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Abstract

The present work addresses the scattering of the tonal noise of a low-speed pro-

peller by a rigid cylinder, as a generic configuration representative of installed

marine propellers. Both propeller and cylinder axes are parallel to each other.

The diameters of the propeller and of the cylinder are much smaller than the

acoustic wavelengths, as well as the propeller-cylinder distance. This corre-

sponds to a compact regime of diffraction. Only the hydrodynamic tonal noise

of the propeller at the first multiples of the blade-passing frequency is consid-

ered, assuming rigid blades, in a two-dimensional formulation. The direct and

scattered sound fields are expressed in terms of spinning modes, with respect to

the propeller and cylinder axes, respectively. Use is made of the exact Green’s

function of the cylinder for the Helmholtz equation. The modes of orders ±1

are found the only efficient ones in the direct field, whereas higher-order modes

rapidly decay. Yet, in the presence of the cylinder, higher-order modes are scat-

tered into the contra-rotating mode of order 1 in the reference frame of the

cylinder, with a strong amplification. A simple experiment, performed in air

but with Helmholtz numbers typical of marine applications, confirms these re-

sults as key features of the asymptotic Green’s function of the cylinder. The

same modal behavior is reproduced as closed-form simple expressions from a

low-frequency approximation of the Green’s function. The results show that
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the installation effect is crucial for the tonal noise of marine propellers at very

low frequencies.

Keywords: Marine propeller noise, Spinning modes, Analytical modelling,

Diffraction

Nomenclature

Italic symbols

a cylinder radius

An modal amplitude in array processing

B blade number5

c0 sound speed

D distance from cylinder axis to propeller axis

eX , eY , eZ unit vectors of main directions

F point-dipole force

Fs point-dipole force harmonic10

FA,T,R
s Fourier coefficients of axial, tangential and radial forces

G Green’s function for the Helmholtz equation

G0 free-field Green’s function

G0as asymptotic free-field Green’s function

G1 2-D cylinder Green’s function15

G1as asymptotic cylinder Green’s function

L distance from cylinder edge to propeller axis

Jm,H
(1)
m Bessel and Hankel functions of the first kind

k acoustic wavenumber

m summation index, mode order in array processing20

M tangential Mach number

Mn phase tangential Mach number

n spinning mode order (number of lobes)

p0as, p1as free-field and scattered pressures in asymptotic regime

pµB complex acoustic pressure at a BPF harmonic25
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par free-field pressure expanded as spinning modes

pm sound-pressure modal amplitude

rϕ observer distance to a source-mode point

r,R0 circle radius

R observer distance to origin30

s blade loading harmonic order

x = (rx, θx) observer position

y = (ry, θy) source position

(x1, x2) components of x in Cartesian coordinate system

(y1, y2) components of y in Cartesian coordinate system35

Greek symbols

λ wavelength

µ BPF harmonic order

Θ observer angle from axis

ζ rotor-blade force-inclination angle40

ω angular frequency

Ω rotational speed

ξ observer angle in polar coordinates

Φ polar observer angle

ϕ polar angle of source-mode point45

Abbreviations

BLH blade loading harmonic

BPF blade passing frequency

PSD power spectral densities

SPL sound pressure level50

1. Introduction

Sound generation and propagation from ships in water is a matter of concern

for both the acoustic discretion of ships and the protection of aquatic wild life.
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It involves complex physical aspects, especially dealing with propeller-associated

sound-generating mechanisms. Firstly, structure-borne noise is emitted because55

mechanical vibrations are transmitted to the hull through the driving shaft.

Secondly, the propellers are known to generate hydrodynamic noise. The latter

is generally the most significant contribution to the total noise. This is why the

design of modern marine propellers has to combine better hydrodynamic effi-

ciency and reduced emitted sound. For this, the involved mechanisms must be60

identified and dedicated prediction models that could be introduced at the early

stages of optimization processes are needed. The most crucial aspects of marine

propeller noise are the so-called installation effects, which are twofold. Firstly,

the propellers are always mounted in the rear part of the ship hull, therefore

they are partly embedded in a non-homogeneous and turbulent wake and/or65

interact with the turbulent boundary layer developing along the whole length

of the hull. Random and periodic fluctuations are induced on the blades, lead-

ing to increased, respectively broadband and tonal, acoustic signatures, when

compared to what the isolated propeller would radiate. This is referred to as

the hydrodynamic installation effect. In particular, stationary azimuthal dis-70

tortions, defined as deviations from pure axisymmetry of the flow around the

propeller axis, generate additional tonal noise.

Secondly, the mounting of propellers in close vicinity of the hull makes the

sound radiated from the blades scattered, in such a way that the basic radiating

properties of the sources are strongly modified. This is especially pronounced75

for the sources of the tonal noise, structured by interfering isolated-blade con-

tributions: the vicinity of the hull introduces imbalance in the interference. As

a result, the noise of an installed propeller can dramatically differ from what

the free-field noise would be, even considering the same sources. This second

effect, addressed in the present work, is called the acoustic installation effect.80

Both installation effects are usually investigated independently. The noise

that would be radiated by a propeller in free field but with the real flow dis-

tortions, thus the true sources, can be predicted relying on Ffowcs Williams

& Hawking’s formulation of the acoustic analogy [1, 2, 3], initially developed
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for aeronautical applications. Indeed, the same formal background holds for85

air and water, basic differences being in the characteristic Mach and Reynolds

numbers. The only specific feature of marine propellers is the cavitation, known

as a dominant source of noise in many configurations. But cavitation noise is

discarded from the present analysis. In the analogy, the rotating blades and

their accompanying unsteady flows are formally replaced by equivalent sources90

that are assumed to radiate in a uniform and stagnant unbounded medium. The

associated wave equation is therefore usually solved with the standard free-field

Green’s function. Dimensional analysis indicates that, within this framework

and at very low Mach numbers, the major source of noise is the passage of the

propeller blades through the distortions, which generates fluctuating forces on95

the blades acting as equivalent acoustic dipoles [3]. This defines the so-called un-

steady loading noise. The averaged force on the blades, which would be the only

remaining hydrodynamic force in absence of distortion, is responsible for the

steady-loading noise. Rotating blades also generate thickness noise. The latter

can be modeled again from equivalent dipoles, according to Isom’s formulation100

(see for instance Farassat [4]). Therefore, rotating dipoles are considered here

as the only required generic background for the description of marine propeller

noise. As long as the tonal noise at harmonics of the Blade-Passing Frequency

(BPF) is considered, each tone is a sum of elementary patterns called spinning

radiation modes. This notion is reminded in the paper. A mode is a diverging105

pressure wave, combined with an azimuthally periodic pattern spinning at some

phase speed, and forced by the dipole source strength.

In the presence of surrounding surfaces, a tailored Green’s function must

be used or the wave equation of the analogy solved numerically with additional

boundary conditions imposed on the surfaces, depending on the geometry of the110

latter. This has been the basis of hybrid methods developed in hydroacoustics to

estimate the noise nearby the hull of a ship [5, 6]. In the present work, diffraction

is addressed assuming a rigid cylinder instead of a true hull geometry (Fig. 1),

in order to highlight key mechanisms with a simple mathematical background.

The exact tailored Green’s function of the cylinder for the Helmholtz equation115
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is used to this end, the problem being stated in the frequency domain. Indeed,

diffraction is a matter of compared source-to-obstacle distance and acoustic

wavelength. The consequence is that the amount of scattering differs for all

angular positions of a blade element seen as source along its circular path.

This causes imbalance in the partial cancellations which determine the radiation120

efficiency of a spinning mode. In order to take this exactly into account in the

study, each spinning mode is reproduced with an equivalent circular distribution

of stationary phased dipoles, referred to as a source-mode [7, 8].

Installed marine propellers correspond to very compact configurations, in

the sense that both the blade-tip radius and the distance to the ship hull are125

much smaller than the emitted acoustic wavelengths. This is especially true in

the very-low frequency range corresponding to the first harmonics of the BPF

(Blade-Passing Frequency, defined as the rotational frequency Ω/(2π) multiplied

by the number of blades B), investigated in the present work. Typically, for a

BPF of 30Hz and a sound speed of 1500m/s, the Helmholtz number built of130

some characteristic length Λ remains below 0.1 for values of Λ up to 8m. This

confirms that the propeller-hull distance, and to some extent also the region

including the blades and the hull cross-section, is acoustically compact. There-

fore, the source-modes must be assumed in the very vicinity of the cylinder

to be representative of a marine application. A compact approximation of the135

Green’s function is justified in such cases, in the sense introduced by Howe [9].

