as we do below for norm and
orthonormal basis; see [17, Chapter XV, §5] for the more general case.) Note:

⟨f, gh⟩ = tr
(
f(gh)∗

)
=
〈
fg∗, h

〉
.

Lemma 2.1.4. Let u,w ∈ K[G]×. If u /∈ K×w, then ⟨u,w⟩ = 0, and if u ∈ K×w,
then ⟨u,w⟩ = uw∗.

Proof. Take a, b ∈ K× and γ, δ such that u = aγ, w = bδ. If u /∈ K×w, then γ ̸= δ,
so ⟨u,w⟩ = 0. If u ∈ K×w, then γ = δ, hence ⟨u,w⟩ = ab = uw∗. □

For z ∈ K we set |z| :=
√
zz ∈ H⩾, and then define ∥ · ∥ : K[G] → H⩾ by

∥f∥2 = ⟨f, f⟩ =
∑
γ

|fγ |2.

As in the case H = R and K = C one derives the Cauchy-Schwarz Inequality:

|⟨f, g⟩| ⩽ ∥f∥ · ∥g∥.
Thus ∥ · ∥ is a “norm” on the K-linear space K[G]: for all f, g and all λ ∈ K,

∥f + g∥ ⩽ ∥f∥+ ∥g∥, ∥λf∥ = |λ| · ∥f∥, ∥f∥ = 0 ⇔ f = 0.

Note that G is an “orthonormal basis” ofK[G] with respect to ⟨ , ⟩, and fγ = ⟨f, γ⟩.
We also use the function ∥ · ∥1 : K[G] → H⩾ given by

∥f∥1 :=
∑
γ

|fγ |,

which is a “norm” on K[G] in the sense of obeying the same laws as we mentioned
for ∥ · ∥. The two “norms” are in some sense equivalent:

∥f∥ ⩽ ∥f∥1 ⩽
√
n∥f∥ (n := |supp(f)|).

where the first inequality follows from the triangle inequality for ∥ · ∥ and the second
is of Cauchy-Schwarz type. Moreover:

Lemma 2.1.5. Let u ∈ K[G]×. Then ∥fu∥ = ∥f∥ ∥u∥ and ∥fu∥1 = ∥f∥1 ∥u∥1.

Proof. We have

∥fγ∥ = ⟨fγ, fγ⟩ =
〈
fγγ∗, f

〉
=
〈
f, f

〉
= ∥f∥

using γ∗ = γ−1. Together with K[G]× = K×G this yields the first claim; the
second claim follows easily from the definition of ∥ · ∥1. □

Corollary 2.1.6. ∥fg∥ ⩽ ∥f∥ · ∥g∥1 and ∥fg∥1 ⩽ ∥f∥1 · ∥g∥1.

Proof. By the triangle inequality for ∥ · ∥ and the previous lemma,

∥fg∥ ⩽
∑
γ

∥fgγγ∥ =
∑
γ

∥f∥ ∥gγγ∥ = ∥f∥
∑
γ

|gγ | = ∥f∥ ∥g∥1.

The inequality involving ∥fg∥1 follows likewise. □
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In the next lemma we let χ ∈ Hom(G,K×); recall from (2.1.2) the automor-
phism f 7→ fχ of the K-algebra K[G].

Lemma 2.1.7. (fχ)
∗ = (f∗)χ iff |χ(γ)| = 1 for all γ ∈ supp(f).

Proof. Let a ∈ K; then
(
(aγ)χ

)∗ = aχ(γ)γ−1 and
(
(aγ)∗

)
χ = aχ(γ)−1γ−1. □

Corollary 2.1.8. Let χ ∈ Hom(G,K×) with |χ(γ)| = 1 for all γ. Then ⟨fχ, gχ⟩ =
⟨f, g⟩ for all f , g, and hence ∥fχ∥ = ∥f∥ for all f .

Proof. Since tr ◦σ = tr for every automorphism σ of the K-algebra K[G],

⟨fχ, gχ⟩ = tr
(
fχ(gχ)

∗) = tr
(
(fg∗)χ

)
= tr(fg∗) = ⟨f, g⟩,

where we use Lemma 2.1.7 for the second equality. □

Valuation and norm. Let v : H× → Γ be a convex valuation on the ordered
field H, extended uniquely to a valuation v : K× → Γ on the field K = H[i],
so a ≍ |a| for a ∈ K. (See the remarks before Corollary 1.2.6.) Let vg : K[G]̸= → Γ
be the gaussian extension of v, given by (2.1.3).

Lemma 2.1.9. ∥f∥1 ≼ 1 ⇔ f ≼g 1, and ∥f∥1 ≺ 1 ⇔ f ≺g 1.

Proof. Using that the valuation ring of H is convex we have

∥f∥1 =
∑
γ

|fγ | ≼ 1 ⇐⇒ |fγ | ≼ 1 for all γ ⇐⇒ fγ ≼ 1 for all γ ⇐⇒ f ≼g 1.

Likewise one shows: ∥f∥1 ≺ 1 ⇔ f ≺g 1. □

Corollary 2.1.10. ∥f∥ ≍ ∥f∥1 ≍g f .

Proof. This is trivial for f = 0, so assume f ̸= 0. Take a ∈ H> with a ≍g f , and
replace f by f/a, to arrange f ≍g 1. Then ∥f∥ ≍ ∥f∥1 ≍g 1 by Lemma 2.1.9. □

2.2. The Universal Exponential Extension

As in [ADH, 5.9], given a differential ringK, a differential K-algebra is a differential
ring R with a morphism K → R of differential rings. If R is a differential ring
extension of a differential ring K we consider R as a differential K-algebra via the
inclusion K → R.

Exponential extensions. In this subsection R is a differential ring and K is a
differential subring of R. Call a ∈ R exponential over K if a′ ∈ aK. Note that
if a ∈ R is exponential over K, then K[a] is a differential subring of R. If a ∈ R
is exponential over K and ϕ ∈ K×, then a, as element of the differential ring
extension Rϕ of Kϕ, is exponential over Kϕ. Every c ∈ CR is exponential over K,
and every u ∈ K× is exponential over K. If a, b ∈ R are exponential over K,
then so is ab, and if a ∈ R× is exponential over K, then so is a−1. Hence the
units of R that are exponential over K form a subgroup E of the group R× of
units of R with E ⊇ C×

R ·K×; if R = K[E], then we call R exponential over K.
An exponential extension of K is a differential ring extension of K that is
exponential over K. If R = K[E] where E is a set of elements of R× which are
exponential over K, then R is exponential over K. If R is an exponential extension
of K and ϕ ∈ K×, then Rϕ is an exponential extension of Kϕ. The following lemma
is extracted from the proof of [23, Theorem 1]:
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Lemma 2.2.1 (Rosenlicht). Suppose K is a field and R is an integral domain
with differential fraction field F . Let I ̸= R be a differential ideal of R, and
let u1, . . . , un ∈ R× (n ⩾ 1) be exponential over K with ui /∈ ujC

×
FK

× for i ̸= j.
Then

∑
i ui /∈ I.

Proof. Suppose u1, . . . , un is a counterexample with minimal n ⩾ 1. Then n ⩾ 2
and

∑
i u

′
i ∈ I, so ∑

i

u′i − u†1
∑
i

ui =
∑
i>1

(ui/u1)
†ui ∈ I.

Hence (ui/u1)
† = 0 and thus ui/u1 ∈ C×

F , for all i > 1, a contradiction. □

Corollary 2.2.2. Suppose K is a field and F = K(E) is a differential field ex-
tension of K with CF = C, where E is a subgroup of F× whose elements are
exponential over K. Then {y ∈ F× : y is exponential over K} = K×E.

Proof. Let y ∈ F× be exponential over K. Take K-linearly independent u1, . . . , un
in E and a1, . . . , an, b1, . . . , bn ∈ K with bj ̸= 0 for some j, such that

y =
(∑

i aiui

)/(∑
j bjuj

)
.

Then
∑

j bjyuj −
∑

i aiui = 0, and so Lemma 2.2.1 applied with R = F , I = {0}
gives bjyuj ∈ aiuiK

× for some i, j with ai, bj ̸= 0, and thus y ∈ K×E. □

Remark. In the context of Corollary 2.2.2, see [23, Theorem 1] for the structure of
the group of elements of F× exponential over K, for finitely generated E.

Lemma 2.2.3. Suppose C×
R is divisible and E is a subgroup of R× containing C×

R .
Then there is a group morphism e : E† → E such that e(b)† = b for all b ∈ E†.

Proof. We have a short exact sequence of commutative groups

1 → C×
R

ι−−→ E
ℓ−−→ E† → 0,

where ι is the natural inclusion and ℓ(a) := a† for a ∈ E. Since C×
R is divisible, this

sequence splits, which is what we claimed. □

Let E, e, R be as in the previous lemma. Then e is injective, and its image is a
complement of C×

R in E. Moreover, given also a group morphism ẽ : E† → E such

that ẽ(b)† = b for all b ∈ E†, the map b 7→ e(b)ẽ(b)−1 is a group morphism E† → C×
R .

In the rest of this section K is a differential field with algebraically closed constant
field C and divisible group K† of logarithmic derivatives. (These conditions are
satisfied if K is an algebraically closed differential field.) In the next subsection
we show that up to isomorphism over K there is a unique exponential extension R
of K satisfying CR = C and (R×)† = K. By Lemma 2.2.3 we must then have a
group embedding e : K → R× such that e(b)† = b for all b ∈ K; this motivates the
construction below.
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The universal exponential extension. We first describe a certain exponential
extension of K. For this, take a complement Λ of K†, that is, a Q-linear subspace
of K such that K = K† ⊕ Λ (internal direct sum of Q-linear subspaces of K).
Below λ ranges over Λ. Let e(Λ) be a multiplicatively written abelian group, iso-
morphic to the additive subgroup Λ of K, with isomorphism λ 7→ e(λ) : Λ → e(Λ).
Put

U := K
[
e(Λ)

]
,

the group ring of e(Λ) over K, an integral domain. As K-linear space,

U =
⊕
λ

K e(λ) (an internal direct sum of K-linear subspaces).

For every f ∈ U we have a unique family (fλ) in K such that

f =
∑
λ

fλ e(λ),

with fλ = 0 for all but finitely many λ; we call (fλ) the spectral decomposition
of f (with respect to Λ). We turn U into a differential ring extension of K by

e(λ)′ = λ e(λ) for all λ.

(Think of e(λ) as exp(
∫
λ).) Thus for f ∈ U with spectral decomposition (fλ),

f ′ =
∑
λ

(
f ′λ + λfλ

)
e(λ),

so f ′ has spectral decomposition (f ′λ +λfλ). Note that U is exponential over K by

Lemma 2.1.1: U× = K× e(Λ), so (U×)† = K† + Λ = K.

Example 2.2.4. Let K = C((tQ)) be as in Example 1.2.12, so K† = (Q⊕ O)t. Take
a Q-linear subspace Λc of C with C = Q ⊕ Λc (internal direct sum of Q-linear
subspaces of C), and let

K≻ :=
{
f ∈ K : supp(f) ≻ 1

}
,

a C-linear subspace of K. Then Λ := (K≻ ⊕ Λc)t is a complement to K†, and
hence t−1Λ = K≻⊕Λc is a complement to (Kt)† inKt. Moreover, if L := P(C) ⊆ K
is the differential field of Puiseux series over C and L≻ := K≻ ∩ L, then L≻ ⊕ Λc

is a complement to (Lt)†.

A subgroup Λ0 of Λ yields a differential subring K
[
e(Λ0)

]
of U that is exponen-

tial over K as well. These differential subrings have a useful property. Recall
from [ADH, 4.6] that a differential ring is said to be simple if {0} is its only proper
differential ideal.

Lemma 2.2.5. Let Λ0 be a subgroup of Λ. Then the differential subring K
[
e(Λ0)

]
of U is simple. In particular, the differential ring U is simple.

Proof. Let I ̸= R be a differential ideal of R := K
[
e(Λ0)

]
. Let f1, . . . , fn ∈ K×

and let λ1, . . . , λn ∈ Λ0 be distinct such that f =
∑n

i=1 fi e(λi) ∈ I. If n ⩾ 1,
then Lemma 2.2.1 yields i ̸= j with e(λi)/ e(λj) = cg for some constant c in
the differential fraction field of U and some g ∈ K×, so by taking logarithmic
derivatives, λi − λj ∈ K† and thus λi = λj , a contradiction. Thus f = 0. □

Corollary 2.2.6. Any morphism K
[
e(Λ0)

]
→ R of differential K-algebras, with Λ0

a subgroup of Λ and R a differential ring extension of K, is injective.
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The differential ring U is the directed union of its differential subrings of the
form U0 = K

[
e(Λ0)

]
where Λ0 is a finitely generated subgroup of Λ. These U0

are simple by Lemma 2.2.5 and finitely generated as a K-algebra, hence their dif-
ferential fraction fields have constant field C by [ADH, 4.6.12]. Thus the differential
fraction field of U has constant field C.

Lemma 2.2.7. Suppose R is an exponential extension of K and R0 is a differential
subring of R with C×

R ⊆ CR0
and K ⊆ (R×

0 )
†. Then R0 = R.

Proof. Let E be the group of units of R that are exponential over K; so R = K[E].

Given u ∈ E we have u† ∈ K ⊆ (R×
0 )

†, hence we have u0 ∈ R×
0 with u† = u†0,

so u = cu0 with c ∈ C×
R ⊆ CR0

. Thus E ⊆ R0 and so R0 = R. □

Corollary 2.2.8. Every endomorphism of the differential K-algebra U is an auto-
morphism.

Proof. Injectivity holds by Corollary 2.2.6, and surjectivity by Lemma 2.2.7. □

Every exponential extension of K with constant field C embeds into U, and hence
is an integral domain. More precisely:

Lemma 2.2.9. Let R be an exponential extension of K such that C×
R is divisi-

ble, and set Λ0 := Λ ∩ (R×)†, a subgroup of Λ. Then there exists a morphism
K
[
e(Λ0)

]
→ R of differential K-algebras. Any such morphism is injective, and

if CR = C, then any such morphism is an isomorphism.

Proof. Let E be as in the proof of Lemma 2.2.7, and let eE : E† → E be the map e
from Lemma 2.2.3. Since E† = K† + Λ0 we have

(2.2.1) E = C×
R eE(E

†) = C×
R eE(K

†) eE(Λ0) = C×
R K× eE(Λ0).

The group morphism e(λ0) 7→ eE(λ0) : e(Λ0) → E (λ0 ∈ Λ0) extends uniquely
to a K-algebra morphism ι : K

[
e(Λ0)

]
→ R = K[E]. One verifies easily that ι is

a differential ring morphism. The injectivity claim follows from Corollary 2.2.6.
If CR = C, then E = K×eE(Λ0) by (2.2.1), whence surjectivity. □

Recall that U is an exponential extension of K with CU = C and (U×)† = K. By
Lemma 2.2.9, this property characterizes U up to isomorphism:

Corollary 2.2.10. If U is an exponential extension of K such that CU = C
and K ⊆ (U×)†, then U is isomorphic to U as a differential K-algebra.

Now U is also an exponential extension of K with CU = C and with the prop-
erty that every exponential extension R of K with CR = C embeds into U as a
differential K-algebra. This property determines U up to isomorphism as well:

Corollary 2.2.11. Suppose U is an exponential extension of K with CU = C
such that every exponential extension R of K with CR = C embeds into U as a
differential K-algebra. Then U is isomorphic to U as a differential K-algebra.

Proof. Any embedding U → U of differential K-algebras gives K ⊆ (U×)†. □

The results above show to what extent U is independent of the choice of Λ. We call U
the universal exponential extension of K. If we need to indicate the depen-
dence of U on K we denote it by UK . By [ADH, 5.1.40] every y ∈ U = K{e(Λ)}
satisfies a linear differential equation A(y) = 0 where A ∈ K[∂]̸=; in the next
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section we isolate conditions on K which ensure that every A ∈ K[∂] ̸= has a
zero y ∈ U× = K× e(Λ).

Corollary 2.2.10 gives for ϕ ∈ K× an isomorphism UKϕ
∼= (UK)ϕ of differential

Kϕ-algebras. Next we investigate how UK behaves when passing from K to a
differential field extension. Therefore, in the rest of this subsection L is a differential
field extension of K with algebraically closed constant field CL, and L

† is divisible.
The next lemma relates the universal exponential extension UL of L to UK :

Lemma 2.2.12. The inclusion K → L extends to an embedding ι : UK → UL

of differential rings. The image of any such embedding ι is contained in K[E]
where E := {u ∈ U×

L : u† ∈ K}, and if CL = C, then ι(UK) = K[E].

Proof. The differential subringR := K[E] of UL is exponential overK with (R×)† =
K, hence Lemma 2.2.9 gives an embedding UK → R of differential K-algebras.
Let ι : UK → UL be any embedding of differential K-algebras. Then ι

(
e(Λ)

)
⊆ E,

so ι(UK) ⊆ R; if CL = C, then ι(UK) = R by Lemma 2.2.7. □

Corollary 2.2.13. If L†∩K = K† and ι : UK → UL is an embedding of differential
K-algebras, then L× ∩ ι(U×

K) = K×.

Proof. Assume L† ∩ K = K† and identify UK with a differential K-subalgebra
of UL via an embedding UK → UL of differential K-algebras. Let a ∈ L× ∩ U×

K ;
then a† ∈ L† ∩ K = K†, so a = bc where c ∈ C×

L , b ∈ K×. Now c = a/b ∈
C×

L ∩U×
K = C×, since UK has ring of constants C. So a ∈ K× as required. □

Suppose L† ∩ K = K†. Then the subspace L† of the Q-linear space L has a
complement ΛL ⊇ Λ. We fix such ΛL and extend e: Λ → e(Λ) to a group iso-
morphism ΛL → e(ΛL), also denoted by e, with e(ΛL) a multiplicatively written
commutative group extending e(Λ). Let UL := L

[
e(ΛL)

]
be the corresponding

universal exponential extension of L. Then the natural inclusion UK → UL is an
embedding of differential K-algebras.

Automorphisms of U. These are easy to describe: the beginning of Section 2.1
gives a group embedding

χ 7→ σχ : Hom(Λ,K×) → Aut
(
K[e(Λ)]|K

)
into the group of K-algebra automorphisms of K

[
e(Λ)

]
, given by

σχ(f) := fχ =
∑
λ

fλχ(λ) e(λ) (χ ∈ Hom(Λ,K×), f ∈ K[e(Λ)]).

It is easy to check that if χ ∈ Hom(Λ, C×) ⊆ Hom(Λ,K×), then σχ ∈ Aut∂(U|K),
that is, σχ is a differential K-algebra automorphism of U. Moreover:

Lemma 2.2.14. The map χ 7→ σχ : Hom(Λ, C×) → Aut∂(U|K) is a group isomor-
phism. Its inverse assigns to any σ ∈ Aut∂(U|K) the function χ : Λ → C× given
by χ(λ) := σ

(
e(λ)

)
e(−λ). In particular, Aut∂(U|K) is commutative.

Proof. Let σ ∈ Aut∂(U|K) and let χ : Λ → U× be given by χ(λ) := σ
(
e(λ)

)
e(−λ).

Then χ(λ)† = 0 for all λ. It follows easily that χ ∈ Hom(Λ, C×) and σχ = σ. □

The proof of the next result uses that the additive group Q embeds into C×.

Corollary 2.2.15. If f ∈ U and σ(f) = f for all σ ∈ Aut∂(U|K), then f ∈ K.
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Proof. Suppose f ∈ U and σ(f) = f for all σ ∈ Aut∂(U|K). For χ ∈ Hom(Λ, C×)
we have fχ = f , that is, fλχ(λ) = fλ for all λ, so χ(λ) = 1 whenever fλ ̸= 0. Now
use that for λ ̸= 0 there exists χ ∈ Hom(Λ, C×) such that χ(λ) ̸= 1, so fλ = 0. □

Corollary 2.2.16. Every automorphism of the differential field K extends to an
automorphism of the differential ring U.

Proof. Lemma 2.2.3 yields a group morphism µ : K → U× such that µ(a)† = a for
all a ∈ K. Let σ ∈ Aut∂(K). Then σ extends to an endomorphism, denoted also
by σ, of the ring U, such that σ

(
e(λ)

)
= µ

(
σ(λ)

)
for all λ. Then

σ
(
e(λ)′

)
= σ

(
λ e(λ)

)
= σ(λ)µ

(
σ(λ)

)
= µ

(
σ(λ)

)′
= σ

(
e(λ)

)′
,

hence σ is an endomorphism of the differential ring U. By Lemma 2.2.5, σ is
injective, and by Lemma 2.2.7, σ is surjective. □

The real case. In this subsection K = H[i] where H is a real closed differential
subfield of K and i2 = −1. Set SC :=

{
c ∈ C : |c| = 1

}
, a subgroup of C×. Then

by Lemmas 2.1.7 and 2.2.14:

Corollary 2.2.17. For σ ∈ Aut∂(U|K) we have the equivalence

σ(f∗) = σ(f)∗ for all f ∈ U ⇐⇒ σ = σχ for some χ ∈ Hom(Λ, SC).

Corollaries 2.2.17 and 2.1.8 together give:

Corollary 2.2.18. Let σ ∈ Aut∂(U|K) satisfy σ(f∗) = σ(f)∗ for all f ∈ U.
Then

〈
σ(f), σ(g)

〉
= ⟨f, g⟩ for all f, g ∈ U, hence ∥σ(f)∥ = ∥f∥ for all f ∈ U.

Next we consider the subgroup

S := {a+ bi : a, b ∈ H, a2 + b2 = 1}

of K×, which is divisible, hence so is the subgroup S† of K†. Lemma 1.2.4
yields K† = H†⊕S† (internal direct sum of Q-linear subspaces of K) and S† ⊆ Hi.
Thus we can (and do) take the complement Λ of K† in K so that Λ = Λr + Λii
where Λr,Λi are subspaces of the Q-linear space H with Λr a complement of H†

in H and Λii a complement of S† in Hi. The automorphism a + bi 7→ a+ bi :=
a− bi (a, b ∈ H) of the differential field K now satisfies in U = K[e(Λ)] the identity

e(λ+ µ) = e(λ) e(µ) (λ, µ ∈ Λ),

so it extends to an automorphism f 7→ f of the ring U as follows: for f ∈ U with
spectral decomposition (fλ), set

f :=
∑
λ

fλ e(λ) =
∑
λ

fλ e(λ),

so e(λ) = e(λ), and f has spectral decomposition (fλ). We have f = f for f ∈ U,

and f 7→ f lies in Aut∂(U|H). If H† = H, then Λr = {0} and hence f = f∗

for f ∈ U, where f∗ is as defined in Section 2.1. For f ∈ U we set

Re f := 1
2 (f + f), Im f := 1

2i (f − f).

(For f ∈ K these agree with the usual real and imaginary parts of f as an element
of H[i].) Consider the differential H-subalgebra

Ur :=
{
f ∈ U : f = f

}
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of U. For f ∈ U with spectral decomposition (fλ) we have f ∈ Ur iff fλ = fλ
for all λ; in particular Ur ∩ K = H. For f ∈ U we have f = (Re f) + (Im f)i
with Re f, Im f ∈ Ur, hence

U = Ur ⊕Uri (internal direct sum of H-linear subspaces).

Let D be a subfield of H (not necessarily the constant field of H), so D[i] is a
subfield of K. Let V be a D[i]-linear subspace of U; then Vr := V ∩Ur is a D-linear
subspace of V . If V = V (that is, V is closed under f 7→ f), then Re f, Im f ∈ Vr
for all f ∈ V , hence V = Vr ⊕ Vri (internal direct sum of D-linear subspaces of V ),
so any basis of the D-linear space Vr is a basis of the D[i]-linear space V .

Suppose now that V =
⊕

λ Vλ (internal direct sum of subspaces of V ) where Vλ
is for each λ a D[i]-linear subspace of K e(λ). Then V = V iff Vλ = Vλ for all λ.
Moreover:

Lemma 2.2.19. Assume H = H†, V0 = {0}, and V = V . Let V ⊆ U× be a basis
of the subspace

∑
Imλ>0 Vλ of V . Then the maps v 7→ Re v, v 7→ Im v : V → Vr are

injective, ReV and ImV are disjoint, and ReV ∪ ImV is a basis of Vr.

Proof. Note that Λ = Λii. Let µ range over Λ>
i and set Vµ = V ∩K× e(µi), a basis

of the D[i]-linear space Vµi. Then V =
⋃

µ Vµ, a disjoint union. For v ∈ Vµ we

have v = a e(µi) with a = av ∈ K×, so

Re v = a
2 e(µi) +

a
2 e(−µi), Im v = a

2i e(µi)−
a
2i e(−µi),

from which it is clear that the two maps V → Vr in the statement of the lemma are
injective. It is also easy to check that ReV and ImV are disjoint.

As V is a basis of the D[i]-linear space
∑

µ Vµi =
∑

Imλ>0 Vλ, its set of conju-

gates V is a basis of the D[i]-linear space
∑

µ Vµi =
∑

µ V−µi =
∑

Imλ<0 Vλ, and

so V ∪V (a disjoint union) is a basis of V . Thus ReV ∪ ImV is a basis of V as well.
As ReV ∪ ImV is contained in Vr, it is a basis of the D-linear space Vr. □

If H = H†, then V :=
∑

λ ̸=0K e(λ) gives V = V , so Lemma 2.2.19 gives then
for D := H the basis of the H-linear space Vr consisting of the elements

Re
(
e(λ)

)
= 1

2

(
e(λ) + e(λ)

)
, Im

(
e(λ)

)
= 1

2i

(
e(λ)− e(λ)

)
(Imλ > 0).

Corollary 2.2.20. Suppose H = H†. Set c(λ) := Re
(
e(λ)

)
and s(λ) := Im

(
e(λ)

)
,

for Imλ > 0. Then for V :=
∑

λ ̸=0K e(λ) we have Ur = H + Vr, so

Ur = H ⊕
⊕

Imλ>0

(
H c(λ)⊕H s(λ)

)
(internal direct sum of H-linear subspaces),

and thus Ur = H
[
c(Λ>

i i) ∪ s(Λ>
i i)
]
.

2.3. The Spectrum of a Differential Operator

In this section K is a differential field, a, b range over K, and A, B over K[∂]. This
and the next two sections are mainly differential-algebraic in nature, and deal with
splittings of linear differential operators. In the present section we introduce the
concept of eigenvalue of A and the spectrum of A (the collection of its eigenvalues).
In Section 2.4 we show how the eigenvalues of A relate to the behavior of A over
the universal exponential extension of K.
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Twisting. Let L be a differential field extension of K with L† ⊇ K. Let u ∈ L×

be such that u† = a ∈ K. Then the twist A⋉u = u−1Au of A by u has the same
order as A and coefficients in K [ADH, 5.8.8], and only depends on a, not on u
or L; in fact, Ri(A⋉u) = Ri(A)+a [ADH, 5.8.5]. Hence for each a we may define

Aa := A⋉u = u−1Au ∈ K[∂]

where u ∈ L× is arbitrary with u† = a. The map A 7→ A⋉u is an automorphism of
the ring K[∂] that is the identity on K (with inverse B 7→ B⋉u−1); so A 7→ Aa is an
automorphism of the ring K[∂] that is the identity on K (with inverse B 7→ B−a).
Note that ∂a = ∂ + a, and that

(a,A) 7→ Aa : K ×K[∂] → K[∂]

is an action of the additive group of K on the set K[∂], in particular, Aa = A
for a = 0. For b ̸= 0 we have (Aa)⋉b = Aa+b† .

Eigenvalues. In the rest of this section A ̸= 0 and r := order(A). We call

multa(A) := dimC kerK Aa ∈ {0, . . . , r}

the multiplicity of A at a. If B ̸= 0, then multa(B) ⩽ multa(AB), as well as

(2.3.1) multa(AB) ⩽ multa(A) + multa(B),

with equality if and only if Ba(K) ⊇ kerK Aa; see [ADH, remarks before 5.1.12].
For u ∈ K× we have an isomorphism

y 7→ yu : kerK A⋉u → kerK A

of C-linear spaces, hence

multa(A) = multb(A) whenever a− b ∈ K†.

Thus we may define the multiplicity of A at the element [a] := a+K† of K/K†

as mult[a](A) := multa(A).

In the rest of this section α ranges over K/K†. We say that α is an eigenvalue
of A if multα(A) ⩾ 1. Thus for B ̸= 0: if α is an eigenvalue of B of multiplicity µ,
then α is an eigenvalue of AB of multiplicity ⩾ µ; if α is an eigenvalue of AB,
then it is an eigenvalue of A or of B; and if Ba(K) ⊇ kerK(Aa), then α = [a] is an
eigenvalue of AB if and only if it is an eigenvalue of A or of B.

Example 2.3.1. Suppose A = ∂−a. Then for each element u ̸= 0 in a differential field
extension of K with b := u† ∈ K we have Ab = A⋉u = ∂− (a− b), so multb(A) ⩾ 1
iff a− b ∈ K†. Hence the only eigenvalue of A is [a].

The spectrum of A is the set Σ(A) = ΣK(A) of its eigenvalues. Thus Σ(A) = ∅
if r = 0, and for b ̸= 0 we have multa(A) = multa(bA) = multa(A⋉b), so A, bA,
and Ab = bA⋉b all have the same spectrum. By [ADH, 5.1.21] we have

(2.3.2) Σ(A) =
{
α : A ∈ K[∂](∂ − a) for some a with [a] = α

}
.

Hence for irreducible A: Σ(A) ̸= ∅ ⇔ r = 1. From (2.3.1) we obtain:
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Lemma 2.3.2. Suppose B ̸= 0 and set s := orderB. Then

multα(B) ⩽ multα(AB) ⩽ multα(A) + multα(B),

where the second inequality is an equality if K is s-linearly surjective. Hence

Σ(B) ⊆ Σ(AB) ⊆ Σ(A) ∪ Σ(B).

If K is s-linearly surjective, then Σ(AB) = Σ(A) ∪ Σ(B).

Example. For n ⩾ 1 we have Σ
(
(∂ − a)n

)
=
{
[a]
}
. (By induction on n, using

Example 2.3.1 and Lemma 2.3.2.)

It follows from Lemma 2.3.2 that A has at most r eigenvalues. More precisely:

Lemma 2.3.3. We have
∑

α multα(A) ⩽ r. If
∑

α multα(A) = r, then A splits
over K; the converse holds if r = 1 or K is 1-linearly surjective.

Proof. By induction on r. The case r = 0 is obvious, so suppose r > 0. We may
also assume Σ(A) ̸= ∅: otherwise

∑
α multα(A) = 0 and A does not split over K.

Now (2.3.2) gives a, B with A = B(∂ − a). By Example 2.3.1 we have Σ(∂ − a) ={
[a]
}

and multa(∂ − a) = 1. By the inductive hypothesis applied to B and the
second inequality in Lemma 2.3.2 we thus get

∑
α multα(A) ⩽ r.

Suppose that
∑

α multα(A) = r. Then
∑

α multα(B) = r − 1 by Lemma 2.3.2
and the inductive hypothesis applied to B. Therefore B splits over K, again by
the inductive hypothesis, and so does A. Finally, if K is 1-linearly surjective and A
splits over K, then we arrange that B splits over K, so

∑
α multα(B) = r − 1 by

the inductive hypothesis, hence
∑

α multα(A) = r by Lemma 2.3.2. □

Section 2.4 gives a more explicit proof of Lemma 2.3.3, under additional hypotheses
on K. Next, let L be a differential field extension of K. Then multa(A) does not
strictly decrease in passing from K to L [ADH, 4.1.13]. Hence the group morphism

a+K† 7→ a+ L† : K/K† → L/L†

restricts to a map ΣK(A) → ΣL(A); in particular, if ΣK(A) ̸= ∅, then ΣL(A) ̸= ∅.
If L† ∩K = K†, then |ΣK(A)| ⩽ |ΣL(A)|, and

∑
α multα(A) also does not strictly

decrease if K is replaced by L.

Lemma 2.3.4. Let a1, . . . , ar ∈ K and

A = (∂ − ar) · · · (∂ − a1),
∑
α

multα(A) = r.

Then the spectrum of A is
{
[a1], . . . , [ar]

}
, and for all α,

multα(A) =
∣∣{i ∈ {1, . . . , r} : α = [ai]

}∣∣.
Proof. Let i range over {1, . . . , r}. By Lemma 2.3.2 and Example 2.3.1,

multα(A) ⩽
∑
i

multα(∂ − ai) =
∣∣{i : α = [ai]

}∣∣
and hence

r =
∑
α

multα(A) ⩽
∑
α

∣∣{i : α = [ai]
}∣∣ = r.

Thus for each α we have multα(A) =
∣∣{i : α = [ai]

}∣∣ as required. □
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Recall from [ADH, 5.1.8] that D∗ ∈ K[∂] denotes the adjoint of D ∈ K[∂], and that
the map D 7→ D∗ is an involution of the ring K[∂] with a∗ = a for all a and ∂

∗ = −∂.
If A splits over K, then so does A∗. Furthermore, (Aa)

∗ = (A∗)−a for all a. By
Lemmas 2.3.3 and 2.3.4:

Corollary 2.3.5. Suppose K is 1-linearly surjective and
∑

α multα(A) = r. Then
multα(A) = mult−α(A

∗) for all α. In particular, the map α 7→ −α restricts to a
bijection Σ(A) → Σ(A∗).

Let ϕ ∈ K×. Then (Aϕ)a = (Aϕa)
ϕ and hence

multa(A
ϕ) = multϕa(A),

so the group isomorphism

(2.3.3) [a] 7→ [ϕa] : Kϕ/ϕ−1K† → K/K†

maps Σ(Aϕ) onto Σ(A).

Note that K[∂]/K∂]A as a K-linear space has dimension r = orderA. Recall
from [ADH, 5.1] that A and B ̸= 0 are said to have the same type if the (left)
K[∂]-modules K[∂]/K[∂]A and K[∂]/K[∂]B are isomorphic (and so orderB = r).
By [ADH, 5.1.19]:

Lemma 2.3.6. The operators A and B ̸= 0 have the same type iff orderB = r and
there is R ∈ K[∂] of order < r with 1 ∈ K[∂]R+K[∂]A and BR ∈ K[∂]A.

Hence if A, B have the same type, then they also have the same type as elements
of L[∂], for any differential field extension L of K. Since B 7→ Ba is an automor-
phism of the ring K[∂], Lemma 2.3.6 and [ADH, 5.1.20] yield:

Lemma 2.3.7. If A and B ̸= 0 have the same type, then so do Aa, Ba, for all a,
and thus A, B have the same eigenvalues, with same multiplicity.

By this lemma the spectrum of A depends only on the type of A, that is, on the
isomorphism type of the K[∂]-module K[∂]/K[∂]A, suggesting one might try to
associate a spectrum to each differential module over K. (Recall from [ADH, 5.5]
that a differential module over K is a K[∂]-module of finite dimension as K-linear
space.) We do not develop this point of view further in the present monograph,
where our focus is on linear differential operators. (There will be more on this in [7].)
But we remark here that it motivates the terminology of “eigenvalues” originating
in the case of the differential field of Puiseux series over C treated in [20].

2.4. Eigenvalues and Splittings

In this section K is a differential field such that C is algebraically closed and K† is
divisible. We let A, B range over K[∂], and we assume A ̸= 0 and set r := orderA.

Spectral decomposition of differential operators. Fix a complement Λ of the
subspaceK† of the Q-linear spaceK, let U := K

[
e(Λ)

]
be the universal exponential

extension ofK, let Ω be the differential fraction field of the differentialK-algebra U,
and let λ range over Λ. Then

Aλ = A⋉e(λ) = e(−λ)A e(λ) ∈ K[∂].

Moreover, for every a ∈ K there is a unique λ with a − λ ∈ K†, so mult[a](A) =

multλ(A). Call λ an eigenvalue of A with respect to our complement Λ of K† in K
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if [λ] is an eigenvalue of A; thus the group isomorphism λ 7→ [λ] : Λ → K/K† maps
the set of eigenvalues of A with respect to Λ onto the spectrum of A. For f ∈ U
with spectral decomposition (fλ) we have

A(f) =
∑
λ

Aλ(fλ) e(λ),

so A(U×) ⊆ U× ∪{0}. We call the family (Aλ) the spectral decomposition of A
(with respect to Λ). Given a C-linear subspace V of U, we set Vλ := V ∩K e(λ), a
C-linear subspace of V ; the sum

∑
λ Vλ is direct. For V := U we have Uλ = K e(λ),

and U =
⊕

λ Uλ with A(Uλ) ⊆ Uλ for all λ. Taking V := kerUA, we obtain Vλ =
(kerK Aλ) e(λ) and hence dimC Vλ = multλ(A), and V =

⊕
λ Vλ. Thus

(2.4.1) |Σ(A)| ⩽
∑
λ

multλ(A) = dimC kerUA ⩽ r.

Moreover:

Lemma 2.4.1. The C-linear space kerUA has a basis contained in U× = K× e(Λ).

Example. We have a C-algebra isomorphism P (Y ) 7→ P (∂) : C[Y ] → C[∂]. Sup-
pose A ∈ C[∂] ⊆ K[∂], let P (Y ) ∈ C[Y ], P (∂) = A, and let c1, . . . , cn ∈ C be the
distinct zeros of P , of respective multiplicities m1, . . . ,mn ∈ N⩾1 (so r = degP =
m1 + · · · +mn). Suppose also C ⊆ Λ, and x ∈ K satisfies x′ = 1. (This holds in
Example 2.2.4.) Then the xi e(cj) ∈ U (1 ⩽ j ⩽ n, 0 ⩽ i < mj) form a basis of the
C-linear space kerUA by [ADH, 5.1.18]. So the eigenvalues of A with respect to Λ
are c1, . . . , cn, with respective multiplicities m1, . . . ,mn.

Corollary 2.4.2. Suppose dimC kerUA = r ⩾ 1 and A = ∂
r + ar−1∂

r−1 + · · ·+ a0
where a0, . . . , ar−1 ∈ K. Then∑

λ

multλ(A)λ ≡ −ar−1 mod K†.

In particular,
∑

λ multλ(A)λ = 0 iff ar−1 ∈ K†.

Proof. Take a basis y1, . . . , yr of kerUA with yj = fj e(λj), fj ∈ K×, λj ∈ Λ. The
Wronskian matrix Wr(y1, . . . , yr) of (y1, . . . , yr) [ADH, p. 206] equals

Wr(y1, . . . , yr) = M

e(λ1)
. . .

e(λr)

 where M ∈ GLn(K).

Then w := wr(y1, . . . , yr) = detWr(y1, . . . , yr) ̸= 0 by [ADH, 4.1.13] and

−ar−1 = w† = (detM)† + λ1 + · · ·+ λr

where we used [ADH, 4.1.17] for the first equality. □

If A splits over K, then so does Aλ. Moreover, if Aλ(K) = K, then A(Uλ) = Uλ:
for f, g ∈ K with Aλ(f) = g we have A

(
f e(λ)

)
= g e(λ). Thus:

Lemma 2.4.3. Suppose K is r-linearly surjective, or K is 1-linearly surjective
and A splits over K. Then A(Uλ) = Uλ for all λ and hence A(U) = U.

In the next subsection we study the connection between splittings of A and bases
of the C-linear space kerUA in more detail.
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Constructing splittings and bases. Recall that orderA = r ∈ N. Set U = UK ,
so U× = K× e(Λ). Let y1, . . . , yr ∈ U×. We construct a sequence A0, . . . , An

of monic operators in K[∂] with n ⩽ r as follows. First, set A0 := 1. Next,
given A0, . . . , Ai−1 in K[∂]̸= (1 ⩽ i ⩽ r), set fi := Ai−1(yi); if fi ̸= 0, then fi ∈ U×,

so f†i ∈ K, and the next term in the sequence is

Ai := (∂ − ai)Ai−1, ai := f†i ,

whereas if fi = 0, then n := i− 1 and the construction is finished.

Lemma 2.4.4. kerUAi = Cy1 ⊕ · · · ⊕ Cyi (internal direct sum) for i = 0, . . . , n.

Proof. By induction on i ⩽ n. The case i = 0 being trivial, suppose 1 ⩽ i ⩽ n
and the claim holds for i − 1 in place of i. Then Ai−1(yi) = fi ̸= 0, hence yi /∈
kerUAi−1 = Cy1 ⊕ · · · ⊕ Cyi−1, and Ai = (∂ − f†i )Ai−1, so by [ADH, 5.1.14(i)] we
have kerUAi = kerUAi−1 ⊕ Cyi = Cy1 ⊕ · · · ⊕ Cyi. □

We denote the tuple (a1, . . . , an) ∈ Kn just constructed by split(y1, . . . , yr), so An =

(∂ − an) · · · (∂ − a1). Suppose r ⩾ 1. Then n ⩾ 1, a1 = y†1, A1 = ∂ − a1,
A1(y2), . . . , A1(yn) ∈ U×, and we have

(a2, . . . , an) = split
(
A1(y2), . . . , A1(yn)

)
.

By Lemma 2.4.4, n ⩽ r is maximal such that y1, . . . , yn are C-linearly independent.
In particular, y1, . . . , yr are C-linearly independent iff n = r.

Corollary 2.4.5. If A(yi) = 0 for i = 1, . . . , n, then A ∈ K[∂]An. Thus if n = r
and A(yi) = 0 for i = 1, . . . , r, then A = a(∂ − ar) · · · (∂ − a1) where a ∈ K×.

This follows from [ADH, 5.1.15(i)] and Lemma 2.4.4.

Suppose that H is a differential subfield of K and y†1, . . . , y
†
r ∈ H. Then we

have split(y1, . . . , yr) ∈ Hn: use that y′ ∈ Hy with y ∈ U gives y(m) ∈ Hy
for all m, so B(y) ∈ Hy for all B ∈ H[∂], hence for such B, if f := B(y) ̸= 0,
then f† ∈ H.

Corollary 2.4.6. Suppose dimC kerUA = r. Then kerUA = kerΩA and A splits
over K. If A = (∂ − ar) · · · (∂ − a1), a1, . . . , ar ∈ K, then the spectrum of A
is
{
[a1], . . . , [ar]

}
, and for all α ∈ K/K†,

multα(A) =
∣∣{i ∈ {1, . . . , r} : α = [ai]

}∣∣.
Proof. A splits over K by Lemma 2.4.1 and Corollary 2.4.5. The rest follows from
Lemma 2.3.4 in view of

∑
λ multλ(A) = dimC kerUA. □

Conversely, we can associate to a given splitting of A over K a basis of kerUA
consisting of r elements of U×, provided K is 1-linearly surjective when r ⩾ 2:

Lemma 2.4.7. Assume K is 1-linearly surjective in case r ⩾ 2. Let

A = (∂ − ar) · · · (∂ − a1) where ai = b†i + λi, bi ∈ K×, λi ∈ Λ (i = 1, . . . , r).

Then there are C-linearly independent y1, . . . , yr ∈ kerUA with yi ∈ K× e(λi)
for i = 1, . . . , r and split(y1, . . . , yr) = (a1, . . . , ar).
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Proof. By induction on r. The case r = 0 is trivial, and for r = 1 we can take y1 =
b1 e(λ1). Let r ⩾ 2 and suppose inductively that for

B := (∂ − ar) · · · (∂ − a2)

we have C-linearly independent z2, . . . , zr ∈ kerUB with zi ∈ K× e(λi)
for i = 2, . . . , r and split(z2, . . . , zr) = (a2, . . . , ar). For i = 2, . . . , r, Lemma 2.4.3
gives yi ∈ K× e(λi) with (∂−a1)(yi) = zi. Set y1 := b1 e(λ1), so kerU(∂−a1) = Cy1.
Then y1, . . . , yr ∈ kerUA are C-linearly independent such that yi ∈ K× e(λi)
for i = 1, . . . , r, and one verifies easily that split(y1, . . . , yr) = (a1, . . . , ar). □

Corollary 2.4.8. Assume K is 1-linearly surjective when r ⩾ 2. Then

A splits over K ⇐⇒ dimC kerUA = r.

Remark. If dimC kerUA = r and λ1, . . . , λd are the eigenvalues of A with respect
to Λ, then the differential subring K

[
e(λ1), e(−λ1), . . . , e(λd), e(−λd)

]
of U is the

Picard-Vessiot ring for A over K; see [20, Section 1.3]. If K is linearly closed and
linearly surjective, then U is by Corollary 2.4.8 the universal Picard-Vessiot ring of
the differential field K as defined in [20, Chapter 10]. Our construction of U above
is modeled on the description of the universal Picard-Vessiot ring of the algebraic
closure of C((t)) given in [20, Chapter 3].

Recalling our convention that r = orderA, here is a complement to Lemma 2.4.1:

Corollary 2.4.9. Let V be a C-linear subspace of U with r = dimC V . Then there
is at most one monic A with V = kerUA. Moreover, the following are equivalent:

(i) V = kerUA for some monic A that splits over K;
(ii) V = kerUB for some B ̸= 0;
(iii) V =

∑
λ Vλ;

(iv) V has a basis contained in U×.

Proof. The first claim follows from [ADH, 5.1.15] applied to the differential fraction
field of U in place of K. The implication (i) ⇒ (ii) is clear, (ii) ⇒ (iii) was noted
before Lemma 2.4.1, and (iii) ⇒ (iv) is obvious. For (iv) ⇒ (i), let y1, . . . , yr ∈ U×

be a basis of V . Then split(y1, . . . , yr) = (a1, . . . , ar) ∈ Kr, so V = kerUA for A =
(∂ − ar) · · · (∂ − a1) by Lemma 2.4.4, so (i) holds. □

Let y1, . . . , yr ∈ U× and (a1, . . . , an) := split(y1, . . . , yr). We finish this subsection
with some remarks about (a1, . . . , an) for use in [7]. Let A0, . . . , An ∈ K[∂] be
as above and recall that n ⩽ r is maximal such that y1, . . . , yn are C-linearly
independent.

Lemma 2.4.10. Assume n = r. Let z1, . . . , zr ∈ U×. The following are equivalent:

(i) z1, . . . , zr are C-linearly independent and (a1, . . . , ar) = split(z1, . . . , zr);
(ii) for i = 1, . . . , r there are cii, ci,i−1, . . . , ci1 ∈ C such that

zi = ciiyi + ci,i−1yi−1 + · · ·+ ci1y1 and cii ̸= 0.

Proof. The case r = 0 is trivial. Let r = 1. If (i) holds, then y†1 = a1 = z†1,
hence z1 ∈ C× y1, so (ii) holds. The converse is obvious. Let r ⩾ 2, and assume (i)
holds. Put ỹi := A1(yi) and z̃i := A1(zi) for i = 2, . . . , r. Then

split(ỹ2, . . . , ỹr) = (a2, . . . , ar) = split(z̃2, . . . , z̃r),
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so we can assume inductively to have cij ∈ C (2 ⩽ j ⩽ i ⩽ r) with

z̃i = ciiỹi + ci,i−1ỹi−1 + · · ·+ ci2ỹ2 and cii ̸= 0 (2 ⩽ i ⩽ r).

Hence for 2 ⩽ i ⩽ r,

zi ∈ ciiyi + ci,i−1yi−1 + · · ·+ ci2y2 + kerUA1.

Now use kerUA1 = Cy1 to conclude (ii). For the converse, let cij ∈ C be as
in (ii). Then clearly z1, . . . , zr are C-linearly independent. Let (b1, . . . , br) :=
split(z1, . . . , zr) and Br−1 := (∂ − br−1) · · · (∂ − b1). Then ar = f†r where fr =
Ar−1(yr) ̸= 0, and br = g†r where gr := Br−1(zr) ̸= 0. Now inductively we
have aj = bj for j = 1, . . . , r − 1, so Ar−1 = Br−1, and Ar−1(yi) = 0 for i =
1, . . . , r − 1 by Lemma 2.4.4. Hence gr = crrfr, and thus ar = br. □

Lemma 2.4.11. Let z ∈ U×. Then split(y1z, . . . , yrz) = (a1 + z†, . . . , an + z†).

Proof. Since for m ⩽ r, the units y1z, . . . , ymz of U are C-linearly independent
iff y1, . . . , ym are C-linearly independent, we see that the tuples split(y1z, . . . , yrz)
and split(y1, . . . , yr) have the same length n. Let (b1, . . . , bn) := split(y1z, . . . , yrz);
we show (b1, . . . , bn) = (a1 + z†, . . . , an + z†) by induction on n. The case n = 0 is

obvious, so suppose n ⩾ 1. Then a1 = y†1 and b1 = (y1z)
† = a1 + z† as required.

By remarks following the proof of Lemma 2.4.4 we have

(a2, . . . , an) = split
(
A1(y2), . . . , A1(yn)

)
where A1 := ∂ − a1.

