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SOLID LOCALLY ANALYTIC REPRESENTATIONS

JOAQUÍN RODRIGUES JACINTO AND JUAN ESTEBAN RODRÍGUEZ CAMARGO

Abstract. We develop the p-adic representation theory of p-adic Lie
groups on solid vector spaces over a complete non-archimedean exten-
sion of Qp. More precisely, we define and study categories of solid, solid
locally analytic and solid smooth representations. We show that the
category of solid locally analytic representations of a compact p-adic Lie
group is equivalent to that of quasi-coherent modules over its algebra of
locally analytic distributions, generalizing a classical result of Schneider
and Teitelbaum. For arbitrary G, we prove an equivalence between solid
locally analytic representations and quasi-coherent sheaves over certain
locally analytic classifying stack over G. We also extend our previous
cohomological comparison results from the case of a compact group de-
fined over Qp to the case of an arbitrary group, generalizing results of
Lazard and Casselman-Wigner. Finally, we study an application to the
locally analytic p-adic Langlands correspondence for GL1.
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1. Introduction

Let p be a prime number, G be a p-adic Lie group defined over a finite
extension L of Qp and let K = (K,K+) be a complete non-archimedean
extension of L. In this article we give new foundations of the theory of lo-
cally analytic representations of G on K-solid vector spaces through the use
of condensed mathematics, generalizing our previous work [RJRC21], where
the case G compact and L = Qp was studied. We also obtain new results in
the theory of locally analytic representations, such as new comparison the-
orems of group cohomologies, and a generalization of a classical equivalence
of Schneider and Teitelbaum. As our main application, we state and proof
the locally analytic p-adic categorical Langlands correspondence for GL1.

1.1. Motivation. The classical theory of locally analytic representations
was developed by Schneider and Teitelbaum ([ST03], [ST02]) and has had
crucial applications, e.g., in the p-adic Langlands program [Col10] and in the
study of families of p-adic modular forms [Eme06]. Recently, in the works
[Pan22a, Pan22b], the theory of locally analytic representations has been
applied to relate p-adic Hodge theory, p-adic modular forms, and the theory
of p-adic differential equations over rigid spaces. The first of these works
has been generalized in [RC22, RC23] to arbitrary Shimura varieties, where
our theory of solid locally analytic representations plays a key role. On the
other hand, the current conjectural statements of the locally analytic cate-
gorical p-adic Langlands correspondence [EGH23] require the construction of
certain derived categories of locally analytic representations. In particular,
these works show the need of better categorical foundations of the subject.

Our first goal is to define and study enhancements of classical represen-
tation categories attached to p-adic Lie groups. There are at least three of
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them, namely continuous, smooth and locally analytic representations. Us-
ing the formalism of condensed mathematics, we construct and study the (∞-
)categories of solid, solid smooth and solid locally analytic representations
of G. We denote them, respectively, by RepK■

(G), RepsmK■
(G), ReplaK■

(G).
These categories arise as the derived category of a corresponding abelian
category of representations. Furthermore, these abelian categories contain
fully faithfully all the classical categories of continuous, smooth and locally
analytic representations on complete compactly generated locally convex K-
vector spaces. One of the main advantages of our approach is that many of
the difficulties appearing in fundamental constructions in classical represen-
tation theory, such as Hochschild-Serre, Shapiros’s lemma, duality, etc., are
easily overcome with the use of homological algebra when one works on a
solid framework.

We now explain the main features of the theory. The first result is an
equivalence, for G a compact group, between the (derived) category of solid
locally analytic representations of G and the category of solid quasi-coherent
sheaves over certain non-commutative adic Stein space associated to G. This
can be seen as a generalization of a classical anti-equivalence of Schneider
and Teitelbaum [ST03], which can be recovered from our equivalence when
restricting to the (abelian) subcategory of admissible representations after
applying a duality functor. This result can also be seen as a step towards ge-
ometrizing the category of solid locally analytic representations. Our second
result is an extension of the cohomological comparison theorems for solid rep-
resentations from the case where G is compact and defined over Qp obtained
in [RJRC21] to the general case, extending also the non compact version
[CW74] of Lazard’s isomorphisms [Laz65] from the case of finite dimensional
representations to arbitrary solid representations. The main novelty of our
approach to the comparison results is that we deduce them in a completely
formal way from adjunctions between certain functors. Finally, as an appli-
cation, we state and prove the locally analytic categorical p-adic Langlands
correspondence for GL1 confirming the expectations of [EGH23, §7.1].