This particular regime is crucial because it is known to produce a more or

less pronounced amplification of the sound from sources of high equivalent po-

lar orders. The amplification has been reported in similar studies, based on

asymptotic analyses performed on exact Green’s functions [10, 11], for sources140

approaching the edge of a rigid half-plane.

The aforementioned context motivated the authors in addressing specifically

the compact regime of the scattering of a source-mode by a rigid cylinder. The

configuration is understood as a generic one, representative of a marine propeller

installed close to a ship hull. It is addressed here with a two-dimensional model145

to provide a first insight into the underlying physics. Because the main scat-
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tering features involve the normal distances from the sources to the cylinder,

three-dimensional refinements would not question the main observed trends.

They will be the matter for a future extension of the work. In fact, a dedi-

cated experiment has also been carried out in air, in an anechoic room, in order150

to validate the relevance of the two-dimensional model. The setup includes a

small-size three-bladed propeller operated close to a rigid cylinder, with ratios

of wavelengths to dimensions representative of marine applications. The study

is aimed at pointing out that the diffraction is able to generate much higher

sound than the direct source-mode radiation in free field. Some theoretical155

background of tonal rotating-blade noise for compact blades and the notion of

associated source-modes are introduced in section 2. The analytical expressions

of the scattered sound field based on the two-dimensional tailored Green’s func-

tion of the rigid cylinder for the Helmholtz equation are derived in section 3.

The developments specific to the asymptotic regime for a far-field observer and160

arbitrary source-modes are detailed in section 4. The aim is to highlight the

amplification caused by cylinder scattering at very low frequencies. The effects

of the source-to-cylinder distance and of other key parameters are discussed.

The accompanying experiment is described in section 5, where the main results

are discussed, confirming the amplification mechanism. Finally, the effect of the165

hub of a propeller is shortly addressed in section 6.

2. Free-Field Tonal Noise Formulation

Before addressing the theoretical model of sound scattering by a rigid

cylinder, elementary expressions for the acoustic pressure radiated by a pro-

peller in the far field are reviewed in this section. The fluid motion relative to170

the reference frame of the propeller is neglected when describing sound propa-

gation, in view of the negligibly small Mach numbers. Yet local azimuthal flow

distortions are indirectly accounted for by the associated blade-loading harmon-

ics. The far-field expressions are considered only as a reference for the analysis

of the modal properties of the radiated field.175
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Figure 1: Propeller and cylinder reference frames, with spherical coordinates for the three-

dimensional formulation of propeller noise. Discretized source-mode of radius r featured by

the circular array of dots. Subsequent developments refer to the rotor-disk plane (eX , eY ).

2.1. Rotating-Blade Noise Formulation

Tonal rotor noise is usually formulated in the frequency domain in the

far-field, relying on Ffowcs Williams & Hawkings’ formulation of the acoustic

analogy [1, 2]. The mathematical solution is reminded in this section as a back-

ground for the present developments, assuming a single acoustically compact180

blade element rotating at constant angular speed Ω on the circle of radius r in a

quiescent propagation medium. Details can also be found in references [12, 13].

With the conventional notation e−iωt for monochromatic waves of angular fre-

quency ω, the complex-valued amplitude of the far-field acoustic pressure at the

multiple of order µ of the BPF, ω = µBΩ reads185

pµB(x) =
i kµBB

4π R
ei kµBR

∞∑
s=−∞

ei (µB−s)(Φ−π/2) (1)

×
{
JµB−s (µBM sinΘ)

[
FA
s cosΘ− (µB − s)FT

s

µBM

]
+ i sinΘFR

s J′µB−s (µBM sinΘ)

}
,
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with the notations defined in Fig. 1, where M = Ωr/c0 is the tangential Mach

number of the element and kµB = µBΩ/c0 is the acoustic wavenumber. The

observer is defined by the spherical coordinates (R,Θ,Φ) in the reference frame

(eX , eY , eZ). In the general case, Eq. (1) is summed over all elements of a dis-

cretized blade. For very compact blades, all dimensions of which remain much190

smaller than the acoustic wavelengths, a single element carrying the instanta-

neous integrated force is used, located at some averaged radius r = R0.

The complex-valued factors FA,T,R
s are the Fourier coefficients of the axial,

tangential and radial components of the aerodynamic force F(t) on the element,

acting as a point dipole. The total Fourier coefficients Fs are related to the

algebraic value of the force F (t) by the definition

F (t) =

∞∑
s=−∞

Fs e
−i sΩt , Fs =

Ω

2π

∫ 2π/Ω

0

F (t) ei sΩt dt .

In the plane of the rotor disk considered later on for two-dimensional diffrac-

tion studies, Θ = π/2 and the formula reduces to

pµB(x) =
i kµBB

4π R
ei kµBR

∞∑
s=−∞

ein (Φ−π/2)

{
nFT

s

Jn (µBM)

µBM
+ iFR

s J′n (µBM)

}
,

introducing n = µB − s. Equation (1) states that a tone involves a linear

combination of radiation modes. Keeping in mind the time dependence e−iωt,

a single mode at the frequency ω = µB Ω is defined as a pressure pattern with195

n angular periods called lobes, the phase of which spins at the angular velocity

µB Ω/n associated with a tangential phase Mach number Mn = µB Ω r/(n c0),

if r stands for the radius at which the sources of the mode are considered.

In three-dimensional and two-dimensional descriptions, this modal structure

combines with spherical and cylindrical wave spreading, respectively, but the200

angular dependency is the same. In the plane Θ = π/2, the symmetric mode

associated with the Bessel function J0 and with the BLH of order s = µB can

only be excited by the radial force component. The truncation of the infinite

sum in Eq. (1) needed for practical predictions is determined by the properties

of the Bessel functions: for a fixed value of the argument, the functions rapidly205
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go to zero for absolute orders exceeding the argument. The blades of a propeller

operating in an arbitrary stationary distortion experience a range of BLH orders

s. Only a limited interval of them, say between µB−nmax and µB+nmax where

nmax is some integer, possibly give rise to efficient radiation at the frequency

ω = µB Ω, because of the weighting by the Bessel function. The range is wider210

or narrower, depending on either the distortion is concentrated or spread.

For marine propellers, the tangential Mach number Ωr/c0is very small, so

that for moderate blade numbers and BPF harmonic orders, the argument of the

Bessel functions is also small. Furthermore, the tangential phase Mach number

is always smaller than 1 for any order n ̸= 0 (the definition makes no sense for

the symmetric mode n = 0). Even in non-compact cases, the condition Mn ≪ 1

corresponds to a negligible radiation efficiency. This makes very poor sound

expected in free field from the modal structure of marine propellers, except if

the symmetric mode is excited, with s = µB, for the axial component of blade

forces. Therefore, Taylor expansions can be performed to provide a relevant

approximation. The limit forms of Bessel functions for small arguments read [14]

J|n| (µBM) ∼
(
µBM

2

)|n|

, J0 (µBM) ∼ 1 ,

J′|n| (µBM) ∼ 1

2

(
µBM

2

)|n|

, J′0 (µBM) ∼ −µBM

2
.

The ratio
J|n| (µBM)

µBM
∼ 1

2|n|
(µBM)

|n|−1

becomes negligible for |n| ≥ 2, whereas it is 1/2 for |n| = ±1. This makes the

mode orders ±1 the only significantly contributing ones. These special aspects

of vanishing Mach numbers will be re-addressed in section 4.3. Though typical

of marine propellers, they are also believed to hold for some small-size, very215

low-speed fans used in air.

2.2. Source-mode expansion

The sound field of a single mode of order n in Eq. (1) can be exactly

reproduced by continuously distributing phased stationary sources of equal am-
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plitude over the circle of radius r, provided that the phase is tuned to simulate220

the angular velocity µB Ω/n. The amplitude is defined by the BLH Fs. There-

fore, the phase at any angle ϕ on the circle is defined by the factor einϕ. Such

a distribution is called a source-mode in the present work. Its main interest is

that it provides a representation of the sound field valid at every point in space

and not only in the far field, as discussed in references [7, 11, 15]. In particular,225

this allows to take into account the near-field terms involved in the scattering

by neighboring surfaces. The stationary point dipole of a source-mode at the

angle ϕ in Fig. 2 has the same instantaneous strength F (ϕ, t) as the dipole at

angle ϕ = 0 but with a time delay ∆t = (µB − s)ϕ/ω:

∀ϕ ∈ [0, 2π], F (ϕ, t) = F (0, t− (µB − s)ϕ/ω) . (2)

This forces the wanted spinning pattern of angular phase speed Ωs with n =230

µB− s. For the mode of order n associated with the blade-loading harmonic of

order s, F (ϕ, t) = Fs e
−iµBΩt with Fs = A einϕ, A being a constant.