Now B1 := ∂ − b1 = (A1)⋉z−1 , so likewise

(b2, . . . , bn) = split
(
B1(y2z), . . . , B1(ynz)

)
= split

(
A1(y2)z, . . . , A1(yn)z

)
.

Hence b2 = a2 + z†, . . . , bn = an + z† by our inductive hypothesis. □

For f ∈ ∂K we let
∫
f denote an element of K such that (

∫
f)′ = f .

Lemma 2.4.12. Let g1, . . . , gr ∈ K× and

A = g1 · · · gr(∂g−1
r )(∂g−1

r−1) · · · (∂g
−1
1 ),

and suppose the integrals below can be chosen such that

y1 = g1, y2 = g1
∫
g2, . . . , yr = g1

∫
(g2
∫
g3(· · · (gr−1

∫
gr) · · · )),

Then y1, . . . , yr ∈ K×, n = r, and ai = (g1 · · · gi)† for i = 1, . . . , r.

Proof. Let bi := (g1 · · · gi)† for i = 1, . . . , r. By induction on i = 0, . . . , r we
show n ⩾ i and (a1, . . . , ai) = (b1, . . . , bi). This is clear for i = 0, so sup-
pose i ∈ {1, . . . , r}, n ⩾ i− 1, and (a1, . . . , ai−1) = (b1, . . . , bi−1). Then

Ai−1 = (∂ − ai−1) · · · (∂ − a1) = (∂ − bi−1) · · · (∂ − b1) = g1 · · · gi−1(∂g
−1
i−1) · · · (∂g

−1
1 ),

using Lemma 1.1.3 for the last equality. So Ai−1(yi) = g1 · · · gi ̸= 0, and thus n ⩾ i
and ai = Ai−1(yi)

† = bi. □
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The case of real operators. We now continue the subsection The real case
of Section 2.2. Thus K = H[i] where H is a real closed differential subfield
of K and i2 = −1, and Λ = Λr + Λii where Λr, Λi are subspaces of the Q-
linear space H. The complex conjugation automorphism z 7→ z of the differential
field K extends uniquely to an automorphism B 7→ B of the ring K[∂] with ∂ = ∂.

We have A(f) = A(f) for f ∈ U, from which it follows that dimC kerK A =

dimC kerK A, (A)λ = (Aλ), multλA = multλA, and f 7→ f : U → U restricts to a

CH -linear bijection kerUA→ kerUA.

In the rest of this subsection we assume H = H† (so Λ = Λii) and A ∈ H[∂] (and
by earlier conventions, A ̸= 0 and r := orderA). Then A = A, hence for all λ we
have Aλ = Aλ and multλA = multλA. Thus with µ ranging over Λ>

i :∑
λ

multλ(A) = mult0(A) + 2
∑
µ

multµi(A).

Note that 0 is an eigenvalue of A iff kerH A ̸= {0}.

Let V := kerUA, a subspace of the C-linear space U with V = V and dimC V ⩽ r.
Recall that we have the differential H-subalgebra Ur = {f ∈ U : f = f} of U and
the CH -linear subspace Vr = kerUr

A of Ur. Now V = Vr ⊕ Vri (internal direct sum
of CH -linear subspaces), so dimC V = dimCH

Vr. Combining Lemma 2.4.1 and the
remarks preceding it with Lemma 2.2.19 and its proof yields:

Corollary 2.4.13. The C-linear space V has a basis

a1 e(µ1i), a1 e(−µ1i), . . . , am e(µmi), am e(−µmi), h1, . . . , hn (2m+ n ⩽ r),

where a1, . . . , am ∈ K×, µ1, . . . , µm ∈ Λ>
i , h1, . . . , hn ∈ H×. For such a basis,

Re
(
a1 e(µ1i)

)
, Im

(
a1 e(µ1i)

)
, . . . , Re

(
am e(µmi)

)
, Im

(
am e(µmi)

)
, h1, . . . , hn

is a basis of the CH-linear space Vr, and h1, . . . , hn is a basis of the CH-linear
subspace kerH A = V ∩H of H.

Using H = H†, arguments as in the proof of Lemma 2.4.7 show:

Lemma 2.4.14. Assume H is 1-linearly surjective when r ⩾ 2. Let a1, . . . , ar ∈ H
be such that A = (∂ − ar) · · · (∂ − a1). Then the CH-linear space kerH A has a
basis y1, . . . , yr such that split(y1, . . . , yr) = (a1, . . . , ar).

Recall from Lemma 2.3.3 that if r = 1 or K is 1-linearly surjective, then

A splits over K ⇐⇒
∑
λ

multλ(A) = r.

Now multλ(A) = multλ(A) for all λ, so if multλ(A) = r ⩾ 1, then λ = 0. Also,
for W := V ∩K = kerK A and Wr :=W ∩Ur we have Wr = kerH A and

W = Wr ⊕Wri (internal direct sum of CH -linear subspaces),

so mult0(A) = dimC kerK A = dimCH
kerH A. If y1, . . . , yr is a basis of the CH -

linear space kerH A, then split(y1, . . . , yr) ∈ Hr in reversed order is a splitting of A
over H by Corollary 2.4.5. These remarks and Lemma 2.4.14 now yield:

Corollary 2.4.15. If mult0(A) = r, then A splits over H. The converse holds
if H is 1-linearly surjective or r = 1.
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Corollary 2.4.16. Suppose r ⩾ 1, and K is 1-linearly surjective if r ⩾ 2. Then

A splits over H ⇐⇒ mult0(A) = r ⇐⇒ |Σ(A)| = 1.

We now focus on the order 2 case:

Lemma 2.4.17. Suppose r = 2 and A splits over K but not over H. Then

dimC kerUA = 2.

If H is 1-linearly surjective, then A has two distinct eigenvalues.

Proof. We can assume A is monic, so A = (∂−f)(∂−g) with f, g ∈ K and g = a+bi,
a, b ∈ H, b ̸= 0. Then g = d†+µi with d ∈ K× and µ ∈ Λi, and so d e(µi) ∈ kerUA.
From A = A we obtain d e(−µi) ∈ kerUA. These two elements of kerUA are C-
linearly independent, since

d e(µi)/d e(−µi) = (d/d) e(2µi) /∈ C :

this is clear if µ ̸= 0, and if µ = 0, then d† = g, so (d/d)† = g − g = 2bi ̸= 0,
and hence d/d /∈ C. Thus dimC kerUA = 2, and µi, −µi are eigenvalues
of A with respect to Λ. Now assume H is 1-linearly surjective. Then we claim
that µ ̸= 0. To see this note that [ADH, 5.1.21, 5.2.10] and the assumption that A
does not split over H yield dimCH

kerH A = dimC kerK A = 0, hence g /∈ K† and
thus µi = g − d† ̸= 0. □

Combining Lemmas 2.4.14 and 2.4.17 yields:

Corollary 2.4.18. If H is 1-linearly surjective, A has order 2, and A splits over K,
then dimC kerUA = 2.

In the rest of this subsection H is 1-linearly surjective and A = 4∂
2 + f , f ∈ H.

Let ω : H → H and σ : H× → H be as in (0.3) and (0.4). Then by (0.5) and (0.6):

A splits over H ⇐⇒ f ∈ ω(H),

A splits over K ⇐⇒ f ∈ σ(H×) ∪ ω(H).

If A splits over H, then Σ(A) = {0} and mult0(A) = 2, by Corollary 2.4.16.
Suppose A splits over K but not over H, and let y ∈ H× satisfy σ(y) = f /∈ ω(H).
Then by [ADH, p. 262] we have A = 4(∂ + g)(∂ − g) where g = 1

2 (−y
† + yi). Hence

the two distinct eigenvalues of A are (y/2)i +K† and −(y/2)i +K†.

The case of oscillating transseries. We now apply the results above to the
algebraically closed differential field K = T[i]. Note that T[i] has constant field C
and extends the (real closed) differential field T of transseries. After (0.10) in the
introduction, we already remarked:

Lemma 2.4.19. T[i] is linearly closed and linearly surjective.

Now applying Corollary 2.4.8 and Lemma 2.4.1 to T[i] gives:

Corollary 2.4.20. For K = T[i], there are C-linearly independent units y1, . . . , yr
of UT[i] with A(y1) = · · · = A(yr) = 0.

Next we describe another incarnation of UT[i], namely as a ring O of “oscillating”
transseries. Towards this goal we first note that by [ADH, 11.5.1, 11.8.2] we have

I(T) =
{
y ∈ T : y ≼ f ′ for some f ≺ 1 in T

}
=
{
y ∈ T : y ≺ 1/(ℓ0 · · · ℓn) for all n

}
,
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so a complement ΛT of I(T) in T is given by

ΛT :=
{
y ∈ T : supp(y) ≻ 1/(ℓ0 · · · ℓn−1ℓ

2
n) for all n

}
.

Since T† = T and I
(
T[i]

)
⊆ T[i]† we have T[i]† = T ⊕ I(T)i by Lemmas 1.2.4

and 1.2.13. We now take Λ = ΛTi as our complement Λ of T[i]† in T[i] and explain
how the universal exponential extension U of T[i] for this Λ was introduced in [15,
Section 7.7] in a different way. Let

T≻ := {f ∈ T : supp f ≻ 1},
and similarly with ≺ in place of ≻; then T≺ = OT and T≻ are R-linear subspaces
of T, and T decomposes as an internal direct sum

(2.4.2) T = T≻ ⊕ R⊕ T≺

of R-linear subspaces of T. Let eiT≻ = {eif : f ∈ T≻} be a multiplicative copy of
the additive group T≻, with isomorphism f 7→ eif . Then we have the group ring

O := K
[
eiT≻

]
of eiT≻ over K = T[i]. We make O into a differential ring extension of K by

(eif )′ = if ′ eif (f ∈ T≻).

Hence O is an exponential extension of K. The elements of O are called oscillating
transseries. For each f ∈ T there is a unique g ∈ T, to be denoted by

∫
f , such

that g′ = f and g has constant term g1 = 0. The injective map
∫
: T → T is

R-linear; we use this map to show that U and O are disguised versions of each
other:

Proposition 2.4.21. There is a unique isomorphism U = K
[
e(Λ)

]
→ O of differ-

ential K-algebras sending e(hi) to ei
∫
h for all h ∈ ΛT.

This requires the next lemma. We assume familiarity with [ADH, Appendix A], es-
pecially with the ordered group GLE (a subgroup of T×) of logarithmic-exponential
monomials and its subgroup GE =

⋃
nGn of exponential monomials.

Lemma 2.4.22. If m ∈ GLE and m ≻ 1, then suppm′ ⊆ ΛT.

Proof. We first prove by induction on n a fact about elements of GE:

if m ∈ Gn, m ≻ 1, then suppm′ ≻ 1/x.

For r ∈ R> we have (xr)′ = rxr−1 ≻ 1/x, so the claim holds for n = 0. Suppose
the claim holds for a certain n. Now Gn+1 = Gn exp(An), Gn is a convex subgroup
of Gn+1, and

An =
{
f ∈ R[[Gn]] : supp f ≻ Gn−1

}
(where G−1 := {1}).

Let m = n exp(a) ∈ Gn+1 where n ∈ Gn, a ∈ An; then

m ≻ 1 ⇐⇒ a > 0, or a = 0, n ≻ 1.

Suppose m ≻ 1. If a = 0, then m = n, and we are done by inductive hypothesis, so
assume a > 0. Then m′ = (n′ + na′) exp(a) and (n′ + na′) ∈ R[[Gn]], a differential
subfield of T, and exp(a) > R[[Gn]], hence suppm′ ≻ 1 ≻ 1/x as required.

Next, suppose m ∈ GLE and m ≻ 1. Take n ⩾ 1 such that m↑n ∈ GE. We
have (m↑n)′ = (m′ · ℓ0ℓ1 · · · ℓn−1)↑n. For n ∈ suppm′ and using m↑n ≻ 1 this gives

(n · ℓ0ℓ1 · · · ℓn−1)↑n ≻ 1/x
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by what we proved for monomials in GE. Applying ↓n this yields n ≻ 1/(ℓ0ℓ1 · · · ℓn),
hence n ∈ ΛT as claimed. □

Proof of Proposition 2.4.21. Applying ∂ to the decomposition (2.4.2) gives

T = ∂(T≻)⊕ ∂(T≺).

Now ∂(T≻) ⊆ ΛT by Lemma 2.4.22, and ∂(T≺) ⊆ I(T), and so these two inclusions
are equalities. Thus

∫
ΛT = T≻, from which the proposition follows. □

Proposition 2.4.23. There is a unique group morphism exp: K = T[i] → O×

that extends the given exponential maps exp: T → T× and exp: C → C×, and such
that exp(if) = eif for all f ∈ T≻ and exp(ε) =

∑
n

εn

n! for all ε ∈ O. It is surjective,
has kernel 2πiZ ⊆ C, and satisfies exp(f)′ = f ′ exp(f) for all f ∈ K.

Proof. The first statement follows easily from the decompositions

K = T⊕ iT = T⊕ iT≻ ⊕ iR⊕ iOT, C = R⊕ iR, O = OT ⊕ iOT

of K, C, and O = OK as internal direct sums of R-linear subspaces. Next,

O× = K× eiT≻ = T> · SC · (1 + O) · eiT≻ , SC :=
{
z ∈ C : |z| = 1

}
,

by Lemmas 2.1.1 and 1.2.4, and Corollary 1.2.7. Now T> = exp(T) and SC =
exp(iR), so surjectivity follows from exp(O) = 1 + O, a consequence of the well-

known bijectivity of the map ε 7→
∑

n
εn

n! : O → 1 + O, whose inverse is given by

1 + δ 7→ log(1 + δ) :=

∞∑
n=1

(−1)n−1

n
δn (δ ∈ O).

That the kernel is 2πiZ follows from the initial decomposition of the additive group
of K as T ⊕ iT≻ ⊕ iR ⊕ iOT. The identity exp(f)′ = f ′ exp(f) for f ∈ K follows
from it being satisfied for f ∈ T, f ∈ iT≻, f ∈ C, and f ∈ O. □

To integrate oscillating transseries, note first that the R-linear operator
∫
: T → T

extends uniquely to a C-linear operator
∫
: T[i] → T[i]. This in turn extends

uniquely to a C-linear operator
∫
: O → O such that (

∫
Φ)′ = Φ for all Φ ∈ O

and
∫
T[i] eϕi ⊆ T[i] eϕi for all ϕ ∈ T≻: given ϕ ∈ T̸=

≻ and g ∈ T[i], there is a

unique f ∈ T[i[ such that (f eϕi)′ = g eϕi: existence holds because y′ + yϕ′i = g
has a solution in T[i], the latter being linearly surjective, and uniqueness holds by
Lemma 1.2.3 applied to K = L = T[i], because ϕ′i /∈ T[i]† in view of remarks
preceding Lemma 1.2.13.

The operator
∫

is a right-inverse of the linear differential operator ∂ on O. To ex-

tend this to other linear differential operators, make the subgroup GO := GLE eiT≻

of O× into an ordered group so that the ordered subgroup GLE of T> is a convex
ordered subgroup of GO and eiϕ ≻ GLE for ϕ > 0 in T≻. (Possible in only one
way.) Next, extend the natural inclusion T[i] → C[[GLE]] to a C-algebra embed-
ding O → C[[GO]] by sending eiϕ ∈ O to eiϕ ∈ GO ⊆ C[[GO]]. Identify O with a
subalgebra of C[[GO]] via this embedding, so supp f ⊆ GO for f ∈ O. It makes the
Hahn space C[[GO]] over C an immediate extension of its valued subspace O. The
latter is in particular also a Hahn space over C.

79



Let A ∈ T[i][∂]̸=. Then A(O) = O by Lemmas 2.4.3, 2.4.19, and Proposi-
tion 2.4.21. The proof of [ADH, 2.3.22] now gives for each g ∈ O a unique ele-

ment f =: A−1(g) ∈ O with A(f) = g and supp(f) ∩ d
(
ker ̸=O A

)
= ∅. This require-

ment on suppA−1(g) yields a C-linear operator A−1 on O with A ◦ A−1 = idO;
we call it the distinguished right-inverse of the operator A on O. With this
definition ∂

−1 is the operator
∫

on O specified earlier.

In the next section we explore various valuations on universal exponential extensions
(such as O) with additional properties.

2.5. Valuations on the Universal Exponential Extension

In this section K is a valued differential field with algebraically closed constant
field C ⊆ O and divisible group K† of logarithmic derivatives. Then Γ = v(K×) is
also divisible, since we have a group isomorphism

va 7→ a† + (O×)† : Γ → K†/(O×)† (a ∈ K×).

Let Λ be a complement of the Q-linear subspace K† of K, let λ range over Λ,
let U = K

[
e(Λ)

]
be the universal exponential extension of K constructed in Sec-

tion 2.2 and set Ω := Frac(U). Thus Ω is a differential field with constant field C.

The gaussian extension. We equip U with the gaussian extension vg of the valu-
ation of K as defined in Section 2.1; so for f ∈ U with spectral decomposition (fλ):

vg(f) = min
λ
v(fλ),

and hence

vg(f
′) = min

λ
v(f ′λ + λfλ).

The field Ω with the valuation extending vg is a valued differential field extension
of K, but it can happen that K has small derivation, whereas Ω does not:

Example. Let K = C((tQ)) and Λ be as in Example 2.2.4, so t ≺ 1 ≺ x = t−1

and t′ = −t2. Then K is d-valued of H-type with small derivation, but in Ω with
the above valuation,

t e(x) ≺ 1,
(
t e(x)

)′ = −t2 e(x) + e(x) ∼ e(x) ≍ 1.

To obtain an example where K = H[i] for a Liouville closed H-field H and i2 = −1,
take K := T[i] and Λ := ΛTi as at the end of Section 2.4. Now x ∈ ΛT and in Ω
equipped with the above valuation we have for t := x−1:

t e(xi) ≺ 1,
(
t e(xi)

)′ = −t2 e(xi) + i e(xi) ∼ i e(xi) ≍ 1,

so
(
t e(xi)

)′ ̸≺ t†, hence Ω is neither asymptotic nor has small derivation.

However, we show next that under certain assumptions on K with small derivation,
Ω has also a valuation which does make Ω a valued differential field extension of K
with small derivation. For this we rely on results from [ADH, 10.4]. Although
such a valuation is less canonical than vg, it is useful for harnessing the finiteness
statements about the set E e(A) of eventual exceptional values of A ∈ K[∂]̸= from
Section 1.4 to obtain similar facts about the set of ultimate exceptional values of A
introduced later in this section.
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Spectral extensions. In this subsection K is d-valued of H-type with Γ ̸= {0}
and with small derivation.

Lemma 2.5.1. The valuation of K extends to a valuation on the field Ω that
makes Ω a d-valued extension of K of H-type with small derivation.

Proof. Applying [ADH, 10.4.7] to an algebraic closure of K gives a d-valued alge-
braically closed extension L of K of H-type with small derivation and CL = C
such that L† ⊇ K. Let E := {y ∈ L× : y† ∈ K}, so E is a subgroup of L×,
E† = K, and K[E] is an exponential extension of K with CK[E] = C. Then Corol-
lary 2.2.10 gives an embedding U → L of differential K-algebras with image K[E],
which extends to an embedding Ω → L of differential fields. Using this embedding
to transfer the valuation of L to Ω gives a valuation as required. □

A spectral extension of the valuation of K to Ω is a valuation on the field Ω
with the properties stated in Lemma 2.5.1. If K is ω-free, then so is Ω equipped
with any spectral extension of the valuation of K, by [ADH, 13.6] (and then Ω
has rational asymptotic integration by [ADH, 11.7]). We do not know whether this
goes through with “λ-free” instead of “ω-free”. Here is something weaker:

Lemma 2.5.2. Suppose K is algebraically closed and λ-free. Then some spectral
extension of the valuation of K to Ω makes Ω a d-valued field with divisible value
group and asymptotic integration.

Proof. Take L, E and an embedding Ω → L as in the proof of Lemma 2.5.1.
Use this embedding to identify Ω with a differential subfield of L, so U = K[E]
and Ω = K(E), and equip Ω with the spectral extension of the valuation of K
obtained by restricting the valuation of L to Ω. Since L is algebraically closed, E
is divisible, and ΓL = Γ + v(E) by [ADH, 10.4.7(iv)]. So ΓΩ = ΓL is divisible.
Let a ∈ K×, y ∈ E. Then K(y) has asymptotic integration by Proposition 1.3.12,

hence v(ay) ∈ (Γ̸=
K(y))

′ ⊆ (Γ̸=
Ω)

′. Thus Ω has asymptotic integration. □

In the rest of this subsection Ω is equipped with a spectral extension v (with value
group ΓΩ) of the valuation of K. The proof of Lemma 2.5.1 and [ADH, 10.4.7]
show that we can choose v so that ΨΩ ⊆ Γ; but under suitable hypotheses on K,
this is automatic:

Lemma 2.5.3. Suppose K has asymptotic integration and I(K) ⊆ K†.
Then ΨΩ ⊆ Γ, the group morphism

(2.5.1) λ 7→ v
(
e(λ)

)
: Λ → ΓΩ

is injective, and ΓΩ is divisible with ΓΩ = Γ ⊕ v
(
e(Λ)

)
(internal direct sum of

Q-linear subspaces of ΓΩ). Moreover, ΨΩ = Ψ↓ in Γ.

Proof. For a ∈ K× we have
(
a e(λ)

)† = a† + λ ∈ K, and if a e(λ) ≍ 1, then

a† + λ =
(
a e(λ)

)† ∈ (O×
Ω )

† ∩K ⊆ I(Ω) ∩K = I(K),

so λ ∈ Λ ∩
(
I(K) + K†) = Λ ∩ K† = {0} and a ≍ 1. Thus for a1, a2 ∈ K× and

distinct λ1, λ2 ∈ Λ we have a1 e(λ1) ̸≍ a2 e(λ2), and so for f ∈ U with spectral
decomposition (fλ) we have vf = minλ v

(
fλ e(λ)

)
. Hence

ΨΩ ⊆
{
v(a† + λ) : a ∈ K×, λ ∈ Λ

}
= v(K) = Γ∞,

81



the map (2.5.1) is injective and Γ∩v
(
e(Λ)

)
= {0}, and so ΓΩ = Γ⊕v

(
e(Λ)

)
(internal

direct sum of subgroups of ΓΩ). Since Γ and Λ are divisible, so is ΓΩ. Now ΨΩ = Ψ↓

follows from K = (U×)† ⊆ Ω† and K having asymptotic integration. □

We can now improve on Lemma 2.4.1:

Corollary 2.5.4. Suppose K has asymptotic integration and I(K) ⊆ K†, and
let A ∈ K[∂] ̸=. Then the C-linear space kerUA has a basis B ⊆ U× such that v is

injective on B and v(B) = v(ker ̸=U A), and thus |v(ker ̸=U A)| = dimC kerUA.

Proof. By [ADH, 5.6.6] we have a basis Bλ of the C-linear space kerK Aλ such

that v is injective on Bλ and v(Bλ) = v(ker ̸=K Aλ). Then B :=
⋃

λ Bλ e(λ) is a basis
of kerUA. It has the desired properties by Lemma 2.5.3. □

Corollary 2.5.5. Suppose K is λ-free and I(K) ⊆ K†. Then Ω has asymptotic
integration, and so its H-asymptotic couple is closed by Lemma 2.5.3.

Proof. By Lemma 2.5.3, ΓΩ = Γ+v
(
e(Λ)

)
. Using Proposition 1.3.12 as in the proof

of Lemma 2.5.2, with e(Λ) in place of E, shows Ω has asymptotic integration. □

Ultimate exceptional values. In this subsection K is H-asymptotic with small
derivation and asymptotic integration. Also A ∈ K[∂]̸= and r := order(A), and γ

ranges over Γ = v(K×). We have v(ker ̸=Aλ) ⊆ E e(Aλ), so if λ is an eigenvalue
of A with respect to λ, then E e(Aλ) ̸= ∅. We call the elements of the set

E u(A) = E u
K(A) :=

⋃
λ

E e(Aλ) =
{
γ : nwtAλ

(γ) ⩾ 1 for some λ
}

the ultimate exceptional values of A with respect to Λ. The definition of E u
K(A)

involves our choice of Λ, but we are leaving this implicit to avoid complicated
notation. In Section 4.4 we shall restrict K and Λ so that E u(A) does not depend
any longer on the choice of Λ. There we shall use the following observation:

Lemma 2.5.6. Let a, b ∈ K be such that a − b ∈ (O×)†. Then for all γ we
have nwtAa(γ) = nwtAb

(γ); in particular, E e(Aa) = E e(Ab).

Proof. Use that if u ∈ O× and a− b = u†, then Aa = (Ab)⋉u. □

Corollary 2.5.7. Let Λ∗ be a complement of the Q-linear subspace K† of K and
let λ 7→ λ∗ : Λ → Λ∗ be the group isomorphism with λ−λ∗ ∈ K† for all λ. If λ−λ∗ ∈
(O×)† for all λ, then nwtAλ

(γ) = nwtAλ∗ (γ) for all γ, so E u(A) =
⋃

λ E e(Aλ∗).

Remark 2.5.8. For a ∈ K× we have E u(aA) = E u(A) and E u(Aa) = E u(A) − va.
Note also that E e(A) = E e(A0) ⊆ E u(A). Let ϕ ∈ K× be active inK, and set λϕ :=
ϕ−1λ. Then Λϕ := ϕ−1Λ is a complement of the Q-linear subspace (Kϕ)† = ϕ−1K†

of Kϕ, and (Aϕ)λϕ = (Aλ)
ϕ. Hence E u

K(A) agrees with the set E u
Kϕ(A

ϕ) of ultimate

exceptional values of Aϕ with respect to Λϕ.

Remark 2.5.9. Suppose L is an H-asymptotic extension of K with asymptotic
integration and algebraically closed constant field CL such that L† is divisible,
and Ψ is cofinal in ΨL or K is λ-free. Then E e(Aλ) = E e

L(Aλ)∩Γ, by Lemma 1.4.1
and Corollary 1.7.10. Hence if ΛL ⊇ Λ is a complement of the subspace L† of the
Q-linear space L, and E u

L (A) is the set of ultimate exceptional values of A (viewed
as an element of L[∂]) with respect to ΛL, then E u(A) ⊆ E u

L (A). (Note that such a
complement ΛL exists iff L† ∩K = K†.)
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In the rest of this subsection we equip U with the gaussian extension vg of the
valuation of K. Recall that we have a decomposition kerUA =

⊕
λ(kerAλ) e(λ) of

the C-linear space kerUA as an internal direct sum of subspaces, and hence

(2.5.2) vg(ker
̸=
U A) =

⋃
λ

v(ker ̸=Aλ) ⊆
⋃
λ

E e(Aλ) = E u(A).

Here are some consequences:

Lemma 2.5.10. Suppose K is r-linearly newtonian. Then vg(ker
̸=
U A) = E u(A).

Proof. By Proposition 1.4.2 we have v(ker ̸=Aλ) = E e(Aλ) for each λ. There-

fore vg(ker
̸=
U A) = E u(A) by (2.5.2). □

Lemma 2.5.11. Suppose K is d-valued. Then |vg(ker ̸=U A)| ⩽ dimC kerUA ⩽ r.

Proof. By [ADH, 5.6.6(i)] applied to Aλ in place of A we have

|v(ker ̸=Aλ)| = dimC kerAλ = multλ(A) for all λ

and thus by (2.5.2),

|vg(ker ̸=U A)| ⩽
∑
λ

|v(ker ̸=Aλ)| =
∑
λ

multλ(A) = dimC kerUA ⩽ r

as claimed. □

Lemma 2.5.12. Suppose I(K) ⊆ K† and r = 1. Then

vg(ker
̸=
U A) = E u(A), |E u(A)| = 1.

Proof. Arrange A = ∂ − g, g ∈ K, and take f ∈ K× and λ such that g =

f† + λ. Then u := f e(λ) ∈ U× satisfies A(u) = 0, hence ker ̸=U A = Cu and

thus vg(ker
̸=
U A) = {vf}. By Lemma 1.4.9 we have v(ker ̸=Aλ) = E e(Aλ) for all λ

and hence vg(ker
̸=
U A) = E u(A) by (2.5.2). □

Corollary 2.5.13. If I(K) ⊆ K† and a ∈ K×, then E e(∂−a†) = E u(∂−a†) = {va}.

Proposition 2.5.15 below partly extends Lemma 2.5.12.

Spectral extensions and ultimate exceptional values. In this subsection K is
d-valued of H-type with small derivation, asymptotic integration, and I(K) ⊆ K†.
Also A ∈ K[∂]̸= has order r and γ ranges over Γ.

Suppose Ω is equipped with a spectral extension v of the valuation of K. Let
g ∈ K× with vg = γ. The Newton weight of Aλg ∈ K[∂] does not change in passing
from K to Ω, since Ψ is cofinal in ΨΩ by Lemma 2.5.3; see [ADH, 11.1]. Thus

nwtAλ
(γ) = nwt(Aλg) = nwt

(
Ag e(λ)

)
= nwtA

(
v(g e(λ)

)
= nwtA

(
γ+v(e(λ)

))
.

In particular, using ΓΩ = Γ⊕ v
(
e(Λ)

)
,

(2.5.3) E e
Ω(A) =

⋃
λ

E e(Aλ) + v
(
e(λ)

)
(a disjoint union).

Thus E u(A) = π
(
E e
Ω(A)

)
where π : ΓΩ → Γ is given by π

(
γ + v

(
e(λ)

))
= γ.
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Lemma 2.5.14. We have dimC kerUA ⩽
∑

λ|E e(Aλ)|, and

dimC kerUA =
∑
λ

|E e(Aλ)| ⇐⇒ v(ker ̸=Aλ) = E e(Aλ) for all λ.

Moreover, if dimC kerUA =
∑

λ |E e(Aλ)|, then vg(ker ̸=U A) = E u(A).

Proof. Clearly, dimC kerUA ⩽ dimC kerΩA. Equip Ω with a spectral extension

of the valuation of K. Then dimC kerΩA = |v(ker ̸=Ω A)| and v(ker ̸=Ω A) ⊆ E e
Ω(A)

by [ADH, 5.6.6(i)] and [ADH, p. 481], respectively, applied to Ω in the role of K.
Also |E e

Ω(A)| =
∑

λ |E e(Aλ)| (a sum of cardinals) by the remarks preceding the
lemma. This yields the first claim of the lemma.

Next, note that v(ker ̸=Aλ) ⊆ E e(Aλ) for all λ. Hence from (2.5.3) and

v(ker ̸=U A) =
⋃
λ

v(ker ̸=Aλ) + v
(
e(λ)

)
(a disjoint union)

we obtain:

v(ker ̸=U A) = E e
Ω(A) ⇐⇒ v(ker ̸=Aλ) = E e(Aλ) for all λ.

Also |v(ker ̸=U A)| = dimC kerUA by [ADH, 2.3.13], and

v(ker ̸=U A) ⊆ v(ker ̸=Ω A) ⊆ E e
Ω(A), |E e

Ω(A)| =
∑
λ

|E e(Aλ)|.

This yields the displayed equivalence.

Suppose dimC kerUA =
∑

λ|E e(Aλ)|; we need to show vg(ker
̸=
U A) = E u(A).

We have π
(
E e
Ω(A)

)
= E u(A) for the above projection map π : ΓΩ → Γ, so it is

enough to show π
(
v(ker ̸=U A)

)
= vg(ker

̸=
U A). For that, note that for B ⊆ K× e(Λ)

in Corollary 2.5.4 we have

π
(
v(ker ̸=U A)

)
= π(vB) = vg(B) = vg(ker

̸=
U A),

using for the last equality the details in the proof of Corollary 2.5.4. □

Proposition 2.5.15. Suppose K is ω-free. Then nwtAλ
(γ) = 0 for all but finitely

many pairs (γ, λ) and

|E u(A)| ⩽
∑
λ

|E e(Aλ)| =
∑
γ,λ

nwtAλ
(γ) ⩽ r.

If dimC kerUA = r, then
∑

λ |E e(Aλ)| = r and vg(ker
̸=
U A) = E u(A).

Proof. Equip Ω with a spectral extension v of the valuation of K. Then Ω is ω-
free, so

∑
λ |E e(Aλ)| = |E e

Ω(A)| ⩽ r by the remarks preceding Lemma 2.5.14 and
Corollary 1.4.5 applied to Ω in place of K. These remarks also give nwtAλ

(γ) = 0
for all but finitely many pairs (γ, λ), and so∑

γ,λ

nwtAλ
(γ) =

∑
γ,λ

nwtA
(
γ + v(e(λ)

)
= |E e

Ω(A)| ⩽ r.

Corollary 1.4.5 applied to Aλ in place of A yields |E e(Aλ)| =
∑

γ nwtAλ
(γ) and

so
∑

λ |E e(Aλ)| =
∑

γ,λ nwtAλ
(γ). This proves the first part (including the display).

The rest follows from this and Lemma 2.5.14. □
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In the next lemma (to be used in the proof of Proposition 3.1.27), as well as in
Corollary 2.5.21, L is a d-valued H-asymptotic extension of K with algebraically
closed constant field and asymptotic integration (so L has small derivation), such
that L† is divisible, L† ∩ K = K†, and I(L) ⊆ L† . We also fix there a comple-
ment ΛL of the Q-linear subspace L† of L with Λ ⊆ ΛL. Let UL = L

[
e(ΛL)

]
be

the corresponding universal exponential extension of L containing U = K
[
e(Λ)

]
as

a differential subring, as described in the remarks following Corollary 2.2.13, with
differential fraction field ΩL.

Lemma 2.5.16. Assume CL = C. Let ΩL be equipped with a spectral extension
of the valuation of L, and take Ω as a valued subfield of ΩL; so the valuation of Ω
is a spectral extension of the valuation of K. Suppose Ψ is cofinal in ΨL or K is
λ-free. Then E e

ΩL
(A) ∩ ΓΩ = E e

Ω(A).

Proof. Let µ range over ΛL. We have

ΓΩL
= ΓL ⊕ v

(
e(ΛL)

)
, ΓΩ = Γ⊕ v

(
e(Λ)

)
by Lemma 2.5.3 and

E e
ΩL

=
⋃
µ

E e
L(Aµ) + v

(
e(µ)

)
, E e

Ω =
⋃
λ

E e(Aλ) + v
(
e(λ)

)
by (2.5.3). Hence

E e
ΩL

(A) ∩ ΓΩ =
⋃
λ

(
E e
L(Aλ) ∩ Γ

)
+ v
(
e(λ)

)
=
⋃
λ

E e(Aλ) + v
(
e(λ)

)
= E e

Ω(A),

where we used the injectivity of µ 7→ v
(
e(µ)

)
for the first equality and Remark 2.5.9

for the second. □

The material in the rest of this section is not used later in this monograph.

Terminal operators. In this subsection we continue to work in the setting of the
previous subsection. Call A terminal with respect to Λ if

∑
λ|E e(Aλ)| = r. We

omit “with respect to Λ” if it is clear from the context what Λ is. In Section 4.4
we shall restrict K, Λ anyway so that this dependence on Λ disappears. Recall also
that for a given spectral extension of the valuation of K to Ω we have |EΩ(A)| =∑

λ|E e(Aλ)|. If A is terminal and ϕ ∈ K× is active in K, then Aϕ ∈ Kϕ[δ] is
terminal with respect to Λϕ (cf. remarks after Corollary 2.5.7). If A is terminal
and a ∈ K×, then aA is terminal. If r = 0, then A is terminal.

Lemma 2.5.17. If r = 1, then A is terminal.

Proof. Assume r = 1. Then dimC kerUA = 1, so
∑

λ|E e(Aλ)| ⩾ 1 by Lemma 2.5.14.
Equip Ω with a spectral extension of the valuation of K. Then Ω is ungrounded by
Lemma 2.5.3, and r = 1 gives |EΩ(A)| ⩽ 1. Now use |EΩ(A)| =

∑
λ|E e(Aλ)|. □

Lemma 2.5.18. Suppose A and B ∈ K[∂] ̸= are terminal, and each operator Bλ is
asymptotically surjective. Then AB is terminal.

Proof. Use that (AB)λ = AλBλ, and that |E e(AλBλ)| = |E e(Aλ)| + |E e(Bλ)| by
Corollary 1.4.19. □

Thus if A is terminal and a ∈ K×, then aA,Aa, and A⋉a are terminal. From
Lemmas 2.5.17, 2.5.18, and Corollary 1.4.25 we conclude:
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Corollary 2.5.19. If K is λ-free and A splits over K, then A is terminal.

Corollary 2.5.20. Suppose K is ω-free and B ∈ K[∂] ̸=. Then A and B are
terminal iff AB is terminal.

Proof. The “only if” part follows from Lemma 2.5.18 and Corollary 1.4.26. For the
“if” part, use Corollary 1.4.19 and Proposition 2.5.15. □

Corollary 2.5.21. Suppose A is terminal, Ψ is cofinal in ΨL or K is λ-free, and L
is ω-free. Then, with respect to the complement ΛL of L† in L, we have:

(i) as an element of L[∂], A is terminal;
(ii) E e(Aµ) = ∅ for all µ ∈ ΛL \ Λ;
(iii) E e(Aλ) = E e

L(Aλ) for all λ; and
(iv) E u(A) = E u

L (A).

Proof. By the remarks after Corollary 2.5.7 we have E e(Aλ) ⊆ E e
L(Aλ) for each λ,

and so with µ ranging over ΛL, by Proposition 2.5.15 applied to L in place of K,
we have r =

∑
λ|E e(Aλ)| ⩽

∑
µ|E e

L(Aµ)| ⩽ r. This yields (i)–(iv). □

In [8] we shall study other situations where A is terminal.

The real case. In this subsection H is a real closed H-field with small derivation,
asymptotic integration, and H† = H; also K = H[i], i2 = −1, for our valued
differential field K. We also assume I(H)i ⊆ K†. Then K is d-valued of H-type
with small derivation, asymptotic integration, K† = H + I(H)i, and I(K) ⊆ K†.
Note that H and thus K is λ-free by [ADH, remark after 11.6.2, and 11.6.8]. Let A
in K[∂] ̸= have order r and let γ range over Γ.

Lemma 2.5.22. If the real closed H-asymptotic extension F of H has asymptotic
integration and convex valuation ring, then L†∩K = K† for the algebraically closed
H-asymptotic field extension L := F [i] of K.

Proof. Use Corollary 1.2.15 and earlier remarks in the same subsection. □

Corollary 2.5.23. The H-field H has an H-closed extension F with CF = CH ,
and for any such F , the algebraically closed d-valued field extension L := F [i] of
H-type of K is ω-free with CL = C, I(L) ⊆ L†, and L† ∩K = K†.

Proof. Use [ADH, 16.4.1, 9.1.2] to extend H to an ω-free H-field with the same
constant field as H, next use [ADH, 11.7.23] to pass to its real closure, and then
use [ADH, 14.5.9] to extend further to an H-closed F , still with the same constant
field as H. For any such F , the d-valued field L := F [i] of H-type is ω-free
by [ADH, 11.7.23] and newtonian by (0.10). Hence I(L) ⊆ L† by Lemma 1.2.9,
and L† ∩K = K† by Lemma 2.5.22. □

This leads to a variant of Proposition 2.5.15:

Proposition 2.5.24. The conclusion of Proposition 2.5.15 holds. In particular:

dimC kerUA = r =⇒ A is terminal.

Proof. Corollary 2.5.23 gives an H-closed extension F of H with CF = CH , so L :=
F [i] is ω-free, CL = C, I(L) ⊆ L†, and L† ∩K = K†. Take a complement ΛL ⊇ Λ
of the subspace L† of the Q-linear space L. By Remark 2.5.9 we have E e(Aλ) =
E e
L(Aλ) ∩ Γ. Hence Proposition 2.5.15 applied to K, Λ replaced by L, ΛL, respec-

tively, and A viewed as element of L[∂], yields
∑

λ |E e(Aλ)| ⩽ r. Corollary 1.7.10
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applied to Aλ in place of A gives |E e(Aλ)| =
∑

γ nwtAλ
(γ). This yields the conclu-

sion of Proposition 2.5.15 as in the proof of that proposition. □

Let now F be a Liouville closed H-field extension of H and suppose I(L) ⊆ L†

where L := F [i]. Lemma 2.5.22 yields L† ∩ K = K†, so L is as described just
before Lemma 2.5.16, and we have a complement ΛL ⊇ Λ of the subspace L†

of the Q-linear space L. Note that if A splits over K, then A is terminal by
Corollary 2.5.19.

Corollary 2.5.25. Suppose A is terminal. Then, with respect to the comple-
ment ΛL of L† in L, the conclusions (i)–(iv) of Corollary 2.5.21 hold.

Proof. By the remarks after Corollary 2.5.7 we have E e(Aλ) ⊆ E e
L(Aλ) for all λ,

and so with µ ranging over ΛL, Proposition 2.5.24 applied to L in place of K, we
have r =

∑
λ|E e(Aλ)| ⩽

∑
µ|E e

L(Aµ)| ⩽ r. This yields (i)–(iv). □
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Part 3. Normalizing Holes and Slots

In this introduction K is an H-asymptotic field with small derivation and rational
asymptotic integration. In Section 3.2 we introduce holes in K: A hole in K is a

triple (P,m, â) with P ∈ K{Y } \K, m ∈ K×, and â ∈ K̂ \K for some immediate

asymptotic extension K̂ of K, such that â ≺ m and P (â) = 0. The main goal
of Part 3 is a normalization theorem, namely Theorem 3.3.33, that allows us to
transform under reasonable conditions a hole (P,m, â) in K into a “normal” hole;
this helps to pin down the location of â relative to K. The notion of (P,m, â) being
normal involves the linear part of the differential polynomial P×m, in particular the
span of this linear part. We introduce the span in the preliminary Section 3.1. In
Section 3.4 we study isolated holes (P,m, â) inK, which under reasonable conditions
ensure the uniqueness of the isomorphism type of K⟨â⟩ as a valued differential field
over K; see Proposition 3.4.9. In Section 3.5 we focus on holes (P,m, â) in K
where orderP = degP = 1. For technical reasons we actually work in Part 3 also
with slots in K, which are a bit more general than holes in K.

First some notational conventions. Let Γ be an ordered abelian group. For γ, δ ∈ Γ
with γ ̸= 0 the expression “δ = o(γ)” means “n|δ| < |γ| for all n ⩾ 1” according
to [ADH, 2.4], but here we find it convenient to extend this to γ = 0, in which
case “δ = o(γ)” means “δ = 0”. Suppose Γ = v(E×) is the value group of a valued
field E and m ∈ E×. Then we denote the archimedean class [vm] ⊆ Γ of vm ∈ Γ
by just [m]. Suppose m ̸≍ 1. Then we have a proper convex subgroup

∆(m) :=
{
γ ∈ Γ : γ = o(vm)

}
=
{
γ ∈ Γ : [γ] < [m]

}
,

of Γ. If m ≍∆(m) n ∈ E, then 0 ̸= n ̸≍ 1 and ∆(m) = ∆(n). In particular,
if m ≍ n ∈ E, then 0 ̸= n ̸≍ 1 and ∆(m) = ∆(n). Note that for f, g ∈ E
the meaning of “f ≼∆(m) g” does not change in passing to a valued field extension
of E, although ∆(m) can increase as a subgroup of the value group of the extension.

3.1. The Span of a Linear Differential Operator

In this section K is a valued differential field with small derivation and Γ := v(K×).
We let a, b, sometimes subscripted, range over K, and m, n over K×. Consider a
linear differential operator

A = a0 + a1∂ + · · ·+ ar∂
r ∈ K[∂], ar ̸= 0.

We shall use below the quantities dwm(A) and dwt(A) defined in [ADH, 5.6]. We
also introduce a measure v(A) for the “lopsidedness” of A as follows:

v(A) := ar/am ∈ K× where m := dwt(A).

So ar ≍ v(A)A and v(A) ≼ 1, with

v(A) ≍ 1 ⇐⇒ dwt(A) = r ⇐⇒ v(A) = 1.

Also note that v(aA) = v(A) for a ̸= 0. Moreover,

v(A⋉n)A⋉n ≍ ar ≍ v(A)A

since A⋉n = ar∂
r + lower order terms in ∂.

Example. v(a+ ∂) = 1 if a ≼ 1, and v(a+ ∂) = 1/a if a ≻ 1.
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We call v(A) the span of A. We are mainly interested in the valuation of v(A). This
is related to the gaussian valuation v(A) of A: if A is monic, then v

(
v(A)

)
= −v(A).

An important property of the span of A is that its valuation is not affected by small
additive perturbations of A:

Lemma 3.1.1. Suppose B ∈ K[∂], order(B) ⩽ r and B ≺ v(A)A. Then:

(i) A+B ∼ A, dwm(A+B) = dwm(A), and dwt(A+B) = dwt(A);
(ii) order(A+B) = r and v(A+B) ∼ v(A).

Proof. From B ≺ v(A)A and v(A) ≼ 1 we obtain B ≺ A, and thus (i). Set m :=
dwt(A), let i range over {0, . . . , r}, and let B = b0+ b1∂+ · · ·+ br∂

r. Then ai ≼ am
and bi ≺ v(A)A ≍ ar ≼ am. Therefore, if ai ≍ am, then ai+bi ∼ ai, and if ai ≺ am,
then ai + bi ≺ am. Hence v(A+B) = (ar + br)/(am + bm) ∼ ar/am = v(A). □

For b ̸= 0, the valuation of v(Ab) only depends on vb; it is enough to check this
for b ≍ 1. More generally:

Lemma 3.1.2. Let B ∈ K[∂]̸= and b ≍ B. Then v(AB) ≍ v(Ab)v(B).

Proof. Let B = b0 + b1∂ + · · ·+ bs∂
s, bs ̸= 0. Then

AB = arbs∂
r+s + lower order terms in ∂,

so by [ADH, 5.6.1(ii)] for γ = 0:

v
(
v(AB)

)
= v(arbs)− v(AB) = v(arbs)− v(Ab)

= v(arb)− v(Ab) + v(bs)− v(B)

= v
(
v(Ab)v(B)

)
. □

Corollary 3.1.3. Let B ∈ K[∂]̸=. If v(AB) = 1, then v(A) = v(B) = 1. The
converse holds if B is monic.

This is clear from from Lemma 3.1.2, and in turn gives:

Corollary 3.1.4. Suppose A = a(∂ − b1) · · · (∂ − br). Then

v(A) = 1 ⇐⇒ b1, . . . , br ≼ 1.

Remark. Suppose K = C((t)) with the t-adic valuation and derivation ∂ = t d
dt .

In the literature, A is called regular singular if v(A) = 1, and irregular singular
if v(A) ≺ 1; see [20, Definition 3.14].

Lemma 3.1.5. Let B ∈ K[∂]̸=. Then v(AB) ≼ v(B), and if B is monic,
then v(AB) ≼ v(A).

Proof. Lemma 3.1.2 and v(Ab) ≼ 1 for b ̸= 0 yields v(AB) ≼ v(B). Suppose B
is monic, so v(B) ⩽ 0. To show v(AB) ≼ v(A) we arrange that A is also monic.
Then AB is monic, and v(AB) ≼ v(A) is equivalent to v(AB) ⩽ v(A). Now

v(AB) = vAB(0) = vA
(
vB(0)

)
= vA

(
v(B)

)
⩽ vA(0) = v(A)

by [ADH, 4.5.1(iii), 5.6.1(ii)]. □

Corollary 3.1.6. If A = a(∂ − b1) · · · (∂ − br), then b1, . . . , br ≼ v(A)−1.
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Let ∆ be a convex subgroup of Γ, let Ȯ be the valuation ring of the coarsening v∆
of the valuation v of K by ∆, with maximal ideal Ȯ, and K̇ = Ȯ/Ȯ be the valued

differential residue field of v∆. The residue morphism Ȯ → K̇ extends to the ring
morphism Ȯ[∂] → K̇[∂] with ∂ 7→ ∂. If A ∈ Ȯ[∂] and Ȧ ̸= 0, then dwm(Ȧ) =

dwm(A) and dwt(Ȧ) = dwt(A). We set v := v(A).

Lemma 3.1.7. If A ∈ Ȯ[∂] and order(Ȧ) = r, then v(Ȧ) = v̇.

Behavior of the span under twisting. Recall that o(γ) := 0 ∈ Γ for γ = 0 ∈ Γ.
With this convention, here is a consequence of [ADH, 6.1.3]:

Lemma 3.1.8. Let B ∈ K[∂] ̸=. Then v(AB) = v(A) + v(B) + o
(
v(B)

)
.