1.2. Main results. Let us now explain our results in more detail. Let G be a
p-adic Lie group over L. Let K■[G] be the Iwasawa algebra of G over K■, i.e.
the free K■-vector space generated by G. If K = (K,OK) is a finite extension
of Qp, then K■[G] is the classical Iwasawa algebra of G, i.e. the dual of
the space C(G,K) of continuous functions on G. Let Dla(G,K) denote the
locally analytic distribution algebra of G, i.e. the dual of the space C la(G,K)
of locally analytic functions on G. We denote by ModK■

(Dla(G,K)) and
ModK■

(K■[G]) the (∞-)categories of Dla(G,K) and K■[G]-modules on K■-
vector spaces, respectively. The following result resumes our construction of
the category of solid locally analytic representations and its main properties
(cf. Propositions 3.2.3, 3.2.5 and 3.2.6).
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Theorem A. There exists a full subcategory ReplaK■
(G) ⊂ ModK■

(Dla(G,K))
of solid locally analytic representations of G on K■-vector spaces stable under
tensor product and colimits, where the inclusion has a right adjoint given by
(derived) locally analytic vectors V 7→ V Rla. Moreover, the following prop-
erties are satisfied.

(1) An object V ∈ ModK■
(Dla(G,K)) is locally analytic if and only if

H i(V ) is (non-derived) locally analytic for every i ∈ Z. In particular,
ReplaK■

(G) has a natural t-structure.
(2) ReplaK■

(G) is the derived category of its heart.
(3) The functor of locally analytic vectors satisfies the projection formula,

namely, for any V,W ∈ ModK■
(Dla(G,K)), one has (V Rla ⊗L

K■

W )Rla = V Rla ⊗L
K■

WRla.

Remark 1.2.1.

(1) Let V be a locally L-analytic representation of G on an LB space
in the classical sense. Then point (1) implies that V is an object
in ModK■

(Dla(G,K)) that is derived locally analytic. In particu-
lar, classical locally analytic representation theory lives naturally in
ReplaK■

(G).
(2) If G is a p-adic Lie group over Qp, then Dla(G,K) is an idempotent

algebra over the Iwasawa algebra K■[G], namely Dla(G,K) ⊗L
K■[G]

Dla(G,K) = Dla(G,K). This implies that the category ofDla(G,K)-
modules on K■-vector spaces embeds fully faithfully in the category
of K■[G]-modules on K■-vector spaces. In particular, ReplaK■

(G) is
a full subcategory of ModK■

(K■[G]) and one can also define the lo-
cally analytic vectors of K■[G]-modules as the right adjoint of this
inclusion. For Dla(G,K)-modules, this coincides with the construc-
tion of Theorem A. Nevertheless, when the group is not defined over
Qp, both constructions of locally analytic vectors differ, c.f. Remark
3.1.6 for a detailed discussion.

(3) We also give an analogue of Theorem A for solid smooth representa-
tions, cf. §5.2.

(4) As a corollary of Theorem A, we obtain a description of ReplaK■
(G)

and RepsmK■
(G) as quasi-coherent sheaves on the classifying stack

[∗/G] of G, where G is endowed with the sheaf of locally analytic
or smooth functions, cf. Theorem 4.3.3 and Proposition 5.4.2.

If G is compact the distribution algebra Dla(G,K) is a Fréchet-Stein alge-
bra in the sense of [ST03], and the category of its coadmissible modules can
be seen as the category of coherent sheaves over certain (non-commutative)
Stein space associated to Dla(G,K). More precisely, for h ∈ [0,∞) a param-
eter depending on some choices, there is a limit sequence of h-analytic distri-
bution algebras {Dh(G,K)}h≥0 such that Dla(G,K) = lim←−h→∞D

h(G,K).
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For example, if G = Zp is the additive group of p-adic integers, by the Am-
ice transform Dla(Zp,K) is isomorphic to the global sections of an open unit
disc D̊K over K, and the algebras Dh(Zp,K) are overconvergent algebras

on closed discs of radius p
− p−h

p−1 . In this way we can think of the sequence
{Dh(G,K)}h≥0 as a family of dagger affinoid algebras defining closed sub-
spaces of a non-commutative Stein space whose global functions are equal
to Dla(G,K). We define the category of solid quasi-coherent Dla(G,K)-
modules to be the limit ∞-category

ModqcK■
(Dla(G,K)) = lim←−

h→∞
ModK■

(Dh(G,K))

where the transition maps are given by the K-solid base changeDh(G,K)⊗L
Dh′ (G,K)

− for h′ > h. Concretely, an object in ModqcK■
(Dla(G,K)) is a sequence of

objects (Fh)h≥0 with Fh ∈ ModK■
(Dh(G,K)), together with natural equiva-

lencesDh(G,K)⊗L
Dh′ (G,K)

Fh′
∼−→ Fh for h′ ≥ h, subject to higher coherences.