3. Cylinder Scattering

3.1. Two-Dimensional Cylinder Green’s function

An alternative to numerical implementations of the Green’s formula, when235

solving a problem of acoustics in the presence of solid boundaries, is to consider a

Green’s function tailored to the geometry. In the present generic configuration,

the sources are assumed close to a rigid cylinder of circular cross-section. The

exact Green’s function, G(x,y), solution of the homogeneous Helmholtz equa-

tion, is determined by adding to the free-field Green’s function G0 a secondary240

Green’s function G1 accounting for the scattered field. This scattered part G1

corresponds to equivalent sources distributed on the surface. Therefore, it is ex-

pressed in terms of cylindrical harmonics. The term G0 must also be expanded

on the same set of harmonics, in order to formulate the rigid-wall boundary con-

dition on the cylinder surface, that must be fulfilled by the complete Green’s245

function G = G0 +G1. The procedure is detailed, for instance, in [16]. In polar
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coordinates with origin at the center of the cylinder cross-section, and for an

observer radius larger than the source radius (rx ≥ ry), the tailored Green’s

function reads

G(x,y) =
−i

4

[
J0 (kry) − J′0 (ka)

H
(1)′
0 (ka)

H
(1)
0 (kry)

]
H

(1)
0 (krx) (3)

− i

4

∞∑
m=1

2 cos[m(θy − θx)]

[
Jm (kry)−

J′m (ka)

H
(1)′
m (ka)

H(1)
m (kry)

]
H(1)

m (krx)

if a stands for the cylinder radius. x and y as indices stand for the observer

and source coordinates, respectively. In the opposite configuration (rx < ry),

the products Jm (kry) H
(1)
m (krx) corresponding to the first terms in the squared

brackets must be replaced by H
(1)
m (kry) Jm (krx). In fact, these terms stand

for the free-field Green’s function G0(x,y), expressed in the coordinate system

of the cylinder. The other terms involving ratios of derivatives account for the

scattering by the cylinder. All exact calculations performed in the present work,

for arbitrary dipole source-modes, are performed by making the scalar product

of the local dipole strength by the first gradient of the Green’s function G with

respect to the source coordinates. This provides the value of the radiated sound

field at any point of space as

p = Fs · ∇(G0 +G1) ,

with Fs = Fs nϕ, where nϕ is the unit vector along the dipole axis of angular250

location ϕ along the source-mode circle and Fs = F einϕ is the dipole strength.

The derivations of ∇(G0 +G1) are not detailed here for conciseness. They are

similar to those provided by Gloerfelt et al. [17], who investigated the radiation

of quadrupoles in the presence of a cylinder. The scattering is calculated for

each point dipole of a source-mode and the total field is obtained through an255

integral over the circle. Practically, this integral is discretized as a finite sum for

implementation. A similar approach has been detailed by Roger & Moreau [11]

in the investigation of the scattering of fan/propeller noise in the air by the edge

of a rigid half-plane.
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3.2. Greens’ Function Formulation in the asymptotic regime260

The asymptotic analysis leading to the compact regime of the Green’s

function is mainly focused on the part G1, responsible for amplification. How-

ever, special cases also require a comparison with the direct field. Let’s note:

ry
θy

D

a

R0 ϕ

scattering
circle

source-mode
circle

x

y

Figure 2: Coordinates of a source mode close to a scattering cylinder for the asymptotic

calculations. Note that D = L+ a (see Fig. 1).

J′0 (ka)

H
(1)′
0 (ka)

=
J1 (ka)

H
(1)
1 (ka)

= Φ0 ,
J′m (ka)

H
(1)′
m (ka)

=
Jm−1 (ka)− Jm+1 (ka)

H
(1)
m−1 (ka)−H

(1)
m+1 (ka)

= Φm .

Consider an observer in the acoustic far field and distributed sources over a

circle remaining close to the scattering cylinder, the latter being acoustically

compact, so that

krx ≫ 1 , kry ≪ 1 , ka ≪ 1 ,

In the present application, source points are distributed over a circle of radius

R0, the center of which is at some small distance D from the center of the cylin-

der, in such a way that also kD ≪ 1 and kR0 ≪ 1 (circular arrays of dots in

Figs. 1 and 2). This refers to the so-called compact Green’s function framework.

In this case, asymptotic expansions can be used to derive a simplified form of
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the Green’s function. For large arguments [14],

H(1)
m (krx) ∼

√
2

π krx
ei [krx−mπ/2−π/4] ,

whereas for small arguments

H(1)
m (kry) ∼ −i

π
Γ(m)

(
2

kry

)m

and Jm (kry) ∼ 1

Γ(m+ 1)

(
kry
2

)m

,m ≥ 1

H
(1)
0 (kry) ∼ 2i

π
ln

(
kry
2

)
and J0 (kry) ∼ 1−

(
kry
2

)2

.

Introducing these developments in the definition of the factor Φm for small

values of ka yields

Φ0 ∼ iπ

(
ka

2

)2

, Φm ∼ −iπ

Γ(m) Γ(m+ 1)

(
ka

2

)2m

.

For consistency, ka and kry must be assumed as small quantities of the same

order of magnitude.265

Once introducing the asymptotic developments in the expression of the exact

Green’s function, the first step to the limit form of the Green’s function G1 is

obtained as

G1as(x,y) ∼ −i

4
f(rx)

(
ka

2

)2

2 ln

(
kry
2

)

− i

4
f(rx)

∞∑
m=1

2 cos[m(θy − θx)]
e−imπ/2

Γ(m+ 1)

(
ka

2

)m (
a

ry

)m

,

with

f(rx) =

√
2

π krx
ei [krx−π/4] .

Next assuming that a/ry is of order 1 leads to retain only the leading term

m = 1. Finally

G1as(x,y) ∼ −i

2
f(rx)

(
ka

2

)2 [
ln

(
kry
2

)
− i cos(θy − θx)

(
2

kry

)]
.

Space derivatives of the Green’s function with respect to source coordinates are

required when calculating the sound from dipoles. In the radial derivative the

logarithm can be neglected as negligible compared to the other term. The first

gradient components are finally obtained as
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∂G1as

∂ry
= f(rx)

(
ka

2

)2
cos(θy − θx)

kr2y
,

1

ry

∂G1as

∂θy
= f(rx)

(
ka

2

)2
sin(θy − θx)

kr2y
.

(4)

It is worth noting that the compact Green’s function and its derivatives no270

longer involve indices m > 1.

3.3. Asymptotic Free-Field Green’s Function

Subsequent needs also require the derivatives of the free-field Green’s func-

tion G0. In the compact regime, the latter reads

G0as(x,y) ∼ −i

4
f(rx)

[
1−

(
kry
2

)2

− 2 i cos[(θy − θx)]

(
kry
2

)]
.

For the radial derivative, the term (kry/2)
2
can be discarded as negligible com-

pared to the other terms. Finally, the approximations are obtained as:

∂G0as

∂ry
= −k

4
f(rx) cos(θy − θx) ,

1

ry

∂G0as

∂θy
=

k

4
f(rx) sin(θy − θx) , (5)

with

f(rx) =

√
2

π krx
ei [krx−π/4] .

4. Radiation of Compact Spinning Source-Modes275

The expressions of the previous section are now used to calculate the

far-field sound pressure radiated by a compact source mode of arbitrary order.

Derivations are first detailed for purely tangential dipoles; the case of radial

dipoles is then summarized for completeness.

4.1. Point-Dipole Formula280

In the present section, for any point dipole of a source mode, the dipole axis

is assumed tangent to the source-mode circle. This restriction would be exact

for a purely axial-flow propeller, with unswept blades. With the notations in

Fig. 2, the point dipole of angular coordinate ϕ along the source circle and of
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unit strength has the radial and angular components in the reference frame of

the scattering cylinder

Fr = −D

ry
sinϕ einϕ , Fθ =

R0 +D cosϕ

ry
einϕ ,

for the spinning mode of order n, with

r2y = D2 +R2
0 + 2DR0 cosϕ , tan θy =

sinϕ

cosϕ+D/R0
.