Proof. Take b with b ≍ B. Then

v(AB) = vAB(0) = vA
(
vB(0)

)
= vA(vb) = v(Ab)

by [ADH, 5.6.1(ii)]. Moreover, v(Ab) = v(A) + vb+ o(vb), by [ADH, 6.1.3]. □

We have v(A⋉n) = v(An), so v(A⋉n) = v(A) + o(vn) by Lemma 3.1.8. Moreover:

Lemma 3.1.9. v
(
v(An)

)
= v
(
v(A)

)
+ o(vn).

Proof. Replacing A by a−1
r A we arrange A is monic, so A⋉n is monic, and thus

v
(
v(An)

)
= v

(
v(A⋉n)

)
= −v(A⋉n) = −v(A) + o(vn) = v

(
v(A)

)
+ o(vn)

by remarks preceding the lemma. □

Recall: we denote the archimedean class [vn] ⊆ Γ by [n]. Lemma 3.1.9 yields:

Corollary 3.1.10.
[
v(A)

]
< [n] ⇐⇒

[
v(An)

]
< [n].

Under suitable conditions on K we can say more about the valuation of v(A⋉n):
Lemma 3.1.12 below.

Lemma 3.1.11. Let n† ≽ 1 and m0, . . . ,mr ∈ K× be such that

v(mi) + v(A) = min
i⩽j⩽r

v(aj) + (j − i)v(n†).

Then with m := dwt(A) we have

m0 ≽ · · · ≽ mr and (n†)m ≼ m0 ≼ (n†)r.

(In particular, [m0] ⩽ [n†], with equality if m > 0.)

Proof. From v(n†) ⩽ 0 we obtain v(m0) ⩽ · · · ⩽ v(mr). We have 0 ⩽ v(aj/am)
for j = 0, . . . , r and so

rv(n†) ⩽ min
0⩽j⩽r

v(aj/am) + jv(n†) = v(m0) ⩽ mv(n†)

as required. □

Lemma 3.1.12. Suppose ∂O ⊆ O. Then

n† ≼ 1 =⇒ v(A⋉n) = v(A), n† ≻ 1 =⇒ |v(A⋉n)− v(A)| ⩽ −rv(n†).
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Proof. Let R := RiA. Then v(A⋉n) = v(R+n†) by [ADH, 5.8.11]. If n† ≼ 1,
then v(R+n†) = v(R) by [ADH, 4.5.1(i)], hence v(A⋉n) = v(R) = v(A) by [ADH,
5.8.10]. Now suppose n† ≻ 1. Claim: v(A⋉n) − v(A) ⩾ rv(n†). To prove this
claim we replace A by a−1A, where a ≍ A, to arrange A ≍ 1. Let i, j range
over {0, . . . , r}. We have R+n† =

∑
i biRi where

bi =
∑
j⩾i

(
j

i

)
ajRj−i(n

†).

Take mi ∈ K× as in Lemma 3.1.11. By Lemma 1.1.17 we have Rn(n
†) ∼ (n†)n for

all n; hence v(bi) ⩾ v(mi) for all i. Thus

v(A⋉n)− v(A) = v(A⋉n) = v(R+n†) ⩾ min
i
v(bi) ⩾ v(m0) ⩾ rv(n†)

by Lemma 3.1.11, proving our claim. Applying this claim with A⋉n, n
−1 in place

of A, n also yields v(A⋉n)− v(A) ⩽ −rv(n†), thus |v(A⋉n)− v(A)| ⩽ −rv(n†). □

Remark. Suppose that ∂O ⊆ O and n† ≻ 1. Then Lemma 3.1.12 improves on
Lemma 3.1.9, since v(n†) = o(vn) by [ADH, 6.4.1(iii)].

Lemma 3.1.13. Suppose ∂O ⊆ O and n† ≼ v(A)−1. Let B ∈ K[∂] and s ∈ N be
such that order(B) ⩽ s and B ≺ v(A)s+1A. Then B⋉n ≺ v(A⋉n)A⋉n.

Proof. We may assume B ̸= 0 and s = order(B). It suffices to show B⋉n ≺ v(A)A.
If n† ≼ 1, then Lemma 3.1.12 applied to B in place of A yields B⋉n ≍ B ≺ v(A)A.
Suppose n† ≻ 1. Then Lemma 3.1.12 gives |v(B⋉n)− v(B)| ⩽ −sv(n†) ⩽ sv(v(A))
and hence B⋉n ≼ v(A)−sB ≺ v(A)A. □

If ∂O ⊆ O, then we have functions dwmA,dwtA : Γ → N as defined in [ADH, 5.6].
Combining Lemmas 3.1.1 and 3.1.13 yields a variant of [ADH, 6.1.7]:

Corollary 3.1.14. Suppose ∂O ⊆ O and n† ≼ v(A)−1. Let B ∈ K[∂] be
such that order(B) ⩽ r and B ≺ v(A)r+1A. Then dwmA+B(vn) = dwmA(vn)
and dwtA+B(vn) = dwtA(vn). In particular,

vn ∈ E (A+B) ⇐⇒ vn ∈ E (A).

About A(nq) and Anq. Suppose ml = ±nk where k, l ∈ Z, l ̸= 0. Then m† = qn†

with q = k/l ∈ Q. In particular, if K is real closed or algebraically closed, then for
any n and q ∈ Q we have m† = qn† for some m.

Below in this subsection K is d-valued and n is such that for all q ∈ Q> we are
given an element of K×, denoted by nq for suggestiveness, with (nq)† = qn†.

Let q ∈ Q>; then v(nq) = qv(n): to see this we may arrange that K is algebraically
closed by [ADH, 10.1.23], and hence contains an m such that vm = q vn and m† =
qn† = (nq)†, and thus v(nq) = vm = q vn.

Lemma 3.1.15. Suppose n† ≽ 1. Then for all but finitely many q ∈ Q>,

v
(
A(nq)

)
= v(nq) + min

j
v(aj) + jv(n†).

Proof. Let q ∈ Q> and take b0, . . . , br ∈ K with Anq = b0 + b1∂ + · · ·+ br∂
r. Then

b0 = A(nq) = nq
(
a0R0(qn

†) + a1R1(qn
†) + · · ·+ arRr(qn

†)
)
.

Let i, j range over {0, . . . , r}. By Lemma 1.1.17, Ri(qn
†) ∼ qi(n†)i for all i. Take m

(independent of q) such that v(m) = minj v(aj)+jv(n
†), and let I be the nonempty
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set of i with m ≍ ai(n
†)i. For i ∈ I we take ci ∈ C× such that ai(n

†)i ∼ cim, and
set R :=

∑
i∈I ciY

i ∈ C[Y ] ̸=. Therefore, if R(q) ̸= 0, then∑
i∈I

aiRi(qn
†) ∼ mR(q).

Assume R(q) ̸= 0 in what follows. Then
r∑

i=0

aiRi(qn
†) ∼

∑
i∈I

aiRi(qn
†) ∼ mR(q) ≍ m,

hence b0 ≍ mnq, in particular, b0 ̸= 0. □

Lemma 3.1.16. Assume n† ≽ 1 and [v] < [n] for v := v(A). Then
[
v(Anq)

]
< [n]

for all q ∈ Q>, and for all but finitely many q ∈ Q> we have v(Anq) ≼ v, and
thus [v] ⩽

[
v(Anq)

]
.

Proof. Let q ∈ Q>. Then [v] < [n] = [nq], so [v(Anq)] < [nq] = [n] by Corol-
lary 3.1.10. To show the second part, let m = dwt(A). Replacing A by a−1

m A we
arrange am = 1, so ar = v, A ≍ 1. Take b0, . . . , br with Anq = b0 + b1∂+ · · ·+ br∂

r.
As in the proof of Lemma 3.1.15 we obtain an m and a polynomial R(Y ) ∈ C[Y ]̸=

(both independent of q) such that v(m) = minj v(aj) + jv(n†), and b0 ≍ mnq

if R(q) ̸= 0. Assume R(q) ̸= 0 in what follows; we show that then v(Anq) ≼ v.
For n := dwt(Anq),

b0v(An
q) ≼ bnv(An

q) = br = nqv,

hence v(Anq) ≼ v/m. It remains to note that m ≽ am(n†)m = (n†)m ≽ 1. □

Lemma 3.1.17. Assume n† ≽ 1 and m satisfies

vm+ v(A) = min
0⩽j⩽r

v(aj) + jv(n†).

Then [m] ⩽ [n†], with equality if dwt(A) > 0, and for all but finitely many q ∈ Q>,

Anq ≍ mnq A, v(A)/v(Anq) ≍ m.

Proof. Replacing A by a−1
m A where m = dwt(A) we arrange am = 1, so ar = v :=

v(A) and A ≍ 1. Let i, j range over {0, . . . , r}. Let q ∈ Q>, and take bi ∈ K such
that Anq =

∑
i bi∂

i. By [ADH, (5.1.3)] we have

bi =
1

i!
A(i)(nq) = nq

1

i!
Ri(A(i))(qn†) = nq

∑
j⩾i

(
j

i

)
ajRj−i(qn

†).

Take mi ∈ K× as in Lemma 3.1.11. Then m0 ≍ m (so [m] ⩽ [n†], with equality
if m > 0), and mr ≍ v. Lemma 3.1.15 applied to A(i)/i! instead of A gives that for
all but finitely q ∈ Q> we have bi ≍ min

q for all i. Assume that q ∈ Q> has this
property. From v(m) = v(m0) ⩽ · · · ⩽ v(mr) = v(v) we obtain

v(m) + qv(n) = v(b0) ⩽ · · · ⩽ v(br) = v(v) + q v(n).

With n = dwt(Anq) this gives v(b0) = · · · = v(bn) = v(Anq). Thus

v(Anq) = br/bn ≍ br/b0 ≍ (nqv)/(nqm) = v/m

as claimed. □

The next lemma (not used later) is a more precise version of Lemma 3.1.17, but
with an additional hypothesis on n†:
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Lemma 3.1.18. Assume n† ≻ v(A)−1. Then

A(n) ∼ An ∼ arn(n
†)r ∼ arn

(r), v(An) ∼ (n†)−r.

Proof. Let i, j range over {0, . . . , r} and take bi ∈ K such that An =
∑

i bi∂
i, so bi =

n
∑

j⩾i

(
j
i

)
ajRj−i(n

†). By Lemma 1.1.16 we have Rj−i(n
†) ∼ (n†)j−i for i ⩽ j.

From n† ≻ v−1 ≽ 1 we get for i ⩽ j < r:

ar(n
†)r−i ≽ arn

†(n†)j−i ≻ arv
−1(n†)j−i ≽ aj(n

†)j−i.

Therefore bi ∼ n
(
r
i

)
ar(n

†)r−i, from which the first displayed equivalences follow.

Now dwt(An) = 0 and so v(An) = br/b0 = (nar)/A(n) ∼ (n†)−r as claimed. □

Let v ∈ K× with v ̸≍ 1; so we have the proper convex subgroup of Γ given by

∆(v) =
{
γ ∈ Γ : γ = o(vv)

}
=
{
γ ∈ Γ : [γ] < [v]

}
.

If K is H-asymptotic, then we also have the convex subgroup

∆ =
{
γ ∈ Γ : γ† > v(v†)

}
of Γ with ∆ ⊆ ∆(v). If K is H-asymptotic of Hardy type (Section 1.2), then we
have ∆ = ∆(v), and hence the relations ≼∆(v), ≺∆(v), ≍∆(v) agree with ≼v, ≺v,
≍v, respectively, from [ADH, p. 407].

Corollary 3.1.19. Suppose n† ≽ 1 and [n†] < [v] where v := v(A) (so 0 ̸= v ≺ 1).
Let B ∈ K[∂] and w ⩾ r be such that B ≺∆(v) vwA. Then for all but finitely
many q ∈ Q> we have w := v(Anq) ≍∆(v) v and Bnq ≺∆(w) w

wAnq.

Proof. The case B = 0 is trivial, so assume B ̸= 0. Take m as in Lemma 3.1.17,
and take mB likewise with B in place of A. By this lemma, [m], [mB ] ⩽ [n†] < [v],
hence m,mB ≍∆(v) 1. Moreover, for all but finitely many q ∈ Q> we have Anq ≍
mnqA, Bnq ≍ mBn

qB, and v/w ≍ m where w := v(Anq); assume that q ∈ Q> has
these properties. Then B ≺∆(v) v

wA yields

Bnq ≍ mBn
qB ≺∆(v) mnqvwA ≍ vwAnq.

Now m ≍∆(v) 1 gives v ≍∆(v) w, hence Bnq ≺∆(w) w
wAnq. □

The behavior of the span under compositional conjugation. If K is H-
asymptotic with asymptotic integration, then Ψ ∩ Γ> ̸= ∅, but it is convenient
not to require “asymptotic integration” in some lemmas below. Instead: In this
subsection K is H-asymptotic and ungrounded with Ψ∩ Γ> ̸= ∅. We let ϕ, v range
overK×. We say that ϕ is active if ϕ is active inK. Recall from [ADH, pp. 290–292]
that δ denotes the derivation ϕ−1

∂ of Kϕ, and that

(3.1.1) Aϕ = arϕ
r
δ
r + lower order terms in δ.

Lemma 3.1.20. Suppose v := v(A) ≺♭ 1 and ϕ ≼ 1 is active. Then

A ≍∆(v) Aϕ, v ≍∆(v) v(Aϕ) ≺♭ 1, v, v(Aϕ) ≺♭
ϕ 1.

Proof. From ϕ† ≺ 1 ≼ v† we get [ϕ] < [v], so ϕ ≍∆(v) 1. Hence Aϕ ≍∆(v) A

by [ADH, 11.1.4]. For the rest we can arrange A ≍ 1, so Aϕ ≍∆(v) 1 and v ≍ ar.

In view of (3.1.1) this yields v(Aϕ) ≍∆(v) arϕ
r ≍∆(v) v. So v(Aϕ)† ≍ v† ≽ 1, which

gives v(Aϕ) ≺♭ 1, and also v, v(Aϕ) ≺♭
ϕ 1. □

Lemma 3.1.21. If nwt(A) = r, then v(Aϕ) = 1 eventually, and if nwt(A) < r,
then v(Aϕ) ≺♭

ϕ 1 eventually.
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Proof. Clearly, if nwt(A) = r, then dwt(Aϕ) = r and so v(Aϕ) = 1 eventually.
Suppose nwt(A) < r. To show that v(Aϕ) ≺♭

ϕ 1 eventually, we may replace A

by Aϕ0 for suitable active ϕ0 and assume that n := nwt(A) = dwt(Aϕ) = dwm(Aϕ)
for all active ϕ ≼ 1. Thus v(Aϕ) = v(A) + nvϕ for all active ϕ ≼ 1 by [ADH,
11.1.11(i)]. Using (3.1.1) we therefore obtain for active ϕ ≼ 1:

v(Aϕ) ≍ arϕ
r/anϕ

n = v(A)ϕr−n ≼ ϕr−n ≼ ϕ.

Take x ∈ K× with x ̸≍ 1 and x′ ≍ 1; then x ≻ 1, so x−1 ≍ x† ≺ 1 is active. Hence
for active ϕ ≼ x−1 we have ϕ ≺♭

ϕ 1 and thus v(Aϕ) ≺♭
ϕ 1. □

Corollary 3.1.22. The following conditions on K are equivalent:

(i) K is λ-free;
(ii) nwt(B) ⩽ 1 for all B ∈ K[∂] (so v(Bϕ) ≺♭

ϕ 1 eventually);

(iii) nwt(B) ⩽ 1 for all B ∈ K[∂] of order 2.

Proof. The implication (i) ⇒ (ii) follows from [ADH, 13.7.10] and Lemma 3.1.21,
and (ii) ⇒ (iii) is clear. Suppose K is not λ-free. Take λ ∈ K such that ϕ† + λ ≺ ϕ
for all active ϕ ([ADH, 11.6.1]); set B := (∂ + λ)∂ = ∂

2 + λ∂. Then for active ϕ we
have Bϕ = ϕ2

(
δ
2 + (ϕ† + λ)ϕ−1

δ
)
, so dwt(Bϕ) = 2. Thus (iii) ⇒ (i). □

Lemma 3.1.20 leads to an “eventual” version of Corollary 3.1.14:

Lemma 3.1.23. Suppose K is λ-free and B ∈ K[∂] is such that order(B) ⩽ r
and B ≺∆(v) v

r+1A, where v := v(A) ≺♭ 1. Then E e(A+B) = E e(A).

Proof. By [ADH, 10.1.3, 11.7.18] and Corollary 1.7.10 we can pass to an extension
to arrange that K is ω-free. Next, by [ADH, 11.7.23] and (0.7) we extend fur-
ther to arrange that K is algebraically closed and newtonian, and thus d-valued
by Lemma 1.2.9. Then E e(A) = v(ker ̸=A) by Proposition 1.4.2, and A splits
over K by (0.8). It remains to show that E e(A) ⊆ E e(A + B): the reverse
inclusion then follows by interchanging A and A + B, using v(A) ∼ v(A + B).

Let γ ∈ E e(A). Take n ∈ ker ̸=A with vn = γ. Then A ∈ K[∂](∂ − n†) by [ADH,
5.1.21] and so n† ≼ v−1, by [ADH, 5.1.22] and Corollary 3.1.6. Now E e(A) ⊆ E (A),
so γ = vn ∈ E (A+B) by Corollary 3.1.14. Let ϕ ≼ 1 be active; it remains to show
that then γ ∈ E

(
(A+B)ϕ

)
. By Lemma 3.1.20, Aϕ ≍∆(v) A; also B

ϕ ≼ B by [ADH,

11.1.4]. Lemma 3.1.20 gives v ≍∆(v) v(Aϕ), hence Bϕ ≺∆(v) v(Aϕ)r+1Aϕ. Thus

withKϕ, Aϕ, Bϕ in the role ofK, A, B, the above argument leading to γ ∈ E (A+B)
gives γ ∈ E (Aϕ +Bϕ) = E

(
(A+B)ϕ

)
. □

For r = 1 we can weaken the hypothesis of λ-freeness:

Corollary 3.1.24. Suppose K has asymptotic integration, r = 1, and B ∈ K[∂] of
order ⩽ 1 satisfies B ≺∆(v) v

2A, where v := v(A) ≺♭ 1. Then E e(A+B) = E e(A).

Proof. Using Lemma 1.2.10 we replace K by an immediate extension to ar-
range I(K) ⊆ K†. Then E e(A) = v(ker ̸=A) by Lemma 1.4.9. Now argue as in
the proof of Lemma 3.1.23. □

In the next proposition and its corollary K is d-valued with algebraically closed
constant field C and divisible group K† of logarithmic derivatives. We choose a
complement Λ of the Q-linear subspace K† of K. Then we have the set E u(A) of
ultimate exceptional values of A with respect to Λ. The following stability result
will be crucial in Section 4.4:
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Proposition 3.1.25. Suppose K is ω-free, I(K) ⊆ K†, and B ∈ K[∂] of order ⩽ r
satisfies B ≺∆(v) v

r+1A, where v := v(A) ≺♭ 1. Then E u(A+B) = E u(A).

Proof. Let Ω be the differential fraction field of the universal exponential exten-
sion U = K

[
e(Λ)

]
of K from Section 2.2. Equip Ω with a spectral extension of

the valuation of K; see Section 2.5. Apply Lemma 3.1.23 to Ω in place of K to
get E e

Ω(A+B) = E e
Ω(A). Hence E u(A+B) = E u(A) by (2.5.3). □

In a similar manner we obtain an analogue of Corollary 3.1.24:

Corollary 3.1.26. Suppose K has asymptotic integration, I(K) ⊆ K†, r = 1,
and B ∈ K[∂] satisfies order(B) ⩽ 1 and B ≺∆(v) v2A, where v := v(A) ≺♭ 1.
Then E u(A+B) = E u(A).

Proof. Let Ω be as in the proof of Proposition 3.1.25. Then Ω is ungrounded

by Lemma 2.5.3, hence |E e
Ω(A)| ⩽ 1 and v(ker ̸=Ω A) ⊆ E e

Ω(A) by [ADH, p. 481].

But dimC kerΩA = 1, so v(ker ̸=Ω A) = E e
Ω(A). The proof of Lemma 3.1.23 with Ω in

place of K now gives E e
Ω(A+B) = E e

Ω(A), so E u(A+B) = E u(A) by (2.5.3). □

In the “real” case we have the following variant of Proposition 3.1.25:

Proposition 3.1.27. Suppose K = H[i], i2 = −1, where H is a real closed H-field
with asymptotic integration such that H† = H and I(H)i ⊆ K†. Let B ∈ K[∂] of
order ⩽ r be such that B ≺∆(v) v

r+1A with v := v(A) ≺♭ 1. Let Λ be a complement

of the subspace K† of the Q-linear space K. Then E u(A+B) = E u(A), where the
ultimate exceptional values are with respect to Λ.

Proof. Take an H-closed extension F of H with CF = CH as in Corollary 2.5.23.
Then the algebraically closed d-valued H-asymptotic extension L := F [i] of K is
ω-free, CL = C, I(L) ⊆ L†, and L† ∩ K = K†. Take a complement ΛL ⊇ Λ of
the subspace L† of the Q-linear space L. Let UL = L

[
e(ΛL)

]
be the universal

exponential extension of L from Section 2.2; it has the universal exponential ex-
tension U := K

[
e(Λ)

]
of K as a differential subring. Let Ω, ΩL be the differential

fraction fields of U, UL, respectively, and equip ΩL with a spectral extension of the
valuation of L; then the restriction of this valuation to Ω is a spectral extension of
the valuation of K (see remarks preceding Lemma 2.5.16). Lemma 3.1.23 applied
to ΩL in place of K yields E e

ΩL
(A + B) = E e

ΩL
(A), hence E e

Ω(A + B) = E e
Ω(A) by

Lemma 2.5.16 and thus E u(A+B) = E u(A). □

The span of the linear part of a differential polynomial. In this subsec-
tion P ∈ K{Y } ̸= has order r. Recall that the linear part of P is the differential
operator

LP :=
∑
n

∂P

∂Y (n)
(0) ∂

n ∈ K[∂]

of order ⩽ r. We have LP×m
= LPm [ADH, p. 242]; hence items 3.1.9, 3.1.10

and 3.1.12 above yield information about the span of LP×m
(provided LP ̸= 0). We

now want to similarly investigate the span of the linear part

LP+a =
∑
n

∂P

∂Y (n)
(a) ∂

n
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of the additive conjugate P+a of P by some a ≺ 1. In the next two lemmas we
assume order(LP ) = r (in particular, LP ̸= 0), v(LP ) ≺ 1, and a ≺ 1, we set

L := LP , L+ := LP+a
, v := v(L),

and set Ln := ∂P
∂Y (n) (0) and L+

n := ∂P
∂Y (n) (a), so L =

∑
n Ln∂

n, L+ =
∑

n L
+
n ∂

n.
Recall from [ADH, 4.2] the decomposition of P into homogeneous parts: P =

∑
d Pd

where Pd =
∑

|i|=d PiY
i; we set P>1 :=

∑
d>1 Pd.

Lemma 3.1.28. Suppose P>1 ≺∆(v) vP1 and n ⩽ r. Then

(i) L+
r ∼∆(v) Lr, and thus order(L+) = order(L) = r;

(ii) if Ln ≍∆(v) L, then L
+
n ∼∆(v) Ln, and so v(L+

n ) = v(Ln);

(iii) if Ln ≺∆(v) L, then L
+
n ≺∆(v) L, and so v(L+

n ) > v(L).

In particular, L+ ∼∆(v) L, dwtL
+ = dwtL, and v(L+) ∼∆(v) v.

Proof. Take Q,R ∈ K{Y } with degY (n) Q ⩽ 0 and R ∈ Y (n)K{Y }, such that

P = Q+ (Ln +R)Y (n), so
∂P

∂Y (n)
=

∂R

∂Y (n)
Y (n) + Ln +R.

Now R ≺∆(v) vP1, so
∂P

∂Y (n) − Ln ≺∆(v) vP1. In K[∂] we thus have

L+
n − Ln =

∂P

∂Y (n)
(a)− Ln ≺∆(v) vL ≍ Lr.

So L+
n −Ln ≺∆(v) L and (taking r = n) L+

r −Lr ≺∆(v) Lr. This yields (i)–(iii). □

Lemma 3.1.29. Suppose P>1 ≺∆(v) v
m+1P1, and let A,B ∈ K[∂] be such that L =

A+B, B ≺∆(v) v
m+1L. Then

L+ = A+B+ where B+ ∈ K[∂], B+ ≺∆(v) vm+1L+.

In particular, L− L+ ≺∆(v) v
m+1L.

Proof. Let An, Bn ∈ K be such that A =
∑

nAn∂
n and B =

∑
nBn∂

n, so Ln =
An +Bn. Let any n (possibly > r) be given and take Q,R ∈ K{Y } as in the proof
of Lemma 3.1.28. Then R ≺∆(v) v

m+1P1. Since B ≺∆(v) v
m+1L, this yields

∂P

∂Y (n)
−An =

∂R

∂Y (n)
Y (n) +Bn +R ≺∆(v) vm+1P1.

We have L+
n = ∂P

∂Y (n) (a), so

L+
n −An =

∂P

∂Y (n)
(a)−An ≺∆(v) vm+1L.

By Lemma 3.1.28 we have L+ ∼∆(v) L, hence B
+ = L+ −A ≺∆(v) v

m+1L+. □

3.2. Holes and Slots

Throughout this section K is an H-asymptotic field with small derivation and with
rational asymptotic integration. We set Γ := v(K×). So K is pre-d-valued, Γ ̸= {0}
has no least positive element, and Ψ ∩ Γ> ̸= ∅. We let a, b, f , g range over K,
and ϕ, m, n, v, w (possibly decorated) over K×. As at the end of the previous
section we shorten “active in K” to “active”.
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Holes. A hole in K is a triple (P,m, â) where P ∈ K{Y } \K and â is an element

of K̂ \ K, for some immediate asymptotic extension K̂ of K, such that â ≺ m

and P (â) = 0. (The extension K̂ may vary with â.) The order, degree, and
complexity of a hole (P,m, â) in K are defined as the order, (total) degree, and
complexity, respectively, of the differential polynomial P . A hole (P,m, â) in K
is called minimal if no hole in K has smaller complexity; then P is a minimal
annihilator of â over K.

If (P,m, â) is a hole inK, then â is aK-external zero of P , in the sense of Section 1.7.
Conversely, every K-external zero â of a differential polynomial P ∈ K{Y } ̸= gives
for every m ≻ â a hole (P,m, â) in K. By Proposition 1.7.35 and Corollary 1.7.41:

Lemma 3.2.1. Let r ∈ N⩾1, and suppose K is λ-free. Then

K is ω-free and r-newtonian ⇐⇒ K has no hole of order ⩽ r.

Thus for ω-free K, being newtonian is equivalent to having no holes. Recall that K
being henselian is equivalent to K having no proper immediate algebraic valued
field extension, and hence to K having no hole of order 0.

Minimal holes are like the “minimal counterexamples” in certain combinatorial
settings, and we need to understand such holes in a rather detailed way for later
use in inductive arguments. Below we also consider the more general notion of Z-
minimal hole, which has an important role to play as well. We recall that Z(K, â)
is the set of all Q ∈ K{Y } ̸= that vanish at (K, â) as defined in [ADH, 11.4].

Lemma 3.2.2. Let (P,m, â) be a hole in K. Then P ∈ Z(K, â). If (P,m, â) is
minimal, then P is an element of minimal complexity of Z(K, â).

Proof. Let a, v with â − a ≺ v. Since â /∈ K lies in an immediate extension of K
we can take n with n ≍ â − a. By [ADH, 11.2.1] we then have ndeg≺v P+a ⩾
ndegP+a,×n ⩾ 1. Hence P ∈ Z(K, â). Suppose P is not of minimal complexity
in Z(K, â). Take Q ∈ Z(K, â) of minimal complexity. Then [ADH, 11.4.8] yields

a K-external zero b̂ of Q, and any n ≻ b̂ gives a hole (Q, n, b̂) in K of smaller
complexity than (P,m, â). □

In connection with the next result, note that K being 0-newtonian just means
that K is henselian as a valued field.

Corollary 3.2.3. Suppose K is λ-free and has a minimal hole of order r ⩾ 1.
Then K is (r − 1)-newtonian, and ω-free if r ⩾ 2.

Proof. This is clear for r = 1 (and doesn’t need λ-freeness), and for r ⩾ 2 follows
from Lemma 3.2.1. □

Corollary 3.2.4. Suppose K is ω-free and has a minimal hole of order r ⩾ 2.
Assume also that C is algebraically closed and Γ is divisible. Then K is d-valued,
r-linearly closed, and r-linearly newtonian.

Proof. This follows from Lemma 1.2.9, Corollary 1.7.42, and Corollary 3.2.3. □

Here is a linear version of Lemma 3.2.1:

Lemma 3.2.5. If K is λ-free, then

K is 1-linearly newtonian ⇐⇒ K has no hole of degree 1 and order 1.
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If r ∈ N⩾1 and K is ω-free, then

K is r-linearly newtonian ⇐⇒ K has no hole of degree 1 and order ⩽ r.

Proof. The first statement follows from Lemma 1.7.33, and the second statement
from Lemma 1.7.34. □

Corollary 3.2.6. If K is ω-free and has a minimal hole in K of order r and
degree > 1, then K is r-linearly newtonian.

Lemma 3.2.7. Suppose K has a hole (P,m, â) of degree 1, and LP ∈ K[∂]̸= splits
over K. Then K has a hole of complexity (1, 1, 1).

Proof. Let (P,m, â) as in the hypothesis have minimal order. Then orderP ⩾ 1,
so orderP = orderLP . Take A,B ∈ K[∂] such that orderA = 1 and LP = AB.
If orderB = 0, then (P,m, â) has complexity (1, 1, 1). Assume orderB ⩾ 1.
Then B(â) /∈ K: otherwise, taking Q ∈ K{Y } of degree 1 with LQ = B and Q(0) =
−B(â) yields a hole (Q,m, â) in K where degQ = 1 and LQ splits over K,

and (Q,m, â) has smaller order than (P,m, â). Set b̂ := B(â) and take R ∈ K{Y }
of degree 1 with LR = A and R(0) = P (0). Then

R(̂b) = R(0) + LR(̂b) = P (0) + LP (â) = P (â) = 0,

hence for any n ≻ b̂, (R, n, b̂) is a hole in K of complexity (1, 1, 1). □

Corollary 3.2.8. Suppose K is ω-free, C is algebraically closed, and Γ is divisible.
Then every minimal hole in K of degree 1 has order 1. If in addition K is 1-linearly
newtonian, then every minimal hole in K has degree > 1.

Proof. The first statement follows from Corollary 3.2.4 and the preceding lemma.
For the second statement, use the first and Lemma 3.2.5. □

Let (P,m, â) be a hole in K. We say (P,m, â) is Z-minimal if P has minimal
complexity in Z(K, â). Thus if (P,m, â) is minimal, then it is Z-minimal by Lem-
ma 3.2.2. If (P,m, â) is Z-minimal, then by [ADH, remarks following 11.4.3],
the differential polynomial P is a minimal annihilator of â over K. Note also
that ndegP×m ⩾ 1 by [ADH, 11.2.1]. In more detail:

Lemma 3.2.9. Let (P,m, â) be a hole in K. Then for all n with â ≺ n ≼ m,

1 ⩽ dmulP×n ⩽ ddegP×n ⩽ ddegP×m.

In particular, ddeg≺m P ⩾ 1.

Proof. Assume â ≺ n ≼ m. Then â = nb̂ with b̂ ≺ 1; put Q := P×n ∈ K{Y }̸=.
Then Q(̂b) = 0, hence DQ(0) = 0 and so dmulQ = dmulP×n ⩾ 1. The rest follows
from [ADH, 6.6.5(ii), 6.6.7, 6.6.9] and Γ> having no least element. □

In the next lemma, (λρ), (ωρ) are pc-sequences in K as in [ADH, 11.5, 11.7].

Lemma 3.2.10. Suppose K is λ-free and ω ∈ K is such that ωρ ⇝ ω (so K is not
ω-free). Then we have a hole (P,m, λ) in K where P = 2Y ′ + Y 2 + ω and λρ ⇝ λ,
and each such hole in K is a Z-minimal hole in K.

Proof. From [ADH, 11.7.13] we obtain λ in an immediate asymptotic extension
of K such that λρ ⇝ λ and P (λ) = 0. Taking any m with λ ≺ m then yields a
hole (P,m, λ) in K with λρ ⇝ λ, and each such hole in K is a Z-minimal hole in K
by [ADH, 11.4.13, 11.7.12]. □
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Corollary 3.2.11. If K is λ-free but not ω-free, then each minimal hole in K
of positive order has complexity (1, 1, 1) or complexity (1, 1, 2). If K is a Liouville
closed H-field and not ω-free, then (P,m, λ) is a minimal hole of complexity (1, 1, 2),
where ω, P , λ, m are as in Lemma 3.2.10.

Here the second part uses Corollary 1.7.29 and Lemma 3.2.5.

Slots. In some arguments the notion of a hole in K turns out to be too stringent.
Therefore we introduce a more flexible version of it:

Definition 3.2.12. A slot in K is a triple (P,m, â) where P ∈ K{Y } \K and â

is an element of K̂ \ K, for some immediate asymptotic extension K̂ of K, such
that â ≺ m and P ∈ Z(K, â). The order, degree, and complexity of such a
slot in K are defined to be the order, degree, and complexity of the differential
polynomial P , respectively. A slot in K of degree 1 is also called a linear slot
in K. A slot (P,m, â) in K is Z-minimal if P is of minimal complexity among
elements of Z(K, â).

Thus by Lemma 3.2.2, holes in K are slots in K, and a hole in K is Z-minimal iff
it is Z-minimal as a slot in K. From [ADH, 11.4.13] we obtain:

Corollary 3.2.13. Let (P,m, â) be a Z-minimal slot in K and (aρ) be a divergent
pc-sequence in K such that aρ ⇝ â. Then P is a minimal differential polynomial
of (aρ) over K.

We say that slots (P,m, â) and (Q, n, b̂) in K are equivalent if P = Q, m = n,

and v(â− a) = v(̂b− a) for all a; note that then Z(K, â) = Z(K, b̂), so (P,m, â) is

Z-minimal iff (P,m, b̂) is Z-minimal. Clearly this is an equivalence relation on the
class of slots in K. The following lemma often allows us to pass from a Z-minimal
slot to a Z-minimal hole:

Lemma 3.2.14. Let (P,m, â) be a Z-minimal slot in K. Then (P,m, â) is equiva-
lent to a Z-minimal hole in K.

Proof. By [ADH, 11.4.8] we obtain b̂ in an immediate asymptotic extension of K

with P (̂b) = 0 and v(â − a) = v(̂b − a) for all a. In particular b̂ /∈ K, b̂ ≺ m,

so (P,m, b̂) is a hole in K equivalent to (P,m, â). □

By [ADH, 11.4.8] the extension below containing b̂ is not required to be immediate:

Corollary 3.2.15. If (P,m, â) is a Z-minimal hole in K and b̂ in an asymptotic

extension of K satisfies P (̂b) = 0 and v(â − a) = v(̂b − a) for all a, then there is

an isomorphism K⟨â⟩ → K ⟨̂b⟩ of valued differential fields over K sending â to b̂.

In particular, equivalent Z-minimal holes (P,m, â), (P,m, b̂) in K yield an isomor-

phism K⟨â⟩ → K ⟨̂b⟩ of valued differential fields over K sending â to b̂.

From Lemmas 3.2.1 and 3.2.14 we obtain:

Corollary 3.2.16. Let r ∈ N⩾1, and suppose K is ω-free. Then

K is r-newtonian ⇐⇒ K has no slot of order ⩽ r.
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Let (P,m, â) be a slot in K. Then (bP,m, â) for b ̸= 0 is a slot in K of the same
complexity as (P,m, â), and if (P,m, â) is Z-minimal, then so is (bP,m, â); likewise
with “hole in K” in place of “slot in K”. For active ϕ we have the compositional
conjugate (Pϕ,m, â) by ϕ of (P,m, â): it is a slot in Kϕ of the same complexity
as (P,m, â), it is Z-minimal if (P,m, â) is, and it is a hole (minimal hole) in Kϕ

if (P,m, â) is a hole (minimal hole, respectively) in K. If the slots (P,m, â), (Q, n, b̂)

in K are equivalent, then so are (bP,m, â), (bQ, n, b̂) for b ̸= 0, as well as the

slots (Pϕ,m, â), (Qϕ, n, b̂) in Kϕ for active ϕ.

The following conventions are in force in the rest of this section:

We let r range over natural numbers ⩾ 1 and let (P,m, â) denote a slot in K of
order r, so P /∈ K[Y ] has order r. We set w := wt(P ), so w ⩾ r ⩾ 1.

Thus wt(P+a) = wt(P×n) = wt(Pϕ) = w.

Refinements and multiplicative conjugates. For a, n such that â−a ≺ n ≼ m
we obtain a slot (P+a, n, â− a) in K of the same complexity as (P,m, â) [ADH,
4.3, 11.4]. Slots of this form are said to refine (P,m, â) and are called refine-
ments of (P,m, â). A refinement of a refinement of (P,m, â) is itself a refine-
ment of (P,m, â). If (P,m, â) is Z-minimal, then so is any refinement of (P,m, â).
If (P,m, â) is a hole in K, then so is each of its refinements, and likewise with
“minimal hole” in place of “hole”. For active ϕ, (P+a, n, â − a) refines (P,m, â)

iff (Pϕ
+a, n, â− a) refines (Pϕ,m, â). If (P,m, â), (P,m, b̂) are equivalent slots in K

and (P+a, n, â− a) refines (P,m, â), then (P+a, n, b̂− a) refines (P,m, b̂), and the

slots (P+a, n, â− a), (P+a, n, b̂− a) in K are equivalent. Conversely, if (P,m, â)

and (P,m, b̂) are slots in K with equivalent refinements, then (P,m, â) and (P,m, b̂)
are equivalent.

Lemma 3.2.17. Let (P+a, n, â − a) be a slot in K. Then (P+a, n, â − a) re-
fines (P,m, â), or (P,m, â) refines (P+a, n, â− a).

Proof. If n ≼ m, then â − a ≺ n ≼ m, so (P+a, n, â − a) refines (P,m, â), whereas
if m ≺ n, then (â− a)− (−a) = â ≺ m ≼ n, so

(P,m, â) =
(
(P+a)+(−a),m, (â− a)− (−a)

)
refines (P+a, n, â− a). □

Lemma 3.2.18. Let Q ∈ K{Y } ̸= be such that Q /∈ Z(K, â). Then there is a re-
finement (P+a, n, â− a) of (P,m, â) such that ndegQ+a,×n = 0 and â− a ≺ n ≺ â.

Proof. Take b, v such that â− b ≺ v and ndeg≺vQ+b = 0. We shall find an a such
that ndeg≺vQ+a = 0, â − a ≼ â, and â − a ≺ v: if â − b ≼ â, we take a := b;
if â− b ≻ â, then −b ∼ â− b and so ndeg≺vQ = ndeg≺vQ+b = 0 by [ADH, 11.2.7],
hence a := 0 works. We next arrange â−a ≺ â: if â−a ≍ â, take a1 with â−a1 ≺ â,
so a − a1 ≺ v, hence ndeg≺vQ+a1

= ndeg≺vQ+a = 0, and thus a can be replaced
by a1. Since Γ> has no least element, we can choose n with â− a ≺ n ≺ â, v, and
then (P+a, n, â− a) refines (P,m, â) as desired. □

If (P+a,m, â− a) refines (P,m, â), then DP+a,×m
= DP×m,+(a/m)

= DP×m
by [ADH,

6.6.5(iii)], and thus

ddegP+a,×m = ddegP×m, dmulP+a,×m = dmulP×m.
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In combination with Lemma 3.2.9 this has some useful consequences:

Corollary 3.2.19. Suppose (P,m, â) is a hole in K such that ddegP×m = 1.
Then ddeg≺m P = 1, and for all n with â ≺ n ≼ m, (P, n, â) refines (P,m, â)
with ddegP×n = dmulP×n = 1.

Corollary 3.2.20. Suppose (P+a, n, â− a) refines the hole (P,m, â) in K. Then

ddegP×m = 1 =⇒ ddegP+a,×n = dmulP+a,×n = 1.

Proof. Use

1 ⩽ dmulP+a,×n ⩽ ddegP+a,×n ⩽ ddegP+a,×m = ddegP×m,

where the first inequality follows from Lemma 3.2.9 applied to (P+a, n, â− a). □

If (P+a,m, â− a) refines (P,m, â), then in analogy with ddeg and dmul,

ndegP+a,×m = ndegP×m, nmulP+a,×m = nmulP×m.

(Use compositional conjugation by active ϕ.) Lemma 3.2.9 goes through for slots,
provided we use ndeg and nmul instead of ddeg and dmul:

Lemma 3.2.21. Suppose â ≺ n ≼ m. Then

1 ⩽ nmulP×n ⩽ ndegP×n ⩽ ndegP×m.

Proof. By [ADH, 11.2.3(iii), 11.2.5] it is enough to show nmulP×n ⩾ 1. Replac-
ing (P,m, â) by its refinement (P, n, â) we arrange m = n. Now Γ> has no smallest
element, so by definition of Z(K, â) and [ADH, p. 483] we have

1 ⩽ ndeg≺m P = max
{
nmulP×v : v ≺ m

}
.

Thus by [ADH, 11.2.5] we can take v with â ≺ v ≺ m with nmulP×v ⩾ 1, and
hence nmulP×m ⩾ 1, again by [ADH, 11.2.5]. □

Lemma 3.2.21 yields results analogous to Corollaries 3.2.19 and 3.2.20 above:

Corollary 3.2.22. If ndegP×m = 1, then for all n with â ≺ n ≼ m, (P, n, â)
refines (P,m, â) and ndegP×n = nmulP×n = 1.

Corollary 3.2.23. If (P+a, n, â− a) refines (P,m, â), then

ndegP×m = 1 =⇒ ndegP+a,×n = nmulP+a,×n = 1.

Any triple (P×n,m/n, â/n) is also a slot in K, with the same complexity as (P,m, â);
it is called the multiplicative conjugate of (P,m, â) by n. If (P,m, â) is Z-mi-
nimal, then so is any multiplicative conjugate. If (P,m, â) is a hole in K, then so
is any multiplicative conjugate; likewise with “minimal hole” in place of “hole”. If
two slots in K are equivalent, then so are their multiplicative conjugates by n.

Refinements and multiplicative conjugates interact in the following way: Suppose
the slot (P+a, n, â − a) refines (P,m, â). Multiplicative conjugation (P+a, n, â− a)
in K by v then results in the slot (P+a,×v, n/v, (â−a)/v) in K. On the other hand,
first taking the multiplicative conjugate (P×v,m/v, â/v) of (P,m, â) by v and then
refining to (P×v,+a/v, n/v, â/v − a/v) results in the same slot in K, thanks to the
identity P+a,×v = P×v,+a/v.
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Quasilinear slots. Note that ndegP×m ⩾ 1 by Lemma 3.2.21. We call (P,m, â)
quasilinear if P×m is quasilinear, that is, ndegP×m = 1. If (P,m, â) is quasilin-
ear, then so is any slot in K equivalent to (P,m, â), any multiplicative conjugate
of (P,m, â), as well as any refinement of (P,m, â), by Corollary 3.2.23. If (P,m, â)
is linear, then it is quasilinear by Lemma 3.2.21.

Let (aρ) be a divergent pc-sequence in K with aρ ⇝ â and for each index ρ,
let mρ ∈ K× be such that mρ ≍ â− aρ. Take an index ρ0 such that mσ ≺ mρ ≺ m
for all σ > ρ ⩾ ρ0, cf. [ADH, 2.2].

Lemma 3.2.24. Let σ ⩾ ρ ⩾ ρ0. Then

(i) (P+aρ+1
,mρ, â− aρ+1) is a refinement of (P,m, â);

(ii) if (P+a, n, â−a) is a refinement of (P,m, â), then mρ ≼ n for all sufficiently
large ρ, and for such ρ, (P+aρ+1 ,mρ, â− aρ+1) refines (P+a, n, â− a);

(iii) (P+aσ+1
,mσ, â− aσ+1) refines (P+aρ+1

,mρ, â− aρ+1).

Proof. Part (i) follows from â− aρ+1 ≍ mρ+1 ≺ mρ ≼ m. For (ii) let (P+a, n, â− a)
be a refinement of (P,m, â). Since â − a ≺ n, we have mρ ≼ n for all sufficiently
large ρ. For such ρ, with b := aρ+1 − a we have

(P+aρ+1 ,mρ, â− aρ+1) =
(
(P+a)+b,mρ, (â− a)− b

)
and

(â− a)− b = â− aρ+1 ≍ mρ+1 ≺ mρ ≼ n.

Hence (P+aρ+1
,mρ, â− aρ+1) refines (P+a, n, â − a). Part (iii) follows from (i)

and (ii). □

Let a = cK(aρ) be the cut defined by (aρ) in K and ndega P be the Newton
degree of P in a as introduced in [ADH, 11.2]. Then ndega P is the eventual value
of ndegP+aρ,×mρ . Increasing ρ0 we arrange that additionally for all ρ ⩾ ρ0 we
have ndegP+aρ,×mρ = ndega P .

Corollary 3.2.25. (P,m, â) has a quasilinear refinement iff ndega P = 1.

Proof. By Lemma 3.2.21 and [ADH, 11.2.8] we have

(3.2.1) 1 ⩽ ndegP+aρ+1,×mρ
= ndegP+aρ,×mρ

.

Thus if ndega P = 1, then for ρ ⩾ ρ0, the refinement (P+aρ+1 ,mρ, â − aρ+1)
of (P,m, â) is quasilinear. Conversely, if (P+a, n, â − a) is a quasilinear refine-
ment of (P,m, â), then Lemma 3.2.24(ii) yields a ρ ⩾ ρ0 such that mρ ≼ n, and
then (P+aρ+1

,mρ, â− aρ+1) in K refines (P+a, n, â−a) and hence is also quasilinear,
so ndega P = ndegP+aρ,×mρ

= 1 by (3.2.1). □

Lemma 3.2.26. Assume K is d-valued and ω-free, and Γ is divisible. Then every
Z-minimal slot in K of positive order has a quasilinear refinement.

Proof. Suppose (P,m, â) is Z-minimal. Take a divergent pc-sequence (aρ) in K
such that aρ ⇝ â. Then P is a minimal differential polynomial of (aρ) over K, by
Corollary 3.2.13. Hence ndega P = 1 by [ADH, 14.5.1], where a := cK(aρ). Now
Corollary 3.2.25 gives a quasilinear refinement of (P,m, â). □

Remark. Suppose K is a real closed H-field that is λ-free but not ω-free. (For
example, the real closure of the H-field R⟨ω⟩ from [ADH, 13.9.1] satisfies these
conditions, by [ADH, 11.6.8, 11.7.23, 13.9.1].) Take (P,m, λ) as in Lemma 3.2.10.
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Then by Corollary 3.2.25 and [ADH, 11.7.9], (P,m, λ) has no quasilinear refinement.
Thus Lemma 3.2.26 fails if “ω-free” is replaced by “λ-free”.

Lemma 3.2.27. Let L be an r-newtonian H-asymptotic extension of K such

that Γ< is cofinal in Γ<
L , and suppose (P,m, â) is quasilinear. Then P (̂b) = 0

and b̂ ≺ m for some b̂ ∈ L.

Proof. Lemma 3.2.21 and ndegP×m = 1 gives n ≺ m with ndeg×n P = 1. By [ADH,
p. 480], ndegP×n does not change in passing from K to L. As L is r-newtonian

this yields b̂ ≼ n in L with P (̂b) = 0. □

In the next two corollaries we assume that K is d-valued and ω-free, and that L is
a newtonian H-asymptotic extension of K.

Corollary 3.2.28. If (P,m, â) is quasilinear, then P (̂b) = 0, b̂ ≺ m for some b̂ ∈ L.

Proof. By [21, Theorem B], K has a newtonization K∗ inside L. Such K∗ is d-
algebraic over K by (0.7), so Γ< is cofinal in Γ<

K∗ by Theorem 1.3.1. Thus we can
apply Lemma 3.2.27 to K∗ in the role of L. □

Here is a variant of Lemma 3.2.14:

Corollary 3.2.29. Suppose Γ is divisible and (P,m, â) is Z-minimal. Then there

exists b̂ ∈ L such that K ⟨̂b⟩ is an immediate extension of K and (P,m, b̂) is a hole
in K equivalent to (P,m, â). (Thus if (P,m, â) is also a hole in K, then there is an
embedding K⟨â⟩ → L of valued differential fields over K.)