In the case where G = Zp, the category ModqcK■
(Dla(G,K)) is nothing but

that of solid quasi-coherent sheaves on D̊K . Our second main result is the
following.

Theorem B (Theorem 4.1.7). Let G be a compact p-adic Lie group defined
over L. Then there is an equivalence of (stable ∞-)categories

ModqcK■
(Dla(G,K))

∼−→ ReplaK■
(G)

(Fh)h 7→ j!F := (lim←−
h

Fh)
Rla.

Remark 1.2.2.
(1) The functor j! giving the equivalence of categories can be thought

of as taking cohomology with compact support of quasi-coherent
sheaves. Indeed, if G = Zp the functor j! is the cohomology with
compact supports on D̊K of solid quasi-coherent sheaves as defined
in [CS22, Lecture XII] for complex spaces.

(2) The functor j! of Theorem B does not respect the natural t-structures
on both sides and hence does not arise from a functor defined at the
level of abelian categories. Indeed, the module Dla(G,K) defines a
quasi-coherent sheaf which is given by F = (Dh(G,K))h≥0 and one
has that j!F = (Dla(G,K))Rla = C la(G,K) ⊗ χ[−d] where d is the
dimension of the group G and χ = det(g)−1 denotes the determi-
nant of the dual adjoint representation of G on its Lie algebra g, cf.
Corollary 3.1.16.

(3) We also prove an analogous version of Theorem B for solid smooth
representations (Proposition 5.2.2), where the category ModqcK■

(Dsm(G,K))
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is defined as lim←−H⊂G
ModK■

(K[G/H]) for H running through all the
open compact subgroups of G.

From Theorem B, we can recover Schneider-Teitelbaum’s anti-equivalence
as follows.

Proposition C (Proposition 4.2.7). There is a locally analytic contragradi-
ent functor on ReplaK■

(G) given by

V 7→ V ∨,Rla = RHomK(V,K)Rla,

and a duality functor D on ModqcK■
(Dla(G,K)), such that for F ∈ ModqcK■

(Dla(G,K))

one has
j!(D(F)) = (j!F)∨,Rla.

The functor F 7→ j!D(W ) = (j!F)∨,Rla restricts to Schneider and Teit-
elbaum’s classical anti-equivalence between coadmissible Dla(G,K)-modules
and admissible locally analytic representations of G.

Remark 1.2.3.
(1) In the bigger category ModK■

(Dla(G,K)) of all solid Dla(G,K)-
modules, the duality functor is given by the formula

D(V ) = RHomDla(G,K)(V,Dla(G,K)⊗ χ−1[d]),

where χ and d are as before. Note that this functor coincides (up to
a twist and a shift in the cohomological degree) with the one defined
in [ST03] when G is compact (cf. Corollary 4.2.9 for a discussion of
the duality functor in the non-compact case). We refer the reader to
Definition 4.1.11 for an explicit definition of D.

(2) Even though the result is stated for a compact group G, one triv-
ially recovers the anti-equivalence of Schneider-Teiltelbaum for non-
compact groups, since the classical notions of admissible and coad-
missble are local in G, i.e. they only depend on the restriction to an
open compact subgroup.

(3) Along the way, the above proposition also answers a question raised
in [ST05, p. 26], concerning the extension of the smooth contragra-
dient functor from the category of admissible smooth representations
to the cateory of admissible locally analytic representations. We refer
the reader to Proposition 5.3.1 for the precise answer to Schneider
and Teitelbaum’s question.