The scattered sound pressure of the point dipole in the asymptotic regime reads

p1(rx, θx) = Fr
∂G1as

∂ry
+

Fθ

ry

∂G1as

∂θy
,

After rearranging terms:

k p1as(rx, θx)

f(rx) (ka/2)2
= cos θx (R

2
0−D2)

sinϕ einϕ

r4y
−sin θx

[
(R2

0 +D2)
cosϕ einϕ

r4y
+ 2R0D

einϕ

r4y

]
(6)

According to the same principles as for the diffracted field, the direct sound

pressure radiated by the point dipole in the asymptotic regime is :

p0as(rx, θx) = Fr
∂G0as

∂ry
+

Fθ

ry

∂G0as

∂θy

After developing terms, it is expressed as

p0as(rx, θx)

f(rx) (k/4)
= cos θx

[
(R2

0 +D2)
sinϕ einϕ

r2y
+ 2R0D

cosϕ sinϕ einϕ

r2y

]
(7)

− sin θx

[
(R2

0 +D2)
cosϕ einϕ

r2y
+R0D

einϕ

r2y
+R0D

cos 2ϕ einϕ

r2y

]
The total sound of the source mode is obtained by performing the integration

on the circle for equation (6) and equation (7), from ϕ = −π to ϕ = +π. The

resulting closed-form expressions are developed in the next section.285

4.2. Case of Higher-Order Modes

From the previous section, three integrals involving the quantities cosϕ,

sinϕ and einϕ and the factor r4y in the denominator must be calculated. These
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integrals result in closed-form expressions, making use of tables by Gradshteyn

& Ryszik [18] (pages 391-394) and noting that the odd-function parts can be

discarded from the integrands. For n ≥ 2 the individual integrals are found as∫ π

−π

cosϕ einϕ

r4y
dϕ =

π

D4

(−R0/D)n−1

[1− (R0/D)2]3

{
4

(
R0

D

)2

+ n

[
1−

(
R0

D

)4
]}

,

∫ π

−π

sinϕ einϕ

r4y
dϕ =

n iπ

D4

(−R0/D)n−1

[1− (R0/D)2]
,

∫ π

−π

einϕ

r4y
dϕ =

2π

D4

(−R0/D)n

[1− (R0/D)2]3

[
n+ 1− (n− 1)

(
R0

D

)2
]
.

Regrouping all terms in the developed expression of the acoustic pressure leads

to the final result

p1as(rx, θx) ∼ −i
π k

4
n
( a

D

)2
(
−R0

D

)n−1

e−i θx

√
2

π krx
ei (krx−π/4) . (8)

The most important feature is that, whatever the positive order n of the source

mode is, the asymptotic scattering by the compact Green’s function of the290

cylinder generates the mode m = −1, thus with a single lobe and spinning in

the opposite direction. The factor n (−R0/D)n−1 is involved in the amplification

of the direct mode. Of course, the mode m = +1 is similarly produced for any

negative order n.

In order to assess the asymptotic formulation, the decrease of the scattered295

sound with observer distance rx is plotted in Fig. 3, for a source-mode located

at the dimensionless distance kL = 0.1 from the cylinder edge and various mode

orders n > 1. The global compactness is ensured for all configurations. The

sound pressure level is averaged over a full circle θx ∈ [0, 2π]. The dashed

and solid lines stand for the exact analytical solution, Eq. (3), and for the300

asymptotic formulation, Eq. (8), respectively. The results are twofold. Firstly,

both solutions nearly coincide beyond krx = 3, where the far-field decay 1/
√
rx

is reached. Secondly, the amplitude of the scattered pressure decreases as the

mode order increases, for the same dipole source strength, as expected from the

factor n(R0/D)n−1. More precisely, overall level differences of about 8.6 dB,305

9.6 dB, 10.2 dB are predicted from the term 20 log10[n(R0/D)n−1] between the
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scattered sounds of the pairs of mode orders (n = 2, n = 3), (n = 3, n = 4) and

(n = 4, n = 5), respectively . The same test for special cases is also reported in

Fig. 4 in the next section.
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Figure 3: Sound pressure level decrease of a source-mode located nearby a rigid cylinder for

higher-order modes, n > 1. kR0 = 0.034, R0/D = 0.25, kL = 0.10. Exact (- - -) and

asymptotic (—) solutions.

The amplification itself is better recognized if now the free field of the same

arbitrary mode n > 1 is calculated, also referring to the same asymptotic devel-

opments, from Eqs. (7). The following integrals are involved:∫ π

−π

cosϕ einϕ

r2y
dϕ =

π (−R0/D)n−1

D2 [1− (R0/D)2]
[1 + (R0/D)2] ,

∫ π

−π

cos 2ϕ einϕ

r2y
dϕ =

π (−R0/D)n−2

D2 [1− (R0/D)2]
[1 + (R0/D)4] ,∫ π

−π

sinϕ einϕ

r2y
dϕ =

iπ

D2
(−R0/D)n−1 ,∫ π

−π

sinϕ cosϕ einϕ

r2y
dϕ =

iπ

2D2
(−R0/D)n−2 [1 + (R0/D)2] ,∫ π

−π

einϕ

r2y
dϕ =

2π

D2

(−R0/D)n

[1− (R0/D)2]
.

Reproducing similar derivations as for the function G1as with the same source310

mode now leads to an exactly zero pressure field. This means that, at the
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leading order of the asymptotic regime, the free field contribution is negligible

compared to the scattered field, confirming the amplification mechanism.

4.3. Special Cases

Equation (8) of the previous section holds for n ≥ 2. Special developments

are required for the mode n = 1, leading to consider the new integrals∫ π

−π

sinϕ eiϕ

r4y
dϕ =

iπ

D4 [1− (R0/D)2]
,

∫ π

−π

cosϕ eiϕ

r4y
dϕ =

π

D4 [1− (R0/D)2]3

[
1 + 4

(
R0

D

)2

−
(
R0

D

)4
]
,

∫ π

−π

eiϕ

r4y
dϕ =

4π

D4

(−R0/D)

[1− (R0/D)2]3
.

When this is applied to derive the radiation of the source-mode n = 1, the315

expression follows as

p1as(rx, θx) ∼ −i
π k

4

( a

D

)2

e−i θx

√
2

π krx
ei( krx−π/4) . (9)

Again the mode −1 is found in the scattered field (the expression is in fact

Eq. (8) with n = 1) but now the direct field derived following the same principles

implies the integrals

∫ π

−π

cosϕ eiϕ

r2y
dϕ = π

1 + (R0/D)2

D2[1− (R0/D)2]
,

∫ π

−π

cos 2ϕ eiϕ

r2y
dϕ = π

1 + (R0/D)2

D2[1− (R0/D)2]
(−R0/D) ,

∫ π

−π

sinϕ eiϕ

r2y
dϕ =

iπ

D2
,

∫ π

−π

sinϕ cosϕ eiϕ

r2y
dϕ =

iπ

2D2
(−R0/D) ,

∫ π

−π

eiϕ

r2y
dϕ = 2π

(−R0/D)

D2[1− (R0/D)2]
.
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It is found as320

p0as(rx, θx) ∼ i
π k

4
ei θx

√
2

π krx
ei ( krx−π/4) , (10)

which corresponds to significant radiation, of similar efficiency as for the scat-

tered field. The asymptotic scattering causes no amplification in this case, unlike

for higher-order modes, since the factor a/D is smaller than 1. Equation (9)

is a minor perturbation of the direct field, Eq. (10). This is confirmed by the

test reported in Fig. 4. The exact and asymptotic solutions of the direct and325

scattered parts for the special case n = 1, averaged over all observation angles,

are plotted as a function of the observer distance. The level difference of about

5 dB between the scattered and direct sounds is well predicted by the far-field

estimate 20 log10 (a/D)2 from Eqs. (9) and (10). Then, as seen previously for

higher-order modes, both solutions perfectly match above krx = 3, which defines330

the validity limit of the asymptotic formulation.

r

Figure 4: Sound pressure level decrease of a source-mode located nearby a rigid cylinder

for the mode n = 1. kR0 = 0.034, R0/D = 0.25, kL = 0.10. Exact (- - -) and compact

approximations (—) of the direct and scattered parts of the Green’s function.

The special behavior of the mode n = 1 can be explained by simple physical

considerations. For this mode, two diametrically opposite dipoles are in phase
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opposition, which means that they point in the same direction. They double

each other in amplitude because the diameter is acoustically compact. The total335

source mode is equivalent to a spinning point dipole.