Proof. By Lemma 3.2.26 we may refine (P,m, â) to arrange that (P,m, â) is quasi-

linear. Then [ADH, 11.4.8] gives b̂ in an immediate H-asymptotic extension of K

with P (̂b) = 0 and v(â − a) = v(̂b − a) for all a. So (P,m, b̂) is a hole in K equiv-

alent to (P,m, â). The immediate d-algebraic extension K ⟨̂b⟩ of K is ω-free by
Theorem 1.3.1. Then (0.7) gives a newtonian d-algebraic immediate extension M

of K ⟨̂b⟩ and thus of K. Then M is a newtonization of K by [ADH, 14.5.4] and thus
embeds over K into L. The rest follows from Corollary 3.2.15. □

Remark. Lemma 3.2.26 and Corollary 3.2.29 go through with the hypothesis “Γ is
divisible” replaced by “K is henselian”. The proofs are the same, using [21, 3.3] in
place of [ADH, 14.5.1] in the proof of Lemma 3.2.26, and [21, 3.5] in place of [ADH,
14.5.4] in the proof of Corollary 3.2.29.

For r = 1 we can weaken the hypothesis of ω-freeness in Corollary 3.2.29:

Corollary 3.2.30. Suppose K is λ-free and Γ is divisible, and (P,m, â) is Z-
minimal of order r = 1 with a quasilinear refinement. Let L be a newtonian H-

asymptotic extension of K. Then there exists b̂ ∈ L such that K ⟨̂b⟩ is an immediate

extension of K and (P,m, b̂) is a hole in K equivalent to (P,m, â). (So if (P,m, â)
is also a hole in K, then we have an embedding K⟨â⟩ → L of valued differential
fields over K.)

Proof. Take a divergent pc-sequence (aρ) in K with aρ ⇝ â. Then ndega P = 1
for a := cK(aρ), by Corollary 3.2.25, and P is a minimal differential polynomial
of (aρ) over K, by [ADH, 11.4.13]. The equality ndega P = 1 remains valid when
passing fromK, a to L, cL(aρ), respectively, by Lemma 1.7.8. Hence [ADH, 14.1.10]
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yields b̂ ∈ L such that P (̂b) = 0 and aρ ⇝ b̂, so v(â − a) = v(̂b − a) for all a.

Then K ⟨̂b⟩ is an immediate extension of K by [ADH, 9.7.6], so (P,m, b̂) is a hole
in K equivalent to (P,m, â). For the rest use Corollary 3.2.15. □

The linear part of a slot. We define the linear part of (P,m, â) to be the linear
part LP×m

∈ K[∂] of P×m. By [ADH, p. 242] and (0.1) we have

LP×m
= LP m =

r∑
n=0

∂P×m

∂Y (n)
(0) ∂

n = mSP (0)∂
r + lower order terms in ∂.

The slot (P,m, â) has the same linear part as each of its multiplicative conjugates.
The linear part of a refinement (P+a, n, â− a) of (P,m, â) is given by

LP+a,×n
= LP+an =

r∑
m=0

(
r∑

n=m

(
n

m

)
n(n−m) ∂P

∂Y (n)
(a)

)
∂
m

= nSP (a) ∂
r + lower order terms in ∂.

(See [ADH, (5.1.1)].) By [ADH, 5.7.5] we have (Pϕ)d = (Pd)
ϕ for d ∈ N; in

particular LPϕ = (LP )
ϕ and so order(LPϕ) = order(LP ). A particularly favorable

situation occurs when LP splits over a given differential field extension E of K
(which includes requiring LP ̸= 0). Typically, E is an algebraic closure of K. In
any case, LP splits over E iff LP×n

splits over E, iff LPϕ splits over Eϕ. Thus:

Lemma 3.2.31. Suppose degP = 1 and LP splits over E. Then the linear part of
any refinement of (P,m, â) and any multiplicative conjugate of (P,m, â) also splits
over E, and any compositional conjugate of (P,m, â) by an active ϕ splits over Eϕ.

Let i = (i0, . . . , ir) range over N1+r. As in [ADH, 4.2] we set

P(i) :=
P (i)

i!
where P (i) :=

∂|i|P

∂i0Y · · · ∂irY (r)
.

If |i| = i0 + · · · + ir ⩾ 1, then c(P(i)) < c(P ). Note that for i = (0, . . . , 0, 1) we
have P(i) = SP ̸= 0, since orderP = r. We now aim for Corollary 3.2.34.

Lemma 3.2.32. Suppose that (P,m, â) is Z-minimal. Then (P,m, â) has a refine-
ment (P+a, n, â− a) such that for all i with |i| ⩾ 1 and P(i) ̸= 0,

ndeg (P(i))+a,×n = 0.

Proof. Let i range over the (finitely many) elements of N1+r satisfying |i| ⩾ 1
and P(i) ̸= 0. Each P(i) has smaller complexity than P , so P(i) /∈ Z(K, â).
Then Q :=

∏
i P(i) /∈ Z(K, â) by [ADH, 11.4.4], so Lemma 3.2.18 gives a refine-

ment (P+a, n, â− a) of (P,m, â) with ndegQ+a,×n = 0. Then ndeg (P(i))+a,×n = 0
for all i, by [ADH, remarks before 11.2.6]. □

From [ADH, (4.3.3)] we recall that (P(i))+a = (P+a)(i). Also recall that (P+a)i =
P(i)(a) by Taylor expansion. In particular, if P(i) = 0, then (P+a)i = 0.

Lemma 3.2.33. Suppose (P+a, n, â−a) refines (P,m, â) and i is such that |i| ⩾ 1,
P(i) ̸= 0, and ndeg (P(i))×m = 0. Then

ndeg (P(i))+a,×n = 0, (P+a)i ∼ Pi.
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Proof. Using [ADH, 11.2.4, 11.2.3(iii), 11.2.5] we get

ndeg (P(i))+a,×n = ndeg (P(i))+â,×n ⩽ ndeg (P(i))+â,×m = ndeg (P(i))×m = 0,

so ndeg (P(i))+a,×n = 0. Thus P(i) /∈ Z(K, â), hence (P+a)i = P(i)(a) ∼ P(i)(â)
by [ADH, 11.4.3]; applying this to a = 0, n = m yields Pi = P(i)(0) ∼ P(i)(â). □

Combining Lemmas 3.2.32 and 3.2.33 gives:

Corollary 3.2.34. Every Z-minimal slot in K of order r has a refinement (P,m, â)
such that for all refinements (P+a, n, â − a) of (P,m, â) and all i with |i| ⩾ 1
and P(i) ̸= 0 we have (P+a)i ∼ Pi (and thus orderLP+a = orderLP = r).

Here the condition “of order r” may seem irrelevant, but is forced on us because
refinements preserve order and by our convention that P has order r.

Special slots. The slot (P,m, â) in K is said to be special if â/m is special over K
in the sense of [ADH, p. 167]: some nontrivial convex subgroup ∆ of Γ is cofinal
in v

(
â
m−K

)
. If (P,m, â) is special, then so are (bP,m, â) for b ̸= 0, any multiplicative

conjugate of (P,m, â), any compositional conjugate of (P,m, â), and any slot in K
equivalent to (P,m, â). Also, by Lemma 1.5.1:

Lemma 3.2.35. If (P,m, â) is special, then so is any refinement.

Here is our main source of special slots:

Lemma 3.2.36. Let K be r-linearly newtonian, and ω-free if r > 1. Sup-
pose (P,m, â) is quasilinear, and Z-minimal or a hole in K. Then (P,m, â) is
special.

Proof. Use Lemma 3.2.14 to arrange (P,m, â) is a hole in K. Next arrange m = 1
by replacing (P,m, â) with (P×m, 1, â/m). So ndegP = 1, hence â is special over K
by Proposition 1.5.12 (if r > 1) and 1.5.18 (if r = 1). □

Next an approximation result that will be needed in [6]:

Lemma 3.2.37. Suppose m = 1, (P, 1, â) is special and Z-minimal, and â − a ≼
n ≺ 1 for some a. Then â− b ≺ nr+1 for some b, and P (b) ≺ nP for any such b.

Proof. Using Lemma 3.2.14 we arrange P (â) = 0. The differential polynomial Q :=∑
|i|⩾1 P(i)(â)Y

i ∈ K̂{Y } has order ⩽ r and mul(Q) ⩾ 1, and Taylor expansion

yields, for all a:

P (a) = P (â) +
∑
|i|⩾1

P(i)(â)(a− â)i = Q(a− â).

Since â is special over K, we have b with â− b ≺ nr+1, and then by Lemma 1.1.10
we have Q(b− â) ≺ nQ ≼ nP . □

3.3. The First Normalization Theorems

Throughout this section K is an H-asymptotic field with small derivation and with
rational asymptotic integration. We set Γ := v(K×). The notational conventions
introduced in the last section remain in force: a, b, f , g range over K; ϕ, m, n, v, w
over K×. As at the end of Section 3.1 we shall frequently use for v ≺ 1 the
coarsening of v by the convex subgroup ∆(v) =

{
γ ∈ Γ : γ = o(vv)

}
of Γ.
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We fix a slot (P,m, â) in K of order r ⩾ 1, and set w := wt(P ) (so w ⩾ r ⩾ 1). In
the next subsections we introduce various conditions on (P,m, â). These conditions
will be shown to be related as follows:

strictly normal +3 normal +3

��

steep

quasilinear ks deep

KS

Thus “deep + strictly normal” yields the rest. The main results of this section are
Theorem 3.3.33 and its variants 3.3.34, 3.3.36, and 3.3.48.

Steep and deep slots. In this subsection, if order(LP×m
) = r, then we set

v := v(LP×m
).

The slot (P,m, â) in K is said to be steep if order(LP×m
) = r and v ≺♭ 1. Thus

(P,m, â) is steep ⇐⇒ (P×n,m/n, â/n) is steep ⇐⇒ (bP,m, â) is steep

for b ̸= 0. If (P,m, â) is steep, then so is any slot in K equivalent to (P,m, â).
If (P,m, â) is steep, then so is any slot (Pϕ,m, â) in Kϕ for active ϕ ≼ 1, by
Lemma 3.1.20, and thus nwt(LP×m

) < r. Below we tacitly use that if (P,m, â) is
steep, then

n ≍∆(v) v =⇒ [n] = [v], n ≺ 1, [n] = [v] =⇒ n ≺♭ 1.

Note also that if (P,m, â) is steep, then v† ≍∆(v) 1 by [ADH, 9.2.10(iv)].

Lemma 3.3.1. Suppose (P,m, â) is steep, â ≺ n ≼ m and [n/m] ⩽ [v]. Then

order(LP×n
) = r, v(LP×n

) ≍∆(v) v,

so (P, n, â) is a steep refinement of (P,m, â).

Proof. Replace (P,m, â), n by (P×m, 1, â/m), n/m, respectively, to arrange m = 1.

Set L := LP and L̃ := LP×n
. Then L̃ = Ln ≍∆(v) nL by [ADH, 6.1.3]. Hence

L̃r = nLr ≍ nvL ≍∆(v) vL̃.

Since v(L̃)L̃ ≍ L̃r, this gives v(L̃)L̃ ≍∆(v) vL̃, and thus v(L̃) ≍∆(v) v. □

If (P,m, â) is steep and linear, then

LP+a,×m
= LP×m,+(a/m)

= LP×m
,

so any refinement (P+a,m, â− a) of (P,m, â) is also steep and linear.

Lemma 3.3.2. Suppose orderLP×m
= r. Then (P,m, â) has a refinement (P, n, â)

such that nwtLP×n
= 0, and (Pϕ, n, â) is steep, eventually.

Proof. Replacing (P,m, â) by (P×m, 1, â/m) we arrange m = 1. Take n1 with â ≺
n1 ≺ 1. Then order (P1)×n1

= orderP1 = orderLP = r, and thus (P1)×n1
̸= 0.

So [ADH, 11.3.6] applied to (P1)×n1 in place of P yields an n with n1 ≺ n ≺ 1
and nwt (P1)×n = 0, so nwtLP×n

= 0. Hence by Lemma 3.1.21, (Pϕ, n, â) is steep,
eventually. □
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Recall that the separant SP = ∂P/∂Y (r) of P has lower complexity than P . Below
we sometimes use the identity SPϕ

×m
= ϕr(SP×m

)ϕ from (0.1).

The slot (P,m, â) in K is said to be deep if it is steep and for all active ϕ ≼ 1,

(D1) ddegSPϕ
×m

= 0 (hence ndegSP×m
= 0), and

(D2) ddegPϕ
×m = 1 (hence ndegP×m = 1).

If degP = 1, then (D1) is automatic, for all active ϕ ≼ 1. If (P,m, â) is deep, then
so are (P×n,m/n, â/n) and (bP,m, â) for b ̸= 0, as well as every slot in K equivalent
to (P,m, â) and the slot (Pϕ,m, â) in Kϕ for active ϕ ≼ 1. Every deep slot in K is
quasilinear, by (D2). If degP = 1, then (P,m, â) is quasilinear iff (Pϕ,m, â) is deep

for some active ϕ ≼ 1. Moreover, if (P,m, â) is a deep hole inK, then dmulPϕ
×m = 1

for all active ϕ ≼ 1, by (D2) and Lemma 3.2.9.

Example 3.3.3. Suppose P = Y ′ + gY − u where g, u ∈ K and m = 1, r = 1.
Set L := LP = ∂ + g and v := v(L). Then v = 1 if g ≼ 1, and v = 1/g if g ≻ 1.
Thus

(P, 1, â) is steep ⇐⇒ g ≻♭ 1 ⇐⇒ g ≻ 1 and g† ≽ 1.

Note that (P, 1, â) is steep iff L is steep as defined in Section 1.4. Also,

(P, 1, â) is deep ⇐⇒ (P, 1, â) is steep and g ≽ u.

Hence if u = 0, then (P, 1, â) is deep iff it is steep.

Lemma 3.3.4. For steep (P,m, â), the following are equivalent:

(i) (Pϕ,m, â) is deep, eventually;
(ii) ndegSP×m

= 0 and ndegP×m = 1.

Note that if ddegSP×m
= 0 or ndegSP×m

= 0, then SP×m
(0) ̸= 0, so orderLP×m

= r.

Lemma 3.3.5. Suppose (P+a, n, â− a) refines the hole (P,m, â) in K. Then:

(i) ddegSP×m
= 0 =⇒ ddegSP+a,×n

= 0;
(ii) ddegP×m = 1 =⇒ ddegP+a,×n = 1;
(iii) ndegSP×m

= 0 =⇒ SP (a) ∼ SP (0).

Thus if (P,m, â) is deep and (P+a, n, â− a) is steep, then (P+a, n, â− a) is deep.

Proof. Suppose ddegSP×m
= 0. Then ddegSP+a,×n

= 0 follows from

ddegSP+a,×n
= ddeg (SP )+a,×n and ddeg(SP )×m = ddegSP×m

(consequences of (0.1)), and

ddeg (SP )+a,×n = ddeg (SP )+â,×n ⩽ ddeg (SP )+â,×m = ddeg (SP )×m

which holds by [ADH, 6.6.7]. This proves (i). Corollary 3.2.20 yields (ii), and (iii)
is contained in Lemma 3.2.33. □

Lemmas 3.2.14 and 3.3.5 give:

Corollary 3.3.6. If (P,m, â) is Z-minimal and deep, then each steep refinement
of (P,m, â) is deep.

Here is another sufficient condition on refinements of deep holes to remain deep:

Lemma 3.3.7. Suppose (P,m, â) is a deep hole in K, and (P+a, n, â − a) re-
fines (P,m, â) with [n/m] ⩽ [v]. Then (P+a, n, â−a) is deep with v(LP+a,×n

) ≍∆(v) v.
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Proof. From (P,m, â) we pass to the hole (P+a,m, â−a) and then to (P+a, n, â−a).
We first show that orderLP+a,×m

= r and v(LP+a,×m
) ∼ v, from which it follows

that (P+a,m, â− a) is steep, hence deep by Lemma 3.3.5. By Corollary 3.2.20,

ddegP+a,×m = dmulP+a,×m = 1,

so (P+a,×m)1 ∼ P+a,×m. Also

(P×m)1 ∼ P×m ∼ P×m,+(a/m) = P+a,×m,

by [ADH, 4.5.1(i)], and thus (P+a,×m)1 ∼ (P×m)1. By (0.1) and Lemma 3.3.5(iii),

SP+a,×m
(0) = mSP (a) ∼ mSP (0) = SP×m

(0),

so SP+a,×m
(0) ∼ SP×m

(0). This gives v(LP+a,×m
) ∼ v as promised.

Next, Lemma 3.3.1 applied to (P+a,m, â − a) in the role of (P,m, â) gives
that (P+a, n, â − a) is steep with v(LP+a,×n

) ≍∆(v) v. Now Lemma 3.3.5 applied
to (P+a,m, â− a) and (P+a, n, â− a) in the role of (P,m, â) and (P+a, n, â− a),
respectively, gives that (P+a, n, â− a) is deep. □

Lemmas 3.2.14 and 3.3.7 give a version for Z-minimal slots:

Corollary 3.3.8. Suppose (P,m, â) is Z-minimal and deep, and (P+a, n, â− a)
refines (P,m, â) with [n/m] ⩽ [v], where v := v(LP×m

). Then (P+a, n, â− a) is deep
with v(LP+a,×n

) ≍∆(v) v.

Next we turn to the task of turning Z-minimal slots into deep ones.

Lemma 3.3.9. Every quasilinear Z-minimal slot in K of order r has a refine-
ment (P,m, â) such that:

(i) ndeg (P(i))×m = 0 for all i with |i| ⩾ 1 and P(i) ̸= 0;
(ii) ndegP×m = nmulP×m = 1, and
(iii) nwtLP×m

= 0.

Proof. By Corollary 3.2.22, any quasilinear (P,m, â) satisfies (ii). Any refinement
of a quasilinear (P,m, â) remains quasilinear, by Corollary 3.2.23. By Lemma 3.2.32
and a subsequent remark any quasilinear Z-minimal slot in K of order r can be
refined to a quasilinear (P,m, â) that satisfies (i), and by Lemma 3.2.33, any further
refinement of such (P,m, â) continues to satisfy (i). Thus to prove the lemma,
assume we are given a quasilinear (P,m, â) satisfying (i); it is enough to show that
then (P,m, â) has a refinement (P, n, â) satisfying (iii) with n instead of m (and
thus also (i) and (ii) with n instead of m).

Take m̃ with â ≺ m̃ ≺ m. Then (P×m̃)1 ̸= 0 by (ii), so [ADH, 11.3.6] applied
to (P1)×m̃ in place of P yields an n with m̃ ≺ n ≺ m and nwt (P1)×n = 0. Hence
the refinement (P, n, â) of (P,m, â) satisfies (iii) with n instead of m. □

Corollary 3.3.10. Every quasilinear Z-minimal slot in K of order r has a refine-
ment (P,m, â) such that nwtLP×m

= 0, and (Pϕ,m, â) is deep, eventually.

Proof. Given a quasilinear Z-minimal slot in K of order r, we take a refine-
ment (P,m, â) as in Lemma 3.3.9. Then ndegSP×m

= 0 by (i) of that lemma,
so orderLP×m

= r by the remark that precedes Lemma 3.3.5. Then (iii) of

Lemma 3.3.9 and Lemma 3.1.21 give that (Pϕ,m, â) is steep, eventually. Us-
ing now ndegSP×m

= 0 and (ii) of Lemma 3.3.9 we obtain from Lemma 3.3.4

that (Pϕ,m, â) is deep, eventually. □
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Lemma 3.2.26 and the previous lemma and its corollary now yield:

Lemma 3.3.11. Suppose K is d-valued and ω-free, and Γ is divisible. Then every
Z-minimal slot in K of order r has a refinement (P,m, â) satisfying (i)–(iii) in
Lemma 3.3.9.

Corollary 3.3.12. Suppose K is d-valued and ω-free, and Γ is divisible. Then
every Z-minimal slot in K of order r has a quasilinear refinement (P,m, â) such
that nwtLP×m

= 0, and (Pϕ,m, â) is deep, eventually.

Approximating Z-minimal slots. In this subsection we set, as before,

v := v(LP×m
),

provided LP×m
has order r. The next lemma is a key approximation result.

Lemma 3.3.13. Suppose (P,m, â) is Z-minimal and steep, and

ddegP×m = ndegP×m = 1, ddegSP×m
= 0.

Then there exists an a such that â− a ≺∆(v) m.

Proof. We can arrange m = 1 and P ≍ 1. Then ddegP = 1 gives P1 ≍ 1,
so SP (0) ≍ v. Take Q,R1, . . . , Rn ∈ K{Y } (n ⩾ 1) of order < r such that

P = Q+R1Y
(r) + · · ·+Rn(Y

(r))n, SP = R1 + · · ·+ nRn(Y
(r))n−1.

Then R1(0) = SP (0) ≍ v. As ddegSP = 0, this gives SP ∼ R1(0), hence

R := P −Q ∼ R1(0)Y
(r) ≍ v ≺∆(v) 1 ≍ P,

so P ∼∆(v) Q. Thus Q ̸= 0, and Q /∈ Z(K, â) because orderQ < r. Now Lem-
ma 3.2.18 gives a refinement (P+a, n, â− a) of (P, 1, â) such that ndegQ+a,×n = 0
and n ≺ 1. We claim that then â − a ≺∆(v) 1. (Establishing this claim fin-
ishes the proof.) Suppose the claim is false. Then â − a ≍∆(v) 1, so n ≍∆(v) 1,
hence Q+a,×n ≍∆(v) Q+a ≍ Q by [ADH, 4.5.1]. Likewise, R+a,×n ≍∆(v) R. Us-

ing P+a,×n = Q+a,×n + R+a,×n gives Q+a,×n ∼∆(v) P+a,×n, so Q+a,×n ∼♭ P+a,×n.
Then ndegQ+a,×n = ndegP+a,×n = 1 by Lemma 1.7.2 and Corollary 3.2.23, a
contradiction. □

Lemmas 3.2.9 and 3.3.13, and a remark following the definition of deep give:

Corollary 3.3.14. If (P,m, â) is Z-minimal, steep, and linear, then there exists
an a such that â− a ≺∆(v) m.

Corollary 3.3.15. Suppose (P,m, â) is Z-minimal, deep, and special. Then for
all n ⩾ 1 there is an a with â− a ≺ vnm.

Proof. We arrange m = 1 in the usual way. Let ∆ be the convex subgroup of Γ that
is cofinal in v(â−K). Lemma 3.3.13 gives an element γ ∈ v(â−K) with γ ⩾ δ/m
for some m ⩾ 1. Hence v(â−K) contains for every n ⩾ 1 an element > nδ. □

Combining Lemma 3.2.36 with Corollary 3.3.15 yields:

Corollary 3.3.16. If K is r-linearly newtonian, ω-free if r > 1, and (P,m, â) is
Z-minimal and deep, then for all n ⩾ 1 there is an a such that â− a ≺ vnm.
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Normal slots. We say that our slot (P,m, â) in K, with linear part L, is normal
if orderL = r and, with v := v(L) and w := wt(P ),

(N1) v ≺♭ 1;
(N2) (P×m)>1 ≺∆(v) v

w+1(P×m)1.

Note that then v ≺ 1, dwt(L) < r, (P,m, â) is steep, and

(3.3.1) P×m ∼∆(v) P (0) + (P×m)1 (so ddegP×m ⩽ 1).

If orderL = r, v := v(L), and L is monic, then (P×m)1 ≍ v−1, so that (N2) is
then equivalent to: (P×m)>1 ≺∆(v) vw. If degP = 1, then orderL = r and (N2)
automatically holds, hence (P,m, â) is normal iff it is steep. Thus by Lemma 3.1.21:

Lemma 3.3.17. If degP = 1 and nwt(L) < r, then (Pϕ,m, â) is normal, eventu-
ally.

If (P,m, â) is normal, then so are (P×n,m/n, â/n) and (bP,m, â) for b ̸= 0. In
particular, (P,m, â) is normal iff (P×m, 1, â/m) is normal. If (P,m, â) is normal,
then so is any equivalent slot. Hence by (3.3.1) and Lemmas 3.2.9 and 3.2.14:

Lemma 3.3.18. If (P,m, â) is normal, and (P,m, â) is Z-minimal or is a hole
in K, then ddegP×m = dmulP×m = 1.

Example. Let K ⊇ R(ex) be an H-subfield of T, m = 1, r = 2. If P = D+R where

D = e−x Y ′′ − Y, R = f + e−4x Y 5 (f ∈ K),

then v = − e−x ≺♭ 1, P1 = D ∼ −Y , w = 2, and P>1 = e−4x Y 5 ≺∆(v) e−3x P1,

so (P, 1, â) is normal. However, if P = D+S with D as above and S = f +e−3x Y 5

(f ∈ K), then P>1 = e−3x Y 5 ≽∆(v) e
−3x P1, so (P, 1, â) is not normal.

Lemma 3.3.19. Suppose order(L) = r and v is such that (N1) and (N2) hold,
and v(L) ≍∆(v) v. Then (P,m, â) is normal.

Proof. Put w := v(L). Then [w] = [v], and so v ≺♭ 1 gives w ≺♭ 1. Also,

(P×m)>1 ≺∆(v) v
w+1(P×m)1 ≍∆(v) w

w+1(P×m)1.

Hence (N1), (N2) hold with w in place of v. □

Lemma 3.3.20. Suppose (P,m, â) is normal and ϕ ≼ 1 is active. Then the
slot (Pϕ,m, â) in Kϕ is normal.

Proof. We arrange m = 1 and put v := v(L), w := v(LPϕ). Now LPϕ = Lϕ,
so v ≍∆(v) w and v ≺♭

ϕ 1 by Lemma 3.1.20. By [ADH, 11.1.1], [ϕ] < [v], and (N2)
we have

(Pϕ)>1 = (P>1)
ϕ ≍∆(v) P>1 ≺∆(v) vw+1P1 ≍∆(v) vw+1Pϕ

1 ,

which by Lemma 3.3.19 applied to (Pϕ, 1, â) in the role of (P,m, â) gives normality
of (Pϕ, 1, â). □

Corollary 3.3.21. Suppose (P,m, â) is normal. Then (P,m, â) is quasilinear.

Proof. Lemma 3.2.21 gives ndegP×m ⩾ 1. The parenthetical remark after (3.3.1)
above and Lemma 3.3.20 gives ndegP×m ⩽ 1. □

Combining Lemmas 3.3.18 and 3.3.20 yields:
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Corollary 3.3.22. If (P,m, â) is normal and linear, and (P,m, â) is Z-minimal or
a hole in K, then (P,m, â) is deep.

There are a few occasions later where we need to change the “monomial” m in
(P,m, â) while preserving key properties of this slot. Here is what we need:

Lemma 3.3.23. Let u ∈ K, u ≍ 1. Then (P, um, â) refines (P,m, â), and
if (P+a, n, â− a) refines (P,m, â), then so does (P+a, un, â − a). If (P,m, â) is
quasilinear, respectively deep, respectively normal, then so is (P, um, â).

Proof. The refinement claims are clearly true, and quasilinearity is preserved
since ndegP×um = ndegP×m by [ADH, 11.2.3(iii)]. “Steep” is preserved by
Lemma 3.3.1, and hence “deep” is preserved using (0.1) and [ADH, 6.6.5(ii)]. Nor-
mality is preserved because steepness is,

(P×um)d = (Pd)×um ≍ (Pd)×m = (P×m)d for all d ∈ N

by [ADH, 4.3, 4.5.1(ii)], and v(LP×um
) ≍ v(LP×m

) by Lemma 3.1.2. □

Here is a useful invariance property of normal slots:

Lemma 3.3.24. Suppose (P,m, â) is normal and a ≺ m. Then LP and LP+a
have

order r. If in addition K is λ-free or r = 1, then E e(LP ) = E e(LP+a).

Proof. LP×m
= LPm (so LP has order r), and LP+a,×m

= LP×m,+a/m
= LP+a

m. The

slot (P×m, 1, â/m) inK is normal and a/m ≺ 1. Thus we can apply Lemma 3.1.28(i)

to K̂, P×m, a/m in place of K, P , a to give orderLP+a = r. Next, applying likewise
Lemma 3.1.29 with L := LP×m

, v := v(LP×m
), m = r, B = 0, gives

LPm− LP+a
m = LP×m

− LP×m,+a/m
≺∆(v) vr+1LPm.

Hence, if K is λ-free, then E e(LPm) = E e(LP+am) by Lemma 3.1.23, so

E e(LP ) = E e(LPm) + v(m) = E e(LP+a
m) + v(m) = E e(LP+a

).

If r = 1 we obtain the same equality from Corollary 3.1.24. □

Normality under refinements. In this subsection we study how normality be-
haves under more general refinements. This is not needed to prove the main result
of this section, Theorem 3.3.33, but is included to obtain useful variants of it.

Proposition 3.3.25. Suppose (P,m, â) is normal. Let a refinement (P+a,m, â−a)
of (P,m, â) be given. Then this refinement is also normal.

Proof. By the remarks following the definition of “multiplicative conjugate” in
Section 3.2 and after replacing the slots (P,m, â) and (P+a,m, â − a) in K
by (P×m, 1, â/m) and

(
P×m,+a/m, 1, (â−a)/m

)
, respectively, we arrange that m = 1.

Let v := v(LP ). By Lemma 3.1.28 we have order(LP+a
) = r, v(LP+a

) ∼∆(v) v,
and (P+a)1 ∼∆(v) P1. Using [ADH, 4.5.1(i)] we have for d > 1 with Pd ̸= 0,

(P+a)d =
(
(P⩾d)+a

)
d ≼ (P⩾d)+a ∼ P⩾d ≼ P>1,

and using (N2), this yields

(P+a)>1 ≼ P>1 ≺∆(v) vw+1P1 ≍ vw+1(P+a)1.

Hence (N2) holds with m = 1 and with P replaced by P+a. Thus (P+a, 1, â− a) is
normal, by Lemma 3.3.19. □
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Proposition 3.3.26. Suppose (P,m, â) is a normal hole in K, â ≺ n ≼ m,
and [n/m] ⩽

[
v(LP×m

)
]
. Then the refinement (P, n, â) of (P,m, â) is also normal.

Proof. As in the proof of Lemma 3.3.1 we arrangem = 1 and set L := LP , v := v(L),

and L̃ := LP×n
, to obtain [n] ⩽ [v] and v(L̃) ≍∆(v) v. Recall from [ADH, 4.3]

that (P×n)d = (Pd)×n for d ∈ N. For such d we have by [ADH, 6.1.3],

(Pd)×n ≍∆(v) ndPd ≼ ndP⩾d.

In particular, (P×n)1 ≍∆(v) nP1. By (N2) we also have, for d > 1:

P⩾d ≼ P>1 ≺∆(v) vw+1P1.

By Lemma 3.3.18 we have P ∼ P1. For d > 1 we have by [ADH, 6.1.3],

ndP ≍ ndP1 ≍∆(v) nd−1(P1)×n ≼ (P1)×n = (P×n)1 ≼ P×n

and thus

(P×n)d = (Pd)×n ≼∆(v) ndP⩾d ≺∆(v) vw+1ndP1 ≼∆(v) vw+1(P×n)1.

Hence (N2) holds with m replaced by n. Thus (P, n, â) is normal, using v(L̃) ≍∆(v) v
and Lemmas 3.3.1 and 3.3.19. □

From Lemma 3.2.14 and Proposition 3.3.26 we obtain:

Corollary 3.3.27. Suppose (P,m, â) is normal and Z-minimal, â ≺ n ≼ m,
and [n/m] ⩽

[
v(LP×m

)
]
. Then the refinement (P, n, â) of (P,m, â) is also normal.

In the rest of this subsection m = 1, â ≺ n ≺ 1, order(LP ) = r, and [v] < [n]
where v := v(LP ). So (P, n, â) refines (P, 1, â), LP×n

= LPn, and orderLP×n
= r.

Lemma 3.3.28. Suppose (P, 1, â) is steep, v(LP×n
) ≼ v, and P>1 ≼ P1.

Then (P, n, â) is normal.

Proof. Put w := v(LP×n
). Then [w] < [n] by Corollary 3.1.10, and w ≼ v ≺♭ 1

gives w ≺♭ 1. It remains to show that (P×n)>1 ≺∆(w) w
w+1(P×n)1. Using [n] > [w]

it is enough that (P×n)>1 ≺∆ ww+1(P×n)1, where ∆ := ∆(n). Since w ≍∆ 1, it
is even enough that (P×n)>1 ≺∆ (P×n)1, to be derived below. Let d > 1. Then
by [ADH, 6.1.3] and Pd ≼ P>1 ≼ P1 we have

(P×n)d = (Pd)×n ≍∆ Pdn
d ≼ P1 n

d.

In view of n ≺∆ 1 and d > 1 we have

P1 n
d ≺∆ P1 n ≍∆ (P1)×n = (P×n)1,

using again [ADH, 6.1.3]. Thus (P×n)d ≺∆ (P×n)1, as promised. □

Corollary 3.3.29. If (P, 1, â) is normal and v(LP×n
) ≼ v, then (P, n, â) is normal.

In the next lemma and its corollary K is d-valued and for every q ∈ Q> there is
given an element nq of K× such that (nq)† = qn†; the remark before Lemma 3.1.15
gives v(nq) = qv(n) for q ∈ Q>. Hence for 0 < q ⩽ 1 in Q we have â ≺ n ≼ nq ≺ 1,
so (P, nq, â) refines (P, 1, â).

Lemma 3.3.30. Suppose (P, 1, â) is steep and P>1 ≼ P1. Then (P, nq, â) is normal,
for all but finitely many q ∈ Q with 0 < q ⩽ 1.
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Proof. We have n† ≽ 1 by n ≺ v ≺ 1 and v† ≽ 1. Lemma 3.1.16 gives v(LP×nq ) ≼ v
for all but finitely many q ∈ Q>. Suppose v(LP×nq ) ≼ v, 0 < q ⩽ 1 in Q.
Then (P, nq, â) is normal by Lemma 3.3.28 applied with nq instead of n. □

Corollary 3.3.31. If (P, 1, â) is normal, then (P, nq, â) is normal for all but finitely
many q ∈ Q with 0 < q ⩽ 1.

Normalizing. If in this subsection order(LP×m
) = r, then v := v(LP×m

). Towards
proving that normality can always be achieved we first show:

Lemma 3.3.32. Suppose Γ is divisible, (P,m, â) is a deep hole in K, and â− a ≺
vw+2m for some a. Then (P,m, â) has a refinement that is deep and normal.

Proof. Replacing (P,m, â) by (P×m, 1, â/m) and renaming we arrange m = 1.
Take a such that â − a ≺ vw+2. For e := w + 3

2 , let ve be an element of K×

with v(ve) = e v(v). Claim: the refinement (P+a, v
e, â− a) of (P, 1, â) is deep and

normal. By Lemma 3.3.7, (P+a, v
e, â−a) is deep, so we do have order(LP+a,×ve ) = r

and v(LP+a,×ve ) ≺♭ 1. Lemma 3.3.7 also yields v(LP+a,×ve ) ≍∆(v) v. Since ddegP =
dmulP = 1, we can use Corollary 3.2.20 for n = ve and for n = 1 to obtain

ddegP+a,×ve = dmulP+a,×ve = ddegP+a = dmulP+a = 1

and thus (P+a,×ve)1 ∼ P+a,×ve ; also P1 ∼ P ∼ P+a ∼ (P+a)1, where P ∼ P+a

follows from a ≺ 1 and [ADH, 4.5.1(i)]. Now let d > 1. Then

(P+a,×ve)d ≍∆(v) (ve)d(P+a)d ≼ (ve)dP+a ∼ (ve)d(P+a)1

≍∆(v) (ve)d−1(P+a,×ve)1 ≺∆(v) v
w+1(P+a,×ve)1,

using [ADH, 6.1.3] for ≍∆(v). So (P+a, v
e, â− a) is normal by Lemma 3.3.19. □

We can now finally show:

Theorem 3.3.33. Suppose K is ω-free and r-linearly newtonian, and Γ is divis-
ible. Then every Z-minimal slot in K of order r has a refinement (P,m, â) such
that (Pϕ,m, â) is deep and normal, eventually.

Proof. By Lemma 3.2.14 it is enough to show this for Z-minimal holes in K of
order r. Given such hole in K, use Corollary 3.3.12 to refine it to a hole (P,m, â)
such that (Pϕ,m, â) is deep, eventually. Replacing (P,m, â) by (Pϕ,m, â) for a
suitable active ϕ ≼ 1 we arrange that (P,m, â) itself is deep. Then an appeal
to Corollary 3.3.16 followed by an application of Lemma 3.3.32 yields a deep and
normal refinement of (P,m, â). Now apply Lemma 3.3.20 to this refinement. □

Next we indicate some variants of Theorem 3.3.33:

Corollary 3.3.34. Suppose K is d-valued and ω-free, and Γ is divisible. Then
every minimal hole in K of order r has a refinement (P,m, â) such that (Pϕ,m, â)
is deep and normal, eventually.

Proof. Given a minimal hole in K of order r, use Corollary 3.3.12 to refine it to
a hole (P,m, â) in K such that nwtLP×m

= 0 and (Pϕ,m, â) is deep, eventually.

If degP = 1, then (Pϕ,m, â) is normal, eventually, by Lemma 3.3.17. If degP > 1,
thenK is r-linearly newtonian by Corollary 3.2.6, so we can use Theorem 3.3.33. □

For r = 1 we can follow the proof of Theorem 3.3.33, using Corollary 3.3.10 in place
of Corollary 3.3.12, to obtain:
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Corollary 3.3.35. If K is 1-linearly newtonian and Γ is divisible, then every quasi-
linear Z-minimal slot in K of order 1 has a refinement (P,m, â) such that (Pϕ,m, â)
is deep and normal, eventually.

Here is another variant of Theorem 3.3.33:

Proposition 3.3.36. If K is d-valued and ω-free, and Γ is divisible, then every Z-
minimal special slot in K of order r has a refinement (P,m, â) such that (Pϕ,m, â)
is deep and normal, eventually.

To establish this proposition we follow the proof of Theorem 3.3.33, using Lem-
ma 3.2.35 to preserve specialness in the initial refining. Corollary 3.3.15 takes over
the role of Corollary 3.3.16 in that proof.

For linear slots in K we can weaken the hypotheses of Theorem 3.3.33:

Corollary 3.3.37. Suppose degP = 1. Then (P,m, â) has a refinement (P, n, â)
such that (Pϕ, n, â) is deep and normal, eventually. Moreover, if K is λ-free
and r > 1, then (Pϕ,m, â) is deep and normal, eventually.

Proof. By the remarks before Lemma 3.3.17, (P,m, â) is normal iff it is steep.
Moreover, if (P,m, â) is normal, then it is quasilinear by Corollary 3.3.21, and
hence (Pϕ,m, â) is deep and normal, eventually, by the remarks before Exam-
ple 3.3.3 and Lemma 3.3.20. By Lemma 3.3.2, (P,m, â) has a refinement (P, n, â)
such that (Pϕ, n, â) is steep, eventually. This yields the first part. The second part
follows from Corollary 3.1.22 and Lemma 3.3.17. □

Corollary 3.3.38. Suppose K is λ-free, Γ is divisible, and (P,m, â) is a quasilinear

minimal hole in K of order r = 1. Then (P,m, â) has a refinement (Q, n, b̂) such

that (Qϕ, n, b̂) is deep and normal, eventually.

Proof. The case degP = 1 is part of Corollary 3.3.37. If degP > 1, then K is
1-linearly newtonian by Lemma 3.2.5, so we can use Corollary 3.3.35. □

Improving normality. In this subsection L := LP×m
. Note that if (P,m, â) is a

normal hole in K, then P×m ∼ (P×m)1 by Lemma 3.3.18. We call our slot (P,m, â)
in K strictly normal if it is normal, but with the condition (N2) replaced by the
stronger condition

(N2s) (P×m)̸=1 ≺∆(v) v
w+1(P×m)1.

Thus for normal (P,m, â) and v = v(L) we have:

(P,m, â) is strictly normal ⇐⇒ P (0) ≺∆(v) v
w+1(P×m)1.

So if (P,m, â) is normal and P (0) = 0, then (P,m, â) is strictly normal. Note that
if (P,m, â) is strictly normal, then

P×m ∼∆(v) (P×m)1 (and hence ddegP×m = 1).

If (P,m, â) is strictly normal, then so are (P×n,m/n, â/n) and (bP,m, â) for b ̸= 0.
Thus (P,m, â) is strictly normal iff (P×m, 1, â/m) is strictly normal. If (P,m, â) is
strictly normal, then so is every equivalent slot in K. The proof of Lemma 3.3.23
shows that if (P,m, â) is strictly normal and u ∈ K, u ≍ 1, then (P, um, â) is also
strictly normal. The analogue of Lemma 3.3.19 goes through, with (P×m)̸=1 instead
of (P×m)>1 in the proof:
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Lemma 3.3.39. Suppose order(L) = r and v are such that (N1) and (N2s) hold,
and v(L) ≍∆(v) v. Then (P,m, â) is strictly normal.

Lemma 3.3.20 goes likewise through with “strictly normal” instead of “normal”:

Lemma 3.3.40. If (P,m, â) is strictly normal and ϕ ≼ 1 is active, then the
slot (Pϕ,m, â) in Kϕ is strictly normal. (Hence if (P,m, â) is strictly normal,
then (P,m, â) is quasilinear, and if in addition (P,m, â) is linear, then it is deep.)

As to Proposition 3.3.25, here is a weak version for strict normality:

Lemma 3.3.41. Suppose (P,m, â) is a strictly normal hole in K and â− a ≺∆(v)

vr+w+1m where v := v(L). Then its refinement (P+a,m, â − a) is also strictly
normal.

Proof. As in the proof of Proposition 3.3.25 we arrange m = 1. We can also
assume P1 ≍ 1. From P = P (0) + P1 + P>1 we get

P (a) = P (0) + P1(a) + P>1(a),

where P (0) ≺∆(v) vw+1 and P>1(a) ≼ P>1 ≺∆(v) vw+1 by (N2s) and a ≺ 1; we

show that also P1(a) ≺∆(v) v
w+1. To see this note that

0 = P (â) = P (0) + P1(â) + P>1(â),

where as before P (0), P>1(â) ≺∆(v) vw+1, so P1(â) ≺∆(v) vw+1. Lemma 1.1.10

applied to (K̂,≼∆(v), P1) in place of (K,≼, P ), with m = w + 1, y = a − â,

yields P1(a− â) ≺∆(v) v
w+1, hence

P1(a) = P1(a− â) + P1(â) ≺∆(v) vw+1

as claimed. It remains to use v(LP+a
) ≍∆(v) v and the normality of (P+a, 1, â− a)

obtained from Proposition 3.3.25 and its proof. □

We also have a version of Lemma 3.3.41 for Z-minimal slots, obtained from that
lemma via Lemma 3.2.14:

Lemma 3.3.42. Suppose (P,m, â) is Z-minimal and strictly normal. Set v :=
v(L), and suppose â − a ≺∆(v) vr+w+1m. Then the refinement (P+a,m, â − a)
of (P,m, â) is strictly normal.

Next two versions of Proposition 3.3.26:

Lemma 3.3.43. Suppose (P,m, â) is a strictly normal hole in K, â ≺ n ≼ m,
and [n/m] <

[
v(L)

]
. Then the refinement (P, n, â) of (P,m, â) is strictly normal.

Proof. As in the proof of Proposition 3.3.26 we arrange m = 1 and, setting v :=

v(L), L̃ := LP×n
, show that order(L̃) = r, v(L̃) ≍∆(v) v, and that (N2) holds with m

replaced by n. Now [n] < [v] yields n ≍∆(v) 1; together with (P×n)1 ≍∆(v) nP1 this

gives P (0) ≺∆(v) vw+1P1 ≍∆(v) vw+1(P×n)1. Hence (N2s) holds with m replaced
by n. Lemma 3.3.39 now yields that (P, n, â) is strictly normal. □

Lemma 3.3.44. Suppose (P,m, â) is a strictly normal hole in K and â ≺∆(v) m

where v := v(L). Assume also that for all q ∈ Q> there is given an element vq of K×

with v(vq) = q v(v). Then for all sufficiently small q ∈ Q> and n with n ≍ vqm we
have: â ≺ n and the refinement (P, n, â) of (P,m, â) is strictly normal.
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Proof. We arrange m = 1 as usual, and take q0 ∈ Q> with â ≺ vq0 and P (0) ≺∆(v)

vw+1+q0P1. Let q ∈ Q, 0 < q ⩽ q0, and suppose n ≍ vq. Then (P, n, â) is a

refinement of (P, 1, â), and the proof of Proposition 3.3.26 gives: L̃ := LP×n
has

order r with v(L̃) ≍∆(v) v, nP1 ≍∆(v) (P×n)1, and (N2) holds with m replaced by n.
Hence

P (0) ≺∆(v) v
w+1+q0P1 ≼ vw+1nP1 ≍∆(v) v

w+1(P×n)1.

As in the proof of the last lemma we conclude that (P, n, â) is strictly normal. □

Remark 3.3.45. In Lemmas 3.3.43 and 3.3.44 we assumed that (P,m, â) is a strictly
normal hole in K. By Lemma 3.2.14 these lemmas go through if this hypothesis is
replaced by “(P,m, â) is a strictly normal Z-minimal slot in K”.

We now turn to refining a given normal hole to a strictly normal hole. We only do
this under additional hypotheses, tailored so that we may employ Lemma 3.1.17.
Therefore we assume in the rest of this subsection: K is d-valued and for all v
and q ∈ Q> we are given an element vq of K× with (vq)† = qv†. Note that
then v(vq) = q v(v) for such q. (In particular, Γ is divisible.) We also adopt the
convention that if orderL = r, then v := v(L).

Lemma 3.3.46. Suppose (P,m, â) is a normal hole in K and â − a ≼ vw+2m.
Then the refinement (P+a,m, â− a) of (P,m, â) is strictly normal.

Proof. As usual we arrange that m = 1. By Proposition 3.3.25, (P+a, 1, â − a)
is normal; the proof of this proposition gives order(LP+a

) = r, v(LP+a
) ∼∆(v) v,

(P+a)1 ∼∆(v) P1, and (N2) holds with m = 1 and P replaced by P+a. It remains

to show that P+a(0) ≺∆(v) v
w+1(P+a)1, equivalently, P (a) ≺∆(v) v

w+1P1.

Let L̂ := LP+â
∈ K̂[∂] and R := P>1 ∈ K{Y }; note that P(i) = R(i) for |i| > 1

and R ≺∆(v) v
w+1P1. Hence Taylor expansion and P (â) = 0 give

P (a) = P (â) + L̂(a− â) +
∑
|i|>1

P(i)(â) · (a− â)i

= L̂(a− â) +
∑
|i|>1

R(i)(â) · (a− â)i

where R(i)(â) · (a− â)i ≺∆(v) vw+1P1 for |i| > 1,

so it is enough to show L̂(a− â) ≺∆(v) v
w+1P1. Lemma 3.1.28 applied to (K̂, â) in

place of (K, a) gives order L̂ = r and L̂ ∼∆(v) L. Since K̂ is d-valued, Lemma 3.1.17

yields a q ∈ Q with w+1 < q ⩽ w+2 and a w such that L̂vq ≍ wvq L̂ where [w] ⩽
[v†] and hence w ≍∆(v) 1 (see the remark before Lemma 3.3.1). With n ≍ a− â we

have n ≼ vw+2 ≼ vq ≺∆(v) v
w+1 and therefore

L̂(a− â) ≼ L̂n ≼ L̂vq ≍ wvq L̂ ≍∆(v) vqL̂ ≺∆(v) vw+1L̂.

Hence L̂(a− â) ≺∆(v) v
w+1P1 as required. □

In particular, if (P,m, â) is a normal hole in K and â ≼ vw+2m, then (P,m, â) is
strictly normal.

Corollary 3.3.47. Suppose (P,m, â) is Z-minimal, deep, and normal. If (P,m, â)
is special, then (P,m, â) has a deep and strictly normal refinement (P+a,m, â− a)
where â− a ≺∆(v) m and v(LP+a,×m

) ≍∆(v) v. (Note that if K is r-linearly newto-
nian, and ω-free if r > 1, then (P,m, â) is special by Lemma 3.2.36.)
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Proof. By Lemma 3.2.14 we arrange that (P,m, â) is a hole in K. If (P,m, â)
is special, Corollary 3.3.15 gives an a such that â − a ≼ vw+2m, and then the
refinement (P+a,m, â−a) of (P,m, â) is strictly normal by Lemma 3.3.46, and deep
with v(LP+a,×m

) ≍∆(v) v by Lemma 3.3.7. □

This leads to a useful variant of Theorem 3.3.33:

Corollary 3.3.48. Suppose K is ω-free and r-linearly newtonian. Then every Z-
minimal slot in K of order r has a refinement (P,m, â) such that (Pϕ,m, â) is deep
and strictly normal, eventually.