We now explain our cohomology comparison results. There are natural
functors

Mod(K■)→ RepsmK■
(G)

F1−→ ReplaK■
(GL)

F2−→ ReplaK■
(GQp)

F3−→ RepK■
(G),

where we denote by GQp the restriction of scalars of G from L to Qp, and
GL = G to stress that the group is defined over L in order to avoid confusion.
All these functors commute with colimits and hence possess right adjoints.
The main idea for our comparison results is to reinterpret the cohomological
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comparison results as formal identities coming from adjunctions and hence
reduce them to calculating the right adjoints of the above arrows. Classically,
there are many possible cohomology theories associated to G that consider
different possible structures of G, e.g., continuous, Qp and L-locally analytic,
smooth and Lie algebra cohomology.

Definition 1.2.4. We define
• Solid group cohomology RΓ(G,−) : RepK■

(G)→ Mod(K■),
• (Qp-)Locally analytic group cohomology RΓla(GQp ,−) : ReplaK■

(GQp)→
Mod(K■),
• (L-)Locally analytic group cohomology RΓla(GL,−) : ReplaK■

(GL)→
Mod(K■),
• Smooth group cohomology RΓsm(G,−) : RepsmK■

(G)→ Mod(K■)

• Lie algebra cohomology RΓ(g,−) : ModK■
(U(g))→ Mod(K■),

as the right adjoint of the embedding of Mod(K■) in the corresponding
category.

One can check (Proposition 6.3.3) that these definitions coincide with the
usual definition of cohomology using (continuous, locally analytic, etc...)
cochains. Our main key calculation is to show (Proposition 6.2.1) that

(1) The right adjoint of F1 is given by Lie algebra cohomology RΓ(gL,−) :=
RHomU(gL)

(K,−).
(2) The right adjoint of F2 is given by RΓ(k,−) := RHomU(k)(K,−),

where k = ker(gQp ⊗Qp L→ gL).
(3) The right adjoint of F3 is given by the functor of locally analytic

vectors (−)Rla.
Moreover, the right adjoint to the composition of F1 ◦ . . . ◦ Fj (j = 1, 2, 3)
can be interpreted as taking smooth vectors in the corresponding category.
Analogously, the right adjoint of F2 ◦ . . . Fj (j = 2, 3) can be interpreted as
taking locally L-analytic vectors, and so on. Summarizing this, we obtain
our third main result.

Theorem D (Theorem 6.3.4). We have the following commutative diagram:

ReplaK■
(GQp

) ReplaK■
(GL)

RepK■
(G) RepsmK■

(G)

Mod(K■)

RΓ(k,−)

RΓla(GQp ,−)

RΓ(g,−)

RΓla(GL,−)

(−)Rla

RΓ(G,−) RΓsm(G,−)

Moreover, since the embedding ReplaK■
(GQp) in RepK■

(G) is fully faithful,
we have RΓ(G,V ) = RΓ(G,V Rla) for V ∈ RepK■

(G). In particular, if G is
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a p-adic Lie group over Qp, we have

RΓ(G,V ) = RΓ(G,V Rla) = RΓla(G,V Rla) = RΓsm(G,RΓ(g, V Rla)).

Remark 1.2.5.
(1) When G is compact and V is a finite dimensional representation,

the last two equivalences are a classical result of Lazard [Laz65].
When G is given by the Qp-points of an algebraic group and V is
finite dimensional, Casselman-Wigner generalized Lazard’s result in
[CW74]. For G compact and any solid V , this result was obtained
by the authors in [RJRC21].

(2) When G is a p-adic reductive group over Qp and V is an admis-
sible Banach representation of G, then V Rla = V la and the iso-
morphism RΓ(G,V ) = RΓ(G,V la) was recently and independently
shown by Fust in [Fus23] by reducing the problem to the compact
case [RJRC21, Theorem 5.3] via a Bruhat-Tits building argument.

We conclude this introduction with an application of Theorem B to the p-
adic Langlands correspondence for GL1. We heartily thank Eugen Hellman
for pointing out this application to us. We let X1 be the classifying stack
of rank 1 (φ,Γ)-modules over the Robba ring on affinoid Tate algebras over
K = (K,K+), cf. [EGH23, §5]. Since every such (φ,Γ)-module is given, up
to a twist by a line bundle on the base, by a continuous (and hence locally
analytic) character on Q×

p = Z×
p ×pZ, this stack is represented (cf. [EGH23,

§7.1]) by the quotient
[(W̃ ×Gan

m )/Gan
m ]

with trivial action of Gan
m , where W̃ is the rigid analytic weight space of

O×
L whose points on an affinoid ring A are given by continuous characters

Hom(O×
L , A), and where Gan

m denotes the rigid analytic multiplicative group.
Let ModqcK■

(X1) be the category of solid quasi-coherent sheaves on X1. In
[EGH23], the authors conjecture that the natural functor