A similar discussion can be made about the symmetric source mode n = 0,

for which diametrically opposite dipoles now point in opposite directions because

they are in phase. They cancel each other, so that the expected radiation of

the mode is zero in the compact limit. This can be verified easily by repeating340

the previous analysis in the case n = 0 : both the asymptotic free field and

the asymptotic scattered field are zero. Important consequences follow when

transposing these results to installed marine propellers. The symmetric mode is

known to be only generated by interaction of the propeller with the distortion

harmonic of order s = µB at any BPF order µ. It should not be a major345

issue, unlike in the case of aircraft propellers, because it cannot experience

amplification by hull scattering. In contrast, the analysis reveals that the modes

n = ±1 are expectedly the most efficient ones, both in free field and in the

presence of a hull. These modes are likely to be excited at the lowest frequencies

for installed propellers with quite small blade numbers.350

It is worth noting that the selective amplification associated with asymp-

totic scattering leads to the possible need to reconsider the assumption of a

single equivalent dipole on each blade, even if the blade is compact. Indeed,

source points close to blade tip and close to hub experience different amounts of

scattering. Such a ’de-compacification’ is beyond the scope of the present study.355

4.4. Case of a Radial Force

The complementary case of a radial force component in the sense of the

propeller or of the modal circle is considered in this section for completeness.

Indeed, such a dipole is part of the loading noise of a twisted swept blade,

even if not dominant in an axial-flow architecture. Furthermore, formulations

of the thickness noise detailed, for instance, in references [1, 3], involve a radial

dipole associated with the centripetal acceleration. In the reference frame of

the cylinder in Fig. 2, the radial and tangential components of a point dipole of
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angle ϕ become

Fr =
R0 +D cosϕ

ry
einϕ , Fθ =

D

ry
sinϕ einϕ ,

and the far-field scattered pressure is deduced as

k p1as(rx, θx)

f(rx) (ka/2)2
≃ sin θx (R

2
0 −D2)

sinϕ einϕ

r4y

+cos θx

[
(R2

0 +D2)
cosϕ einϕ

r4y
+ 2R0D

einϕ

r4y

]
.

The derivations can be repeated, using the same integrals as for the tangential

dipoles. They lead to the very similar result for the case of higher modes, n ≥ 2:

p1as(rx, θx) ∼ π k

4
n
( a

D

)2
(
−R0

D

)n−1

e−i θx

√
2

π krx
ei (krx−π/4) , (11)

p0as(rx, θx) ∼ 0,

which differs from Eq. (8) only by a phase quadrature. This difference is also

found in the special case n = 1, where the scattered and the direct field read:360

p1as(rx, θx) ∼ −i
π k

4

( a

D

)2

e−i θx

√
2

π krx
ei [krx+π/2−π/4] , (12)

p0as(rx, θx) ∼ i
π k

4
ei θx

√
2

π krx
ei [krx+π/2−π/4] . (13)

For the mode n = 1, the result is due to the fact that diametrically opposite

radial dipoles are again aligned and double each other in the compact limit. The

resulting equivalent point dipole is just spinning with an angular phase shift of

π/2 with respect to the point dipole of the tangential-force mode because they365

are perpendicular to each other.

5. Small-Scale In-Air Experiment
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5.1. Setup

For validation purposes, a small-scale experiment has been performed,370

aimed at confirming the asymptotic amplification associated with the compact

Green’s function. The experiment is made in air for simplicity. A three-bladed

propeller of 63 mm blade-tip diameter is mounted at one end of a cylindrical

hub of diameter 27 mm and length 170 mm, as shown in Fig. 5-a. It is powered

by a Maxon DC-motor (type 2 322.980-52) of 21mm diameter inserted in the375

hub at two regimes, referred to as the low speed (11800 rpm) and high speed

(14800 rpm), corresponding to blade-tip Mach numbers of about 0.1 and 0.14,

respectively. The scattering cylinder has a diameter of 60 mm and a length of

1 m. The propeller plane is at mid-length of the cylinder. The hub is placed

parallel to the cylinder at varying distance D, by means of diametrically sliding380

rods of 5 mm diameter. The latter are believed to have a negligible effect on

the relative variations of the sound resulting from changes in D.

(a) (b)

Figure 5: (a): picture of the small-scale propeller-cylinder mockup installed in the anechoic

room of Ecole Centrale de Lyon. (b): sketch of the setup for measurements in the propeller-

disk plane (featured by red circles).
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Table 1: 20 Hz-bandwidth peak levels and Helmholtz numbers at the BPF as a function of D

(mm), for both tested rotational speeds.

D = 65 D = 70 D = 85 D = 95 D = 168

low speed (dB) 48.3 49.1 42.55 38.2 35.3

(ka = 0.35) kD 0.71 0.76 0.92 1.04 1.83

k(D − [R0 + a]) 0.030 0.084 0.25 0.35 1.15

high speed (dB) 55.1 52.7 48 46 45.7

(ka = 0.44) kD 0.88 0.96 1.16 1.30 2.30

k(D − [R0 + a]) 0.037 0.11 0.31 0.45 1.45

The mock-up is installed vertically in an anechoic room, according to the

sketch in Fig. 5-b. Twelve 1/4” microphones (GRAS type 46BE) are placed at

azimuths j 2π/12 (0 ≤ j ≤ 11) in the plane of the propeller disk, at a measuring385

distance rx of 1.2 m from the cylinder axis. The condition of acoustic far-field

at the first BPF is already ensured at this distance. The origin of coordinates is

taken on the cylinder axis because the asymptotic scattering involves secondary

sources distributed on the cylinder, which are much more efficient than the

primary sources on the blades. The microphones are inserted horizontally into390

L-shaped vertical supports of 8mm diameter, pointing toward the cylinder axis.

This instrumentation is believed to cause negligible spurious scattering.

The two rotational speeds correspond to BPF of 590 Hz and 740 Hz. They

are tested for various values of the axis-to-axis distanceD. The shortest distance

of 65 mm only leaves a minimum gap of about 2mm between the blade tip395

passages and the cylinder. The largest one is of 168 mm. The corresponding

dimensionless parameters are summarized in Table 1.

The experiment is mainly aimed at highlighting the characteristic amplifi-

cation, with the generation of the mode -1. The precise blade design and a

complete inspection of the propeller aerodynamics are beyond the scope of the400

study. This would have typically required advanced optical flow-measurement

techniques at the very small scale of the experiment, in order to avoid intrusive-
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Figure 6: Compared sound-pressure spectra for axis-to-axis distances D = 65 mm (red) and

D = 85 mm (black) in the left column ((a) & (c)), and for D = 65 mm (red) and D = 140 mm

(black) in the right column ((b) & (b)). (a) & (b): low rotational speed; (c) & (d): high

rotational speed.
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ness.

5.2. Sound-Pressure Spectra

Typical spectra (PSD, power spectral densities) of the measured sound405

pressure, averaged on all microphones of the array, are shown in Fig. 6. The

averaging provides a relevant global characterization of the radiated sound field,

as long as the angular variations along the array remain small. This is the case

for the direct field at the first two BPF tones, as well as for the total field in the

presence of the cylinder in the compact configuration of minimum separation410

D, at least for the BPF, as shown in Fig. 7. The significant angular variations

for the installed configuration at twice the BPF, in Fig. 7-b, are not believed

to question the final conclusions. The resolution in Fig. 6 is of 1 Hz and the

acquisition time of 30 s ensures convergence. Two spectra are superimposed

on each plot, one for the shortest value of D (65 mm) and the other one for415

D = 85 mm (in Fig. 6-a & c) and D = 140 mm (in Fig. 6-b & d). This

enables to identify the amplification of the first two BPF tones, marked by the

double arrows. The associated values of the tonal-noise level differences are

also reported on the plots, after integration of the PSD in 20-Hz bandwidths

centered on the peak values. This eliminates the possible time variations of the420

rotational speed. These differences are slightly larger than the peak-to-peak

differences illustrated by the double arrows. A significant increase of the third

tone can also be noticed at the higher rotational speed (Fig. 6-c & d). The

key result is that the levels at the first two BPF tones dramatically increase as

the propeller approaches the cylinder, to the shortest distance. The increase425

at the BPF is of 11.1 dB for the low speed and of about 12.6 dB for the high

speed, going from D = 140 mm to D = 65 mm. It is worth noting that

the sound spectrum also includes other tones not directly related to propeller

noise. The shaft rotational frequency and some of its harmonics are attributed

to mechanical imbalance. The multiple tonal, haystack-like signature at higher430

frequencies, beyond 2BPF, is probably produced by the electric motor. The

specificity of the BPF tones is their modal structure, expressed by Eq. (1) and
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investigated in the next section. The amplification pointed out in the present

work is a priori a typical consequence of this structure. Therefore only the BPF

tones are addressed.435

(a) (b)

Figure 7: Directivity diagrams in the (x,y) plane at the BPF (a) and twice the BPF (b), with

linear interpolation between measuring positions (symbols ⋄). (—): Free-field measurements

for the centered propeller (D = 0). (- - -): installed propeller at D = 65mm. Different dB

scales in the two sub-plots.