Proof. Let a Z-minimal slot in K of order r be given. Use Theorem 3.3.33 to
refine it to a slot (P,m, â) in K with an active ϕ0 such that the slot (Pϕ0 ,m, â)
in Kϕ0 is deep and normal. Corollary 3.3.47 gives a deep and strictly normal

refinement (Pϕ0

+a,m, â− a) of (Pϕ0 ,m, â). By Lemma 3.3.40 the slot (Pϕ
+a,m, â− a)

in Kϕ is deep and strictly normal, for all active ϕ ≼ ϕ0 (in K). Thus (P+a,m, â−a)
refines the original Z-minimal slot in K and has the desired property. □

Corollaries 3.2.6 and 3.3.48 have the following consequence:

Corollary 3.3.49. Suppose K is ω-free. Then every minimal hole in K of order r
and degree > 1 has a refinement (P,m, â) such that (Pϕ,m, â) is deep and strictly
normal, eventually.

Corollary 3.3.47 also gives the following variant of Corollary 3.3.48, where the role
of Theorem 3.3.33 in its proof is taken over by Proposition 3.3.36:

Corollary 3.3.50. Suppose K is ω-free. Then every Z-minimal special slot in K of
order r has a refinement (P,m, â) such that (Pϕ,m, â) is deep and strictly normal,
eventually.

3.4. Isolated Slots

In this short section we study the concept of isolation, which plays well together with
normality. Throughout this section K is an H-asymptotic field with small derivation
and with rational asymptotic integration. We let a, b range over K and ϕ, m, n, w
over K×. We also let (P,m, â) be a slot in K of order r ⩾ 1. Recall that v(â−K)
is a cut in Γ without largest element. Note that v

(
(â − a) − K

)
= v(â − K)

and v(ân−K) = v(â−K) + vn.

Definition 3.4.1. We say that (P,m, â) is isolated if for all a ≺ m,

order(LP+a
) = r and E e(LP+a

) ∩ v(â−K) < v(â− a);

equivalently, for all a ≺ m: order(LP+a
) = r and whenever w ≼ â − a is such

that v(w) ∈ E e(LP+a), then w ≺ â− b for all b.

In particular, if (P,m, â) is isolated, then v(â) /∈ E e(LP ). If (P,m, â) is isolated, then
so is every equivalent slot in K, as well as (bP,m, â) for b ̸= 0 and the slot (Pϕ,m, â)
in Kϕ for active ϕ in K. Moreover:

Lemma 3.4.2. If (P,m, â) is isolated, then so is any refinement (P+a, n, â − a)
of it.

Proof. For the case n = m, use v
(
(â− a)−K

)
= v(â−K). The case a = 0 is clear.

The general case reduces to these two special cases. □
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Lemma 3.4.3. Suppose (P,m, â) is isolated. Then the multiplicative conju-
gate (P×n,m/n, â/n) of (P,m, â) by n is isolated.

Proof. Let a ≺ m/n. Then an ≺ m, so order(LP×n,+a
) = order(LP+an,×n

) =

order(LP+an
) = r. Suppose w ≼ (â/n)−a and v(w) ∈ E e

(
LP×n,+a

)
. Now LP×n,+a =

LP+an,×n
= LP+an

n and thus wn ≼ â− an, v(wn) ∈ E e
(
P+an

)
. But (P,m, â) is iso-

lated, so v(wn) > v(â−K) and hence v(w) > v
(
(â/n)−K

)
. Thus (P×n,m/n, â/n)

is isolated. □

Lemma 3.4.4. Suppose K is λ-free or r = 1, and (P,m, â) is normal. Then

(P,m, â) is isolated ⇐⇒ E e(LP ) ∩ v(â−K) ⩽ vm.

Proof. Use Lemma 3.3.24; for the direction⇒, use also that â−a ≺ m iff a ≺ m. □

Lemma 3.4.5. Suppose degP = 1. Then

(P,m, â) is isolated ⇐⇒ E e(LP ) ∩ v(â−K) ⩽ vm.

Proof. Use that orderLP = r and LP+a
= LP for all a. □

Proposition 3.4.6. Suppose K is λ-free or r = 1, and (P,m, â) is normal.
Then (P,m, â) has an isolated refinement.

Proof. Suppose (P,m, â) is not already isolated. Then Lemma 3.4.4 gives γ with

γ ∈ E e(LP ) ∩ v(â−K), γ > vm.

We have |E e(LP )| ⩽ r, by [ADH, p. 481] if r = 1, and Corollary 1.7.11 and λ-
freeness of K if r > 1. Hence we can take γ := maxE e(LP ) ∩ v(â − K), and
then γ > vm. Take a and n with v(â − a) > γ = v(n); then (P+a, n, â − a) is a
refinement of (P,m, â) and a ≺ m. Let b ≺ n; then a+ b ≺ m, so by Lemma 3.3.24,

order(L(P+a)+b
) = r, E e(L(P+a)+b

) = E e(LP ).

Also v
(
(â− a)− b

)
> γ, hence

E e
(
L(P+a)+b

)
∩ v
(
(â− a)−K

)
= E e(LP ) ∩ v(â−K) ⩽ γ < v

(
(â− a)− b

)
.

Thus (P+a, n, â− a) is isolated. □

Remark 3.4.7. Proposition 3.4.6 goes through if instead of assuming that (P,m, â)
is normal, we assume that (P,m, â) is linear. (Same argument, using Lemma 3.4.5
in place of Lemma 3.4.4 and L(P+a)+b

= LP in place of Lemma 3.3.24.)

Corollary 3.4.8. Suppose r = 1, and (P,m, â) is normal or linear. If E e(LP ) = ∅,
then (P,m, â) is isolated. If E e(LP ) ̸= ∅, so E e(LP ) = {vg} where g ∈ K×,
then (P,m, â) is isolated iff m ≼ g or â−K ≻ g.

This follows immediately from Lemmas 3.4.4 and 3.4.5. The results in the rest of
this subsection are the raison d’être of isolated holes:

Proposition 3.4.9. Suppose K is ω-free and (P,m, â) is an isolated hole in K

which is normal or linear. Let b̂ in an immediate asymptotic extension of K sat-

isfy P (̂b) = 0 and b̂ ≺ m. Then v(â− a) = v(̂b− a) for all a, so b̂ /∈ K.
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Proof. Replacing (P,m, â), b̂ by (P×m, 1, â/m), b̂/m, we arrange m = 1. Let a be

given; we show v(â − a) = v(̂b − a). This is clear if a ≽ 1, so assume a ≺ 1.
Corollary 3.3.21 (if (P,m, â) is normal) and Lemma 3.2.21 (if (P,m, â) is lin-
ear) give ndegP = 1. Thus P is in newton position at a by Corollary 3.2.23.
Moreover v(â − a) /∈ E e(LP+a

), hence v(â − a) = ve(P, a) by Lemma 1.7.15.

Likewise, if v(̂b − a) /∈ E e(LP+a), then v(̂b − a) = ve(P, a) by Lemma 1.7.15,

so v(â− a) = v(̂b− a).

Thus to finish the proof it is enough to show that E e(LP+a
) ∩ v(̂b − K) ⩽ 0.

Now |E e(LP+a
)| ⩽ r by Corollary 1.4.5, so we have b ≺ 1 such that

E e(LP+a
) ∩ v(̂b−K) < v(̂b− b),

in particular, v(̂b− b) /∈ E e(LP+a
). If (P,m, â) is normal, then Lemma 3.3.24 gives

E e(LP+a
) = E e(LP ) = E e(LP+b

),

so by the above with b instead of a we have v(â−b) = v(̂b−b). If (P,m, â) is linear,
then LP+a

= LP = LP+b
, and we obtain likewise v(â− b) = v(̂b− b). Hence

E e(LP+a
) ∩ v(̂b−K) ⊆ E e(LP+a

) ∩ Γ<v(â−b) ⊆ E e(LP ) ∩ v(â−K) ⩽ 0.

using Lemmas 3.4.4 and 3.4.5 for the last step. □

Combining Proposition 3.4.9 with Corollary 3.2.15 yields:

Corollary 3.4.10. Let K, (P,m, â), b̂ be as in Proposition 3.4.9, and assume also

that (P,m, â) is Z-minimal. Then there is an isomorphism K⟨â⟩ → K ⟨̂b⟩ of valued
differential fields over K sending â to b̂.

Using the Normalization Theorem, we now obtain:

Corollary 3.4.11. Suppose K is ω-free and Γ is divisible. Then every minimal

hole in K of order r has an isolated refinement (P,m, â) such that for any b̂ in

an immediate asymptotic extension of K with P (̂b) = 0 and b̂ ≺ m there is an

isomorphism K⟨â⟩ → K ⟨̂b⟩ of valued differential fields over K sending â to b̂.

Proof. Given a minimal linear hole in K of order r, use Remark 3.4.7 to refine it to
an isolated minimal linear hole (P,m, â) in K of order r, and use Corollary 3.4.10.
Suppose we are given a minimal nonlinear hole inK of order r. ThenK is r-linearly

newtonian by Corollary 3.2.6. Then Theorem 3.3.33 yields a refinement (Q,w, d̂)

of it and an active θ in K such that the minimal hole (Qθ,w, d̂) in Kθ is nor-

mal. Proposition 3.4.6 gives an isolated refinement (Qθ
+d, v, d̂ − d) of (Qθ,w, d̂).

Suitably refining (Qθ
+d, v, d̂ − d) further followed by compositionally conjugating

with a suitable active element of Kθ yields by Theorem 3.3.33 and Lemma 3.4.2

a refinement (P,m, â) of (Q,w, d̂) (and thus of the originally given hole) and an
active ϕ in K such that (Pϕ,m, â) is both normal and isolated. Then (P,m, â) is
isolated, and we can apply Corollary 3.4.10 to Kϕ and (Pϕ,m, â) in the role of K
and (P,m, â). □

For r = 1 we can replace “ω-free” in Proposition 3.4.9 and Corollary 3.4.10 by the
weaker “λ-free” (same proofs, using Lemma 1.7.20 instead of Lemma 1.7.15):
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Proposition 3.4.12. Suppose K is λ-free, (P,m, â) is an isolated hole in K of

order r = 1, and suppose (P,m, â) is normal or linear. Let b̂ in an immediate

asymptotic extension of K satisfy P (̂b) = 0 and b̂ ≺ m. Then v(â−a) = v(̂b−a) for
all a. (Hence if (P,m, â) is Z-minimal, then there is an isomorphism K⟨â⟩ → K ⟨̂b⟩
of valued differential fields over K sending â to b̂.)

This leads to an analogue of Corollary 3.4.11:

Corollary 3.4.13. Suppose K is λ-free and Γ is divisible. Then every quasilinear
minimal hole in K of order r = 1 has an isolated refinement (P,m, â) such that for

any b̂ in an immediate asymptotic extension of K with P (̂b) = 0 and b̂ ≺ m there

is an isomorphism K⟨â⟩ → K ⟨̂b⟩ of valued differential fields over K sending â to b̂.

Proof. Suppose we are given a quasilinear minimal hole in K of order r = 1. Then

Corollary 3.3.38 yields a refinement (Q,w, d̂) of it and an active θ in K such that

the quasilinear minimal hole (Qθ,w, d̂) inKθ of order 1 is normal. Proposition 3.4.6

gives an isolated refinement (Qθ
+d, v, d̂− d) of (Qθ,w, d̂), and then Corollary 3.3.38

yields a refinement (P,m, â) of (Q,w, d̂) and an active ϕ in K such that (Pϕ,m, â)
is normal and isolated. Now apply Proposition 3.4.12 with Kϕ and (Pϕ,m, â) in
the role of K and (P,m, â). □

Next a variant of Lemma 3.2.1 for r = 1 without assuming ω-freeness:

Corollary 3.4.14. Suppose K is 1-newtonian and Γ is divisible. Then K has no
quasilinear Z-minimal slot of order 1.

Proof. By Proposition 1.7.28, K is λ-free. Towards a contradiction, let (P,m, â)
be a quasilinear Z-minimal slot in K of order 1. By Lemma 3.2.14 we arrange
that (P,m, â) is a hole in H. Using Corollary 3.3.35, Lemma 3.4.2 and the remark
before it, and Proposition 3.4.6, we can refine further so that (Pϕ,m, â) is normal
and isolated for some active ϕ in K. Then there is no y ∈ K with P (y) = 0
and y ≺ m, by Proposition 3.4.12, contradicting Lemma 3.2.27 for L = K. □

Finally, for isolated linear holes, without additional hypotheses:

Lemma 3.4.15. Suppose (P,m, â) is an isolated linear hole in K, and â− a ≺ m.
Then P (a) ̸= 0, and γ = v(â − a) is the unique element of Γ \ E e(LP ) such
that veLP

(γ) = v
(
P (a)

)
.

Proof. By Lemma 3.4.5, γ := v(â− a) ∈ Γ \ E e(LP ). Since degP = 1,

LP (â− a) = LP (â)− LP (a) = −P (0)− LP (a) = −P (a),

so P (a) ̸= 0. By Lemma 1.4.6, veLP
(γ) = v

(
LP (â− a)

)
= v
(
P (a)

)
. □

In [8] we shall prove a version of Proposition 3.4.9 without the hypothesis that b̂
lies in an immediate extension of K. In Section 4.4 below we consider, in a more
restricted setting, a variant of isolated slots, with ultimate exceptional values taking
over the role played by exceptional values in Definition 3.4.1.
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3.5. Holes of Order and Degree One

In this section K is a d-valued field of H-type with small derivation and rational
asymptotic integration. (Later on we will impose additional restrictions on K.) We

also let K̂ be an immediate asymptotic extension of K. We focus here on slots of
complexity (1, 1, 1) in K. As a byproduct we obtain in Corollary 3.5.18 a partial
generalization of Corollary 3.3.49 to minimal holes in K of arbitrary degree. First
we establish in the next subsection a useful formal identity. We let j, k range over N
(in addition to m, n, as usual).

An integration identity. Let R be a differential ring, and let f , g, h, range
over R. We use

∫
f = g +

∫
h as a suggestive way to express that f = g′ + h, and

likewise,
∫
f = g −

∫
h means that f = g′ − h. For example,∫

f ′g = fg −
∫
fg′ (integration by parts).

Let e, ξ ∈ R× satisfy e† = ξ. We wish to expand
∫
e by iterated integration by

parts. Now for g = e we have g′ ∈ R× with g
g′ =

1
ξ , so in view of e = g′ e

g′ :∫
e =

∫
g′

e

g′
=

e

ξ
−
∫
g

(
e

g′

)′

,

and (
e

g′

)′

=

(
1

ξ

)′

=
−ξ′

ξ2
=

−ξ†

ξ
,

and thus ∫
e =

e

ξ
+

∫
ξ†

ξ
e .

More generally, using the above identities for g = e,∫
f e =

∫
g′f

e

g′
=

f

ξ
e−
∫
g

(
f
e

g′

)′

=
f

ξ
e−
∫
g

(
f ′

e

g′
+ f

(
e

g′

)′
)

=
f

ξ
e−
∫ (

f ′

ξ
e+fg

(−ξ†
ξ

))
=

f

ξ
e−
∫ (

f ′

ξ
e+

−fξ†

ξ
e

)
=

f

ξ
e+

∫ (
ξ†f − f ′

ξ

)
e .

Replacing f by f/ξk gives the following variant of this identity:∫
f

ξk
e =

f

ξk+1
e+

∫
(k + 1)ξ†f − f ′

ξk+1
e .

Induction on m using the last identity yields:

Lemma 3.5.1. Set ζ := ξ†. Then∫
f e =

m∑
j=0

Pj(ζ, f)
e

ξj+1
+

∫
Pm+1(ζ, f)

e

ξm+1
,

where the Pj ∈ Q{Z, V } = Q{Z}{V } are independent of R, e, ξ:

P0 := V, Pj+1 := (j + 1)ZPj − P ′
j .

Thus Pj = Pj0V + Pj1V
′ + · · ·+ PjjV

(j) with all Pjk ∈ Q{Z} and Pjj = (−1)j.
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For example,

P0 = V, P1 = ZV − V ′, P2 = (2Z2 − Z ′)V − 3ZV ′ + V ′′.

An asymptotic expansion. In this subsection ξ ∈ K and ξ ≻♭ 1; equiva-
lently, ξ ∈ K satisfies ξ ≻ 1 and ζ := ξ† ≽ 1. We also assume that ξ /∈ I(K) +K†.

Since K̂ is d-valued of H-type with asymptotic integration, it has by [ADH, 10.2.7]

an immediate asymptotic extension K̂(ϕ) with ϕ′ = ξ. Then the algebraic closure

of K̂(ϕ) is still d-valued of H-type, by [ADH, 9.5], and so [ADH, 10.4.1] yields a
d-valued H-asymptotic extension L of this algebraic closure with an element e ̸= 0
such that e† = ξ. All we need about L below is that it is a d-valued H-asymptotic

extension of K̂ with elements ϕ and e such that ϕ′ = ξ and e ̸= 0, e† = ξ. Note
that then L has small derivation, and ξ ≻♭ 1 in L. (The element ϕ will only play
an auxiliary role later in this subsection.)

Lemma 3.5.2. v(e) /∈ Γ.

Proof. Suppose otherwise. Take a ∈ K× with a e ≍ 1. Then a† + ξ = (a e)† ∈
I(L) ∩K = I(K) and thus ξ ∈ I(K) +K†, a contradiction. □

By Lemma 3.5.2 there is for each g ∈ L at most one f̂ ∈ K̂ with
(
f̂ e

ξ

)′
= g.

Let f ∈ K× be given with f ≼ 1, and suppose f̂ ∈ K̂ satisfies
(
f̂ e

ξ

)′
= f e. Our

aim is to show that with Pj as in Lemma 3.5.1, the series
∑∞

j=0 Pj(ζ, f)
1
ξj is a kind

of asymptotic expansion of f̂ . The partial sums

fm :=

m∑
j=0

Pj(ζ, f)
1

ξj

of this series lie in K, with f0 = f and fn−fm ≺ ξ−m for m < n, by Lemma 1.1.13.
More precisely, we show:

Proposition 3.5.3. We have f̂ − fm ≺ ξ−m for all m. (Thus: f ≍ 1 ⇒ f̂ ∼ f .)

Towards the proof, note that by Lemma 3.5.1 with R = L,

f̂
e

ξ
=

m∑
j=0

Pj(ζ, f)
e

ξj+1
+ Im, Im ∈ L, and thus

f̂ = fm +
ξ

e
Im(3.5.1)

where Im ∈ K̂ e satisfies I ′m = Pm+1(ζ, f)
e

ξm+1 , a condition that determines Im
uniquely up to an additive constant from CL. The proof of Proposition 3.5.3 now
rests on the following lemmas:

Lemma 3.5.4. In L we have (e ξl)(k) ∼ e ξl+k, for all k and all l ∈ Z.

This is Corollary 1.1.14 with our L in the role of K there, and taking eϕ there as
our e ∈ L; note that here our ϕ ∈ L with ϕ′ = ξ is needed.

Lemma 3.5.5. Suppose e ≻ ξm+1. Then ξ
e Im ≺ ξ−m.

Proof. This amounts to Im ≺ e
ξm+1 . Suppose Im ≽ e

ξm+1 ≻ 1. Then we have I ′m ≽(
e

ξm+1

)′ ∼ e
ξm by Lemma 3.5.4, so Pm+1(ζ, f)

e
ξm+1 ≽ e

ξm , and thus Pm+1(ζ, f) ≽ ξ,
contradicting Lemma 1.1.13. □
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Lemma 3.5.6. Suppose e ≼ ξm. Then Im ≺ 1 and ξ
e Im ≺ ξ−m.

Proof. Lemma 1.1.13 gives

Pm+1(ζ, f)
e

ξm+1
≼ ζN

e

ξm+1
≼
ζN

ξ
for some N ∈ N,

so v(I ′m) > ΨL, and thus Im ≼ 1. If Im ≍ 1, then v( ξe Im) = v(ξ) − v(e) /∈ Γ,

contradicting ξ
e Im = f̂ − fm ∈ K̂, by (3.5.1). Thus Im ≺ 1. Now assume towards

a contradiction that ξ
e Im ≽ ξ−m. Then e

ξm+1 ≼ Im ≺ 1, so I ′m ≽
(

e
ξm+1

)′ ∼ e
ξm by

Lemma 3.5.4, and this yields a contradiction as in the proof of Lemma 3.5.5. □

Proof of Proposition 3.5.3. Letm be given. If e ≻ ξm+1, then f̂−fm = ξ
e Im ≺ ξ−m

by Lemma 3.5.5. Suppose e ≼ ξm+1. Then Lemma 3.5.6 (with m+1 instead of m)

gives f̂ − fm+1 ≺ ξ−(m+1), hence f̂ − fm = (f̂ − fm+1) + (fm+1 − fm) ≺ ξ−m. □

Application to linear differential equations of order 1. Proposition 3.5.3

yields information about the asymptotics of solutions (in K̂) of certain linear dif-
ferential equations of order 1 over K:

Corollary 3.5.7. Let f, ξ ∈ K, f ≼ 1, ξ ≻♭ 1, ξ /∈ I(K) + K†, and sup-

pose y ∈ K̂ satisfies y′ + ξy = f . Then there is for every m an element ym ∈ K
with y − ym ≺ ξ−m. Also, f ≍ 1 ⇒ y ∼ fξ−1.

Proof. Take L and e ∈ L as at the beginning of the previous subsection, and

set f̂ := yξ ∈ K̂. Then for A := ∂ + ξ we have A(f̂/ξ) = f , so(
f̂
e

ξ

)′

= (f̂/ξ)′ e+(f̂/ξ)ξ e = A(f̂/ξ) e = f e,

hence f̂ is as in the previous subsection. Now apply Proposition 3.5.3. □

Corollary 3.5.8. Let g ∈ K, u ∈ K× be such that g /∈ I(K) + K† and ξ :=

g + u† ≻♭ 1. Suppose z ∈ K̂ satisfies z′ + gz = u. Then z ∼ u/ξ, and for every m
there is a zm ∈ K such that z − zm ≺ uξ−m.

Proof. Set A := ∂ + g. Then A⋉u = ∂ + ξ, so A(z) = u yields for y := z/u
that y′+ξy = 1. Now observe that ξ /∈ I(K)+K† and use the previous corollary. □

Slots of order and degree 1. In the rest of this section we use the material above

to analyze slots of order and degree 1 in K. Below K is henselian and (P,m, f̂) is

a slot in K with orderP = degP = 1 and f̂ ∈ K̂ \K. We let f range over K, n
over K×, and ϕ over active elements of K. Thus

P = a(Y ′ + gY − u) where a ∈ K×, g, u ∈ K,

P×n = an
(
Y ′ + (g + n†)Y − n−1u

)
.

Since K is henselian, (P,m, f̂) is Z-minimal and thus equivalent to a hole in K, by
Lemma 3.2.14. Also, nmulP×m = ndegP×m = 1 by Lemma 3.2.21. We have LP =
a(∂ + g), so

g ∈ K† ⇐⇒ kerLP ̸= {0}, g ∈ I(K) +K† ⇐⇒ E e(LP ) ̸= ∅,
using for the second equivalence the remark on E e(A) preceding Lemma 1.4.9.

If (P,m, f̂) is isolated, then P (f) ̸= 0 for f̂ − f ≺ m by Lemmas 3.2.14 and 3.4.15,
so, taking f = 0, we have u ̸= 0.
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Lemma 3.5.9. Suppose ∂K = K and I(K) ⊆ K†. Then E e(LP ) = ∅, so (P,m, f̂)
is isolated by Lemma 3.4.5.

Proof. Passing to an equivalent hole in K, arrange that (P,m, f̂) is a hole in K.

Since ∂K = K and f̂ ∈ K̂ \K, the remark following Lemma 1.7.21 yields g /∈ K† =
I(K) +K†, therefore E e(LP ) = ∅. □

Set v := v(LP×m
); thus v = 1 if g + m† ≼ 1 and v = 1/(g + m†) otherwise. Hence

from Example 3.3.3 and the remarks before Lemma 3.3.17 we obtain:

(P,m, f̂) is normal ⇐⇒ (P,m, f̂) is steep ⇐⇒ v ≺♭ 1,

(P,m, f̂) is deep ⇐⇒ v ≺♭ 1 and u ≼ m/v.

We have P (0) = −au, and if v ≺ 1, then (P×m)1 ∼ (am/v)Y . Thus

(P,m, f̂) is strictly normal ⇐⇒ v ≺♭ 1 and u ≺∆(v) mv.

We say that (P,m, f̂) is balanced if (P,m, f̂) is steep and P (0) ≼ SP×m
(0), equiv-

alently, (P,m, f̂) is steep and u ≼ m. Thus

(P,m, f̂) is strictly normal =⇒ (P,m, f̂) is balanced =⇒ (P,m, f̂) is deep,

and with b ∈ K×,

(P,m, f̂) is balanced ⇐⇒ (P×n,m/n, f̂/n) is balanced ⇐⇒ (bP,m, f̂) is balanced.

If (P,m, f̂) is balanced, then so is any slot in K equivalent to (P,m, f̂). Moreover,

if (P,m, f̂) is a hole inK, then P (0) = −LP (f̂), so (P,m, f̂) is balanced iff it is steep

and LP (f̂) ≼ SP×m
(0). By Corollary 3.3.14, if (P,m, f̂) is steep, then f̂−f ≺∆(v) m

for some f . For balanced (P,m, f̂) we have a variant of this fact:

Lemma 3.5.10. Suppose (P,m, f̂) is balanced and g /∈ I(K) +K†. Then there is

for all n an f such that f̂ − f ≺ vnm.

Proof. Replacing (P,m, f̂) by an equivalent hole in K, we arrange that (P,m, f̂) is a

hole in K, and replacing (P,m, f̂) by (P×m, 1, f̂/m), that m = 1. Then f̂ ′ + gf̂ = u
with g = 1/v ≻♭ 1, g /∈ I(K) + K†, and u ≼ 1. Hence the lemma follows from
Corollary 3.5.7. □

In the next corollary we assume that the subgroup K† of K is divisible. (Since K
is henselian and d-valued, this holds if the groups C× and Γ are divisible.)

Corollary 3.5.11. Suppose (P,m, f̂) is balanced and g /∈ I(K)+K†. Then (P,m, f̂)

has a strictly normal refinement (P+f ,m, f̂ − f).

Proof. First arrange that (P,m, f̂) is a hole in K. The previous lemma yields

an f such that f̂ − f ≼ v3m. Then (P+f ,m, f̂ − f) is a strictly normal refinement

of (P,m, f̂), by Lemma 3.3.46 (where the latter uses divisibility of K†). □

Lemma 3.5.12. Suppose (P,m, f̂) is balanced with vf̂ /∈ E e(LP ) and f̂ − f ≼ f̂ .

Then the refinement (P+f ,m, f̂ − f) of (P,m, f̂) is balanced.
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Proof. By Lemma 3.2.14 we arrange (P,m, f̂) is a hole. Replacing (P,m, f̂) and f

by (P×m, 1, f̂/m) and f/m we arrange next that m = 1. By the remark preceding

Lemma 3.3.2, (P+f , 1, f̂ − f) is steep. Take ϕ such that vf̂ /∈ E
(
(LP )

ϕ
)
, and

set ĝ := f̂ − f , so 0 ̸= ĝ ≼ f̂ . Recall from [ADH, 5.7.5] that LPϕ = (LP )
ϕ and

hence LPϕ(f̂) = LP (f̂) and LP (ĝ) = LPϕ(ĝ). Thus

LP+f
(ĝ) = LP (ĝ) ≼ LPϕ ĝ ≼ LPϕ f̂ ≍ LPϕ(f̂) = LP (f̂) ≼ SP (0) = SP+f

(0),

using [ADH, 4.5.1(iii)] to get the second ≼ and vf̂ /∈ E (LPϕ) to get ≍; the last ≼
uses (P, 1, f̂) being a hole. Therefore (P+f , 1, ĝ) is balanced. □

Combining Lemmas 3.4.2 and 3.5.12 yields:

Corollary 3.5.13. If (P,m, f̂) is balanced and isolated, and f̂ − f ≼ f̂ , then the

refinement (P+f ,m, f̂ − f) of (P,m, f̂) is also balanced and isolated.

We call (P,m, f̂) proper if the differential polynomial P is proper as defined in

Section 1.7 (that is, u ̸= 0 and g + u† ≻♭ 1). If (P,m, f̂) is proper, then so

are (bP,m, f̂) for b ̸= 0 and (P×n,m/n, f̂/n), as well as each refinement (P, n, f̂)

of (P,m, f̂) and each slot in K equivalent to (P,m, f̂). By Lemma 1.7.23, if (P,m, f̂)

is proper, then so is (Pϕ,m, f̂) for ϕ ≼ 1.

Lemma 3.5.14. Suppose (P,m, f̂) is proper and m ≍ u; then (P,m, f̂) is balanced.

Proof. Replacing (P,m, f̂) by (P×m, 1, f̂/m), we arrange m = 1. Then u ≍ 1 and

thus (P, 1, f̂) is balanced. □

Proposition 3.5.15. Suppose (P,m, f̂) is proper and vf̂ /∈ E e(LP ). Then (P,m, f̂)
has a balanced refinement.

Proof. We arrange m = 1 as usual. By Lemmas 1.7.26 and 3.2.14 we have

f̂ ∼ u/(g + u†) ≺♭ u.

Hence if u ≼ 1, then (P, u, f̂) refines (P, 1, f̂), and so (P, u, f̂) is balanced by
Lemma 3.5.14. Assume now that u ≻ 1. Then 1 ≺ u ≺ g by Lemma 1.7.25

and nmulP = 1, and hence u† ≼ g† ≺ g. So g ∼ g + u† ≻♭ 1, hence (P, 1, f̂) is

steep, and f̂ ∼ u/g. Set f := u/g ≺ 1; then (P+f , 1, f̂ − f) is a steep refinement

of (P, 1, f̂). Moreover

P+f (0) = P (f) = af ′ ≺ a = SP+f
(0),

hence (P+f , 1, f̂ − f) is balanced. □

Corollary 3.5.16. Suppose K is λ-free. Then there exists ϕ ≼ 1 and a refine-

ment (P+f , n, f̂ − f) of (P,m, f̂) such that (Pϕ
+f , n, f̂ − f) is balanced.

Proof. Using Remark 3.4.7 we can replace (P,m, f̂) by a refinement to arrange

that (P,m, f̂) is isolated. Then u ̸= 0 by the remark before Lemma 3.5.9, so by
Lemma 1.7.24 , Pϕ is proper, eventually. Now apply Proposition 3.5.15 to a proper

(and isolated) (Pϕ,m, f̂) with ϕ ≼ 1. □
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Corollary 3.5.17. Suppose K is λ-free, ∂K = K, I(K) ⊆ K†, and K† is divisible.

Then (P,m, f̂) has a refinement (P+f , n, f̂ − f) such that (Pϕ
+f , n, f̂ − f) is strictly

normal for some ϕ ≼ 1.

Proof. Corollary 3.5.16 yields a refinement (P+f1 , n1, f̂−f1) of (P,m, f̂) and a ϕ ≼ 1

such that (Pϕ
+f1

, n1, f̂ − f1) is balanced. By Lemma 3.5.9 with Kϕ in the role

of K and (Pϕ
+f1

, n1, f̂ − f1) in the role of (P,m, f̂) we can apply Corollary 3.5.11

to (Pϕ
+f1

, n1, f̂ − f1) to give a strictly normal refinement (Pϕ
f1+f2

, n, f̂ − f1 − f2) of

it. Thus for f := f1+f2 the refinement (P+f , n, f̂−f) of (P,m, f̂) has the property
that (Pϕ

+f , n, f̂ − f) is strictly normal. □

Combining this corollary with Corollaries 3.2.8, 3.3.49, and Lemma 3.3.40 yields:

Corollary 3.5.18. If K is ω-free and algebraically closed with ∂K = K
and I(K) ⊆ K†, then every minimal hole in K of order ⩾ 1 has a refine-
ment (Q, n, ĝ) such that (Qϕ, n, ĝ) is deep and strictly normal, eventually.

Remark. Suppose K is λ-free, with ∂K = K, I(K) ⊆ K†, and K† is divisible. By
Corollary 3.3.37 every linear slot in K of order r ⩾ 1 has a refinement (Q, n, ĝ) such
that (Qϕ, n, ĝ) is deep and normal, eventually. We don’t know whether every linear
minimal hole in K of order r ⩾ 1 has a refinement (Q, n, ĝ) such that (Qϕ, n, ĝ) is
deep and strictly normal, eventually. (For r = 1 this holds by Corollary 3.5.17.)
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Part 4. Holes in H-Fields

Here we focus on holes in the algebraic closureK of a Liouville closedH-fieldH with
small derivation. After the preliminary Sections 4.1 and 4.2 we come in Sections 4.3–
4.5 to the technical heart of Part 4. Section 4.3 shows that every minimal hole

in K gives rise to a Z-minimal slot (Q, n, b̂) in H such that the slot (Qϕ, n, b̂) in Hϕ

is eventually split-normal, meaning normal with its linear part “asymptotically”
splitting over Kϕ; see Definition 4.3.3 for the precise definition, and Theorem 4.3.9
for the detailed statement of the main result of this section. WhenH is a Hardy field
as in [6], this asymptotic splitting will allow us to define a contractive operator on
a space of real-valued functions; this operator then has a fixed point whose germ y
satisfies Q(y) = 0, y ≺ n. A main difficulty then lies in guaranteeing that such

germs y have similar asymptotic properties as b̂. Sections 4.4 and 4.5 prepare the
ground for dealing with this: In Section 4.4 we strengthen the concept of isolated
slot to ultimate slot (in H, or in K). This relies on the ultimate exceptional values
of linear differential operators over K introduced in Part 2. In Section 4.5 we single
out among split-normal slots those that are repulsive-normal, culminating in the
proof of Theorem 4.5.28: an analogue of Theorem 4.3.9 producing from a minimal
hole in K and for small enough active ϕ > 0 in H a deep repulsive-normal ultimate
slot in Hϕ. This is further improved in Theorem 4.5.43.

4.1. Some Valuation-Theoretic Lemmas

The present section contains preliminaries for the next section on approximating
splittings of linear differential operators; these facts in turn are used in Section 4.3
on split-normality. We shall often deal with real closed fields with extra structure,
denoted usually by H, since the results in this section about such H will be applied
to H-fields (and to Hardy fields in [6]). We begin by summarizing some purely
valuation-theoretic facts.

Completion and specialization of real closed valued fields. Let H be a real
closed valued field whose valuation ring O is convex in H (with respect to the
unique ordering on H making H an ordered field). Using [ADH, 3.5.15] we equip
the algebraic closure K = H[i] (i2 = −1) of H with its unique valuation ring lying
over O, which is O +Oi. We set Γ := v(H×), so ΓK = Γ.

Lemma 4.1.1. The completion Hc of the valued field H is real closed, its valuation
ring is convex in Hc, and there is a unique valued field embedding Hc → Kc over H.
Identifying Hc with its image under this embedding we have Hc[i] = Kc.

Proof. For the first two claims, see [ADH, 3.5.20]. By [ADH, 3.2.20] we have a
unique valued field embedding Hc → Kc over H, and viewing Hc as a valued
subfield ofKc via this embedding we haveKc = HcK = Hc[i] by [ADH, 3.2.29]. □

We identify Hc with its image in Kc as in the previous lemma. Fix a convex
subgroup ∆ of Γ. Let Ȯ be the valuation ring of the coarsening of H by ∆, with
maximal ideal Ȯ. Then by [ADH, 3.5.11 and subsequent remarks] Ȯ and Ȯ are

convex in H, the specialization Ḣ = Ȯ/Ȯ of H by ∆ is naturally an ordered and

valued field, and the valuation ring of Ḣ is convex in Ḣ. Moreover, Ḣ is even
real closed by [ADH, 3.5.16]. Likewise, the coarsening of K by ∆ has valuation

ring ȮK with maximal ideal ȮK and valued residue field K̇. Thus ȮK lies over Ȯ
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by [ADH, 3.4, subsection Coarsening and valued field extensions], so (K, ȮK) is a

valued field extension of (H, Ȯ). In addition:

Lemma 4.1.2. K̇ is a valued field extension of Ḣ and an algebraic closure of Ḣ.

Proof. The second part follows by general valuation theory from K being an alge-
braic closure of H. In fact, with the image of i ∈ OK ⊆ ȮK in K̇ denoted by the
same symbol, we have K̇ = Ḣ[i]. □

Next, let Ĥ be an immediate valued field extension of H. We equip Ĥ with the
unique field ordering making it an ordered field extension of H in which OĤ is con-

vex; see [ADH, 3.5.12]. Choose i in a field extension of Ĥ with i2 = −1. Equip Ĥ[i]

with the unique valuation ring of Ĥ[i] that lies over OĤ , namely OĤ +OĤ i [ADH,

3.5.15]. Let â = b̂+ ĉ i ∈ Ĥ[i] \H[i] with b̂, ĉ ∈ Ĥ, and let b, c range over H. Then

v
(
â− (b+ ci)

)
= min

{
v(̂b− b), v(ĉ− c)

}
and thus v

(
â−H[i]

)
⊆ v(̂b−H) and v

(
â−H[i]

)
⊆ v(ĉ−H).

Lemma 4.1.3. We have v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆ v(̂b−H). Moreover,
the following are equivalent:

(i) v(̂b−H) ⊆ v(ĉ−H);

(ii) for all b there is a c with v
(
â− (b+ ci)

)
= v(̂b− b);

(iii) v
(
â−H[i]

)
= v(̂b−H).

Proof. For the first assertion, use that v(̂b − H), v(ĉ − H) ⊆ Γ∞ are downward

closed. Suppose v(̂b−H) ⊆ v(ĉ−H), and let b be given. If ĉ ∈ H, then for c := ĉ

we have v
(
â − (b + ci)

)
= v(̂b − b). Suppose ĉ /∈ H. Then v(ĉ −H) ⊆ Γ does not

have a largest element and v(̂b−b) ∈ v(ĉ−H), so we have c with v(̂b−b) < v(ĉ−c);
thus

v
(
â− (b+ ci)

)
= min

{
v(̂b− b), v(ĉ− c)

}
= v(̂b− b).

This shows (i) ⇒ (ii). Moreover, (ii) ⇒ (iii) follows from v
(
â−H[i]

)
⊆ v(̂b−H),

and (iii) ⇒ (i) from v
(
â−H[i]

)
⊆ v(ĉ−H). □

So if v(̂b−H) ⊆ v(ĉ−H), then: â is special over H[i] ⇐⇒ b̂ is special over H.

To apply Lemma 4.1.3 to H-fields we assume in the next lemma more generally

that H is equipped with a derivation making it a d-valued field and that Ĥ is

equipped with a derivation ∂ making it an asymptotic field extension of H; then Ĥ
is also d-valued with the same constant field as H [ADH, 9.1.2].

Lemma 4.1.4. Suppose H is closed under integration. Then we have:

v(̂b−H) ⊆ v(ĉ−H) =⇒ v(∂b̂−H) ⊆ v(∂ĉ−H).

Proof. Assume v(̂b−H) ⊆ v(ĉ−H). Let b ∈ H, and take g ∈ H with g′ = b; adding

a suitable constant to g we arrange b̂− g ̸≍ 1. Next, take h ∈ H with b̂− g ≍ ĉ−h.
Then

∂b̂− b = ∂(̂b− g) ≍ ∂(ĉ− h) = ∂ĉ− h′,

so v(∂b̂− b) ∈ v(∂ĉ−H). □
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Embedding into the completion. In this subsection K is an asymptotic field,
Γ := v(K×) ̸= {0}, and L is an asymptotic field extension of K such that Γ is
cofinal in ΓL.

Lemma 4.1.5. Let a ∈ L and let (aρ) be a c-sequence in K with aρ → a in L.

Then for each n, (a
(n)
ρ ) is a c-sequence in K with a

(n)
ρ → a(n) in L.

Proof. By induction on n it suffices to treat the case n = 1. Let γ ∈ ΓL; we need to
show the existence of an index σ such that v(a′ − a′ρ) > γ for all ρ > σ. By [ADH,

9.2.6] we have f ∈ L× with f ≺ 1 and v(f ′) ⩾ γ. Take σ such that v(a− aρ) > vf
for all ρ > σ. Then v(a′ − a′ρ) > v(f ′) ⩾ γ for ρ > σ. □

Let Kc be the completion of the valued differential field K; then Kc is asymptotic
by [ADH, 9.1.6]. Lemma 4.1.5 and [ADH, 3.2.13 and 3.2.15] give:

Corollary 4.1.6. Let (ai)i∈I be a family of elements of L such that ai is the
limit in L of a c-sequence in K, for each i ∈ I. Then there is a unique embed-
ding K

〈
(ai)i∈I

〉
→ Kc of valued differential fields over K.

Next suppose that H is a real closed asymptotic field whose valuation ring O is

convex in H with O ≠ H, the asymptotic extension Ĥ of H is immediate, and i is

an element of an asymptotic extension of Ĥ with i2 = −1. Then i /∈ Ĥ, and we
identify Hc with a valued subfield of H[i]c as in Lemma 4.1.1, so that Hc[i] = H[i]c

as in that lemma. Using also Lemma 4.1.5 we see that Hc is actually a valued
differential subfield of the asymptotic field H[i]c, and so Hc[i] = H[i]c also as

asymptotic fields. Thus by Corollary 4.1.6 applied to K := H and L := Ĥ:

Corollary 4.1.7. Let a ∈ Ĥ[i] be the limit in Ĥ[i] of a c-sequence in H[i].

Then Re a, Im a are limits in Ĥ of c-sequences in H, hence there is a unique
embedding H[i]

〈
Re a, Im a

〉
→ Hc[i] of valued differential fields over H[i].

4.2. Approximating Linear Differential Operators

In this section K is a valued differential field with small derivation, Γ := v(K×).
For later use we prove here Corollaries 4.2.6 and 4.2.9 and consider strong splitting .
Much of this section rests on the following basic estimate for linear differential
operators which split over K:

Lemma 4.2.1. Let b1, . . . , br ∈ K and n be given. Then there exists γ0 ∈ Γ⩾

such that for all b•
1, . . . , b

•
r ∈ K and γ ∈ Γ with γ > γ0 and v(bi − b•

i) ⩾ (n + r)γ
for i = 1, . . . , r, we have v(B −B•) ⩾ vB + nγ, where

B := (∂ − b1) · · · (∂ − br) ∈ K[∂], B• := (∂ − b•

1) · · · (∂ − b•

r) ∈ K[∂].

Proof. By induction on r ∈ N. The case r = 0 is clear (any γ0 ∈ Γ⩾ works).
Suppose the lemma holds for a certain r. Let b1, . . . , br+1 ∈ K and n be given.
Set βi := vbi (i = 1, . . . , r + 1). Take γ0 as in the lemma applied to b1, . . . , br
and n + 1 in place of n, and let γ1 := γ0 if br+1 = 0, γ1 := max

{
γ0, |βr+1|

}
otherwise. Let b•

1, . . . , b
•
r+1 ∈ K and γ ∈ Γ with γ > γ1 and v(bi−b•

i) ⩾ (n+r+1)γ
for i = 1, . . . , r + 1. Set

B := (∂ − b1) · · · (∂ − br), B• := (∂ − b•

1) · · · (∂ − b•

r), E := B −B•.

Then
B(∂ − br+1) = B•(∂ − b•

r+1) +B•(b•

r+1 − br+1) + E(∂ − br+1).
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Inductively we have vE ⩾ vB + (n+ 1)γ. Suppose E ̸= 0 and 0 ̸= br+1 ̸≍ 1. Then
by [ADH, 6.1.5],

vE(βr+1)− vB(βr+1) = vE − vB + o(βr+1)

⩾ (n+ 1)γ + o(βr+1)

⩾ nγ + |βr+1|+ o(βr+1) > nγ.

Hence, using E(∂ − br+1) = E∂ − Ebr+1 and v(E∂) = v(E) ̸= vE(βr+1),

v
(
E(∂ − br+1)

)
= min

{
vE, vE(βr+1)

}
> min

{
vB, vB(βr+1)

}
+ nγ

= v
(
B(∂ − br+1)

)
+ nγ,

where for the last equality we use vB ̸= vB(βr+1). Also,

v
(
B•(b•

r+1 − br+1)
)
= vB•

(
v(b•

r+1 − br+1)
)
⩾ vB•

(
(n+ r + 1)γ

)
= vB

(
(n+ r + 1)γ

)
where we use [ADH, 6.1.7] for the last equality. Moreover, by [ADH, 6.1.4],

vB
(
(n+ r + 1)γ

)
− nγ ⩾ vB + (r + 1)γ + o(γ) > vB ⩾ v

(
B(∂ − br+1)

)
.

This yields the desired result for E ̸= 0, 0 ̸= br+1 ̸≍ 1. The cases E ̸= 0, br+1 = 0
and E = 0, 0 ̸= br+1 ̸≍ 1 are simpler versions of the above, and so is the case E ̸= 0,
br+1 ≍ 1 using [ADH, 5.6.1(i)]. The remaining cases, E = 0, br+1 = 0 and E = 0,
br+1 ≍ 1, are even simpler to handle. □

Corollary 4.2.2. Let a, b1, . . . , br ∈ K, a ̸= 0. Then there exists γ0 ∈ Γ⩾ such that
for all a•, b•

1, . . . , b
•
r ∈ K and γ ∈ Γ with γ > γ0, v(a−a•) ⩾ va+γ, and v(bi−b•

i) ⩾
(r + 1)γ for i = 1, . . . , r, we have v(A−A•) ⩾ vA+ γ, where

A := a(∂ − b1) · · · (∂ − br) ∈ K[∂], A• := a•(∂ − b•

1) · · · (∂ − b•

r) ∈ K[∂].

Proof. Take γ0 as in the previous lemma applied to b1, . . . , br and n = 1, and
let B = (∂ − b1) · · · (∂ − br), A = aB. Let a•, b•

1, . . . , b
•
r ∈ K and γ ∈ Γ be such

that γ > γ0, v(a − a•) ⩾ va + γ, and v(bi − b•
i) ⩾ (r + 1)γ for i = 1, . . . , r.

Set B• := (∂ − b•
1) · · · (∂ − b•

r), A
• := a•B•. Then

E := A−A• = a(B −B•) + (a− a•)B•.

Lemma 4.2.1 gives vB• = vB, and so

v
(
a(B−B•)

)
⩾ va+vB+γ = vA+γ, v

(
(a−a•)B•

)
= v(a−a•)+vB ⩾ vA+γ,

so vE ⩾ vA+ γ. □

In the rest of this subsection we assume P ∈ K{Y } \ K, set r := orderP , and
let i, j range over N1+r.

Lemma 4.2.3. For δ := v
(
P −P (0)

)
and all h ∈ O we have v

(
P+h−P

)
⩾ δ+ 1

2vh.

Proof. Note that δ ∈ Γ and v(Pj) ⩾ δ for all j with |j| ⩾ 1. Let h ∈ O ̸= and i be
given; we claim that v

(
(P+h)i − Pi

)
⩾ δ + 1

2vh. By [ADH, (4.3.1)] we have

(P+h)i = Pi +Q(h) where Q(Y ) :=
∑
|j|⩾1

(
i+ j

i

)
Pi+j Y

j ∈ K{Y }.

From Q(0) = 0 and [ADH, 6.1.4] we obtain

v(Q×h) ⩾ v(Q) + vh+ o(vh) ⩾ δ + 1
2vh.

Together with v
(
Q(h)

)
⩾ v(Q×h) this yields the lemma. □
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Corollary 4.2.4. Let f ∈ K. Then there exists δ ∈ Γ such that for all f • ∈ K
with f − f • ≺ 1 we have v

(
P+f • − P+f

)
⩾ δ + 1

2v(f
• − f).

Proof. Take δ as in the preceding lemma with P+f in place of P and h = f •−f . □

Corollary 4.2.5. Let a, b1, . . . , br, f ∈ K be such that

A := LP+f
= a(∂ − b1) · · · (∂ − br), a ̸= 0.

Then there exists γ1 ∈ Γ⩾ such that for all a•, b•
1, . . . , b

•
r, f

• ∈ K and γ ∈ Γ, if

γ > γ1, v(a−a•) ⩾ va+γ, v(bi− b•

i) ⩾ (r+1)γ (i = 1, . . . , r), and v(f −f •) ⩾ 4γ,

then

(i) v
(
P+f • − P+f

)
⩾ vA+ γ; and

(ii) LP+f• = a•(∂ − b•
1) · · · (∂ − b•

r) + E where vE ⩾ vA+ γ.