LLla
p : ReplaK■

(L×
Qp

)→ Modqc■ (X1)

given by LLla
p (V ) = OX1 ⊗L

Dla(L×
Qp

,K)
V is fully faithful when restricted to a

suitable category of “tempered” (or finite slope) locally analytic representa-
tions (cf. [EGH23, Equation (7.1.3)]). Here L×

Qp
is the restriction of scalars

to Qp of the p-adic Lie group L×. On the other hand, for the functor LLla
p to

be fully faithful without restricting to a smaller subcategory of ReplaK■
(L×

Qp
),

one can also modify the stack X1, namely, we consider

Xmod
1 := [W̃ ×Galg

m /Galg
m ]

where Galg
m is the analytic space, in the sense of [CS20], attached to the ring

(K[T±1],K+)■ = K■ ⊗Z Z[T±1].
In order to describe the category of solid quasi-coherent sheaves on the

stacks Xmod
1 and X1 in terms of representation theory, we need to introduce
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some notation. We let O(Gan
m ) = lim←−n→∞K⟨pnT, p

n

T ⟩ and ℓtemp
Z,K = O(Gan

m )∨

be the Hopf algebras of functions of the group Gan
m and its dual. We let

Ztemp denote the analytic space defined by the algebra ℓtemp
Z,K . We also let

Ctemp(L×
Qp

,K) = O(W̃ ×Gan
m )∨ be the Hopf algebra of tempered locally an-

alytic functions on L×. Finally, we let Reptemp
K■

(L×
Qp

) := Modqc■ ([∗/L×,temp
Qp

])

be the category of tempered (locally analytic) representations of L×
Qp

.

Theorem E (Theorem 4.4.4). There are natural equivalences of stable ∞-
categories

ModqcK■
([Z/L×,la

Qp
])

∼−→ ModqcK■
(Xmod

1 ), ModqcK■
([Ztemp/L×,temp

Qp
])

∼−→ ModqcK■
(X1)

Furthermore, the functor LLla
p induces equivalences

ReplaK■
(L×

Qp
)

∼−→ ModqcK■
(W̃ ×Galg

m ), Reptemp
K■

(L×
Qp

)
∼−→ ModqcK■

(W̃ ×Gan
m ).
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Notations and auxiliary results. Throughout this paper we use the lan-
guage of ∞-categories of [Lur09], and the techniques of higher algebra from
[Lur17]. We use Clausen and Scholze condensed approach to analytic geom-
etry as presented in the lecture notes [CS19, CS20, CS22]. We refer the work
of Mann [Man22b] for complete and rigorous proofs of foundational results
on the subject, particularly those regarding the set theoretical subtleties in
condensed mathematics. Nevertheless, throughout this paper we will fix an
uncountable solid cutoff cardinal κ as in [Man22b, Definition 2.9.11] and
work with κ-small condensed sets, it will be clear from the definitions that
the functors and adjunctions constructed below are independent of κ, and
therefore that they extend naturally to the full condensed categories.

For C an∞-category with all small limits and colimits, we let Cond(C) de-
note the ∞-category of condensed C-objects, see [Man22b, Definition 2.1.1].
Given X ∈ Cond(C) and S a profinite set, we let Cont(S,X) or C(S,X) be
the object in Cond(C) whose values at S′ ∈ Extdis are X(S × S′). This is
still a condensed object by [Man22b, Corollary 2.1.10] under a mild condi-
tion on C (eg. if it is presentable). In particular, we shall write CondSet,
CondAb and CondRing for the categories of condensed sets, abelian groups
and commutative rings, respectively.
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All the analytic rings considered in this document are assume to be ani-
mated and complete in the sense of [Man22b, Definition 2.3.10], unless oth-
erwise specified. Given A = (A,M) a commutative animated analytic ring
we shall write ModA for the symmetric monoidal ∞-category of analytic
A-modules and Mod♡A for the heart of its natural t-structure. Given D an
E1-algebra in ModA, we let LModA(D) and RModA(D) be the ∞-category
of left and right D-modules in ModA, if it is clear from the context we will
simply write ModA(D) = LModA(D). We say that an analytic ring A is
static if for all extremally disconnected set S, the object A[S] is concen-
trated in cohomological degree 0. We let − ⊗L

A − denoted the complete
tensor product of ModA, and RHomA(−,−) the internal Hom space, right
adjoint to the tensor. By Warning 7.6 of [CS19], the tensor −⊗L −R is the
left derived functor of the tensor −⊗R − if A[S × T ] sits in degree 0 for all
extremally disconnected sets. The analytic rings we will consider live over
the solid base Z■, so this property is always true for them.