Additional results discussed for completing the argumentation are shown

in Fig. 8. Figure 8-a compares the averaged sound spectrum measured for

the minimum distance D = 65 mm to averaged free-field spectra measured

after removing the cylinder. Two positions of the propeller axis, namely at the

center of the microphone array and shifted by D = 168 mm, are considered,440

providing nearly the same BPF tone levels, highlighted by small ellipses. The

figure illustrates the maximum amount of scattering by the cylinder.

The increase of propeller tonal noise associated with the presence of the

cylinder could result from any of two mechanisms. The first one is the amplifi-

cation inherent to the asymptotic regime of the Green’s function, expected from445
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the theoretical analysis of section 4. The second one is the possible generation of

stronger blade-loading harmonics, as an effect of higher stationary flow distor-

tions. Indeed, the flow the propeller would have in free field, especially around

the blade tips, can be modified as the blades get close to the cylinder because

of some flow blockage. Investigating such aerodynamic changes would require a450

specific instrumentation, well beyond the scope of the present study. Therefore,

simple indirect considerations only based on far-field acoustic measurements are

used to state about that point. The first step is a complementary measurement

performed after replacing the cylinder by a large rigid plate mounted vertically

and approached at the same distance to the blade tips as in the configuration455

D = 65 mm. The plate is 1.2 m high and 0.6 m wide, the propeller being placed

close to its center point. It is believed to have aerodynamic effects similar to

those of the cylinder at the scale of the blade tip-flow details, which makes

qualitatively the same order of magnitude of the blade-loading harmonics ex-

pected, if any. However, unlike the cylinder, the plate causes pure reflection460

of the direct sound from the propeller. For plate dimensions much larger than

the wavelength, the image principle would hold. Applying this principle to a

simple point source at vanishing distance, a doubling of the measured sound-

pressure amplitude, thus a maximum sound increase of 6 dB, would be found

for measuring locations facing the plate, instead of the amplification. The case465

of the propeller is less simple. The result of the test is reported in Fig. 8-b.

But because the averaging procedure leading to Fig. 6 would make no sense

in the presence of the plate, the spectra have been averaged only on the two

microphones located around ±15◦ from the direction normal to the plate. The

BPF tone levels in free-field condition and with the plate installed, with 20-Hz470

bandwidth integration, are 42.5 dB and 46.3 dB, respectively, whereas the level

reaches 58.6 dB with the cylinder in the configuration D = 65 mm. The increase

of 46.3 − 42.5 = 3.8 dB remains compatible with a sound-reflection effect, and

suggests that the regeneration of blade-loading harmonics is either moderate or

negligible. The much higher sound increase of 58.6− 42.5 = 16.1 dB is logically475

attributable to the aforementioned amplification mechanism.
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Figure 8: (a): free-field sound spectra of the propeller, at the center of the microphone array

(blue) and shifted by D = 168 mm (black), compared to the spectrum measured with the

cylinder installed at D = 65 mm (red); average over the complete array. (b): sound-pressure

spectra of the propeller, in free field (black), close to a reflecting plate (red, blade-tip to wall

gap 2 mm) and close to the cylinder (blue, D = 65 mm); two-microphone average. High speed

case, BPF = 740 Hz.
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Approaching a side-plate to a rotor disk has also been found to increase

the tonal noise in previous studies, because of both the reflection effect and

the aerodynamic interaction. The latter is presumably more noticeable at high

speeds, when an axial flow and the associated boundary layer develop over the480

plate. Whatmore & Lowson reported various tonal noise increases of up to

8-10 dB in such a configuration, for a typical tip Mach number around 0.22

and a blade-tip radius of 33 cm [19]. Such a strong effect is not expected in

the present study because of the lower Mach numbers of 0.1 and 0.14, at the

two tested speeds. Yet the 8-10 dB increase can be considered as a maximum485

expectable effect, which remains much lower than the actual increase observed

in the presence of the cylinder.

Apart from the variations in tone levels, all spectra in Figs. 6 and 8 exhibit

similar broadband noise levels below 1.7 kHz, and small differences at higher

frequencies. The latter are not interpreted in the present study. Indeed, the490

broadband noise is much lower than the tonal noise of interest, and always

limited by a threshold of about 7 dB corresponding to the electronic background

noise.

The main outcome of this section is that reducing the gap between the blade

tips and a reflecting plate causes tonal noise increases which remain much lower495

than those with the same gap and the cylinder. It is concluded that the large

noise increase observed with the cylinder is rather a sound-scattering effect than

an aerodynamic effect. This is confirmed in the next section by performing an

expansion of the sound field in the rotor-disk plane into azimuthal modes of

radiation.500

5.3. Modal Content of the Radiated Field

Free-field formulations of tonal propeller noise, reminded in section 2.1,

indicate that the sound field of any harmonic of the BPF is a sum of spinning

modes of radiation, as viewed from the propeller reference frame (eX , eY , eZ)

(Fig. 1). The scattering of this direct field by the cylinder generates a secondary505

field also made of modes, as viewed from the cylinder reference frame.
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Figure 9: Coordinates of a point on the circle of the microphone array and relative to the

off-axis source circle.

In the installed configuration, the propeller axis is displaced by an amount

D off the origin of the center of the microphone array. This makes the modal

signature of the direct sound radiated by the propeller hard to recognize in the

modal expansion of the total sound field. Indeed, the latter is performed taking510

the cylinder axis as origin, whereas the former makes sense with origin on the

propeller axis. Except for vanishing ratio D/λ, a direct propeller mode of order

n is interpreted by the array processing as a range of modes, in the reference

frame of the cylinder. This effect is assessed in the present section for an easier

interpretation of results.515

The free-field sound pressure at any point of the array circle of radius rx

centered on the cylinder axis, thus in absence of the latter, and for the mode n

of amplitude An, is expressed as an integral over the source circle, as

par(rx, θx) =
i k

4
An

∫ 2π

0

einϕ
H

(1)
1 (krϕ)

rϕ
[R0 cos ζ −R cos(ϕ+ ζ − ξ)] dϕ ,

(14)
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Figure 10: Measured modal structure of the free-field sound of the propeller at the BPF. High-

speed case. (a): propeller at the center of the microphone array; (b): off-centered propeller.

Measured values as gray bars and indicative prediction as empty red bars.

with

rϕ =
√

R2
0 +R2 − 2RR0 cos(ξ − ϕ) ,

if (ξ, R) denote the polar coordinates of the observer with respect to the center

of the source circle (see Fig. 9). The transposition in the cylinder reference

frame is ensured by the relations

R =
√
r2x +D2 − 2Drx cos θx , tan ξ =

rx sin θx
rx cos θx −D

.

For the considered mode n, the post-processing leads to the complex-valued

modal amplitudes520

pm =
1

2π

∫ 2π

0

par(rx, θx) e
−imθx dθx . (15)

The free-field noise of the model propeller has been also measured in the

experiment, after removing the cylinder, for two positions of the propeller axis:

one at the center of the array, and the other one at the location corresponding to

the maximum separation D = 0.168 of the installed configuration (see spectra

in Fig. 8). For this test, the propeller-and-hub element shown in Fig. 5-a has525
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Table 2: Expected BLH orders s and associated Bessel-function weighting factors and

spinning-mode orders n at the BPF. Effective values of the factor and expected significant s

orders bold-faced.

s -1 0 1 2 3 4 5 6

B JB−s(BM) neg. 4.6 10−3 0.065 0.62 2.87 -0.62 -0.065 -4.6 10−3

n 4 3 2 1 0 -1 -2 -3

been mounted alone, at the tip of a vertical bar, in order to avoid azimuthal

flow distortions. The modal spectra, as produced by the microphone-array

processing, are plotted as gray bars in Fig. 10. Subplots (a) and (b) refer to

a propeller center-point coinciding with the center of the array and displaced

by D = 0.168m from that center, respectively. In the first case, the mode530

m = n = B = 3 dominates the radiated field, with only a negligible contribution

of other modes. This rotor-locked mode is the signature of the combined steady-

loading noise and thickness noise. The result confirms that residual distortions

are negligible, as expected for an axisymmetric configuration. As the propeller

is moved away from the array center, the same processing generates a range of535

modes, amongst which the modes of orders (1,2,4,5), corresponding to 3±1 and,

less prominently, 3±2, dominate, whereas the mode 3 is strongly reduced. Bar-

graph predictions of this modal-scattering effect produced by Eqs. (14) and (15)

with an arbitrary amplitude are also plotted for indicative comparison. They

confirm the redistribution of the mode orders. In view of the overall qualitative540

agreement, the procedure can be used to identify the free-field signature of the

propeller in the modal expansions performed in the presence of the scattering

cylinder. Similar results, not shown, have been observed at the lower rotational

speed. More generally, the trend has been verified that, for the largest values of

D, the propeller mode n is mainly seen as the modes m = n− 1 and m = n+1.545

The radiation efficiency of steady-loading noise is a matter of blade number

and tangential Mach number M . In the propeller-disk plane and in the far field,

at the µth harmonic of the BPF, it is determined from the value µB JµB(µBM)
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Figure 11: Measured modal structure of the total field of the installed propeller at the BPF.