Proof. Take γ0 as in Corollary 4.2.2 applied to a, b1, . . . , br, and take δ as in Corol-
lary 4.2.4. Then γ1 := max{γ0, vA− δ} has the required property. □

In the next result L is a valued differential field extension ofK with small derivation
such that Γ is cofinal in ΓL. Then the natural inclusion K → L extends uniquely
to an embedding Kc → Lc of valued fields by [ADH, 3.2.20]. It is easy to check
that this is even an embedding of valued differential fields; we identify Kc with a
valued differential subfield of Lc via this embedding.

Corollary 4.2.6. Let a, b1, . . . , br ∈ Lc and f ∈ Kc be such that in Lc[∂],

A := LP+f
= a(∂ − b1) · · · (∂ − br), a, f ̸= 0, v := v(A) ≺ 1,

and let w ∈ N. Then there are a•, b•
1, . . . , b

•
r ∈ L and f • ∈ K such that

a• ∼ a, f • ∼ f, A• := LP+f• ∼ A, orderA• = r, v(A•) ∼ v,

and such that for ∆ :=
{
α ∈ ΓL : α = o

(
v(v)

)}
we have in L[∂],

A• = a•(∂ − b•

1) · · · (∂ − b•

r) + E, E ≺∆ vw+1A.

Proof. Let γ1 ∈ Γ⩾
L be as in Corollary 4.2.5 applied to Lc in place of K, and

take γ2 ∈ Γ such that γ2 ⩾ max{γ1, 14vf} + vA and γ2 ⩾ v
(
(P+f )i

)
for all i

with (P+f )i ̸= 0. Let γ ∈ Γ and γ > γ2. Then γ−vA > γ1. By the density of K, L
in Kc, Lc, respectively, we can take a•, b•

1, . . . , b
•
r ∈ L and f • ∈ K such that

v(a− a•) ⩾ va+ (γ − vA), v(bi − b•

i) ⩾ (r + 1)(γ − vA) for i = 1, . . . , r,

and v(f − f •) ⩾ 4(γ − vA) > vf . Then a• ∼ a, f • ∼ f , and by Corollary 4.2.5,

v
(
P+f • − P+f

)
⩾ γ, A• := LP+f• = a•(∂ − b•

1) · · · (∂ − b•

r) + E, vE ⩾ γ.

Hence (P+f •)i ∼ (P+f )i if (P+f )i ̸= 0, and v
(
(P+f •)i

)
> γ2 ⩾ vA if (P+f )i = 0,

so A• ∼ A, orderA• = r, and v(A•) ∼ v. Choosing γ so that also γ > v(vw+1A)+∆
we achieve in addition that E ≺∆ vw+1A. □
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Keeping it real. In this subsection H is a real closed H-asymptotic field with small
derivation whose valuation ring is convex, with Γ := v(H×) ̸= {0}, and K is the as-
ymptotic extension H[i] of H with i2 = −1. Then Hc is real closed and Hc[i] = Kc

as valued field extension of H according to Lemma 4.1.1, and as asymptotic field
extension of H by the discussion after Corollary 4.1.6. Using the real splittings
from Definition 1.1.5 we show here that we can “preserve the reality of A” in
Corollary 4.2.6.

Lemma 4.2.7. Let A ∈ Hc[∂] be of order r ⩾ 1 and let (g1, . . . , gr) ∈ Hc[i]r be
a real splitting of A over Hc[i]. Then for every γ ∈ Γ there are g•

1, . . . , g
•
r in H[i]

such that v(gi − g•
i) > γ for i = 1, . . . , r,

A• := (∂ − g•

1) · · · (∂ − g•

r) ∈ H[∂],

and (g•
1, . . . , g

•
r) is a real splitting of A• over H[i].

Proof. We can reduce to the case where r = 1 or r = 2. If r = 1, then the
lemma holds trivially, so suppose r = 2. Then again the lemma holds trivially
if g1, g2 ∈ Hc, so we can assume instead that

g1 = a− bi + b†, g2 = a+ bi, a ∈ Hc, b ∈ (Hc)×.

Let γ ∈ Γ be given. The density of H in Hc gives a• ∈ H with v(a− a•) ⩾ γ. Next,
choose γ• ∈ Γ such that γ• ⩾ max{γ, vb} and α′ > γ for all nonzero α > γ• − vb
in Γ, and take b• ∈ H with v(b − b•) > γ•. Then v(b − b•) > γ and b ∼ b•. In
fact, b = b•(1 + ε) where vε + vb = v(b − b•) > γ• and so v

(
(b/b•)†

)
= v(ε′) > γ.

Set g•
1 := a• − b•i + b•† and g•

2 := a• + b•i. Then

v(g1 − g•

1) = v
(
a− a• + (b/b•)† + (b• − b)i

)
> γ, v(g2 − g•

2) > γ,

(∂ − g•

1) · (∂ − g•

2) = ∂
2 −

(
2a• + b•†)

∂ +
(
(−a•)′ + a•2 + a•b•† + b•2

)
∈ H[∂].

Hence (g•
1, g

•
2) is a real splitting of A• := (∂ − g•

1)(∂ − g•
2) ∈ H[∂]. □

In the next two corollaries a ∈ (Hc)× and b1, . . . , br ∈ Kc are such that

A := a(∂ − b1) · · · (∂ − br) ∈ Hc[∂],

(b1, . . . , br) is a real splitting of A over Kc, and v := v(A) ≺ 1. We set ∆ := ∆(v).

Corollary 4.2.8. Suppose A = LP+f
with P ∈ H{Y } of order r ⩾ 1 and f

in (Hc)×. Let γ ∈ Γ and w ∈ N. Then there is f • ∈ H× such that v(f • − f) ⩾ γ,

(4.2.1) f • ∼ f, A• := LP+f• ∼ A, orderA• = r, v(A•) ∼ v,

and we have a• ∈ H×, b•
1, . . . , b

•
r ∈ K, and B•, E• ∈ H[∂] with A• = B• + E•,

E• ≺∆ vw+1A, such that

B• = a•(∂ − b•

1) · · · (∂ − b•

r), v(a− a•), v(b1 − b•

1), . . . , v(br − b•

r) ⩾ γ,

and (b•
1, . . . , b

•
r) is a real splitting of B• over K.

Proof. We apply Corollary 4.2.6 with H, K in the role of K, L, and take γ1, γ2 as in
the proof of that corollary. We can assume γ > γ2, so that γ−vA > 0. The density
of H in Hc gives a• ∈ H such that v(a− a•) ⩾ max

{
va+ (γ − vA), γ

}
(so a• ∼ a),

and Lemma 4.2.7 gives b•
1, . . . , b

•
r ∈ K such that v(bi−b•

i) ⩾ max
{
(r+1)(γ−vA), γ

}
for i = 1, . . . , r, and (b•

1, . . . , b
•
r) is a real splitting of

B• := a•(∂ − b•

1) · · · (∂ − b•

r) ∈ H[∂]
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over K. Take f • ∈ H with v(f − f •) ⩾ max
{
4(γ − vA), γ

}
. Then (4.2.1) follows

from the proof of Corollary 4.2.6. We can increase γ so that γ > v(vw+1A) + ∆,
and then we have A• −B• ≺∆ vw+1A. □

This result persists after multiplicative conjugation:

Corollary 4.2.9. Suppose A = LP+f,×m
with P ∈ H{Y } of order r ⩾ 1, and f

in (Hc)×, m ∈ H×. Let γ ∈ Γ, w ∈ N. Then there is f • ∈ H× such that

v(f • − f) ⩾ γ, f • ∼ f, A• := LP+f•,×m
∼ A, orderA• = r, v(A•) ∼ v,

and we have a• ∈ H×, b•
1, . . . , b

•
r ∈ K, and B•, E• ∈ H[∂] with the properties stated

in the previous corollary.

Proof. Put Q := P×m ∈ H{Y }, g := f/m ∈ Hc; then Q+g = P+f,×m. Apply-
ing the previous corollary to Q, g in place of P , f yields g• ∈ H×, a• ∈ H×,
and b•

1, . . . , b
•
r ∈ K such that v(g• − g) ⩾ γ − vm,

g• ∼ g, A• := LQ+g• ∼ A, orderA• = r, v(A•) ∼ v

and A• = B• + E•, with B•, E• ∈ H[∂], E• ≺∆ vw+1A, and

B• = a•(∂ − b•

1) · · · (∂ − b•

r), v(a− a•), v(b1 − b•

1), . . . , v(br − b•

r) ⩾ γ,

and (b•
1, . . . , b

•
r) is a real splitting of B• over K. Therefore f • := g•m ∈ H×

and a•, b•
1, . . . , b

•
r have the required properties. □

Strong splitting. In this subsection H is a real closed H-field with small deriva-
tion and asymptotic integration. Thus K := H[i] is a d-valued extension of H.
Let A ∈ K[∂]̸= have order r ⩾ 1 and set v := v(A), and let f , g, h (possibly
subscripted) range over K. Recall from Section 1.1 that a splitting of A over K is
an r-tuple (g1, . . . , gr) such that

A = f(∂ − g1) · · · (∂ − gr) where f ̸= 0.

We call such a splitting (g1, . . . , gr) of A overK strong if Re gj ≽ v† for j = 1, . . . , r,
and we say that A splits strongly over K if there is a strong splitting of A overK.
This notion is mainly of interest for v ≺ 1, since otherwise v = 1, and then any
splitting of A over K is a strong splitting of A over K.

Lemma 4.2.10. Let (g1, . . . , gr) be a strong splitting of A over K. If h ̸= 0, then
(g1, . . . , gr) is a strong splitting of hA over K. If h ≍ 1, then (g1 − h†, . . . , gr − h†)
is a strong splitting of Ah over K.

Proof. The first statement is clear, so suppose h ≍ 1. Now use Lemma 1.1.1 and
the fact that v ≺ 1 implies Reh† ≼ h† ≺ v†. If v = 1, then use that v(Ah) = 1 by
Corollary 3.1.3. □

Lemma 4.2.11. Suppose g ≍ Re g. Then A = ∂ − g splits strongly over K.

Proof. Assuming v ≺ 1 gives v′ ≺ 1, so v† ≺ 1/v ≍ g ≍ Re g. □

In particular, every A ∈ H[∂] ̸= of order 1 splits strongly over K.

Lemma 4.2.12. Suppose (g1, . . . , gr) is a strong splitting of A over K and v ≺♭ 1.
Let ϕ ≼ 1 be active in H and set hj := ϕ−1

(
gj − (r − j)ϕ†

)
for j = 1, . . . , r.

Then (h1, . . . , hr) is a strong splitting of Aϕ over Kϕ = Hϕ[i].
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Proof. By Lemma 1.1.2, (h1, . . . , hr) is a splitting of A
ϕ overKϕ. We have ϕ† ≺ 1 ≼

v†, so Rehj ∼ ϕ−1 Re gj ≽ ϕ−1v† for j = 1, . . . , r. Set w := v(Aϕ) and δ := ϕ−1
∂.

Lemma 3.1.20 gives v† ≍ w†, so ϕ−1v† ≍ δ(w)/w. □

In the next two results we assume that for all q ∈ Q> and n ∈ H× there is given
an element nq ∈ H× such that (nq)† = qn† (and thus v(nq) = q v(n)).

Lemma 4.2.13. Suppose (g1, . . . , gr) is a splitting of A over K, v ≺ 1, n ∈ H×,
and [v] ⩽ [n]. Then for all q ∈ Q> with at most r exceptions, (g1−qn†, . . . , gr−qn†)
is a strong splitting of Anq over K.

Proof. Let q ∈ Q>. Then (g1 − qn†, . . . , gr − qn†) is a splitting of Anq over K, by
Lemma 1.1.1. Moreover,

[
v(Anq)

]
⩽ [n], by Lemma 3.1.9, so v(Anq)† ≼ n†. Thus

if Re gj ̸∼ qn† for j = 1, . . . , r, then (g1 − qn†, . . . , gr − qn†) is a strong splitting
of Anq over K. □

Corollary 4.2.14. Let (P,m, â) be a steep slot in K of order r ⩾ 1 whose linear
part L := LP×m

splits over K and such that â ≺∆ m for ∆ := ∆
(
v(L)

)
. Then for all

sufficiently small q ∈ Q>, any n ≍ |v(L)|qm in K× gives a steep refinement
(
P, n, â

)
of (P,m, â) whose linear part LP×n

splits strongly over K.

Proof. Note that |f | ≍ f for all f . Lemma 3.3.1 gives q0 ∈ Q> such that for
all q ∈ Q> with q ⩽ q0 and any n ≍ |v(L)|qm, (P, n, â) is a steep refinement
of (P,m, â). Now apply Lemma 4.2.13 with L, v(L), |v(L)| in the respective roles
of A, v, n, and use Lemma 4.2.10 and the fact that for n ≍ |v(L)|qm we have LP×n

=
L · n/m = L|v(L)|qh with h ≍ 1. □

We finish this section with a useful fact on slots in K. Given such a slot (P,m, â),
the element â lies in an immediate asymptotic extension of K that might not be

of the form Ĥ[i] with Ĥ an immediate H-field extension of H. By the next lemma
we can nevertheless often reduce to this situation, and more:

Lemma 4.2.15. Suppose H is ω-free. Then every Z-minimal slot in K of positive

order is equivalent to a hole (P,m, b̂) in K with b̂ ∈ K̂ = Ĥ[i] for some immediate

ω-free newtonian H-field extension Ĥ of H.

Proof. Let (P,m, â) be a Z-minimal slot in K of order ⩾ 1. Take an immediate ω-

free newtonian H-field extension Ĥ of H; such Ĥ exists by (0.7). Then K̂ = Ĥ[i] is

also newtonian by (0.10). Now apply Corollary 3.2.29 with L := K̂ to obtain b̂ ∈ K̂

such that (P,m, b̂) is a hole in K equivalent to (P,m, â). □

4.3. Split-Normal Slots

In this section H is a real closed H-field with small derivation and asymptotic
integration. We let O := OH be its valuation ring and C := CH its constant field.

We fix an immediate asymptotic extension Ĥ of H with valuation ring Ô and an

element i of an asymptotic extension of Ĥ with i2 = −1. Then Ĥ is also an H-field

by [ADH, 10.5.8], i /∈ Ĥ andK := H[i] is an algebraic closure ofH. With K̂ := Ĥ[i]
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we have the inclusion diagram

Ĥ K̂ = Ĥ[i]

H K = H[i]

By [ADH, 3.5.15, 10.5.7], K and K̂ are d-valued with valuation rings O + Oi

and Ô+Ôi and with the same constant field C[i], and K̂ is an immediate extension

of K. Thus H, K, Ĥ, K̂ have the same H-asymptotic couple (Γ, ψ).

Lemma 4.3.1. Let â ∈ Ĥ \H. Then Z(H, â) = Z
(
K, â

)
∩H{Y }.

Proof. The inclusion “⊇” is obvious since the Newton degree of a differential poly-
nomial Q ∈ H{Y }̸= does not change when H is replaced by its algebraic closure;
see [ADH, 11.1]. Conversely, let P ∈ Z(H, â). Then for all v ∈ H× and a ∈ H
such that a − â ≺ v we have ndeg≺vH+a ⩾ 1. Let v ∈ H× and z ∈ K be such
that z − â ≺ v. Take a, b ∈ H such that z = a + bi. Then a − â, bi ≺ v and
hence ndeg≺v P+z = ndeg≺v P+a ⩾ 1, using [ADH, 11.2.7]. Thus P ∈ Z

(
K, â

)
. □

Corollary 4.3.2. Let (P,m, â) be a slot in H with â ∈ Ĥ. Then (P,m, â) is also a
slot in K, and if (P,m, â) is Z-minimal as a slot in K, then (P,m, â) is Z-minimal
as a slot in H. Moreover, (P,m, â) is a hole in H iff (P,m, â) is a hole in K, and
if (P,m, â) is a minimal hole in K, then (P,m, â) is a minimal hole in H.

Proof. The first three claims are obvious from K̂ being an immediate extension ofK

and the previous lemma. Suppose (P,m, â) is minimal as a hole in K. Let (Q, n, b̃)

be a hole in H; thus b̃ ∈ H̃ where H̃ is an immediate asymptotic extension of H.

By the first part of the corollary applied to (Q, n, b̃) and H̃ in place of (P,m, â)

and Ĥ, respectively, (Q, n, b̃) is also a hole in K. Hence c(P ) ⩽ c(Q), proving the
last claim. □

In the next subsection we define the notion of a split-normal slot in H. Later in this
section we employ the results of Sections 3.3–4.2 to show, under suitable hypotheses
on H, that minimal holes in K of order ⩾ 1 give rise to a split-normal Z-minimal
slots in H. (Theorem 4.3.9.) We then investigate which kinds of refinements pre-
serve split-normality, and also consider a strengthening of split-normality.

Defining split-normality. In this subsection b ranges over H and m, n over H×.

Also, (P,m, â) is a slot in H of order r ⩾ 1 with â ∈ Ĥ \H and linear part L :=
LP×m

. Set w := wt(P ), so w ⩾ r; if orderL = r, we set v := v(L).

Definition 4.3.3. We say that (P,m, â) is split-normal if orderL = r, and

(SN1) v ≺♭ 1;
(SN2) (P×m)⩾1 = Q+R where Q,R ∈ H{Y }, Q is homogeneous of degree 1 and

order r, LQ splits over K, and R ≺∆(v) v
w+1(P×m)1.

Note that in (SN2) we do not require that Q = (P×m)1.

Lemma 4.3.4. Suppose (P,m, â) is split-normal. Then (P,m, â) is normal, and
with Q, R as in (SN2) we have (P×m)1 −Q ≺∆(v) v

w+1(P×m)1, so (P×m)1 ∼ Q.
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Proof. We have (P×m)1 = Q + R1 and R1 ≼ R ≺∆(v) vw+1(P×m)1, and thus

(P×m)1 − Q ≺∆(v) vw+1(P×m)1. Now (P,m, â) is normal because (P×m)>1 =

R>1 ≺∆(v) v
w+1(P×m)1. □

If (P,m, â) is normal and (P×m)1 = Q+R where Q,R ∈ H{Y }, Q is homogeneous of
degree 1 and order r, LQ splits over K, and R ≺∆(v) v

w+1(P×m)1, then (P,m, â) is
split-normal. Thus if (P,m, â) is normal and L splits over K, then (P,m, â) is split-
normal; in particular, if (P,m, â) is normal of order r = 1, then it is split-normal.
If (P,m, â) is split-normal, then so are (bP,m, â) for b ̸= 0 and (P×n,m/n, â/n). Note
also that if (P,m, â) is split-normal, then with Q as in (SN2) we have v(L) ∼ v(LQ),
by Lemma 3.1.1. If (P,m, â) is split-normal and H is λ-free, then E e(L) = E e(LQ)
with Q as in (SN2), by Lemmas 4.3.4 and 3.1.23.

Lemma 4.3.5. Suppose (P,m, â) is split-normal and ϕ ≼ 1 is active in H and ϕ > 0
(so Hϕ is still an H-field). Then the slot (Pϕ,m, â) in Hϕ is split-normal.

Proof. We first arrange m = 1. Note that LPϕ = Lϕ has order r. Put w := v(LPϕ),
and take Q, R as in (SN2). Then v ≍∆(v) w ≺♭

ϕ 1 by Lemma 3.1.20. Moreover,

LQϕ = Lϕ
Q splits over Kϕ; see [ADH, p. 291] or Lemma 1.1.2. By [ADH, 11.1.4],

Rϕ ≍∆(v) R ≺∆(v) vw+1P1 ≍∆(v) ww+1Pϕ
1 ,

so (Pϕ,m, â) is split-normal. □

Since we need to preserve H being an H-field when compositionally conjugating,
we say: (Pϕ,m, â) is eventually split-normal if there exists an active ϕ0 in H such
that (Pϕ,m, â) is split-normal for all active ϕ ≼ ϕ0 in H with ϕ > 0. We use this
terminology in a similar way with “split-normal” replaced by other properties of
slots of order r ⩾ 1 in real closed H-fields with small derivation and asymptotic
integration, such as “deep” and “deep and split-normal”.

Achieving split-normality. Assume H is ω-free and (P,m, â) is a minimal hole

in K = H[i] of order r ⩾ 1, with m ∈ H× and â ∈ K̂ \ K. Note that then K
is ω-free by [ADH, 11.7.23], K is (r − 1)-newtonian by Corollary 3.2.3, and K is
r-linearly closed by Corollary 3.2.4. In particular, the linear part of (P,m, â) is 0
or splits over K. If degP = 1, then r = 1 by Corollary 3.2.8. If degP > 1, then K
and H are r-linearly newtonian by Corollary 3.2.6 and Lemma 1.7.30. In particular,
if H is 1-linearly newtonian, then H is r-linearly newtonian. In this subsection we
let a range over K, b, c over H, and n over H×.

Lemma 4.3.6. Let (Q, n, b̂) be a hole in H with c(Q) ⩽ c(P ) and b̂ ∈ Ĥ.

Then c(Q) = c(P ), (Q, n, b̂) is minimal and remains a minimal hole in K. The lin-

ear part of (Q, n, b̂) is 0 or splits over K, and (Q, n, b̂) has a refinement (Q+b, p, b̂−b)
(in H) such that (Qϕ

+b, p, b̂− b) is eventually deep and split-normal.

Proof. By Corollary 4.3.2, (Q, n, b̂) is a hole in K, and this hole in K is minimal

with c(Q) = c(P ), since (P,m, â) is minimal. By Corollary 4.3.2 again, (Q, n, b̂) as

a hole in H is also minimal. Since K is r-linearly closed, the linear part of (Q, n, b̂)

is 0 or splits over K. Corollary 3.3.34 gives a refinement (Q+b, p, b̂ − b) of the

minimal hole (Q, n, b̂) in H such that (Qϕ
+b, p, b̂− b) is deep and normal, eventually.

Thus the linear part of (Q+b, p, b̂ − b) is not 0, and as c(Q+b) = c(P ), this linear
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part splits over K. Hence for active ϕ in H the linear part of (Qϕ
+b, p, b̂− b) splits

over Kϕ = Hϕ[i]. Thus (Qϕ
+b, p, b̂− b) is eventually split-normal. □

Now â = b̂ + ĉ i with b̂, ĉ ∈ Ĥ, and b̂, ĉ ≺ m. Moreover, b̂ /∈ H or ĉ /∈ H. Since â

is differentially algebraic over H, so is its conjugate b̂ − ĉ i, and therefore its real

and imaginary parts b̂ and ĉ are differentially algebraic over H; thus Z(H, b̂) ̸= ∅
for b̂ /∈ H, and Z(H, ĉ) ̸= ∅ for ĉ /∈ H. More precisely:

Lemma 4.3.7. We have trdeg
(
H ⟨̂b⟩|H

)
⩽ 2r. If b̂ /∈ H, then Z(H, b̂)∩H[Y ] = ∅,

so 1 ⩽ orderQ ⩽ 2r for all Q ∈ Z(H, b̂) of minimal complexity. These statements

also hold for ĉ instead of b̂.

Proof. The first statement follows from b̂ ∈ H ⟨̂b + ĉ i, b̂ − ĉ i⟩. Suppose b̂ /∈ H.

If Q ∈ Z(H, b̂) has minimal complexity, then [ADH, 11.4.8] yields an element f in
a proper immediate asymptotic extension of H with Q(f) = 0, so Q /∈ H[Y ]. □

Lemma 4.3.8. Suppose degP = 1 and b̂ /∈ H. Let Q ∈ Z(H, b̂) be of minimal

complexity; then either orderQ = 1, or orderQ = 2, degQ = 1. Let Q̂ ∈ H{Y }
be a minimal annihilator of b̂ over H; then either order Q̂ = 1, or order Q̂ = 2,

deg Q̂ = 1, and LQ̂ ∈ H[∂] splits over K.

Proof. Recall that r = 1 by Corollary 3.2.8. Example 1.1.7 and Lemma 1.1.8 give

a Q̃ ∈ H{Y } of degree 1 and order 1 or 2 such that Q̃(̂b) = 0 and LQ̃ splits over K.

Then c(Q̃) = (1, 1, 1) or c(Q̃) = (2, 1, 1), which proves the claim about Q, using also

Lemma 4.3.7. Also, Q̃, Q̂ ∈ Z(H, b̂), hence c(Q) ⩽ c(Q̂) ⩽ c(Q̃). If c(Q̂) = c(Q̃),

then Q̂ = aQ̃ for some a ∈ H×. The claim about Q̂ now follows easily. □

By Corollary 3.3.34 and Lemma 3.3.23, our minimal hole (P,m, â) in K has a

refinement (P+a, n, â− a) such that eventually (Pϕ
+a, n, â− a) is deep and normal.

Moreover, as K is r-linearly closed, the linear part of (Pϕ
+a, n, â − a), for active ϕ

inH, splits overKϕ = Hϕ[i]. Our main goal in this subsection is to prove analogues

of these facts for suitable Z-minimal slots (Q,m, b̂) or (R,m, ĉ) in H:

Theorem 4.3.9. If H is 1-linearly newtonian, then one of the following holds:

(i) b̂ /∈ H and there exists a Z-minimal slot (Q,m, b̂) in H with a refine-

ment (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂ − b) is eventually deep and split-

normal;
(ii) ĉ /∈ H and there exists a Z-minimal slot (R,m, ĉ) in H with a refine-

ment (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ − c) is eventually deep and split-

normal.

Lemmas 4.3.10, 4.3.11 and Corollaries 4.3.13–4.3.16 below are more precise (only
Corollary 4.3.15 has H being 1-linearly newtonian as a hypothesis) and together

give Theorem 4.3.9. We first deal with the case where b̂ or ĉ is in H:

Lemma 4.3.10. Suppose ĉ ∈ H. Then some hole (Q,m, b̂) in H has the same

complexity as (P,m, â). Any such hole (Q,m, b̂) in H is minimal and has a refine-

ment (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂− b) is eventually deep and split-normal.
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Proof. Let A,B ∈ H{Y } be such that P+ĉ i(Y ) = A(Y ) + B(Y ) i. Then A(̂b) =

B(̂b) = 0. If A ̸= 0, then c(A) ⩽ c(P ) gives that Q := A has the desired property
by Lemma 4.3.6. If B ̸= 0, then likewise Q := B has the desired property. The rest
also follows from that lemma. □

Thus if ĉ ∈ H, we obtain a strong version of (i) in Theorem 4.3.9. Likewise, the

next lemma gives a strong version of (ii) in Theorem 4.3.9 if b̂ ∈ H.

Lemma 4.3.11. Suppose b̂ ∈ H. Then there is a hole (R,m, ĉ) in H with the
same complexity as (P,m, â). Every such hole in H is minimal and has a refine-

ment (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ− c) is eventually deep and split-normal.

This follows by applying Lemma 4.3.10 with (P,m, â) replaced by the minimal
hole

(
P×i,m,−iâ

)
in K, which has the same complexity as (P,m, â).

We assume in the rest of this subsection that b̂, ĉ /∈ H and that Q ∈ Z(H, b̂) has

minimal complexity. Hence (Q,m, b̂) is a Z-minimal slot in H, and so is every

refinement of (Q,m, b̂). If (P+a, n, â − a) is a refinement of (P,m, â) and b = Re a,

then (Q+b, n, b̂ − b) is a refinement of (Q,m, b̂). Conversely, if (Q+b, n, b̂ − b) is

a refinement of (Q,m, b̂) and v
(
b̂−H

)
⊆ v(ĉ−H), then Lemma 4.1.3 yields a

refinement (P+a, n, â − a) of (P,m, â) with Re a = b. Recall from that lemma

that v(̂b−H) ⊆ v(ĉ−H) is equivalent to v(â−K) = v(̂b−H); in this case,

(P,m, â) is special iff (Q,m, b̂) is special. Recall also that if (Q,m, b̂) is deep, then

so is each of its refinements (Q+b,m, b̂− b), by Corollary 3.3.8.

Here is a key technical fact underlying Theorem 4.3.9:

Proposition 4.3.12. Suppose the hole (P,m, â) in K is special, the slot (Q,m, b̂)

in H is normal, and v
(
b̂−H

)
⊆ v(ĉ−H). Then some refinement (Q+b,m, b̂− b)

of (Q,m, b̂) has the property that (Qϕ
+b,m, b̂− b) is eventually split-normal.

Proof. Replacing (P,m, â), (Q,m, b̂) by (P×m, 1, â/m), (Q×m, 1, b̂/m), respectively,

we reduce to the case m = 1; then â, b̂ ≺ 1. Since â is special over K = H[i],

∆ :=
{
δ ∈ Γ : |δ| ∈ v(â−K)

}
is a convex subgroup of Γ which is cofinal in v(â−K) and hence in v(̂b−H), so b̂ is

special over H. Compositionally conjugate H, Ĥ, K, K̂ by a suitable active ϕ ≼ 1

in H>, and replace P , Q by Pϕ, Qϕ, to arrange Γ♭ ⊆ ∆; in particular, Ψ ⊆ v(̂b−H)
and ψ(∆̸=) ⊆ ∆. Multiplying P , Q by suitable elements of H× we also arrange

that P,Q ≍ 1. By Lemma 4.3.5 it suffices to show that then (Q, 1, b̂) has a split-

normal refinement (Q+b, 1, b̂− b), and this is what we shall do.

Note that H, Ĥ, K, K̂ have small derivation, so the specializations Ḣ,
˙̂
H,

K̇,
˙̂
K of H, Ĥ, K, K̂, respectively, by ∆, are valued differential fields with small

derivation. These specializations are asymptotic with asymptotic couple (∆, ψ|∆ ̸=),
and ofH-type with asymptotic integration, by [ADH, 9.4.12]; in addition they are d-

valued, by [ADH, 10.1.8]. The natural inclusions Ȯ → ȮK , Ȯ → ȮĤ , ȮĤ → ȮK̂ ,

and ȮK → ȮK̂ induce valued differential field embeddings Ḣ → K̇, Ḣ → ˙̂
H,

˙̂
H → ˙̂

K and K̇ → ˙̂
K, which we make into inclusions by the usual identifications;

see [ADH, pp. 405–406]. By Lemma 4.1.2 and the remarks preceding it, Ḣ is real
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closed with convex valuation ring and K̇ is an algebraic closure of Ḣ. Moreover,
˙̂
H

is an immediate extension of Ḣ and
˙̂
K is an immediate extension of K̇. Denoting

the image of i under the residue morphism ȮK̂ → ˙̂
K by the same symbol, we then

have K̇ = Ḣ[i],
˙̂
K =

˙̂
H[i], and i /∈ ˙̂

H. This gives the following inclusion diagram:

˙̂
H

˙̂
K =

˙̂
H[i]

Ḣ K̇ = Ḣ[i]

Now â ∈ OK̂ ⊆ ȮK̂ and b̂, ĉ ∈ OĤ ⊆ ȮĤ , and ˙̂a =
˙̂
b+ ˙̂c i, Re ˙̂a =

˙̂
b, Im ˙̂a = ˙̂c. For

all a ∈ ȮK we have v( ˙̂a− ȧ) = v(â−a) ∈ ∆, hence ˙̂a /∈ K̇; likewise v(̂b− b) ∈ ∆ for

all b ∈ Ȯ, so
˙̂
b /∈ Ḣ. Moreover, for all δ ∈ ∆ there is an a ∈ ȮK with v( ˙̂a− ȧ) = δ;

hence ˙̂a is the limit of a c-sequence in K̇. This leads us to consider the comple-
tions Ḣc and K̇c of Ḣ and K̇. By [ADH, 4.4.11] and Lemma 4.1.1, these yield an
inclusion diagram of valued differential field extensions:

Ḣc K̇c = Ḣc[i]

Ḣ K̇ = Ḣ[i]

where Ḣc is real closed with algebraic closure K̇c = Ḣc[i]. These completions are

d-valued by [ADH, 9.1.6]. By Corollary 1.7.5, K̇ and K̇c are ω-free and (r − 1)-

newtonian; thus K̇c is r-linearly closed by Corollary 1.7.42. We identify the valued

differential subfield K̇
〈
Re ˙̂a, Im ˙̂a

〉
of

˙̂
K with its image under the embedding into K̇c

over K̇ from Corollary 4.1.7; then ˙̂a ∈ K̇c and
˙̂
b = Re ˙̂a ∈ Ḣc. This leads to the

next inclusion diagram:

Ḣc K̇c

Ḣ⟨ ˙̂b⟩ K̇⟨ ˙̂a⟩

Ḣ // K̇

By Corollary 1.5.21, Ṗ ∈ K̇{Y } is a minimal annihilator of ˙̂a over K̇ and has the

same complexity as P . Likewise, Q̇ ∈ Ḣ{Y } is a minimal annihilator of
˙̂
b over Ḣ

and has the same complexity as Q. Let s := orderQ = order Q̇, so 1 ⩽ s ⩽ 2r by
Lemma 4.3.7, and the linear part A ∈ Ḣc[∂] of Q̇

+
˙̂
b
has order s as well. By [ADH,

5.1.37] applied to Ḣc, Ḣ, Ṗ , Q̇, ˙̂a in the role of K, F , P , S, f , respectively, A splits

over K̇c = Ḣc[i], so Lemma 1.1.4 gives a real splitting (g1, . . . , gs) of A over K̇c:

A = f(∂ − g1) · · · (∂ − gs), f, g1, . . . , gs ∈ K̇c, f ̸= 0.
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The slot (Q, 1, b̂) in H is normal, so v(LQ
+b̂
) ∼ v(LQ) ≺♭ 1 by Lemma 3.1.28,

hence v(A) ≺♭ 1 in K̇c by Lemma 3.1.7. Then Corollary 4.2.8 gives a, b ∈ Ȯ
and b1, . . . , bs ∈ ȮK with ȧ, ḃ ̸= 0 in Ḣ such that for the linear part Ã ∈ Ḣ[∂]

of Q̇+ḃ,

ḃ ∼ ˙̂
b, Ã ∼ A, order Ã = s, w := v(Ã) ∼ v(A),

and such that for w := wt(Q) and with ∆(w) ⊆ ∆:

Ã = B̃ + Ẽ, B̃ = ȧ(∂ − ḃ1) · · · (∂ − ḃs) ∈ Ḣ[∂], Ẽ ∈ Ḣ[∂], Ẽ ≺∆(w) w
w+1Ã,

and (ḃ1, . . . , ḃs) is a real splitting of B̃ over K̇. Lemma 1.1.6 shows that we can

change b1, . . . , bs if necessary, without changing ḃ1, . . . , ḃs, to arrange that B :=
a(∂−b1) · · · (∂−bs) lies in Ȯ[∂] ⊆ H[∂] and (b1, . . . , bs) is a real splitting of B over K.

Now b̂ − b ≺ b̂ ≺ 1, so (Q+b, 1, b̂ − b) is a refinement of the normal slot (Q, 1, b̂).

Hence (Q+b, 1, b̂ − b) is normal by Proposition 3.3.25, so v := v(LQ+b
) ≺♭ 1. By

Lemma 3.1.7 we have v̇ = w, so ∆(v) = ∆(w) ⊆ ∆. Hence in H[∂]:

LQ+b
= B + E, E ∈ Ȯ[∂], E ≺∆(v) v

w+1LQ+b
.

Thus (Q+b, 1, b̂− b) is split-normal. □

Recall from the beginning of this subsection that if degP > 1, then K = H[i] is
r-linearly newtonian; this allows us to remove the assumptions that (P,m, â) is

special and (Q,m, b̂) is normal in Proposition 4.3.12, by reducing to that case:

Corollary 4.3.13. Suppose degP > 1 and v(̂b −H) ⊆ v(ĉ −H). Then (Q,m, b̂)

has a special refinement (Q+b, n, b̂ − b) such that (Qϕ
+b, n, b̂− b) is eventually deep

and split-normal.

Proof. By Lemmas 3.2.26 and 3.3.23, the hole (P,m, â) in K has a quasilinear re-
finement (P+a, n, â− a). (The use of Lemma 3.3.23 is because we require n ∈ H×.)
Let b = Re a. Then, using Lemma 4.1.3 for the second equality,

v
(
(â− a)−K

)
= v(â−K) = v(̂b−H) = v

(
(̂b− b)−H

)
,

and (Q+b, n, b̂− b) is a Z-minimal refinement of (Q,m, b̂). We replace (P,m, â)

and (Q,m, b̂) by (P+a, n, â − a) and (Q+b, n, b̂ − b), respectively, to arrange that
the hole (P,m, â) in K is quasilinear. Then by Proposition 1.5.12 and K being

r-linearly newtonian, (P,m, â) is special. Hence (Q,m, b̂) is also special, so Proposi-

tion 3.3.36 gives a refinement (Q+b, n, b̂ − b) of (Q,m, b̂) and an active ϕ0 ∈ H>

such that (Qϕ0

+b, n, b̂− b) is deep and normal. Refinements of (P,m, â) remain

quasilinear, by Corollary 3.2.23. Since v(̂b − H) ⊆ v(ĉ − H) we have a refine-
ment (P+a, n, â−a) of (P,m, â) with Re a = b. Then by Lemma 3.2.35 the minimal

hole (Pϕ0

+a, n, â− a) in Hϕ0 [i] is special. Now apply Proposition 4.3.12 with Hϕ0 ,

(Pϕ0

+a, n, â − a), (Qϕ0

+b, n, b̂− b) in place of H, (P,m, â), (Q,m, b̂), respectively: it
gives b0 ∈ H and a refinement(

(Qϕ0

+b)+b0 , n, (̂b− b)− b0
)

=
(
Qϕ0

+(b+b0)
, n, b̂− (b+ b0)

)
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of (Qϕ0

+b, n, b̂− b), and thus a refinement
(
Q+(b+b0), n, b̂− (b+ b0)

)
of (Q+b, n, b̂− b),

such that
(
Qϕ

+(b+b0)
, n, b̂− (b+ b0)

)
is eventually split-normal. By the remark be-

fore Proposition 4.3.12,
(
Qϕ

+(b+b0)
, n, b̂− (b+ b0)

)
is also eventually deep. □

Recall that v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆ v(̂b−H). The following corollary
concerns the second case:

Corollary 4.3.14. If degP > 1, v(ĉ − H) ⊆ v(̂b − H), and R ∈ Z(H, ĉ) has
minimal complexity, then the Z-minimal slot (R,m, ĉ) in H has a special refine-

ment (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ− c) is eventually deep and split-normal.

Proof. Apply Corollary 4.3.13 to the minimal hole (P×i,m,−iâ) in H[i]. □

In the next two corollaries we handle the case degP = 1. Recall from Lemma 4.3.8
that then orderQ = 1 or orderQ = 2, degQ = 1. Theorem 3.3.33 gives:

Corollary 4.3.15. Suppose H is 1-linearly newtonian and orderQ = 1. Then

the slot (Q,m, b̂) in H has a refinement (Q+b, n, b̂ − b) such that (Qϕ
+b, n, b̂− b) is

eventually deep and split-normal.

Corollary 4.3.16. Suppose degP = 1 and orderQ = 2, degQ = 1. Let Q̂ ∈ H{Y }
be a minimal annihilator of b̂ over H. Then

(
Q̂,m, b̂

)
is a Z-minimal hole in H

and has a refinement
(
Q̂+b, n, b̂− b

)
such that

(
Q̂ϕ

+b, n, b̂− b
)
is eventually deep and

split-normal.

Proof. By the proof of Lemma 4.3.8 we have c(Q) = c(Q̂) (hence
(
Q̂,m, b̂

)
is a

Z-minimal hole in H) and LQ̂ splits over H[i]. Corollary 3.3.12 gives a refine-

ment
(
Q̂+b, n, b̂− b

)
of
(
Q̂,m, b̂

)
whose linear part has Newton weight 0 and such

that the slot
(
Q̂ϕ

+b, n, b̂− b
)
in Hϕ is deep, eventually. Moreover, by Lemmas 3.3.17

and 3.2.31,
(
Q̂ϕ

+b, n, b̂− b
)
is normal and its linear part splits over Hϕ[i], eventually.

Thus
(
Q̂ϕ

+b, n, b̂− b
)
is eventually deep and split-normal. □

This concludes the proof of Theorem 4.3.9.

Split-normality and refinements. We now study the behavior of split-normality
under refinements. In this subsection a ranges over H and m, n, v range over H×.

Let (P,m, â) be a slot in H of order r ⩾ 1 with â ∈ Ĥ \ H, and L := LP×m
,

w := wt(P ). Here is the split-normal analogue of Lemma 3.3.19:

Lemma 4.3.17. Suppose order(L) = r and v is such that (SN1) and (SN2) hold,
and v(L) ≍∆(v) v. Then (P,m, â) is split-normal.

Proof. Same as that of 3.3.19, but with R as in (SN2) instead of (P×m)>1. □

Now split-normal analogues of Propositions 3.3.25 and 3.3.26:

Lemma 4.3.18. Suppose (P,m, â) is split-normal. Let a refinement (P+a,m, â− a)
of (P,m, â) be given. Then (P+a,m, â− a) is also split-normal.

Proof. As in the proof of Proposition 3.3.25 we arrange m = 1 and show for v :=
v(LP ), using Lemmas 3.1.28 and 4.3.4, that order(LP+a

) = r and

(P+a)1 ∼∆(v) P1, v(LP+a
) ∼∆(v) v, (P+a)>1 ≺∆(v) v

w+1(P+a)1.
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Now take Q, R as in (SN2) for m = 1. Then P1 = Q+R1, and so by Lemma 3.1.29
for A = LQ we obtain (P+a)1 −Q ≺∆(v) v

w+1(P+a)1, and thus (P+a)⩾1 −Q ≺∆(v)

vw+1(P+a)1. Hence (SN2) holds with m = 1 and P+a instead of P . Thus the
slot (P+a,m, â− a) in H is split-normal by Lemma 4.3.17. □

Lemma 4.3.19. Suppose (P,m, â) is split-normal, â ≺ n ≼ m, and [n/m] ⩽ [v],
v := v(L). Then the refinement (P, n, â) of (P,m, â) is split-normal: if m, P , Q, v
are as in (SN2), then (SN2) holds with n, Q×n/m, R×n/m, v(LP×n

) in place
of m, Q, R, v.

Proof. Set L̃ := LP×n
. Lemma 3.3.1 gives order(L̃) = r and v(L̃) ≍∆(v) v.

Thus (P×n)>1 ≺∆(v) vw+1(P×n)1 by Proposition 3.3.26. Now arrange m = 1 in
the usual way, and take Q, R as in (SN2) for m = 1. Then

(P×n)1 = (P1)×n = Q×n + (R1)×n, (P×n)>1 = (R×n)>1 = (R>1)×n

by [ADH, 4.3], where Q×n is homogeneous of degree 1 and order r, and LQ×n
= LQn

splits over K. Using [ADH, 4.3, 6.1.3] and [n] ⩽ [v] we obtain

(R1)×n ≍∆(v) nR1 ≼ nR ≺∆(v) nvw+1P1 ≍∆(v) v
w+1(P1)×n = vw+1(P×n)1.

Hence (SN2) holds for n, Q×n, R×n, v(L̃) in place of m, Q,R, v. □

Recall our standing assumption in this section that H is a real closed H-field.
Thus H is d-valued, and for all n and q ∈ Q> we have nq ∈ H× such that (nq)† =
qn†. In the rest of this section we fix such an nq for all n and q ∈ Q>. Now we
upgrade Corollary 3.3.31 with “split-normal” instead of “normal”:

Lemma 4.3.20. Suppose m = 1, (P, 1, â) is split-normal, â ≺ n ≺ 1, and for v :=
v(LP ) we have [n†] < [v] < [n]. Then (P, nq, â) is a split-normal refinement
of (P, 1, â) for all but finitely many q ∈ Q with 0 < q < 1.

Proof. Corollary 3.3.31 gives that (P, nq, â) is a normal refinement of (P, 1, â) for
all but finitely many q ∈ Q with 0 < q < 1. Take Q, R as in (SN2) for m = 1.
Then L = LQ +LR where LQ splits over H[i] and LR ≺∆(v) v

w+1L, for v := v(L).

Applying Corollary 3.1.19 to A := L, B := LR we obtain: LRn
q ≺∆(w) w

w+1Lnq,
w := v(Lnq), for all but finitely many q ∈ Q>.

Let q ∈ Q be such that 0 < q < 1, (P, nq, â) is a normal refinement of (P, 1, â),
and LRn

q ≺∆(w) ww+1Lnq, with w as above. Then (P×nq )1 = Q×nq + (R1)×nq

where Q×nq is homogeneous of degree 1 and order r, LQ×nq = LQn
q splits over H[i],

and (R1)×nq ≺∆(w) w
w+1(P×nq )1 for w := v(LP×nq ). Since (P, nq, â) is normal, we

also have (P×nq )>1 ≺∆(w) w
w+1(P×nq )1. Thus (P, n

q, â) is split-normal. □

Remark. We do not know if in this last lemma we can drop the assumption [n†] < [v].

Strengthening split-normality. In this subsection a, b range over H and m, n
over H×, and (P,m, â) is a slot in H of order r ⩾ 1 and weight w := wt(P ),
so w ⩾ 1, and L := LP×m

. If orderL = r, we set v := v(L).
With an eye towards later use in connection with fixed point theorems over Hardy

fields we strengthen here the concept of split-normality; in the next subsection
we show how to improve Theorem 4.3.9 accordingly. See the last subsection of
Section 4.2 for the notion of strong splitting.
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Definition 4.3.21. Call (P,m, â) almost strongly split-normal if orderL = r,
v ≺♭ 1, and the following strengthening of (SN2) holds:

(SN2as) (P×m)⩾1 = Q+R where Q,R ∈ H{Y }, Q is homogeneous of degree 1 and
order r, LQ splits strongly over K, and R ≺∆(v) v

w+1(P×m)1.

We say that (P,m, â) is strongly split-normal if orderL = r, v ≺♭ 1, and the
following condition is satisfied:

(SN2s) P×m = Q + R where Q,R ∈ H{Y }, Q is homogeneous of degree 1 and
order r, LQ splits strongly over K, and R ≺∆(v) v

w+1(P×m)1.

To facilitate use of (SN2s) we observe:

Lemma 4.3.22. Suppose (P,m, â) is strongly split-normal and P×m = Q + R as
in (SN2s). Then Q ∼ (P×m)1, vQ := v(LQ) ∼ v, so R ≺∆(v) v

w+1
Q Q.

Proof. We have (P×m)1 = Q+R1, so Q = (P×m)1−R1 with R1 ≺∆(v) v
w+1(P×m)1.

Now apply Lemma 3.1.1 to A := L and B := −LR1
. □

If (P,m, â) is almost strongly split-normal, then (P,m, â) is split-normal and hence
normal by Lemma 4.3.4. If (P,m, â) is normal and L splits strongly over K,
then (P,m, â) is almost strongly split-normal; in particular, if (P,m, â) is normal
of order r = 1, then (P,m, â) is almost strongly split-normal, by Lemma 4.2.11.
Moreover:

Lemma 4.3.23. The following are equivalent:

(i) (P,m, â) is strongly split-normal;
(ii) (P,m, â) is almost strongly split-normal and strictly normal;
(iii) (P,m, â) is almost strongly split-normal and P (0) ≺∆(v) v

w+1(P1)×m.

Proof. Suppose (P,m, â) is strongly split-normal, and let Q, R be as in (SN2s).
Then (P×m)⩾1 = Q+R⩾1, LQ splits strongly over K, and R⩾1 ≺∆(v) v

w+1(P×m)1.
Hence (P,m, â) is almost strongly split-normal, and thus normal. Also P (0) =
R(0) ≺∆(v) vw+1(P×m)1, so (P,m, â) is strictly normal. This shows (i) ⇒ (ii),
and (ii) ⇒ (iii) is clear. For (iii) ⇒ (i) suppose (P,m, â) is almost strongly split-
normal and P (0) ≺∆(v) vw+1(P1)×m. Take Q, R as in (SN2as). Then P×m =

Q + R̃ where R̃ := P (0) + R ≺∆(v) vw+1(P1)×m. Thus (P,m, â) is strongly split-
normal. □

Corollary 4.3.24. If L splits strongly over K, then

(P,m, â) is strongly split-normal ⇐⇒ (P,m, â) is strictly normal.

The following diagram summarizes some implications between these variants of
normality, for slots (P,m, â) in H of order r ⩾ 1:

strongly split-normal +3

��

almost strongly split-normal +3 split-normal

��
strictly normal +3 normal

If (P,m, â) is almost strongly split-normal, then so are (bP,m, â) for b ̸= 0 and
(P×n,m/n, â/n), and likewise with “strongly” in place of “almost strongly”.

Here is a version of Lemma 4.3.18 for (almost) strong split-normality:
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Lemma 4.3.25. Suppose (P+a,m, â − a) refines (P,m, â). If (P,m, â) is almost
strongly split-normal, then so is (P+a,m, â−a). If (P,m, â) is strongly split-normal,
Z-minimal, and â−a ≺∆(v) v

r+w+1m, then (P+a,m, â−a) is strongly split-normal.

Proof. The first part follows from Lemma 4.3.18 and its proof. In combination with
Lemmas 3.3.42 and 4.3.23, this also yields the second part. □

Lemma 4.3.26. Suppose that (P,m, â) is split-normal and â ≺∆(v) m. Then for
all sufficiently small q ∈ Q>, any n ≍ vqm yields an almost strongly split-normal
refinement (P, n, â) of (P,m, â).

Proof. We arrange m = 1, so â ≺∆(v) 1. Take Q, R as in (SN2) with m = 1, and
take q0 ∈ Q> such that â ≺ vq0 ≺ 1. By Lemma 4.2.13 we can decrease q0 so that
for all q ∈ Q with 0 < q ⩽ q0 and any n ≍ vq, LQ×n

= LQn splits strongly over K.
Suppose q ∈ Q, 0 < q ⩽ q0, and n ≍ vq. Then (P, n, â) is an almost strongly
split-normal refinement of (P, 1, â), by Lemma 4.3.19. □

Corollary 4.3.27. Suppose that (P,m, â) is Z-minimal, deep, and split-normal.
Then (P,m, â) has a refinement which is deep and almost strongly split-normal.

Proof. Lemma 3.3.13 gives a such that â − a ≺∆(v) m. By Corollary 3.3.8, the
refinement (P+a,m, â − a) of (P,m, â) is deep with v(LP+a,×m

) ≍∆(v) v, and by
Lemma 4.3.18 it is also split-normal. Now apply Lemma 4.3.26 to (P+a,m, â − a)
in place of (P,m, â) and again use Corollary 3.3.8. □

We now turn to the behavior of these properties under compositional conjugation.

Lemma 4.3.28. Let ϕ be active in H with 0 < ϕ ≼ 1. If (P,m, â) is almost strongly
split-normal, then so is the slot (Pϕ,m, â) in Hϕ. Likewise with “strongly” in place
of “almost strongly”.

Proof. We arrange m = 1, assume (P,m, â) is almost strongly split-normal, and
take Q, R as in (SN2as). The proof of Lemma 4.3.5 shows that with w := v(LPϕ) we
have w ≺♭

ϕ 1 and (Pϕ)⩾1 = Qϕ+Rϕ where Qϕ ∈ Hϕ{Y } is homogeneous of degree 1

and order r, LQϕ splits over Hϕ[i], and Rϕ ≺∆(w) w
w+1(Pϕ)1. By Lemma 4.2.12,

LQϕ = Lϕ
Q even splits strongly over H[i]. Hence (Pϕ,m, â) is almost strongly split-

normal. The rest follows from Lemma 4.3.23 and the fact that if (P,m, â) is strictly
normal, then so is (Pϕ,m, â). □

If H is ω-free and r-linearly newtonian, then by Corollary 3.3.48, every Z-minimal
slot in H of order r has a refinement (P,m, â) such that the slot (Pϕ,m, â) in Hϕ is
eventually deep and strictly normal. Corollary 4.3.30 of the next lemma is a variant
of this fact for strong split-normality.

Lemma 4.3.29. Assume H is ω-free and r-linearly newtonian, and every A ∈ H[∂]
of order r splits over K. Suppose (P,m, â) is Z-minimal. Then there is a re-
finement (P+a, n, â − a) of (P,m, â) and an active ϕ in H with 0 < ϕ ≼ 1 such

that (Pϕ
+a, n, â − a) is deep and strictly normal, and its linear part splits strongly

over Kϕ (so (Pϕ
+a, n, â− a) is strongly split-normal by Corollary 4.3.24).

Proof. For any active ϕ in H with 0 < ϕ ≼ 1 we may replace H, (P,m, â)
by Hϕ, (Pϕ,m, â), respectively. We may also replace (P,m, â) by any of its re-
finements. Now Theorem 3.3.33 gives a refinement (P+a, n, â − a) of (P,m, â) and
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an active ϕ inH such that 0 < ϕ ≼ 1 and (Pϕ
+a, n, â−a) is deep and normal. Replac-

ing H, (P,m, â) by Hϕ, (Pϕ
+a, n, â− a), respectively, we thus arrange that (P,m, â)

itself is deep and normal. We show that then the lemma holds with ϕ = 1. For
this we first replace (P,m, â) by a suitable refinement (P+a,m, â− a) to arrange
by Corollary 3.3.47 that (P,m, â) is strictly normal and â ≺∆(v) m. Now L splits
over K, so by Corollary 4.2.14, for sufficiently small q ∈ Q>, any n ≍ |v|qm gives
a refinement (P, n, â) of (P,m, â) whose linear part LP×n

has order r and splits
strongly over K. For each such n, (P, n, â) is deep by Corollary 3.3.8, and for some
such n, (P, n, â) is also strictly normal, by Remark 3.3.45. □

The previous lemma in combination with Lemma 4.3.28 yields:

Corollary 4.3.30. With the same assumptions on H, K as in Lemma 4.3.29, every
Z-minimal slot in H of order r has a refinement (P,m, â) such that (Pϕ,m, â) is
eventually deep and strongly split-normal.

For r = 1 the splitting assumption is automatically satisfied (and this is the case
most relevant later). We do not know whether “every A ∈ H[∂] ̸= of order ⩽ r splits
over K” is strictly weaker than “K is r-linearly closed”.

Achieving strong split-normality. We make the same assumptions as in the
subsection Achieving split-normality : H is ω-free and (P,m, â) is a minimal hole

in K = H[i] of order r ⩾ 1, with m ∈ H× and â ∈ K̂ \K. Recall that K is also
ω-free [ADH, 11.7.23]. We have

â = b̂+ ĉ i, b̂, ĉ ∈ Ĥ.

We let a range over K, b, c over H, and n over H×. In connection with the
next two lemmas we note that given an active ϕ in H with 0 < ϕ ≼ 1, if (P,m, â)
is normal (strictly normal, respectively), then so is (Pϕ,m, â), by Lemma 3.3.20
(Lemma 3.3.40, respectively); moreover, if the linear part of (P,m, â) splits strongly
over K, then the linear part of (Pϕ,m, â) splits strongly over Kϕ = Hϕ[i], by Lem-
ma 4.2.12. Here is a “complex” version of Lemma 4.3.29, with a similar proof:

Lemma 4.3.31. For some refinement (P+a, n, â−a) of (P,m, â) and active ϕ in H

with 0 < ϕ ≼ 1, the hole (Pϕ
+a, n, â − a) in Kϕ is deep and normal, its linear part

splits strongly over Kϕ, and it is moreover strictly normal if degP > 1.

Proof. For any active ϕ in H with 0 < ϕ ≼ 1 we may replace H and (P,m, â) by Hϕ

and the minimal hole (Pϕ,m, â) in Kϕ. We may also replace (P,m, â) by any of its
refinements (P+a, n, â − a). As noted before Theorem 4.3.9, Corollary 3.3.34 and
Lemma 3.3.23 give a refinement (P+a, n, â − a) of (P,m, â) and an active ϕ in H

with 0 < ϕ ≼ 1 such that (Pϕ
+a, n, â−a) is deep and normal. Replacing H, (P,m, â)

by Hϕ, (Pϕ
+a, n, â− a), respectively, we thus arrange that (P,m, â) itself is deep and

normal. We show that then the lemma holds with ϕ = 1.
Set L := LP×m

and v := v(L). Lemma 3.3.13 gives a with â− a ≺∆(v) m.
If degP > 1, then K is r-linearly newtonian and we use Corollary 3.3.16 to take a
such that even â − a ≼ vw+2m. Replacing (P,m, â) by (P+a,m, â − a), we thus
arrange by Lemma 3.3.7 and Proposition 3.3.25 that â ≺∆(v) m, and also by
Lemma 3.3.46 that (P,m, â) is strictly normal if degP > 1. Now L splits over K,
since K is r-linearly closed by Corollary 3.2.4. Then by Corollary 4.2.14, for suffi-
ciently small q ∈ Q>, any n ≍ |v|qm gives a refinement (P, n, â) of (P,m, â) whose
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linear part LP×n
splits strongly over K. For such n, (P, n, â) is deep by Lemma 3.3.7

and normal by Proposition 3.3.26. If (P,m, â) is strictly normal, then for some
such n, (P, n, â) is also strictly normal, thanks to Lemma 3.3.44. □

The following version of Lemma 4.3.31 also encompasses linear (P,m, â):

Lemma 4.3.32. Suppose ∂K = K and I(K) ⊆ K†. Then there is a refine-
ment (P+a, n, â − a) of (P,m, â) and an active ϕ in H with 0 < ϕ ≼ 1 such that

the hole (Pϕ
+a, n, â− a) in Kϕ is deep and strictly normal, and its linear part splits

strongly over Kϕ.

Proof. Thanks to Lemma 4.3.31 we need only consider the case degP = 1. Then we
have r = 1 by Corollary 3.2.8. (See now the remark following this proof.) As in the
proof of Lemma 4.3.31 we may replace H and (P,m, â) for any active ϕ ≼ 1 in H>

by Hϕ and (Pϕ,m, â), and also (P,m, â) by any of its refinements (P+a, n, â − a).
Recall here that n ∈ H×. Hence using a remark preceding Lemma 3.3.39 and
Corollary 3.5.17 we arrange that (P,m, â) is strictly normal, and thus balanced and
deep. We show that then the lemma holds with ϕ = 1.

Set L := LP×m
, v := v(L). Lemmas 3.5.9 and 3.5.10 yield an a with â−a ≼ v4m.

Replacing (P,m, â) by (P+a,m, â − a) arranges that â ≺∆(v) m, by Lemmas 3.3.7
and 3.3.41. As in the proof of Lemma 4.3.31, for sufficiently small q ∈ Q>, any n ≍
|v|qm now gives a strictly normal and deep refinement (P, n, â) of (P,m, â) whose
linear part splits strongly over K. □

Remark. Suppose we replace our standing assumption thatH is ω-free and (P,m, â)
is a minimal hole in K by the assumption that H is λ-free and (P,m, â) is a slot
in K of order and degree 1 (so K is λ-free by [ADH, 11.6.8] and (P,m, â) is Z-
minimal). Then Lemma 4.3.32 goes through with “hole” replaced by “slot”. Its
proof also goes through with the references to Lemmas 3.3.7 and 3.3.41 replaced by
references to Corollary 3.3.8 and Lemma 3.3.42. The end of that proof refers to the
end of the proof of Lemma 4.3.31, and there one should replace Proposition 3.3.26
by Corollary 3.3.27, and Lemma 3.3.44 by Remark 3.3.45.

In the remainder of this subsection we prove the following variant of Theorem 4.3.9:

Theorem 4.3.33. If H is 1-linearly newtonian, then one of the following holds:

(i) b̂ /∈ H and there exists a Z-minimal slot (Q,m, b̂) in H with a refine-

ment (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂− b) is eventually deep and almost

strongly split-normal;
(ii) ĉ /∈ H and there exists a Z-minimal slot (R,m, ĉ) in H with a refine-

ment (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ− c) is eventually deep and almost

strongly split-normal.

Moreover, if H is 1-linearly newtonian and either degP > 1, or b̂ /∈ H and Z(H, b̂)
contains an element of order 1, or ĉ /∈ H and Z(H, ĉ) contains an element of
order 1, then (i) holds with “almost” omitted, or (ii) holds with “almost” omitted.

Towards the proof of this theorem we first show:

Lemma 4.3.34. Suppose b̂ /∈ H and (Q,m, b̂) is a Z-minimal slot in H with

a refinement (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂ − b) is eventually deep and split-

normal. Then (Q,m, b̂) has a refinement (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂− b) is

eventually deep and almost strongly split-normal.
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Proof. Let (Q+b, n, b̂− b) be a refinement of (Q,m, b̂) and let ϕ0 be active in H such

that 0 < ϕ0 ≼ 1 and (Qϕ0

+b, n, b̂− b) is deep and split-normal. Then Corollary 4.3.27

yields a refinement
(
(Qϕ0

+b)+b0 , n0, (̂b− b)− b0
)
of (Qϕ0

+b, n, b̂− b) which is deep and
almost strongly split-normal. Hence(

(Q+b)+b0 , n0, (̂b− b)− b0
)

=
(
Q+(b+b0), n0, b̂− (b+ b0)

)
is a refinement of (Q,m, b̂), and

(
Qϕ

+(b+b0)
, n0, b̂ − (b + b0)

)
is eventually deep and

almost strongly split-normal by Lemma 4.3.28. □

Likewise:

Lemma 4.3.35. Suppose ĉ /∈ H, and (R,m, ĉ) is a Z-minimal slot in H with

a refinement (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ − c) is eventually deep and split-

normal. Then (R,m, ĉ) has a refinement (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ− c) is

eventually deep and almost strongly split-normal.

Theorem 4.3.9 and the two lemmas above give the first part of Theorem 4.3.33. We
break up the proof of the “moreover” part into several cases, along the lines of the

proof of Theorem 4.3.9. We begin with the case where b̂ ∈ H or ĉ ∈ H.

Lemma 4.3.36. Suppose H is 1-linearly newtonian, b̂ /∈ H, (Q,m, b̂) is a Z-

minimal slot in H of order r, and some refinement (Q+b, n, b̂− b) of (Q,m, b̂) is

such that (Qϕ
+b, n, b̂ − b) is eventually deep and split-normal. Then (Q,m, b̂) has

a refinement (Q+b, n, b̂− b) with (Qϕ
+b, n, b̂ − b) eventually deep and strongly split-

normal.

Proof. Lemma 4.3.34 gives a refinement (Q+b, n, b̂−b) of (Q,m, b̂) with (Qϕ
+b, n, b̂−b)

eventually deep and almost strongly split-normal. We upgrade this to “strongly
split-normal” as follows: Take active ϕ0 in H with 0 < ϕ0 ≼ 1 such that the

slot (Qϕ0

+b, n, b̂ − b) in Hϕ0 is deep and almost strongly split-normal. Now H is 1-
linearly newtonian, hence r-linearly newtonian. Therefore Corollary 3.3.47 yields a

deep and strictly normal refinement
(
(Qϕ0

+b)+b0 , n, (̂b−b)−b0
)
of
(
Qϕ0

+b, n, b̂−b
)
. By

Lemma 4.3.25, this refinement is still almost strongly split-normal, thus strongly

split-normal by Lemma 4.3.23. Then by Lemma 4.3.28,
(
Q+(b+b0), n, b̂− (b+ b0)

)
is a refinement of (Q,m, b̂) such that

(
Qϕ

+(b+b0)
, n, b̂ − (b + b0)

)
is eventually deep

and strongly split-normal. □

Lemmas 4.3.10 and 4.3.36 give the following:

Corollary 4.3.37. Suppose H is 1-linearly newtonian and ĉ ∈ H. Then there is a

hole (Q,m, b̂) in H of the same complexity as (P,m, â). Every such hole (Q,m, b̂)

in H is minimal and has a refinement (Q+b, n, b̂ − b) such that (Qϕ
+b, n, b̂ − b) is

eventually deep and strongly split-normal.

Just as Lemma 4.3.10 gave rise to Lemma 4.3.11, Corollary 4.3.37 leads to:

Corollary 4.3.38. Suppose H is 1-linearly newtonian and b̂ ∈ H. Then there is
a hole (R,m, ĉ) in H of the same complexity as (P,m, â). Every such hole in H is

minimal and has a refinement (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ− c) is eventually

deep and strongly split-normal.
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In the following two lemmas we assume that b̂, ĉ /∈ H. Let Q ∈ Z(H, b̂) be of mini-

mal complexity, so (Q,m, b̂) is a Z-minimal slot in H, as is each of its refinements.
The next lemma strengthens Corollary 4.3.13:

Lemma 4.3.39. Suppose degP > 1 and v(̂b−H) ⊆ v(ĉ−H). Then (Q,m, b̂) has

a refinement (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂− b) is eventually deep and strongly

split-normal.

Proof. Corollary 4.3.13 and Lemma 4.3.34 give a refinement (Q+b, n, b̂ − b)

of (Q,m, b̂) and an active ϕ0 in H with 0 < ϕ0 ≼ 1 such that the slot (Qϕ0

+b, n, b̂− b)

in Hϕ0 is deep and almost strongly split-normal. From degP > 1 we obtain that H
is r-linearly newtonian. Now argue as in the proof of Lemma 4.3.36. □

Similarly we obtain a strengthening of Corollary 4.3.14, using that corollary and
Lemma 4.3.35 in place of Corollary 4.3.13 and Lemma 4.3.34 in the proof:

Lemma 4.3.40. If degP > 1, v(ĉ−H) ⊆ v(̂b−H), and R ∈ Z(H, ĉ) has minimal
complexity, then the Z-minimal slot (R,m, ĉ) in H has a refinement (R+c, n, ĉ− c)

such that (Rϕ
+c, n, ĉ− c) is eventually deep and strongly split-normal.

We now prove the “moreover” part of Theorem 4.3.33. Thus, supposeH is 1-linearly

newtonian. If b̂ ∈ H, then ĉ /∈ H and Corollary 4.3.38 yields a strong version of (ii)

with “almost” omitted. Likewise, if ĉ ∈ H, then b̂ /∈ H and Corollary 4.3.37
yields a strong version of (i), with “almost” omitted. In the rest of the proof we

assume b̂, ĉ /∈ H. By Lemma 4.1.3 we have v(̂b−H) ⊆ v(ĉ−H) or v(ĉ − H) ⊆
v(̂b−H), and thus Lemmas 4.3.39 and 4.3.40 take care of the case degP > 1.

If Z(H, b̂) contains an element of order 1, and Q ∈ Z(H, b̂) has minimal complexity,
then orderQ = 1 by Lemma 4.3.7, so Corollary 4.3.30 and the remark following it
yield (i) with “almost” omitted. Likewise, if Z(H, ĉ) contains an element of order 1,
then (ii) holds with “almost” omitted. □

Revisiting newtonianity. We now use our results about isolated holes and split-
normality to obtain with Corollary 4.3.41 a sharper first-order characterization of
newtonianity than provided by our definition of this notion in [ADH].

Let H be a real closed H-field with small derivation and asymptotic integration.
Let P ∈ H{Y }̸= have order r ⩾ 1 and weight w. Just for the next corollary, call P
strongly split-normal if the following conditions are satisfied:

(1) LP has order r and v := v(LP ) ≺♭ 1; and
(2) P = Q+R where Q ∈ H{Y } is homogeneous of degree 1, orderQ = r, LQ

splits strongly over K, and R ≺∆(v) v
w+1P1.

Call P eventually deep and strongly split-normal if ndegSP = 0 and for
all small enough active ϕ > 0 in H, the differential polynomial Pϕ ∈ Hϕ{Y } is
strongly split-normal with respect to Hϕ. Note: ndegP = nmulP = 1 for such P .

Corollary 4.3.41. Assume H is ω-free. Then the following are equivalent:

(i) H is newtonian;
(ii) H[i] is 1-linearly newtonian and every eventually deep and strongly split-

normal P in H{Y }̸= of order ⩾ 1 has a zero y ≺ 1 in H.

Proof. The direction (i)⇒ (ii) is clear from (0.10) and [ADH, 14.2.11]. For (ii)⇒ (i),
suppose H is not newtonian and H[i] is 1-linearly newtonian. By Proposition 3.4.9
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it is enough to show that then H has an isolated hole (Q,m, b̂) such that for all

small enough active ϕ > 0 in H the hole (Qϕ,m, b̂) in Hϕ is deep and strongly
split-normal. We set K := H[i] and let b, c range over H.

Lemma 3.2.1 and subsequent remarks give a minimal hole (P,m, â) in K of
order r ⩾ 1, where m ∈ H×. Then degP > 1 by Corollary 3.2.8. By Lemma 4.2.15

we arrange that â ∈ K̂ := Ĥ[i] where Ĥ is an immediate ω-free newtonian H-field

extension of H, so â = b̂+ ĉi with b̂, ĉ ∈ Ĥ. Then v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆
v(̂b − H) by Lemma 4.1.3; we assume v(̂b − H) ⊆ v(ĉ − H). (The other case is

similar.) The equivalence (i)⇔(iii) of that lemma then gives b̂ /∈ H.

Take Q ∈ Z(H, b̂) of minimal complexity. Then (Q,m, b̂) is a Z-minimal slot

in H, of positive order by Lemma 4.3.7. Given any refinement (Q+b, n, b̂ − b)

of (Q,m, b̂), Lemma 4.1.3 gives c with v(â − a) = v(̂b − b) for a := b + ci, and

we may then replace (P,m, â) and (Q,m, b̂) by (P+a, n, â − a) and (Q+b, n, b̂ − b),
respectively, whenever convenient. Likewise, for any active ϕ in H with 0 < ϕ ≼ 1,

we can also replace H, K, (P,m, â), (Q,m, b̂) by Hϕ, Kϕ, (Pϕ,m, â), (Qϕ,m, b̂).

Suppose now that ĉ /∈ H. Use Corollary 4.3.13 to arrange that (Q,m, b̂) is

normal. Next, use Proposition 3.4.6 to arrange that (Q,m, b̂) is isolated, but pos-
sibly no longer normal. Being isolated persists under refinement, so we can use

Lemma 4.3.39 to arrange that (Qϕ,m, b̂) is eventually deep and strongly split-

normal. With Lemma 3.2.14, changing b̂ if necessary, we arrange that (Q,m, b̂)
is an isolated hole in H, not just an isolated slot in H, thus achieving our goal.

Finally, suppose that ĉ ∈ H. Then use Corollary 4.3.37 and Proposition 3.4.6 to

choose Q such that (Q,m, b̂) is a minimal and isolated hole in H with the property

that (Qϕ,m, b̂) is eventually deep and strongly split-normal. □

4.4. Ultimate Slots

In this section H is a Liouville closed H-field with small derivation, Ĥ is an im-
mediate asymptotic extension of H, and i is an element of an asymptotic extension

of Ĥ with i2 = −1. Then Ĥ is an H-field, i /∈ Ĥ, K := H[i] is an algebraic closure

of H, and K̂ := Ĥ[i] is an immediate d-valued extension of K. (See the beginning
of Section 4.3.) Let C be the constant field of H, let O denote the valuation ring
of H and Γ its value group. Accordingly, the constant field of K is CK = C[i] and
the valuation ring of K is OK = O + Oi. Let m, n, w range over H× and ϕ over
the elements of H> which are active in H (and hence in K).

In Section 1.2 we introduced

W :=
{
wr(a, b) : a, b ∈ H, a2 + b2 = 1

}
.

Note that W is a subspace of the Q-linear space H, because W i = S† where

S := {a+ bi : a, b ∈ H, a2 + b2 = 1}

is a divisible subgroup of K×. We have K† = H+W i by Lemma 1.2.4. Thus there
exists a complement Λ of the subspace K† of K such that Λ ⊆ Hi, and in this
section we fix such Λ and let λ range over Λ. Let U = K

[
e(Λ)

]
be the universal

exponential extension of K defined in Section 2.2.

For A ∈ K[∂]̸= we have its set E u(A) ⊆ Γ of ultimate exceptional values, which
a-priori might depend on our choice of Λ. We now make good on a promise from
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Section 2.5 by showing under the mild assumption I(K) ⊆ K† and with our restric-
tion Λ ⊆ Hi there is no such dependence:

Corollary 4.4.1. Suppose I(K) ⊆ K†. Then for A ∈ K[∂]̸=, the status of A
being terminal does not depend on the choice of Λ, and the set E u(A) of ultimate
exceptional values of A also does not depend on this choice.

Proof. Let Λ∗ ⊆ Hi also be a complement of K†. Let λ 7→ λ∗ be the Q-linear
bijection Λ → Λ∗ with λ− λ∗ ∈W i for all λ. Then by Lemmas 1.2.8 and 1.2.13,

λ− λ∗ ∈ I(H)i ⊆ I(K) ⊆ (O×
K)†

for all λ. Now use Lemma 2.5.6 and Corollary 2.5.7. □

Corollary 4.4.2. Suppose I(K) ⊆ K†. Let A = ∂ − g ∈ K[∂] where g ∈ K and
let g ∈ H× be such that g† = Re g. Then

E u(A) = vg(ker
̸=
U A) = {vg}.

In particular, if Re g ∈ I(H), then E u(A) = {0}.

Proof. Let f ∈ K× and λ be such that g = f† + λ. Then

E u(A) = vg(ker
̸=
U A) = {vf}

by Lemma 2.5.12 and its proof. Recall that K† = H + I(H)i by Lemma 1.2.13 and
remarks preceding it, so g ∈ K† iff Im g ∈ I(H). Consider first the case g /∈ K†.
Then by Corollary 4.4.1 we can change Λ if necessary to arrange λ := (Im g)i ∈ Λ
so that we can take f := g in the above. Now suppose g ∈ K†. Then g = (gh)†

where h ∈ K×, h† = (Im g)i. Then we can take f := gh, λ := 0, and we have h ≍ 1
since h† ∈ I(H)i ⊆ I(K). □

Corollary 4.4.3. Suppose I(K) ⊆ K†, and let F be a Liouville closed H-field
extension of H, and L := F [i]. Then the subspace L† of the Q-linear space L
has a complement ΛL with Λ ⊆ ΛL ⊆ F i. For any such ΛL and A ∈ K[∂]̸= we
have E e(Aλ) = E e

L(Aλ)∩Γ for all λ, and thus E u(A) ⊆ E u
L (A), where E u

L (A) is the
set of ultimate exceptional values of A ∈ L[∂] ̸= with respect to ΛL.

Proof. By the remarks at the beginning of this subsection applied to F , L in place
of H, K we have L† = F +WF i where WF is a subspace of the Q-linear space F .
Also K† = H + I(H)i by Lemma 1.2.13, and L† ∩ K = K† by Lemma 2.5.22.
This yields a complement ΛL of L† in L with Λ ⊆ ΛL ⊆ F i. Since H is Liouville
closed and hence λ-free by [ADH, 11.6.2], its algebraic closure K is λ-free by [ADH,
11.6.8]. Now the rest follows from remarks preceding Lemma 2.5.10. □

Given A ∈ K[∂]̸=, let E u(Aϕ) be the set of ultimate exceptional values of the linear
differential operator Aϕ ∈ Kϕ[δ], δ = ϕ−1

∂, with respect to Λϕ = ϕ−1Λ. We
summarize some properties of ultimate exceptional values used later in this section:

Lemma 4.4.4. Let A ∈ K[∂]̸= have order r. Then for all b ∈ K× and all ϕ,

E u(bA) = E u(A), E u(Ab) = E u(A)− vb, E u(Aϕ) = E u(A).

Moreover, if I(K) ⊆ K†, then:

(i) |E u(A)| ⩽ r;
(ii) dimC[i] kerUA = r =⇒ E u(A) = vg(ker

̸=
U A);
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(iii) under the assumption that v := v(A) ≺♭ 1 and B ≺∆(v) v
r+1A where B ∈

K[∂] has order ⩽ r, we have E u(A+B) = E u(A);

(iv) for r = 1 we have |E u(A)| = 1 and E u(A) = vg(ker
̸=
U A).

Proof. For the displayed equalities, see Remark 2.5.8. Now assume I(K) ⊆ K†.
Then K† = H + I(H)i, so (i) and (ii) follow from Proposition 2.5.24 and (iii) from
Proposition 3.1.27. Corollary 4.4.2 yields (iv). □

Recall from Lemma 1.2.9 that if K is 1-linearly newtonian, then I(K) ⊆ K†.
Suppose I(K) ⊆ K†. Then K† = H+I(H)i, so our Λ has the form ΛH i with ΛH

a complement of I(H) in H. Conversely, any complement ΛH of I(H) in H yields
a complement Λ = ΛH i of K† in K with Λ ⊆ Hi. Now I(H) is a C-linear subspace
of H, so I(H) has a complement ΛH in H that is a C-linear subspace of H, and
then Λ := ΛH i is also a C-linear subspace of K.

Lemma 4.4.5. Suppose I(K) ⊆ K† and g ∈ K, g − λ ∈ K†. Then

Im g ∈ I(H) ⇐⇒ λ = 0, Im g /∈ I(H) =⇒ λ ∼ (Im g)i.

Proof. Recall that Λ = ΛH i where ΛH is a complement of I(H) in H, so λ = λH i
where λH ∈ ΛH . Also, K† = H ⊕ I(H)i, hence Im(g)− λH ∈ I(H); this proves the
displayed equivalence. Suppose Im g /∈ I(H); since I(H) is an OH -submodule of H
and λH /∈ I(H), we then have Im(g)− λH ≺ λH , so λ = λH i ∼ Im(g)i. □

Corollary 4.4.6. Suppose I(K) ⊆ K†, A ∈ K[∂]̸= has order r, dimC[i] kerUA = r,

and λ is an eigenvalue of A with respect to Λ. Then λ ≼ v(A)−1.

Proof. Take f ̸= 0 and g1, . . . , gr in K with A = f(∂ − g1) · · · (∂ − gr). By Corol-
lary 3.1.6 we have g1, . . . , gr ≼ v(A)−1, and so Corollary 2.4.6 gives j ∈ {1, . . . , r}
with gj − λ ∈ K†. Now use Lemma 4.4.5. □

Ultimate slots in H. In this subsection a, b range over H. Also, (P,m, â) is a

slot in H of order r ⩾ 1, where â ∈ Ĥ \H. Recall that LP×m
= LPm, so if (P,m, â)

is normal, then LP has order r.

Corollary 4.4.7. Suppose I(K) ⊆ K† and the slot (P,m, â) is split-normal with
linear part L := LP×m

. Then with Q and R as in (SN2) we have E u(L) = E u(LQ).

This follows from Lemmas 4.3.4 and 4.4.4(iii). In a similar vein we have an analogue
of Lemma 3.3.24:

Lemma 4.4.8. Suppose (P,m, â) is normal and a ≺ m. Then LP and LP+a
have

order r, and if I(K) ⊆ K†, then E u(LP ) = E u(LP+a).

Proof. We have LP×m
= LPm and LP+a,×m

= LP×m,+a/m
= LP+a

m. The

slot (P×m, 1, â/m) in H is normal and a/m ≺ 1. Lemma 3.1.29 applied

to Ĥ, P×m, â/m in place of K, P , a, respectively, gives: LP and LP+a
have order r,

and
LPm− LP+am = LP×m

− LP×m,+a/m
≺∆(v) vr+1LPm

where v := v(LPm) ≺♭ 1 by (N1). Suppose now that I(K) ⊆ K†. Then

E u(LP ) = E u(LPm) + v(m) = E u(LP+a
m) + v(m) = E u(LP+a

)

by Lemma 4.4.4(iii). □

The notion introduced below is modeled on that of “isolated slot” (Definition 3.4.1):
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Definition 4.4.9. Call (P,m, â) ultimate if for all a ≺ m,

order(LP+a
) = r and E u(LP+a

) ∩ v(â−H) < v(â− a);

equivalently, for all a ≺ m: order(LP+a) = r and whenever w ≼ â − a is such
that v(w) ∈ E u(LP+a

), then w ≺ â− b for all b. (Thus if (P,m, â) is ultimate, then
it is isolated.)

If (P,m, â) is ultimate, then so is every equivalent slot in H and (bP,m, â) for b ̸= 0,
as well as the slot (Pϕ,m, â) in Hϕ (by Lemma 4.4.4). The proofs of the next two
lemma are like those of their “isolated” versions, Lemmas 3.4.2 and 3.4.3:

Lemma 4.4.10. If (P,m, â) is ultimate, then so is any of its refinements.

Lemma 4.4.11. If (P,m, â) is ultimate, then so is any of its multiplicative conju-
gates.

The ultimate condition is most useful in combination with other properties:

Lemma 4.4.12. If I(K) ⊆ K† and (P,m, â) is normal, then

(P,m, â) is ultimate ⇐⇒ E u(LP ) ∩ v(â−H) ⩽ vm.

Proof. Use Lemma 4.4.8 and the equivalence â− a ≺ m ⇔ a ≺ m. □

The “ultimate” version of Lemma 3.4.5 has the same proof:

Lemma 4.4.13. If degP = 1, then

(P,m, â) is ultimate ⇐⇒ E u(LP ) ∩ v(â−H) ⩽ vm.

The next proposition is the “ultimate” version of Proposition 3.4.6:

Proposition 4.4.14. Suppose I(K) ⊆ K†, and (P,m, â) is normal. Then (P,m, â)
has an ultimate refinement.

Proof. Suppose (P,m, â) is not already ultimate. Then Lemma 4.4.12 gives γ with

γ ∈ E u(LP ) ∩ v(â−H), γ > vm.

Lemma 4.4.4(i) gives |E u(LP )| ⩽ r, so we can take

γ := maxE u(LP ) ∩ v(â−H),

and then γ > vm. Take a and n with v(â− a) > γ = v(n); then (P+a, n, â− a) is a
refinement of (P,m, â) and a ≺ m. Let b ≺ n; then a+ b ≺ m, so by Lemma 4.4.8,

order(L(P+a)+b
) = r, E u(L(P+a)+b

) = E u(LP ).

Also v
(
(â− a)− b

)
> γ, hence

E u
(
L(P+a)+b

)
∩ v
(
(â− a)−H

)
= E u(LP ) ∩ v(â−H) ⩽ γ < v

(
(â− a)− b

)
.

Thus (P+a, n, â− a) is ultimate. □

Remark 4.4.15. Proposition 4.4.14 goes through if instead of assuming that (P,m, â)
is normal, we assume that (P,m, â) is linear. (Same argument, using Lemma 4.4.13
in place of Lemma 4.4.12.)

Finally, here is a consequence of Corollaries 2.5.13, 4.4.2, and Lemma 4.4.12, where
we recall that order(LP×m

) = order(LPm) = order(LP ):
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Corollary 4.4.16. Suppose I(K) ⊆ K† and (P,m, â) is normal of order r = 1.
Then LP = f(∂ − g) with f ∈ H×, g ∈ H, and for g ∈ H× with g† = g we have:

(P,m, â) is ultimate ⇐⇒ (P,m, â) is isolated ⇐⇒ .g ≽ m or g ≺ â−H.

(In particular, if g ∈ I(H) and m ≼ 1, then (P,m, â) is ultimate.)

Ultimate slots in K. In this subsection, a, b range over K = H[i]. Also (P,m, â)

is a slot in K of order r ⩾ 1, where â ∈ K̂ \K. Lemma 4.4.8 goes through in this
setting, with H in the proof replaced by K:

Lemma 4.4.17. Suppose (P,m, â) is normal, and a ≺ m. Then LP and LP+a
have

order r, and if I(K) ⊆ K†, then E u(LP ) = E u(LP+a).

We adapt Definition 4.4.9 to slots in K: call (P,m, â) ultimate if for all a ≺ m we
have order(LP+a

) = r and E u(LP+a
)∩ v(â−K) < v(â− a). If (P,m, â) is ultimate,

then it is isolated. Moreover, if (P,m, â) is ultimate, then so is (bP,m, â) for b ̸= 0
as well as the slot (Pϕ,m, â) in Kϕ. Lemmas 4.4.10 and 4.4.11 go through in the
present context, and so do Lemmas 4.4.12 and 4.4.13 with H replaced by K. The
analogue of Proposition 4.4.14 follows likewise:

Proposition 4.4.18. If I(K) ⊆ K† and (P,m, â) is normal, then (P,m, â) has an
ultimate refinement.

Remark 4.4.19. Proposition 4.4.18 also holds if instead of assuming that (P,m, â)
is normal, we assume that (P,m, â) is linear.

Corollary 4.4.2 and the K-versions of Lemmas 4.4.12 and 4.4.13 yield:

Corollary 4.4.20. Suppose I(K) ⊆ K†, r = 1, and (P,m, â) is normal or linear.
Then LP = f(∂ − g) with f ∈ K×, g ∈ K, and for g ∈ H× with g† = Re g we have:

(P,m, â) is ultimate ⇐⇒ g ≽ m or g ≺ â−K.

(In particular, if Re g ∈ I(H) and m ≼ 1, then (P,m, â) is ultimate.)

Using the norm to characterize being ultimate. We use here the “norm” ∥ · ∥
on U and the gaussian extension vg of the valuation of K from Section 2.1.

Lemma 4.4.21. For u ∈ U× we have ∥u∥† = Reu†.

Proof. For u = f e(λ), f ∈ K× we have ∥u∥ = |f | and u† = f† + λ, so

∥u∥† = |f |† = Re f† = Reu†,

using Corollary 1.2.5 for the second equality. □

Using Corollary 2.1.10, Lemma 4.4.21, and [ADH, 10.5.2(i)] we obtain:

Lemma 4.4.22. Let W ⊆ H× be ≼-closed. Then for all u ∈ U×,

∥u∥ ∈ W ⇐⇒ vgu ∈ v(W) ⇐⇒ Reu† < n† for all n /∈ W.
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Let (P,m, â) be a slot in H of order r ⩾ 1. Applying Lemma 4.4.22 to the set W =
{w : w ≺ â − H}— so v(W) = Γ \ v(â − H)—we obtain a reformulation of the
condition “(P,m, â) is ultimate” in terms of the “norm” ∥ · ∥ on U:

Corollary 4.4.23. The following are equivalent (with a ranging over H):

(i) (P,m, â) is ultimate;
(ii) for all a ≺ m: order(LP+a

) = r and whenever u ∈ U×, vgu ∈ E u(LP+a
),

and ∥u∥ ≼ â− a, then ∥u∥ ≺ â−H;
(iii) for all a ≺ m: order(LP+a

) = r and whenever u ∈ U×, vgu ∈ E u(LP+a
),

and ∥u∥ ≼ â− a, then Reu† < n† for all n with v(n) ∈ v(â−H).

A counterexample. Suppose I(K) ⊆ K† and H is not ω-free. (Example 1.3.16
provides such H.) Let (λρ) and (ωρ) be as in Lemma 3.2.10 with H in the role of K
there. That lemma yields a minimal hole (P,m, λ) in H with P = 2Y ′ + Y 2 + ω

(ω ∈ H). This is a good source of counterexamples:

Lemma 4.4.24. The minimal hole (P,m, λ) in H is ultimate, and none of its
refinements is quasilinear or normal.

Proof. Let a ∈ H. Then P+a = 2Y ′ + 2aY + Y 2 + P (a) and thus LP+a = 2(∂ + a),

so for b ∈ H× with b† = −a we have E u(LP+a
) = {vb}, by Corollary 4.4.2.

Thus (P,m, λ) is ultimate iff λ−a ≺ b for all a ≺ m in H and b ∈ H× with b† = −a
and vb ∈ v(λ − H); the latter holds by [ADH, 11.5.6] since v(λ − H) = Ψ.
Hence (P,m, λ) is ultimate. No refinement of (P,m, λ) is quasilinear by Corol-
lary 3.2.25 and [ADH, 11.7.9], and so by Corollary 3.3.21, no refinement of (P,m, λ)
is normal. □

4.5. Repulsive-Normal Slots

In this section H is a real closed H-field with small derivation and asymptotic
integration, with Γ := v(H×). Also K := H[i] with i2 = −1 is an algebraic closure
of H. We study here the concept of a repulsive-normal slot in H, which strengthens
that of a split-normal slot inH. Despite their name, repulsive-normal slots will turn
out to have attractive analytic properties in the realm of Hardy fields.

Attraction and repulsion. In this subsection a, b range over H, m, n over H×,
f , g, h (possibly with subscripts) over K, and γ, δ over Γ. We say that f is
attractive if Re f ≽ 1 and Re f < 0, and repulsive if Re f ≽ 1 and Re f > 0.
If Re f ∼ Re g, then f is attractive iff g is attractive, and likewise with “repulsive”
in place of “attractive”. Moreover, if a > 0, a ≽ 1, and f is attractive (repulsive),
then af is attractive (repulsive, respectively).

Definition 4.5.1. Let γ > 0; we say f is γ-repulsive if v(Re f) < γ† or Re f > 0.
Given S ⊆ Γ, we say f is S-repulsive if f is γ-repulsive for all γ ∈ S ∩ Γ>,
equivalently, Re f > 0, or v(Re f) < γ† for all γ ∈ S ∩ Γ>.

Note the following implications for γ > 0:

f is γ-repulsive =⇒ Re f ̸= 0,

f is γ-repulsive, Re g ∼ Re f =⇒ g is γ-repulsive.

The following is easy to show:
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Lemma 4.5.2. Suppose γ > 0 and Re f ≽ 1. Then f is γ-repulsive iff v(Re f) < γ†

or f is repulsive. Hence, if f is repulsive, then f is Γ-repulsive; the converse of
this implication holds if Ψ is not bounded from below in Γ.

Let γ, δ > 0. If f is γ-repulsive and a > 0, a ≽ 1, then af is γ-repulsive. If f is
γ-repulsive and δ-repulsive, then f is (γ+δ)-repulsive. If f is γ-repulsive and γ > δ,
then f is (γ − δ)-repulsive. Moreover:

Lemma 4.5.3. Suppose γ ⩾ δ = vn > 0. Set g := f − n†. Then:

f is γ-repulsive ⇐⇒ f is δ-repulsive and g is γ-repulsive.

Proof. Note that γ ⩾ δ > 0 gives γ† ⩽ δ†. Suppose f is γ-repulsive; by our remark,
f is δ-repulsive. Now if v(Re f) < γ†, then Re g ∼ Re f , whereas if Re f > 0,
then Re g = Re f − n† > Re f > 0; in both cases, g is γ-repulsive. Conversely,
suppose f is δ-repulsive and g is γ-repulsive. If Re f > 0, then clearly f is γ-
repulsive. Otherwise, v(Re f) < δ†, hence Re g ∼ Re f , so f is also γ-repulsive. □

In a similar way we deduce a useful characterization of repulsiveness:

Lemma 4.5.4. Suppose γ = vm > 0. Set g := f −m†. Then:

f is repulsive ⇐⇒ Re f ≽ 1, f is γ-repulsive, and g is repulsive.

Proof. Suppose f is repulsive; then by Lemma 4.5.2, f is γ-repulsive. Moreover,
Re g = Re f −m† > Re f > 0, hence Re g ≽ 1 and Re g > 0, that is, g is repulsive.
Conversely, suppose Re f ≽ 1, f is γ-repulsive, and g is repulsive. If v(Re f) < γ†,
then Re f ∼ Re g; otherwise Re f > 0. In both cases, f is repulsive. □

Corollary 4.5.5. Suppose f is γ-repulsive where γ = vm > 0, and Re f ≽ 1.
Then f is repulsive iff f−m† is repulsive, and f is attractive iff f−m† is attractive.

Proof. The first equivalence is immediate from Lemma 4.5.4; this equivalence yields

f is attractive ⇐⇒ f is not repulsive ⇐⇒ f −m† is not repulsive

⇐⇒ Re f −m† ≺ 1 or f −m† is attractive.

Thus if f − m† is attractive, so is f . Now assume towards a contradiction that f
is attractive and f − m† is not. Then Re f < 0 and Re f − m† ≺ 1 by the above
equivalence, so Re f ∼ m† thanks to Re f ≽ 1. But f is γ-repulsive, that is,
Re f ≻ m† or Re f > 0, a contradiction. □

Lemma 4.5.6. Suppose γ = vm > 0 and v(Re g) ⩾ γ†. Then for all sufficiently
large c ∈ C> we have Re g − cm† > 0 (and hence g − cm† is Γ-repulsive).

Proof. If v(Re g) > γ†, then Re g − cm† ∼ −cm† > 0 for all c ∈ C>. Sup-
pose v(Re g) = γ†. Take c0 ∈ C× with Re g ∼ c0m

†; then Re g − cm† > 0
for c > c0. □

In the rest of this subsection we assume that S ⊆ Γ. If f is S-repulsive, then so
is af for a > 0, a ≽ 1. If S > 0, δ > 0, and f is S-repulsive and δ-repulsive, then f
is (S + δ)-repulsive.

Lemma 4.5.7. Suppose f is S-repulsive and 0 < δ = vn ∈ S. Then

(i) f is (S − δ)-repulsive;
(ii) g := f − n† is S-repulsive.
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Proof. Let γ ∈ (S − δ), γ > 0. Then γ + δ ∈ S, so f is (γ + δ)-repulsive, hence
γ-repulsive. This shows (i). For (ii), suppose γ ∈ S, γ > 0; we need to show that g
is γ-repulsive. If γ ⩾ δ, then g is γ-repulsive by Lemma 4.5.3. Taking γ = δ we see
that g is δ-repulsive, hence if γ < δ, then g is also γ-repulsive. □

Let A ∈ K[∂] ̸= have order r ⩾ 1. An S-repulsive splitting of A over K is a
splitting (g1, . . . , gr) of A over K where g1, . . . , gr are S-repulsive. An S-repulsive
splitting of A over K remains an S-repulsive splitting of hA over K for h ̸= 0. We
say that A splits S-repulsively over K if there is an S-repulsive splitting of A
over K. From Lemmas 1.1.1 and 4.5.7 we obtain:

Lemma 4.5.8. Suppose (g1, . . . , gr) is an S-repulsive splitting of A over K
and 0 < δ = vn ∈ S. Then (g1, . . . , gr) is an (S−δ)-repulsive splitting of A over K,
and (h1, . . . , hr) := (g1 − n†, . . . , gr − n†) is an S-repulsive splitting of An over K.
(Hence (h1, . . . , hr) is also an (S − δ)-repulsive splitting of An over K.)

Note that if ϕ is active in H with 0 < ϕ ≼ 1, and f is γ-repulsive (in K), then ϕ−1f
is γ-repulsive in Kϕ = Hϕ[i].

Lemma 4.5.9. Suppose (g1, . . . , gr) is an S-repulsive splitting of A over K
and S ∩ Γ> ̸⊆ Γ♭. Let ϕ be active in H with 0 < ϕ ≺ 1, and set hj := gj − (r− j)ϕ†
for j = 1, . . . , r. Then (ϕ−1h1, . . . , ϕ

−1hr) is an S-repulsive splitting of A
ϕ over Kϕ.

Proof. By Lemma 1.1.2, (ϕ−1h1, . . . , ϕ
−1hr) is splitting of Aϕ over Kϕ. Let j ∈

{1, . . . , r}. If Re gj > 0, then ϕ† < 0 yields Rehj ⩾ Re gj > 0. Otherwise,
v(Re gj) < γ† whenever 0 < γ ∈ S; in particular, Re gj ≻ 1 ≻ ϕ†, so Rehj ∼ Re gj .
In both cases hj is S-repulsive, so ϕ−1hj is S-repulsive in Kϕ. □

Proposition 4.5.10. Suppose S ∩ Γ> ̸= ∅, nS ⊆ S for all n ⩾ 1, the ordered con-
stant field C of H is archimedean, and (g1, . . . , gr) is a splitting of A over K. Then
there exists γ ∈ S ∩Γ> such that for any m with γ = vm: (g1 − nm†, . . . , gr − nm†)
is an S-repulsive splitting of Amn over K, for all big enough n.

Proof. Let J be the set of j ∈ {1, . . . , r} such that gj is not S-repulsive. If γ > 0
and g is not γ-repulsive, then g is not δ-repulsive, for all δ ⩾ γ. Hence we can
take γ ∈ S ∩ Γ> such that gj is not γ-repulsive, for all j ∈ J . Suppose γ = vm.
Lemma 4.5.6 yields m ⩾ 1 such that for all n ⩾ m, setting n := mn, gj − n† is
Γ-repulsive for all j ∈ J . For such n we have vn ∈ S, so by Lemma 4.5.7(ii), gj −n†

is also S-repulsive for j /∈ J . □

Corollary 4.5.11. If C is archimedean and (g1, . . . , gr) is a splitting of A over K,
then there exists γ > 0 such that for all m with γ = vm: (g1 − nm†, . . . , gr − nm†)
is a Γ-repulsive splitting of Amn over K, for all big enough n. If Γ ̸= Γ♭ then we
can choose such γ > Γ♭.

Proof. Taking S = Γ this follows from Proposition 4.5.10 and its proof. □

In logical jargon, the condition that C is archimedean is not first-order. But it
is satisfied when H is a Hardy field, the case where the results of this section
will be applied. For other possible uses we indicate here a first-order variant of
Proposition 4.5.10 with essentially the same proof:

Corollary 4.5.12. Suppose (g1, . . . , gr) is a splitting of A over K. Then there
exists m ≺ 1 such that for all sufficiently large c ∈ C> and all n, if n† = cm†,
then (g1 − n†, . . . , gr − n†) is a Γ-repulsive splitting of An over K.
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In connection with this corollary we recall from [1, p. 105] that H is said to be
closed under powers if for all c ∈ C and m there is an n with cm† = n†.

In the rest of this section Ĥ is an immediate asymptotic extension of H and i

with i2 = −1 lies in an asymptotic extension of Ĥ. Also K := H[i] and K̂ := Ĥ[i].