High-speed case, short distances D.

where B is the blade number. This value is about 4.6 10−3 in the present case

at the BPF (µ = 1) and about 4.46 10−5 at twice the BPF (µ = 2). Despite its550

low but not vanishing value, the factor explains why the mode n = B = 3 can

be detected in the free-field modal expansion at the BPF.

Results of the modal analysis for the installed configuration including the

propeller and the cylinder, at the higher rotational speed, are reported in

Figs. 11, 12 and 13, for the smallest, intermediate and largest axis-to-axis dis-555

tances D, respectively. In each figure, the same scale is used for the three plots.

For small values of D (Figs. 11-a to c), a strong emergence of the mode m = −1

is observed, the amplitude decreasing with increasing distance. This still holds

for intermediate distances, as seen for instance in Fig. 12-a. Modes of orders

between -3 and 0 are also found, though with much lower amplitudes. These560

negative orders are out of the range of expected BLH, as shortly discussed below

at the light of the values in Table 2. They are attributed to cylinder scattering.

In fact, the modal analysis of the total field for varying axis-to-axis distance

D is limited by the lack of information about actual values of the BLH. The

origin of the latter lies in any distortion of the mean flow through the propeller565
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Figure 12: Measured modal structure of the total field of the installed propeller at the BPF.

High-speed case, intermediate distances D.

Figure 13: Measured modal structure of the total field of the installed propeller at the BPF.

High-speed case, large distances D.
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disk (deviation from pure axisymmetry). Their amplitudes a priori vary with

D because the distortion is a matter of aerodynamic blockage by the cylinder.

The propeller also ingests a residual wake from the sliding rods shown in Fig. 5;

this contributes to the BLH. Furthermore, the amount of scattering differs for

different source-mode radii. Now the radial (spanwise) distribution of the forces570

is unknown, which prevents from producing a quantitative analysis. Yet qualita-

tive arguments are enough to confirm the amplification mechanism investigated

in this work. Firstly, the distortions due to the vicinity of the cylinder are

expected to generate low-order BLH, say typically corresponding to s between

−2 and +2 (bold-faced values in Table 2). Secondly, as shown by Eq. (1), the575

weighting factor B JB−s(BM) involved at the BPF is significant only for small

values of |B − s|, which leads to only retain the range of values also reported

bold-faced in the second line of Table 2. Only the overlapping bold-faced ranges

in the table are likely to produce a significant contribution. This suggests that,

irrespective of their unknown amplitudes, the BLH of orders s = 1, 2 dominate580

in the direct field of the installed propeller, in addition to the steady-loading

noise. The main effect of the off-origin positioning is to generate the modes

m = 0 and 2 for s = 1 and the modes m = 1 and 3 for s = 2 in the modal

expansion computed from the microphone array.

The results for the largest axis-to-axis distances, Fig. 13, seem contradictory.585

Indeed, the mode amplitudes increase significantly with increasing distance D,

with a dominant mode −1. The observed modes of orders 0,1,2, with moderate

amplitudes, are those expected from an azimuthal distortion. They are high-

lighted by the red boxes in Figs. 13-b and c. It is worth noting that the modes

3,4,5 grouped in the blue box in Fig. 13-c have the same amplitudes as in the590

free-field configuration reported in Fig. 10. This suggests that the rotor-locked

mode n = 3 in the reference frame of the propeller is still recognizable in the

modal expansion. But it is of secondary importance in the total sound field. It

is conjectured that the ’free-field’ modes 1 and 2 in Fig. 10-b are overwhelmed

by the same modes as generated by the additional distortion in the presence of595

the cylinder and sliding bars, in Fig. 13-c. Such a distortion could only be de-
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Figure 14: BPF tone level as a function of separation D, with 20-Hz bandwidth integration,

for the high-speed (◦) and low-speed (⋄) cases. D−4-law featured by the dashed line. (∗):

relative levels of the mode m = −1 from Figs. 11 and 12, shifted for comparison.

tected by advanced and non-intrusive optical techniques, well beyond the scope

of the present study.

5.4. Tonal-Noise Amplification

600

The amplification rate of the BPF harmonics by the asymptotic behavior of

the Green’s function is finally addressed in this section. The observed variations

of the tonal noise with the separation D are also compared with theoretical

predictions.

Figure 14 displays the BPF tone level, integrated in a 20-Hz bandwidth,605

as a function of the separation D, for the low and high rotational speeds. A

log-scale is used for D. Despite unexplained irregularities in the low-speed case

for small separations (diamond symbols, (⋄)), the same overall trend is found.

The BPF tone levels decrease at the same rate for both speeds, for small and

moderate separations D. The global difference of about 6 dB between low-speed610
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and high-speed data is expected from the scaling law of dipole sources with the

sixth power of flow speed in aeroacoustics [3]. Indeed, using the rotational speed

as reference, 60 log10(14800/11800) = 5.9. Then the sound slightly increases for

larger separations. The amplitudes of the mode m = −1 in relative decibels,

as deduced from Figs. 11 and 12, are also plotted as star symbols (∗), for the615

high-speed case. The values are shifted vertically to fit the measured tone levels

(symbols ◦) at the shortest separations. Both negative slopes are close to each

other, confirming that the tone level and its decrease are mostly determined by

the mode m = −1.

If it is assumed that blade-loading harmonics are only generated at a negligi-620

ble level as the propeller is moved very close to the cylinder, the modal structure

of the direct sound field of the propeller is dominated by the mode n = 3. The

amplitude of the associated scattered field is determined by the cylinder mode

m = −1, according to Eq. (8). A sound-pressure amplitude proportional to D−4

is expected. This asymptotic law is reported as the dashed line in Fig. 14. The625

actual rate of decrease is slightly slower, suggesting that modes of orders n ̸= 3

are also generated.

The main outcomes of the experiment are twofold. Firstly, the tonal noise

at the BPF combines the rotor-locked mode n = 3 and a couple of adjacent

modes. Secondly, these modes are dominantly scattered as the mode n = −1630

as the propeller-cylinder distance decreases, with a strong amplification. This

is expected from the present theoretical developments.

Finally, typical instantaneous pressure maps computed with the exact an-

alytical formulation are shown in Fig. 15, in order to illustrate the features of

the combined direct and scattered fields. These test cases reproduce configura-635

tions of the experiment, with the rotor-locked source-mode n = 3 as primary

sound. The characteristic attenuation distance, over which the direct field of

this mode decreases down to very low values, has the same order of magnitude

as the mode radius, as suggested by the size of the six spots on the maps, one

per half lobe. The separation of D = 168mm, Fig. 15-a, largely exceeds the640

attenuation distance of the mode. Therefore, the scattered field from the cylin-
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(a) (b)

Figure 15: Predicted instantaneous pressure maps of a circular array of phased dipoles in the

presence of a scattering cylinder, for the counterclockwise rotor-locked mode n = 3. Cases

of weak scattering, D = 168mm (a) and compact regime, D = 65mm (b), featuring the

formation of the mode m = −1. Parameters representative of the experiment. Source mode

featured as dashed circle, same arbitrary color scale on both plots. The arrows indicate the

directions of rotation of the direct mode n = 3 in subplot (a) and of the scattered mode

m = −1 in subplot (b).

der is relatively weak, because of the same amplitude as the local direct field at

the location of the cylinder surface. In contrast, the small separation of D =

65mm, Fig. 15-b, is substantially smaller than the attenuation distance. In this

case, the scattered field is of the same order of magnitude as the direct field645

close to its source. But because the generated mode m = −1 is now radiating

instead of evanescent, the scattered field is much larger than the direct field at

large distances. This example illustrates the amplification mechanism.