Let â ∈ Ĥ \H, so v(â−H) is a downward closed subset of Γ. We say that f is â-
repulsive if f is v(â−H)-repulsive; that is, Re f > 0, or Re f ≻ m† for all a, m
with m ≍ â−a ≺ 1. (Of course, this notion is only interesting if v(â−H)∩Γ> ̸= ∅,
since otherwise every f is â-repulsive.) Various earlier results give:

Lemma 4.5.13. Suppose f is â-repulsive. Then

(i) b > 0, b ≽ 1 =⇒ bf is â-repulsive;
(ii) f is (â− a)-repulsive;
(iii) m ≍ 1 =⇒ f is âm-repulsive;
(iv) n ≍ â− a ≺ 1 =⇒ f is â/n repulsive and f − n† is â-repulsive.

For (iv), use Lemma 4.5.7. An â-repulsive splitting of A over K is a v(â−H)-
repulsive splitting (g1, . . . , gr) of A over K:

A = f(∂ − g1) · · · (∂ − gr) where f ̸= 0 and g1, . . . , gr are â-repulsive.

We say that A splits â-repulsively over K if it splits v(â−H)-repulsively over K.
Thus if A splits â-repulsively over K, then so does hA (h ̸= 0), and A splits (â−a)-
repulsively over K, and splits âm-repulsively over K for m ≍ 1. Moreover, from
Lemma 4.5.8 we obtain:

Corollary 4.5.14. Suppose (g1, . . . , gr) is an â-repulsive splitting of A over K
and n ≍ â − a ≺ 1. Then (g1, . . . , gr) is an â/n-repulsive splitting of A over K
and (g1 − n†, . . . , gr − n†) is an â-repulsive splitting of An over K.

Taking S := v(â−H) in Proposition 4.5.10 we obtain:

Corollary 4.5.15. If â ≼ 1 is special over H, C is archimedean, and A splits
over K, then An splits â-repulsively over K for some a and n ≍ â− a ≺ 1.

Recall that in Section 4.2 we defined a splitting (g1, . . . , gr) of A over K to be strong
if Re gj ≽ v(A)† for j = 1, . . . , r.

Lemma 4.5.16. Suppose â− a ≺♭ 1 for some a. Let (g1, . . . , gr) be an â-repulsive
splitting of A over K, let ϕ be active in H with 0 < ϕ ≺ 1, and set

hj := ϕ−1
(
gj − (r − j)ϕ†

)
(j = 1, . . . , r).

Then (h1, . . . , hr) is an â-repulsive splitting of Aϕ over Kϕ = Hϕ[i]. If v(A) ≺♭ 1
and (g1, . . . , gr) is strong, then (h1, . . . , hr) is strong.

This follows from Lemmas 4.2.12 and 4.5.9.

Lemma 4.5.17. Suppose v := v(A) ≺ 1 and â ≺∆(v) 1. Let (g1, . . . , gr) be an
â-repulsive splitting of A over K. Then for all sufficiently small q ∈ Q> and
any n ≍ |v|q, (g1− n†, . . . , gr − n†) is a strong â/n-repulsive splitting of An over K.

Proof. Take q0 ∈ Q> with â ≺ |v|q0 ≺ 1. Then for any q ∈ Q with 0 < q ⩽ q0 and
any n ≍ |v|q, (g1 − n†, . . . , gr − n†) is an â/n-repulsive splitting of An over K, by
Corollary 4.5.14. Using Lemmas 4.2.13 and 4.2.10 (in that order) we can decrease q0
so that for all q ∈ Q with 0 < q ⩽ q0 and n ≍ |v|q, (g1 − n†, . . . , gr − n†) is also a
strong splitting of An over K. □
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In the rest of this subsection we assume that H is Liouville closed with I(K) ⊆ K†.
We choose a complement Λ ⊆ Hi ofK† inK as in Section 4.4 and set U := K

[
e(Λ)

]
.

We then have the set E u(A) ⊆ Γ of ultimate exceptional values of A (which doesn’t
depend on Λ by Corollary 4.4.1). Recall from Corollary 1.2.28 that H is of Hardy
type iff C is archimedean. We now assume r = 1 and â ≺ 1 is special over H, and
let ∆ be the nontrivial convex subgroup of Γ that is cofinal in v(â−H).

Lemma 4.5.18. Suppose C is archimedean and E u(A) ∩ v(â − H) < 0. Then A
splits â-repulsively over K.

Proof. We may arrange A = ∂ − f . Take u ∈ U× with u† = f , and b := ∥u∥ ∈ H>.
Then E u(A) = {vb} by Lemma 2.5.12 and its proof, hence

E u(A) ∩ v(â−H) < 0 ⇐⇒ b ≻ 1 or vb > ∆,

and Re f = b† by Lemma 4.4.21. If b ≻ 1, then Re f > 0, and if vb > ∆, then
for all δ ∈ ∆ ̸= we have ψ(vb) < ψ(δ) by Lemma 1.2.24, so Re f ≻ m† for all a, m
with â− a ≍ m ≺ 1. In both cases A splits â-repulsively over K. □

Lemma 4.5.19. Suppose A ∈ H[∂] and v(A) ≺ 1. Then 0 /∈ E u(A), and if A splits
â-repulsively over K, then E u(A) ∩ v(â−H) < 0.

Proof. We again arrange A = ∂ − f and take u, b as in the proof of Lemma 4.5.18.
Then f ∈ H and b† = f = −1/v(A) ≻ 1, so b ̸≍ 1, and thus 0 /∈ {vb} = E u(A).
Now suppose A splits â-repulsively over K, that is, f > 0 or f ≻ m† for all a, m
with â − a ≍ m ≺ 1. In the first case f = b† and b ̸≍ 1 yield b ≻ 1. In the second
case ψ(vb) = vf < ψ(δ) for all δ ∈ ∆ ̸=, hence vb /∈ ∆. □

Combining Lemma 4.2.11 with the previous two lemmas yields:

Corollary 4.5.20. Suppose A ∈ H[∂] and v(A) ≺ 1, and H is of Hardy type.
Then A splits strongly over K, and we have the equivalence

A splits â-repulsively over K ⇐⇒ E u(A) ∩ v(â−H) ⩽ 0.

Defining repulsive-normality. In this subsection (P,m, â) is a slot in H of or-

der r ⩾ 1 with â ∈ Ĥ\H and linear part L := LP×m
. Set w := wt(P ); if orderL = r,

set v := v(L). We let a, b range over H and n over H×.

Definition 4.5.21. Call (P,m, â) repulsive-normal if orderL = r, and

(RN1) v ≺♭ 1;
(RN2) (P×m)⩾1 = Q+R where Q,R ∈ H{Y }, Q is homogeneous of degree 1 and

order r, LQ splits â/m-repulsively over K, and R ≺∆(v) v
w+1(P×m)1.

Compare this with “split-normality” from Definition 4.3.3: clearly repulsive-normal
implies split-normal, and hence normal. If (P,m, â) is normal and L splits â/m-
repulsively over K, then (P,m, â) is repulsive-normal. If (P,m, â) is repulsive-
normal, then so are (bP,m, â) for b ̸= 0 and (P×n,m/n, â/n).

Lemma 4.5.22. Suppose (P,m, â) is repulsive-normal and ϕ is active in H such
that 0 < ϕ ≺ 1, and â − a ≺♭ m for some a. Then the slot (Pϕ,m, â) in Hϕ is
repulsive-normal.

Proof. First arrange m = 1, and let Q, R be as in (RN2) for m = 1. Now (Pϕ, 1, â)

is split-normal by Lemma 4.3.5. In fact, Pϕ
⩾1 = Qϕ + Rϕ, and the proof of this
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lemma shows that Rϕ ≺∆(w) ww+1Pϕ
1 where w := v(LPϕ). By Lemma 4.5.16,

LQϕ = Lϕ
Q splits â-repulsively over Kϕ. So (Pϕ, 1, â) is repulsive-normal. □

If orderL = r, v ≺♭ 1, and â − a ≺∆(v) m, then â − a ≺♭ m. Thus we obtain from
Lemmas 3.3.13 and 4.5.22 the following result:

Corollary 4.5.23. Suppose (P,m, â) is Z-minimal, deep, and repulsive-normal.
Let ϕ be active in H with 0 < ϕ ≺ 1. Then the slot (Pϕ,m, â) in Hϕ is repulsive-
normal.

Before we turn to the task of obtaining repulsive-normal slots, we deal with the
preservation of repulsive-normality under refinements.

Lemma 4.5.24. Suppose (P,m, â) is repulsive-normal, and let Q, R be as in (RN2).
Let (P+a, n, â−a) be a steep refinement of (P,m, â) where n ≺ m or n = m. Suppose

(P+a,×n)⩾1 −Q×n/m ≺∆(w) w
w+1(P+a,×n)1 where w := v(LP+a,×n

).

Then (P+a, n, â− a) is repulsive-normal.

Proof. By (RN2), LQ splits â/m-repulsively over K, so LQ also splits (â − a)/m-
repulsively over K. We have (â − a)/m ≺ n/m ≺ 1 or (â − a)/m ≺ 1 = n/m,
so LQ splits (â− a)/n-repulsively over K by the first part of Corollary 4.5.14, and
hence LQ×n/m

= LQ · (n/m) splits (â− a)/n-repulsively over K by the second part

of that Corollary 4.5.14. Thus (P+a, n, â− a) is repulsive-normal. □

The proofs of Lemmas 4.3.18, 4.3.19, 4.3.20 give the following repulsive-normal
analogues of these lemmas, using also Lemma 4.5.24; for Lemma 4.5.27 below we
adopt the notational conventions about nq (q ∈ Q>) stated before Lemma 4.3.20.

Lemma 4.5.25. If (P,m, â) is repulsive-normal and (P+a,m, â−a) is a refinement
of (P,m, â), then (P+a,m, â− a) is also repulsive-normal.

Lemma 4.5.26. Suppose (P,m, â) is repulsive-normal, â ≺ n ≺ m, and [n/m] ⩽
[
v].

Then the refinement (P, n, â) of (P,m, â) is repulsive-normal: if m, P , Q, v are as
in (RN2), then (RN2) holds with n, Q×n/m, R×n/m, v(LP×n

) in place of m, Q, R, v.

Lemma 4.5.27. Suppose m = 1, (P, 1, â) is repulsive-normal, â ≺ n ≺ 1, and
for v := v(LP ) we have [n†] < [v] < [n]; then (P, nq, â) is a repulsive-normal
refinement of (P, 1, â) for all but finitely many q ∈ Q with 0 < q < 1.

Achieving repulsive-normality. In this subsection we adopt the setting of the
subsection Achieving split-normality of Section 4.3: H is ω-free and (P,m, â) is a

minimal hole in K of order r ⩾ 1, m ∈ H×, and â ∈ K̂ \ K, with â = b̂ + ĉi,

b̂, ĉ ∈ Ĥ. We let a range over K, b, c over H, and n over H×. We prove here the
following variant of Theorem 4.3.9:

Theorem 4.5.28. Suppose the constant field C of H is archimedean and degP > 1.
Then one of the following conditions is satisfied:

(i) b̂ /∈ H and some Z-minimal slot (Q,m, b̂) in H has a special refine-

ment (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂−b) is eventually deep and repulsive-

normal;
(ii) ĉ /∈ H and some Z-minimal slot (R,m, ĉ) in H has a special refine-

ment (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ−c) is eventually deep and repulsive-

normal.
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To establish this theorem we need to take up the approximation arguments in the

proof of Theorem 4.3.9 once again. While in that proof we treated the cases b̂ ∈ H
and ĉ ∈ H separately to obtain stronger results in those cases (Lemmas 4.3.10,
4.3.11), here we proceed differently and first show a repulsive-normal version of
Proposition 4.3.12 which also applies to those cases. In the rest of this subsection
we assume that C is archimedean.

Proposition 4.5.29. Suppose the hole (P,m, â) in K is special and v(̂b−H) ⊆
v(ĉ−H) (so b̂ /∈ H). Let (Q,m, b̂) be a Z-minimal deep normal slot in H.

Then (Q,m, b̂) has a repulsive-normal refinement.

Proof. As in the proof of Proposition 4.3.12 we first arrange m = 1, and set

∆ :=
{
δ ∈ Γ : |δ| ∈ v

(
â−K

)}
,

a convex subgroup of Γ which is cofinal in v(â − K) = v(̂b−H), so b̂ is spe-

cial over H. Lemma 3.3.13 applied to (Q, 1, b̂) and v(LQ) ≺♭ 1 gives that Γ♭

is strictly contained in ∆. To show that (Q, 1, b̂) has a repulsive-normal refine-
ment, we follow the proof of Proposition 4.3.12, skipping the initial composi-
tional conjugation, and arranging first that P,Q ≍ 1. Recall from that proof

that ˙̂a ∈ K̇c = Ḣc[i] and Re ˙̂a =
˙̂
b ∈ Ḣc \ Ḣ, with

˙̂
b ≺ 1, Q̇ ∈ Ḣ{Y }, and

so Q̇
+
˙̂
b
∈ Ḣc{Y }. Let A ∈ Ḣc[∂] be the linear part of Q̇

+
˙̂
b
. Recall from that proof

that 1 ⩽ s := orderQ = orderA ⩽ 2r and that A splits over K̇c. Then Lemma 1.1.4
gives a real splitting (g1, . . . , gs) of A over K̇c:

A = f(∂ − g1) · · · (∂ − gs), 0 ̸= f ∈ Ḣc, g1, . . . , gs ∈ K̇c.

It follows easily from [ADH, 10.1.8] that the real closed d-valued field Ḣ is an H-

field, and so its completion Ḣc is also a real closed H-field by [ADH, 10.5.9]. Recall

also that ∆ = v(Ḣ×) is the value group of Ḣc and properly contains Γ♭. Thus we

can apply Corollary 4.5.11 with Ḣc in the role of H to get n ∈ Ȯ with 0 ̸= ṅ ≺♭ 1
and m such that for all n > m, (h1, . . . , hs) := (g1 − nṅ†, . . . , gs − nṅ†) is a ∆-

repulsive splitting of Aṅn over K̇c, so Reh1, . . . ,Rehs ̸= 0. For any n, Aṅn is the
linear part of Q̇

+
˙̂
b,×ṅn

∈ Ḣc{Y }, and (h1, . . . , hs) is also a real splitting of Aṅn

over K̇c:

Aṅn = ṅnf(∂ − h1) · · · (∂ − hs).

By increasing m we arrange that for all n > m we have gj ̸∼ nṅ† (j = 1, . . . , s), and
also v(Aṅn) ≼ v(A) provided

[
v(A)

]
< [ṅ]; for the latter part use Lemma 3.1.16.

Below we assume n > m. Then v(Aṅn) ≺ 1: to see this use Corollary 3.1.4,
v(A) ≺ 1, and gj ≼ hj (j = 1, . . . , s). Note that h1, . . . , hs ≽ 1. We now apply

Corollary 4.2.9 to Ḣ, K̇, Q̇, s, ṅn,
˙̂
b, ṅnf , h1, . . . , hs in place of H, K, P , r, m, f ,

a, b1, . . . , br, respectively, and any γ ∈ ∆ with γ > v(ṅn), v(Reh1), . . . , v(Rehs).

This gives a, b ∈ Ȯ and b1, . . . , bs ∈ ȮK such that ȧ, ḃ ̸= 0 in Ḣ and such that for

the linear part Ã ∈ Ḣ[∂] of Q̇+ḃ,×ṅn we have

ḃ − ˙̂
b ≺ ṅn, Ã ∼ Aṅn, order Ã = s, w := v(Ã) ∼ v(Aṅn),
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and such that for w := wt(Q) and with ∆(w) ⊆ ∆:

Ã = B̃ + Ẽ, B̃ = ȧ(∂ − ḃ1) · · · (∂ − ḃs) ∈ Ḣ[∂], Ẽ ∈ Ḣ[∂],

v(ḃ1 − h1), . . . , v(ḃs − hs) > γ, Ẽ ≺∆(w) ww+1Ã,

and (ḃ1, . . . , ḃs) is a real splitting of B̃ over K̇. This real splitting over K̇ has a
consequence that will be crucial at the end of the proof: by changing b1, . . . , bs if
necessary, without changing ḃ1, . . . , ḃs we arrange that B := a(∂−b1) · · · (∂−bs) lies
in Ȯ[∂] ⊆ H[∂] and that (b1, . . . , bs) is a real splitting of B over K. (Lemma 1.1.6.)

Since Re ḃ1 ∼ Reh1, . . . ,Re ḃs ∼ Rehs, the implication just before Lemma 4.5.2

gives that (ḃ1, . . . , ḃs) is a ∆-repulsive splitting of B̃ over K̇. Now b̂− b ≺ nn ≺ 1,

so (Q+b, 1, b̂−b) is a refinement of the normal slot (Q, 1, b̂) inH, hence (Q+b, 1, b̂−b)
is normal by Proposition 3.3.25. We claim that the refinement (Q+b, n

n, b̂ − b)

of (Q+b, 1, b̂ − b) is also normal. If [n] ⩽
[
v(LQ+b

)
]
, this claim holds by Corol-

lary 3.3.27. From Lemma 3.1.28 and 3.1.7 we obtain:

orderLQ+b
= orderLQ = orderLQ

+b̂
= s,

v(LQ+b
) ∼ v(LQ) ∼ v(LQ

+b̂
), v

(
v(LQ

+b̂
)
)

= v
(
v(A)

)
,

so v
(
v(LQ+b

)
)
= v
(
v(A)

)
. Moreover, by Lemma 3.1.7 and the facts about Ã,

v
(
v(LQ+b,×nn )

)
= v

(
v(Ã)

)
= v

(
v(Aṅn)

)
= v(w).

Suppose
[
v(LQ+b

)
]
< [n]. Then [v(A)] < [ṅ], so v(Aṅn) ≼ v(A) using n > m. Now

the asymptotic relations among the various v(. . . ) above give

v(LQ+b,×nn ) ≼ v(LQ+b
),

hence (Q+b, n
n, b̂ − b) is normal by Corollary 3.3.29 applied to H and the normal

slot (Q+b, 1, b̂ − b) in H in the role of K and (P, 1, â), respectively. Put v :=

v(LQ+b,×nn ), so v ≍ w. Note thatQ+b,×nn ∈ Ȯ{Y }, so the image of LQ+b,×nn ∈ Ȯ[∂]

in Ḣ[∂] is Ã. Thus in H[∂] we have:

LQ+b,×nn = B + E where E ∈ Ȯ[∂], E ≺∆(v) v
w+1LQ+b,×nn .

Now ḃ1, . . . , ḃs are ∆-repulsive, so b1, . . . , bs are ∆-repulsive, hence

B = a(∂ − b1) · · · (∂ − bs)

splits ∆-repulsively, and thus (̂b − b)/nn-repulsively. Therefore (Q+b, n
n, b̂ − b) is

repulsive-normal. □

Instead of assuming in the above proposition that (P,m, â) is special and (Q,m, b̂)
is deep and normal, we can assume, as with Corollary 4.3.13, that degP > 1:

Corollary 4.5.30. Suppose degP > 1 and v(̂b−H) ⊆ v(ĉ−H). Let Q ∈ Z(H, b̂)

have minimal complexity. Then the Z-minimal slot (Q,m, b̂) in H has a special

refinement (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂− b) is eventually deep and repulsive-

normal.

Proof. The beginning of the subsection Achieving split-normality of Section 4.3
and degP > 1 give that K is r-linearly newtonian. Lemmas 3.2.26 and 3.3.23 yield
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a quasilinear refinement (P+a, n, â− a) of our hole (P,m, â) in K. Set b := Re a.
By Lemma 4.1.3 we have

v
(
(â− a)−K

)
= v(â−K) = v

(
b̂−H

)
= v

(
(̂b− b)−H

)
.

Replacing (P,m, â) and (Q,m, b̂) by (P+a, n, â − a) and (Q+b, n, b̂ − b), respec-
tively, we arrange that (P,m, â) is quasilinear. Then by Proposition 1.5.12 and K

being r-linearly newtonian, (P,m, â) is special; hence so is (Q,m, b̂). Proposi-

tion 3.3.36 gives a refinement (Q+b, n, b̂ − b) of (Q,m, b̂) and an active ϕ0 ∈ H>

such that (Qϕ0

+b, n, b̂− b) is deep and normal. Refinements of (P,m, â) remain

quasilinear by Corollary 3.2.23. Since v(̂b − H) ⊆ v(ĉ − H), Lemma 4.1.3(ii)
gives a refinement (P+a, n, â − a) of (P,m, â) with Re a = b. By Lemma 3.2.35

the minimal hole (Pϕ0

+a, n, â − a) in Kϕ0 is special. Proposition 4.5.29 applied

to (Pϕ0

+a, n, â− a), (Qϕ0

+b, n, b̂ − b) in place of (P,m, â), (Q,m, b̂), respectively, gives

us b0 ∈ H, n0 ∈ H× and a repulsive-normal refinement
(
Qϕ0

+(b+b0)
, n0, b̂− (b+ b0)

)
of (Qϕ0

+b, n, b̂− b). This refinement is steep and hence deep by Corollary 3.3.6,

since (Qϕ0

+b, n, b̂− b) is deep. Thus by Corollary 4.5.23,
(
Q+(b+b0), n0, b̂− (b+ b0)

)
is a refinement of (Q,m, b̂) such that that

(
Qϕ

+(b+b0)
, n0, b̂− (b+ b0)

)
is eventually

deep and repulsive-normal. As a refinement of (Q,m, b̂), it is special. □

In the same way that Corollary 4.3.13 gave rise to Corollary 4.3.14, Corollary 4.5.30
gives rise to the following:

Corollary 4.5.31. If degP > 1, v(ĉ − H) ⊆ v(̂b − H), and R ∈ Z(H, ĉ) has
minimal complexity, then the Z-minimal slot (R,m, ĉ) in H has a special refine-

ment (R+c, n, ĉ−c) such that (Rϕ
+c, n, ĉ− c) is eventually deep and repulsive-normal.

By Lemma 4.1.3 we have v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆ v(̂b−H), hence the
two corollaries above yield Theorem 4.5.28, completing its proof. □

Strengthening repulsive-normality. In this subsection we adopt the setting of
the subsection Strengthening split-normality of Section 4.3. Thus (P,m, â) is a slot
in H of order r ⩾ 1 and weight w := wt(P ), and L := LP×m

. If orderL = r, we
set v := v(L). We let a, b range over H and m, n over H×.

Definition 4.5.32. We say that (P,m, â) is almost strongly repulsive-normal
if orderL = r, v ≺♭ 1, and there are Q,R ∈ H{Y } such that

(RN2as) (P×m)⩾1 = Q + R, Q is homogeneous of degree 1 and order r, LQ has a
strong â/m-repulsive splitting over K, and R ≺∆(v) v

w+1(P×m)1.

We say that (P,m, â) is strongly repulsive-normal if orderL = r, v ≺♭ 1, and
there are Q,R ∈ H{Y } such that:

(RN2s) P×m = Q+R, Q is homogeneous of degree 1 and order r, LQ has a strong
â/m-repulsive splitting over K, and R ≺∆(v) v

w+1(P×m)1.

If (P,m, â) is almost strongly repulsive-normal, then (P,m, â) is almost strongly
split-normal; likewise without “almost”. Thus we can augment our diagram from
Section 4.3 as follows, the implications holding for slots of order ⩾ 1 in real closed
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H-fields with small derivation and asymptotic integration:

strongly
repulsive-
normal

+3

��

almost
strongly
repulsive-
normal

+3

��

repulsive-
normal

��strongly
split-
normal

+3

��

almost
strongly
split-
normal

+3 split-
normal

��strictly
normal

+3 normal

Adapting the proof of Lemma 4.3.23 gives:

Lemma 4.5.33. The following are equivalent:

(i) (P,m, â) is strongly repulsive-normal;
(ii) (P,m, â) is almost strongly repulsive-normal and strictly normal;
(iii) (P,m, â) is almost strongly repulsive-normal and P (0) ≺∆(v) v

w+1(P1)×m.

Corollary 4.5.34. If L has a strong â/m-repulsive splitting over K, then:

(P,m, â) is almost strongly repulsive-normal ⇐⇒ (P,m, â) is normal,

(P,m, â) is strongly repulsive-normal ⇐⇒ (P,m, â) is strictly normal.

If (P,m, â) is almost strongly repulsive-normal, then so are (bP,m, â) for b ̸= 0
and (P×n,m/n, â/n), and likewise with “strongly” in place of “almost strongly”.
The proof of the next lemma is like that of Lemma 4.3.25, using Lemmas 4.5.25
and 4.5.33 in place of Lemmas 4.3.18 and 4.3.23, respectively.

Lemma 4.5.35. Suppose (P+a,m, â − a) refines (P,m, â). If (P,m, â) is almost
strongly repulsive-normal, then so is (P+a,m, â−a). If (P,m, â) is strongly repulsive-
normal, Z-minimal, and â − a ≺∆(v) vr+w+1m, then (P+a,m, â − a) is strongly
repulsive-normal.

Here is the key to achieving almost strong repulsive-normality; its proof is similar
to that of Lemma 4.3.26:

Lemma 4.5.36. Suppose that (P,m, â) is repulsive-normal and â ≺∆(v) m. Then
for all sufficiently small q ∈ Q>, any n ≍ vqm yields an almost strongly repulsive-
normal refinement (P, n, â) of (P,m, â).

Proof. First arrange m = 1. Take Q, R as in (RN2) for m = 1. Then Lemma 4.5.17
gives q0 ∈ Q> such that â ≺ vq0 and for all q ∈ Q with 0 < q ⩽ q0 and n ≍ vq,
LQ×n

= LQn has a strong â/n-repulsive splitting over K. Now Lemma 4.5.26 yields
that (P, n, â) is almost strongly repulsive-normal for such n. □

Using this lemma we now adapt the proof of Corollary 4.3.27 to obtain:

Corollary 4.5.37. Suppose (P,m, â) is Z-minimal, deep, and repulsive-normal.
Then (P,m, â) has a deep and almost strongly repulsive-normal refinement.
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Proof. Lemma 3.3.13 gives a such that â − a ≺∆(v) m. By Corollary 3.3.8, the
refinement (P+a,m, â− a) of (P,m, â) is deep with v(LP+a,×m

) ≍∆(v) v, and by Lem-
ma 4.5.25 it is also repulsive-normal. Now apply Lemma 4.5.36 to (P+a,m, â− a)
in place of (P,m, â) and again use Corollary 3.3.8 to preserve being deep. □

Next we adapt the proof of Lemma 4.3.28 to obtain a result about the behavior of
(almost) repulsive-normality under compositional conjugation:

Lemma 4.5.38. Suppose ϕ is active in H with 0 < ϕ ≺ 1, and there exists a
with â − a ≺♭ m. If (P,m, â) is almost strongly repulsive-normal, then so is the
slot (Pϕ,m, â) in Hϕ. Likewise with “strongly” in place of “almost strongly”.

Proof. We arrange m = 1, assume (P,m, â) is almost strongly repulsive-normal, and
takeQ, R as in (RN2as). The proof of Lemma 4.3.5 shows that withw := v(LPϕ) we
have w ≺♭

ϕ 1 and (Pϕ)⩾1 = Qϕ+Rϕ where Qϕ ∈ Hϕ{Y } is homogeneous of degree 1

and order r, LQϕ splits over Kϕ, and Rϕ ≺∆(w) ww+1(Pϕ)1. By Lemma 4.5.16,

LQϕ = Lϕ
Q has even a strong â-repulsive splitting over K. Hence (Pϕ,m, â) is

almost strongly repulsive-normal. For the rest we use Lemma 4.5.33 and the fact
that if (P,m, â) is strictly normal, then so is (Pϕ,m, â). □

Lemma 3.3.13, the remark preceding Corollary 4.5.23, and Lemma 4.5.38 yield:

Corollary 4.5.39. Suppose (P,m, â) is Z-minimal and deep, and ϕ is active in H
with 0 < ϕ ≺ 1. If (P,m, â) is almost strongly repulsive-normal, then so is the
slot (Pϕ,m, â) in Hϕ. Likewise with “strongly” in place of “almost strongly”.

In the case r = 1, ultimateness yields almost strong repulsive-normality, under
suitable assumptions; more precisely:

Lemma 4.5.40. Suppose H is Liouville closed and of Hardy type, and I(K) ⊆ K†.
Assume also that (P,m, â) is normal and special, of order r = 1. Then

(P,m, â) is ultimate ⇐⇒ L has a strong â/m-repulsive splitting over K,

in which case (P,m, â) is almost strongly repulsive-normal.

Proof. By Lemma 4.4.12, (P,m, â) is ultimate iff E u(L) ∩ v
(
(â/m) −H

)
⩽ 0, and

the latter is equivalent to L having a strong â/m-repulsive splitting over K, by
Corollary 4.5.20. For the rest use Corollary 4.5.34. □

Liouville closed H-fields are 1-linearly newtonian by Corollary 1.7.29, so in view
of Lemma 3.2.36 and Corollary 3.3.21 we may replace the hypothesis “(P,m, â) is
special” in the previous lemma by “(P,m, â) is Z-minimal or a hole in H”. This
leads to repulsive-normal analogues of Lemma 4.3.29 and Corollary 4.3.30 for r = 1:

Lemma 4.5.41. Assume H is Liouville closed and of Hardy type, and I(K) ⊆ K†.
Suppose (P,m, â) is Z-minimal and quasilinear of order r = 1. Then there is a
refinement (P+a, n, â − a) of (P,m, â) and an active ϕ in H with 0 < ϕ ≼ 1 such

that (Pϕ
+a, n, â− a) is deep, strictly normal, and ultimate (so (Pϕ

+a, n, â − a) is
strongly repulsive-normal by Lemmas 4.5.40 and 4.5.33).

Proof. For any active ϕ in H with 0 < ϕ ≼ 1 we may replace H, (P,m, â)
by Hϕ, (Pϕ,m, â). We may also replace (P,m, â) by any of its refinements. Since H
is 1-linearly newtonian, Corollary 3.3.35 gives a refinement (P+a, n, â−a) of (P,m, â)
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and an active ϕ in H such that 0 < ϕ ≼ 1 and (Pϕ
+a, n, â − a) is normal. Replac-

ing H, (P,m, â) by Hϕ, (Pϕ
+a, n, â− a), we arrange that (P,m, â) itself is normal.

Then (P,m, â) has an ultimate refinement by Proposition 4.4.14, and applying
Corollary 3.3.35 to this refinement and using Lemma 4.4.10, we obtain an ultimate
refinement (P+a, n, â − a) of (P,m, â) and an active ϕ in H with 0 < ϕ ≼ 1 such

that the Z-minimal slot (Pϕ
+a, n, â− a) in Hϕ is deep, normal, and ultimate. Again

replacing H, (P,m, â) by Hϕ, (Pϕ
+a, n, â− a), we arrange that (P,m, â) is deep,

normal, and ultimate. Corollary 3.3.47 yields a deep and strictly normal refine-
ment (P+a,m, â− a) of (P,m, â); this refinement is still ultimate by Lemma 4.4.10.
Hence (P+a,m, â− a) is a refinement of (P,m, â) as required, with ϕ = 1. □

Combining Lemmas 3.2.26 and 4.5.41 with Corollary 4.5.39 yields:

Corollary 4.5.42. Assume H is Liouville closed, ω-free, and of Hardy type,
and I(K) ⊆ K†. Then every Z-minimal slot in H of order r = 1 has a re-
finement (P,m, â) such that (Pϕ,m, â) is eventually deep, ultimate, and strongly
repulsive-normal.

In the next subsection we show how minimal holes of degree > 1 in K give rise to
deep, ultimate, strongly repulsive-normal, Z-minimal slots in H.

Achieving strong repulsive-normality. Let H be an ω-free Liouville closed
H-field with small derivation and constant field C, and (P,m, â) a minimal hole
of order r ⩾ 1 in K := H[i]. Other conventions are as in the subsection Achiev-
ing repulsive-normality. Our goal is to prove a version of Theorem 4.5.28 with
“repulsive-normal” improved to “strongly repulsive-normal + ultimate”:

Theorem 4.5.43. Suppose C is archimedean, I(K) ⊆ K†, and degP > 1. Then
one of the following conditions is satisfied:

(i) b̂ /∈ H and some Z-minimal slot (Q,m, b̂) in H has a special refine-

ment (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂ − b) is eventually deep, strongly

repulsive-normal, and ultimate;
(ii) ĉ /∈ H and some Z-minimal slot (R,m, ĉ) in H has a special refine-

ment (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ − c) is eventually deep, strongly

repulsive-normal, and ultimate.

The proof of this theorem rests on the following two lemmas, where the standing
assumption that H is Liouville closed can be dropped.

Lemma 4.5.44. Suppose b̂ /∈ H and (Q,m, b̂) is a Z-minimal slot in H with a

refinement (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂− b) is eventually deep and repulsive-

normal. Then (Q,m, b̂) has a refinement (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂− b) is

eventually deep and almost strongly repulsive-normal.

Proof. We adapt the proof of Lemma 4.3.34. Let (Q+b, n, b̂− b) be a refinement

of (Q,m, b̂) and let ϕ0 be active in H such that 0 < ϕ0 ≼ 1 and (Qϕ0

+b, n, b̂ − b) is
deep and repulsive-normal. Then Corollary 4.5.37 yields a refinement(

(Qϕ0

+b)+b0 , n0, (̂b− b)− b0
)

of (Qϕ0

+b, n, b̂− b) which is deep and almost strongly repulsive-normal. Hence(
(Q+b)+b0 , n0, (̂b− b)− b0

)
=
(
Q+(b+b0), n0, b̂− (b+ b0)

)
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is a refinement of (Q,m, b̂), and
(
Qϕ

+(b+b0)
, n0, b̂ − (b + b0)

)
is eventually deep and

almost strongly repulsive-normal by Corollary 4.5.39. □

In the same way we obtain:

Lemma 4.5.45. Suppose ĉ /∈ H and (R,m, ĉ) is a Z-minimal slot in H with a

refinement (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ− c) is eventually deep and repulsive-

normal. Then (R,m, ĉ) has a refinement (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ− c) is

eventually deep and almost strongly repulsive-normal.

Theorem 4.5.28 and the two lemmas above give Theorem 4.5.28 with “repulsive-
normal” improved to “almost strongly repulsive-normal”. We now upgrade this
further to “strongly repulsive-normal + ultimate” (under an extra assumption).

Recall from Lemma 4.1.3 that v(̂b−H) ⊆ v(ĉ−H) or v(ĉ−H) ⊆ v(̂b−H). Thus
the next two lemmas finish the proof of Theorem 4.5.43.

Lemma 4.5.46. Suppose C is archimedean, I(K) ⊆ K†, degP > 1, and

v(̂b−H) ⊆ v(ĉ−H).

Let Q ∈ Z(H, b̂) have minimal complexity. Then the Z-minimal slot (Q,m, b̂) in H

has a special refinement (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂− b) is eventually deep,

strongly repulsive-normal, and ultimate.

Proof. Here are two ways of modifying (Q,m, b̂). First, let (Q+b, n, b̂ − b) be a

refinement of (Q,m, b̂). Lemma 4.1.3 gives c ∈ H with v(â−a) = v(̂b− b) with a :=
b+ ci, and so the minimal hole (P+a, n, â− a) in K is a refinement of (P,m, â) that

relates to (Q+b, n, b̂− b) as (P,m, â) relates to (Q,m, b̂). So we can replace (P,m, â)

and (Q,m, b̂) by (P+a, n, â − a) and (Q+b, n, b̂ − b), whenever convenient. Second,
let ϕ be active in H with 0 < ϕ ≼ 1. Then we can likewise replace H, K, (P,m, â),

(Q,m, b̂) by Hϕ, Kϕ, (Pϕ,m, â), (Qϕ,m, b̂).

In this way we first arrange as in the proof of Corollary 4.5.30 that (Q,m, b̂) is

special. Next, we use Proposition 3.3.36 likewise to arrange that (Q,m, b̂) is also
normal. By Propositions 4.4.14 (where the assumption I(K) ⊆ K† comes into play)

and 3.3.25 we arrange that (Q,m, b̂) is ultimate as well. The properties “special”
and “ultimate” persist under further refinements and compositional conjugations.

Now Corollary 4.5.30 and Lemma 4.5.44 give a refinement (Q+b, n, b̂− b) of

the slot (Q,m, b̂) in H and an active ϕ0 in H with 0 < ϕ0 ≼ 1 such that the

slot (Qϕ0

+b, n, b̂− b) in Hϕ0 is deep and almost strongly repulsive-normal. Corol-
lary 3.3.47 then yields a deep and strictly normal refinement(

(Qϕ0

+b)+b0 , n, (̂b− b)− b0
)

of
(
Qϕ0

+b, n, b̂− b
)
. This refinement is still almost strongly repulsive-normal by

Lemma 4.5.35, and therefore strongly repulsive-normal by Lemma 4.5.33. Corol-

lary 4.5.39 then gives that
(
Q+(b+b0), n, b̂− (b+ b0)

)
is a special refinement of our

slot (Q,m, b̂) such that
(
Qϕ

+(b+b0)
, n, b̂− (b+ b0)

)
is eventually deep and strongly

repulsive-normal. □

Likewise:
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Lemma 4.5.47. Suppose C is archimedean, I(K) ⊆ K†, degP > 1, and

v(ĉ−H) ⊆ v(̂b−H).

Let R ∈ Z(H, ĉ) have minimal complexity. Then the Z-minimal slot (R,m, ĉ) in H

has a special refinement (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ− c) is eventually deep,

strongly repulsive-normal, and ultimate.

4.6. The Main Theorem

We prove here the Normalization Theorem from the Introduction, as a corollary
of Theorem 4.5.43. It is accordingly less detailed than the latter, but more user-
friendly. It is what will get used at a key stage in [6].

Corollary 4.6.1. Let H be an ω-free Liouville closed H-field with small derivation,
archimedean ordered constant field C, and 1-linearly newtonian algebraic closure

H[i]. Suppose H is not newtonian. Then for some Z-minimal special hole (Q, 1, b̂)

in H with orderQ ⩾ 1 and some active ϕ > 0 in H with ϕ ≼ 1, the hole (Qϕ, 1, b̂)
in Hϕ is deep, strongly repulsive-normal, and ultimate.

Proof. By Proposition 1.7.28, K := H[i] is 1-linearly surjective and I(K) ⊆ K†.
As H is not newtonian, neither is K, by (0.11), so Lemma 3.2.1 and subsequent
remarks give a minimal hole (P,m, â) in K of order r ⩾ 1, where m ∈ H×.

Then degP > 1 by Corollary 3.2.8. By Lemma 4.2.15 we arrange that â ∈ K̂ := Ĥ[i]

where Ĥ is an immediate ω-free newtonian H-field extension of H. Now â = b̂+ ĉi
with b̂, ĉ ∈ Ĥ. By Theorem 4.5.43 there are two cases:

(1) b̂ /∈ H and some Z-minimal slot (Q,m, b̂) in H has a special refine-

ment (Q+b, n, b̂− b) such that (Qϕ
+b, n, b̂ − b) is eventually deep, strongly

repulsive-normal, and ultimate;
(2) ĉ /∈ H and some Z-minimal slot (R,m, ĉ) in H has a special refine-

ment (R+c, n, ĉ− c) such that (Rϕ
+c, n, ĉ − c) is eventually deep, strongly

repulsive-normal, and ultimate.

Assume Q, m, b̂ are as in Case (1). (Case (2) goes the same way.) Lemma 4.3.7
gives 1 ⩽ orderQ ⩽ 2r. Multiplicatively conjugating by n and renaming Q+b,×n

and b̂−b
n as Q and b̂ we arrange that (Q, 1, b̂) is a Z-minimal special slot such

that (Qϕ, 1, b̂) is eventually deep, strongly repulsive-normal, and ultimate (using

Lemma 4.4.11 to preserve ultimate). With Lemma 3.2.14, changing b̂ if necessary,

we arrange that (Q, 1, b̂) is a hole in H, not just a slot in H. □
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Errata and Comments to [ADH]

The changes below apply to the edition published by Princeton University Press,
and are already reflected in the versions posted on the arXiv and on our personal
web pages (as of February 2024). We thank Allen Gehret for pointing out most
of the errors left in that edition. Linguistic slips like missing commas or articles
are not listed below unless they might mislead. Citations are to the bibliography
of [ADH].

Acknowledgments:

The date of September 2015 on p. xiv indicates when the manuscript was first
submitted to Princeton University Press. The published version incorporates some
changes and additions made since then.

Dramatis Personae:

In the item for “ω-free” under the heading “Asymptotic Fields”, f − ω(g††) ≽ g†

should be f − ω(g††) ≽ (g†)2.

Chapter 1:

(1) The first sentence of the subsection Irreducibility in 1.1 should be:
Let X and Y be topological spaces.

(2) In the subsection Localization of modules in 1.4 the formula for addition
should have s2x1 + s1x2 in the numerator.

(3) In the subsection Tensor products in 1.7, the H in the 4th line should
be a B.

(4) In the subsection Rational rank in 1.7, in the line following the display:
Q⊗Z N should be Q⊗Z M .

(5) In the 4th line of the proof of 1.8.12, the second “:=” should be “=”.
(6) In the 6th line of the proof of 1.8.13, “(a, b) →” should be “(a, b) 7→”.
(7) In 1.9.6 one should add the assumption that L is separably generated

over K, that is, L is separably algebraic over an intermediate field K(B)
with B ⊆ L algebraically independent over K. This assumption is satisfied
if charK = 0. Corollary 1.9.7 is still correct as stated, but its proof re-
quires for positive characteristic a variant of 1.9.6, namely: L is separably
algebraic over K iff every derivation on L extending the trivial derivation
on K is trivial. (This variant with a proof, as in [249, pp. 370–371] is now
included in the arXiv version.) Lemma 1.9.8 should be restricted to the
case charK = 0.

Chapter 2:

(1) In the fourth paragraph of 2.3, replace “valued subgroup of (G,S, v)” by
“valued subgroup of (G′, S′, v′)”.

Chapter 3:

(1) In the second sentence of the proof of 3.1.21, one can omit “with q ∩ A =
q′ ∩A = m” since this condition is automatically satisfied.

(2) F.-V. Kuhlmann pointed out that in the “Notes and comments” to 3.2 we
misattribute 3.2.26 to Krull [229]. An early source for a result of this kind
is Theorem 11 in O. Schilling’s book,
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The Theory of Valuations, Mathematical Surveys, no. 4, Ameri-
can Mathematical Society, New York, 1950.

This book refers for this theorem to I. Kaplansky’s unpublished Ph.D. thesis
Maximal Fields with Valuations, Harvard University, 1941.

(3) Replace “theorem” by “proposition” in the sentence following the statement
of 3.4.22.

(4) Marcus Tressl alerted us to an error in the proof of 3.6.11: replace the
condition K ≼ F in the first sentence of the proof by K ⊆ F , so that
Zorn’s lemma can be applied as indicated in the next sentence.

(5) Right after 3.7.6, replace
“open ball of the form {y : v(y − f) > vf} where f ∈ K×” by
“open ball of the form {y : v(y − f) > vg} where f, g ∈ K×, f ≽ g”.

Chapter 4:

(1) In the first sentence of the proof of 4.1.10, omit be.
(2) The last three sentences of the proof of 4.6.12 can be shortened to: Then

by Lemma 1.3.10, a is algebraic over K, so a is algebraic over C by Lem-
ma 4.1.2.

Chapter 5:

(1) In line 5 of 5.5, replace K[∂] by R[∂].
(2) In 5.7.3, replace

“Q[ϕ, . . . , ∂
n(ϕ)] = Q[ϕ, . . . , δ

n(ϕ)]” by
“Q[ϕ, . . . , ∂

n(ϕ), ϕ−1] = Q[ϕ, . . . , δ
n(ϕ), ϕ−1]”.

Chapter 6:

(1) In the second to last line of the proof of 6.1.9, replace C by D0.
(2) In the second line before the first display in the proof of 6.3.2 there is a

misplaced parenthesis in K[Y, . . . , Y (r−1)].
(3) In the last line of the proof of 6.6.5, replace (ii) by (iii).

Chapter 7:

(1) In the third line of the proof of 7.5.6, replace E by E×.

Chapter 8:

(1) In the proof of 8.3.2, (E,Γ,kE) should be (E,kE ,Γ).
(2) A few lines before 8.3.3, θv(v1, . . . , vk, y) should be θv(v1, . . . , vk, z).
(3) In the proof of 8.4.12, third line from the bottom, “ΓK3 = ΓK3” should

be “ΓK2
= ΓK3

”.

Chapter 9:

(1) Two lines before 9.1.10, (3) should be (2).
(2) Replace “Lemma” in the last line of the proof of 9.2.17 by “Corollary”.
(3) The correction following 3.7.6 leads to a corresponding correction in de-

scribing the condition z ∈ Gi when si ̸= 0, in the proof of 9.7.3.
(4) Verifying (AC3) in proof of 9.8.2 can be shortened using

max
{
ψα(γ + kα) : γ ∈ Γ, k ∈ Z, γ + kα ̸= 0

}
= β − α.

(5) In proof of 9.9.3, insert right after “v-slow on the right” the phrase “, where v
is the standard valuation of Γ”.
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Chapter 10:

(1) In 10.5.12, add “If K is an H-field, then so is K(y) with that ordering,
and CK(y) = C” and in its proof refer to the remarks after 10.2.3.

(2) In the last sentence of the third paragraph in the “Notes and comments”
to 10.6, “not not” should be “not”.

Chapter 11:

(1) In the last display before 11.1.4, the expression {γ : γ < (Γ>)′} should be
replaced by {γ ∈ Γ : γ < (Γ>)′}.

(2) In 11.2.3(ii), complete to “nmulP = nmulP+a” at the end.
(3) In proof of 11.6.3, replace v(s− a†) ∈ (Γ>

F )
′ by v(s− a†) ∈ (Γ>

F )
′ ∪ {∞}.

(4) In last sentence of proof of 11.6.14, replace ∼ sf by ∼ −sf .
(5) In proof of 11.6.17, end of the fourth paragraph, replace λ by λ.
(6) In second part of 11.8.5, omit the assumption that K has asymptotic inte-

gration and replace = at end of proof by ⊆.
(7) Omit the proof of 11.8.13; it has an erroneous forward reference.

Chapter 12:

(1) In the statement of 12.6.3, the last part should be [g]′ = [g′].

Chapter 13:

(1) In the Notes and comments to 13.3, replace “n0 = 2dwm(P )” by “n0 =
2dwm(P ) + m + 1 where m is such that P↑m ∈ Texp{Y }”. (We thank
Julian Ziegler-Hunts for pointing this out.)

Chapter 14:

(1) In the line following the statement of 14.0.1, it would be better to refer
to 11.7.13 than to 11.7.10.

(2) In the third line of the proof of 14.1.8, replace K by K×.
(3) In the last line of the last display preceding 14.2.18, replace Y ′′ by Y ′′Y .
(4) In 14.3.2(iii), replace at newton position by in newton position.
(5) In line 6 of the proof of 14.3.2, after “nmulP+b = nmulP+a = 1” add “by

Lemma 11.2.3” (referring to the addition to 11.2.3(ii) made above).
(6) After 14.5.11, replace In Section 16.1 by In Section 16.2.

Appendix A:

(1) In the sixth line before the subsection “Representing T ...” on p. 719,
replace [v(ℓn−1] by [v(ℓn−1)].

Appendix B:

(1) In the example after B.5.15, replace “Then V \ W is infinite . . . ” by
“If V ̸=W , then V \W is infinite . . . ”

(2) In B.6.1(4) add the axiom ∀x∀y(x ⩽ y ∨ y ⩽ x) to Or.
(3) In the remark following the definition of “proper filter on Λ” in B.7 omit

“either”.
(4) In the displayed equivalences in the proof of B.7.7 replace F by U .
(5) In B.10.4(ii) replace “some κ > |N |” by “some infinite κ > |N |”, and in the

proof of that corollary replace “|N |-saturated” by “κ-saturated where κ >
|N | is infinite”.
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(6) In B.10.15 replace “embeddings fi : A → Mi (i = 1, 2) of abelian groups”
by “embeddings fi : A→Mi (i = 1, 2) of torsion-free abelian groups”.

(7) Replace the last sentence in the remark before B.12.14 by “Then RCF′ is
model complete, but does not have QE: {a ∈ R : a ⩾ 0} is neither finite
nor cofinite and hence is not definable in the field R by a quantifier-free
LR-formula.”

(8) In B.12.15, replace “singletons” by “singletons {a} where a ∈ K”.
(9) Add to the “Notes and comments” of B.12 that B.12.9 and B.12.11, with

different proofs, are from:
A. H. Lightstone, A. Robinson, On the representation of Herbrand
functions in algebraically closed fields, J. Symb. Logic 22 (1957),
187–204.
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tions, Hermann, Paris, 1951.

11. J. Écalle, Les Fonctions Résurgentes, Tome I. Les Algèbres de Fonctions Résurgentes,
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