The three parameters involved in the diffraction mechanism are the distance

L between the cylinder surface and the source-mode center, and the two radii650

a and R0. The analytical model based on the exact Green’s function, Eq. (3)

allows to investigate extended ranges of these parameters, in order to identify

critical areas of amplification. Such a parametric study, covering configurations

39



representative of the experiment, is illustrated for the source-modes n = 1 and

n = 3 in Figs. 16-a and 16-b, respectively, with SPL maps. On each map, an655

arbitrary decibel scale is used, so that only the variations make sense. Indeed,

the source strengths are unknown and the information of interest is the effect

of the cylinder on the radiating properties of a mode. Because the mode n = 1

already radiates efficiently in free field, cylinder scattering only induces moder-

ate modifications on it. As a result, the map in Fig. 16-a exhibits variations of660

about 1 dB.
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Figure 16: Total-field SPL maps of individual source-modes in arbitrary decibel scale, as a

function of the distance L between cylinder edge and source-mode center and of the ratio a/R0.

kR0 = 0.44; modes n = 1 (a) and n = 3 (b). Parameters representative of the experiment.

In contrast, the mode n = 3 is evanescent in free field and experiences

strong amplification by asymptotic cylinder scattering. The map in Fig. 16-b

now exhibits large variations. The SPL increases as the source-mode to cylinder

distance L is reduced. Two other important conclusions can be drawn. Firstly,665

the SPL drops for a ≪ R0, which means that the amplification no longer op-

erates for vanishing cylinder size. Secondly, a maximum amplification regime

is found for a/R0 ≃ 1. These important features could be the basis for the

definition of guidelines when designing a global architecture.

6. Application to Hub Scattering670

The scattering effect of the hub or the center body of a propeller on the

emitted tonal noise has been pointed out in air by various authors [20, 21, 22, 23].
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The question also arises for the hub of marine propellers, in connection with the

possible amplification effect inherent to the compact regime. It is answered in

this section, with a straightforward application of the exact analytical model675

of sections 3 and 4, in the special case of coaxial cylinder and source-mode, as

depicted in Fig. 17. The generic configuration of Fig. 1 is simply reconsidered

by setting D = 0, so that the source-mode component of propeller tonal noise

is centered at the origin of the cylinder coordinates (rx, θx), with the condition

R0 > a. The same compactness conditions kR0 ≪ 1 and ka ≪ 1 are again as-680

sumed. The same exact analytical computations and source-mode discretization

procedure are applied.

(a) (b)

Figure 17: Coordinates and main notations for coaxial source-mode and scattering cylinder.

(a): three-dimensional propeller-and-hub configuration, (b): two-dimensional reduction, fea-

turing the source-mode as dotted-line circle. Note that D = 0 with respect to Fig. 2.

The effect of center-body scattering on the amplitude of the radiated field is

assessed by averaging the far-field sound pressure for all observation angles, and

by comparing it to the free-field radiation. The result is reported for various

mode orders in Fig. 18, where the Sound Pressure Level difference ∆SPL is

plotted as a function of the ratio a/R0, for a fixed value of ka. The radiated

sound is found to increase as the sources get closer to the cylinder surface, for the

same assumed dipole strength. For any mode order, the sound increase reaches
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Figure 18: Averaged far-field Sound Pressure Level radiated by various source-mode orders n

in the presence of a hub, as a function of a/R0. ka = 0.10.

+6dB as the source-mode radius approaches the hub radius, a/R0 ∼ 1. This

result is intuitively expected by similarity with the image principle, according

to which sources approaching a rigid plane have their radiated sound pressure

doubled. It is also recovered by an asymptotic analysis of the Green’s function,

considering D = 0 with the following set of conditions:

krx ≫ 1, ka ≪ 1, kR0 ≪ 1, aR0 ∼ 1 .

Following the same procedure as in section 4, the asymptotic derivations, not

further detailed, are made substantially simpler because the sources are cen-

tered, leading to ry = R0 and θy = ϕ. The point dipole of angular coordinate

ϕ along the source circle is the same for radial and tangential forces, and it is

expressed as FR
s , FT

s ∝ einϕ. Finally, the leading order of the total field is

obtained as

p1as(rx, θx) = 2 p0as(rx, θx) ,

which is consistent with the exact analytical model. This maximum amount
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of sound-pressure increase remains well below the amplification evidenced in

previous sections for off-axis source-modes. In that sense, hub scattering is free685

of true amplification, which can be interpreted as follows. The amplification

by compact Green’s function behavior is typical of higher-order source-modes.

Because the latter are compact distributions of dipoles with zero instantaneous

balance, they have at most a quadrupole-like efficiency in free field, by virtue

of partial cancellation. Any off-centered scattering body in compact vicinity of690

a source-mode generates very different elementary scattered fields for the con-

stitutive point dipoles. This imbalance makes the resulting partial cancellation

much less pronounced, thus the radiation much more effective: in fact, the mode

radiates with the basic dipole-like efficiency. The situation is different for an

axisymmetric center body because the amount of scattering is the same for all695

constitutive elements of a source-mode, leading to zero imbalance. As a re-

sult, the at-most quadrupole-like behavior is preserved, and the total-reflection

increase of 6 dB is the maximum expected effect.

7. Conclusion

A simple, two-dimensional analytical formulation has been implemented to700

highlight fundamental aspects, that are expected to dominate the tonal noise

radiated by a marine propeller installed close to a scattering hull. For mathemat-

ical tractability, a rigid cylinder has been selected as generic hull geometry. The

formulation is based on the Green’s function of the cylinder for the Helmholtz

equation, on the one hand, and on the notion of source-modes, on the other705

hand. The source-modes are circular distributions of phased sources, repro-

ducing the free-field, or direct, radiation modes of rotor tonal noise. They are

defined in the reference frame of the propeller by their integer orders, equal to

their numbers of angular periods. In a real configuration, the direct modes are a

consequence of the operation of the propeller in the mean-flow distortion around710

the hull. The scattered field can also described in term of modes, defined in the

reference frame of the cylinder. In view of the extremely low Mach numbers in
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marine applications, the mean relative axial fluid motion is neglected, in both

the free-field and installed radiation models. The effect of the flow distortion is

concentrated in the definition of the direct modes. Furthermore, because of the715

very low Helmholtz numbers based on the size of a domain encompassing the

source-modes and the scattering cylinder cross-section, an asymptotic regime

of diffraction is encountered. This is why an asymptotic formulation has been

compared to the exact calculations to interpret the results. The analytical ap-

proach provides a detailed insight into the physics of sound scattering, mode by720

mode. Quite generally, direct modes of higher orders (larger than 1) are found

to only generate evanescent waves in free field, whereas they experience a very

strong amplification in close vicinity of the cylinder. This amplification results

from the interaction of the near field of the sources with the cylinder. The most

spectacular result is that it generates the scattered radiating mode or order 1,725

whatever the direct mode order is, with inversion of the phase rotation. In con-

trast, the direct mode of order 1 is already very efficient in free field, because of

its compactness, and only experiences a moderate amount of diffraction. The

symmetric mode of order 0 radiates negligible sound, both in free-field and in

the presence of the cylinder, according to the two-dimensional model.730

A small-scale experiment has also been carried out in air, only based on

acoustic measurements, with Helmholtz numbers representative of marine ap-

plications. For this, a three-bladed model propeller and a rigid cylinder of char-

acteristic diameters of about 60mm were selected, the blade passing frequency

being around 750Hz. The tests were performed in an anechoic chamber with735

variable relative positions, resorting to a circular array of far-field microphones

to get access to the direct and scattered angular modes. The experiment clearly

confirmed the amplification mechanism and the emergence of the contra-rotating

mode of order 1.

The main outcomes suggest that the short distance of marine propellers to740

the hull of a ship could result in a dramatic acoustic installation effect, that

cannot be neglected and should be taken into account at the early stage of

a global design approach. The features and amplitude of the scattered field
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are found very sensitive to all involved parameters, such as direct mode orders,

relative propeller-cylinder distance and so on. Up to that point, the simple tools745

proposed in this work are well suited to investigate primary effects in a very fast

way. The theoretical study will be extended to more realistic configurations in a

future work, by resorting to a numerical determination of the Green’s function

tailored to arbitrary hull geometry as proposed by Chaillat et al. [24].
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