Recall that a map f : N → M of objects in ModA is called trace
class ([CS22, Definition 8.1]) if there is a map A → N∨ ⊗M with N∨ =
RHomA(N,A), such that f factors as

N → N ⊗L
A N∨ ⊗A M →M.

An object N ∈ ModA is called nuclear ([CS20, Definition 13.10]) if for all
extremally disconnected set S, the natural map

A[S]∨ ⊗L M(∗)→M(S)

is an isomorphism. By [CS20, Proposition 13.14], if N ∈ ModA is nuclear,
then for all S extremally disconnected set and any M ∈ ModA, the natural
map

(RHomA(A[S],M)⊗L
A N)(∗)→ (M ⊗L

A N)(S)

is an isomorphism.
We will let K = (K,K+) denote a complete non-archimedean extension

of Qp, and let K■ = (K,K+)■ be the analytic ring attached to the Huber
pair as in [And21, §3.3]. Given an algebra D in Mod(K■), we endow D with
the induced analytic ring structure from K■, and let −⊗L

D − (or sometimes
− ⊗L

D,■ −) denote the relative tensor product of D-modules in K■-vector
spaces.

Finally, we address the following proposition that will be used in different
parts of the paper.

Proposition 1.2.6. Let R be a static commutative analytic ring such that
−⊗L

R− is the left derived functor of −⊗R−. Let A be a static R-Hopf algebra
over R with the induced analytic structure. Suppose that A is co-commutative
and that its antipode is an anti-involution, i.e. s2 = id. Suppose that the self
tensor products of analytic rings A⊗Rn are static for all n ∈ N. Then the
following assertions hold:
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(1) The tensor product − ⊗L
R − defines a symmetric monoidal struc-

ture on LModR(A) obtained by restriction of scalars along the co-
multiplication ∆ : A → A⊗R A.

(2) (⊗-RHom adjunction) The derived internal Hom over R induces a
natural functor

RHomR(−,−)⋆1,3 : LModR(A)× LModR(A)→ LModR(A)
given by precomposing the natural Aop ⊗R A-module structure with
the map A ∆−→ A ⊗R A

s⊗1−−→ Aop ⊗R A, where s : A ∼−→ Aop is the
antipode. Furthermore, RHomR(−,−)⋆1,3 is a right adjoint of the
internal tensor product −⊗L

R −.
(3) (Twisting/untwisting) There are natural equivalences of functors

Ψ : A⊗L
R −

∼−→ A⊗L
R (−)0

Φ : RHomR(A,−)⋆1,3
∼−→ RHomR(A,−)⋆1 := RHomR(A, (−)0),

where (−)0 is the trivial A-module structure obtained by restricting
scalars along the composition A ν−→ R µ−→ A.

(4) Let ι : LModR(A)
∼−→ RModR(A) be the precomposition with the

antipode of A. We have natural equivalences of functors

ι(N)⊗L
A M = R⊗L

A (N ⊗L
R M)

RHomA(N,M) = RHomA(R, RHomR(N,M)⋆1,3)

for any N,M ∈ LModR(A), where R is endowed with the trivial
A-structure given by the counit.

(5) Let B be a static R-Hopf algebra satisfying the same hypothesis as
A and let A → B be a morphism of R-Hopf algebras. Then B is an
idempotent A-algebra if and only if B ⊗L

AR = R where R is seen as
an A or B-module via the co-unit.

Proof. (1) First, let C = ModR be the symmetric monoidal ∞-category
of R-modules, and let Cop be its opposite category. Then, A defines a
commutative Hopf algebra in the symmetric monoidal category Cop.
Therefore, the category CoModA(Cop) = lim←−[n]∈∆A

⊗Rn-Mod(Cop)
of (left) comodules of A over Cop is symmetric monoidal, with sym-
metric monoidal structure given by − ⊗L

R − on underlying objects.
Part (1) follows since LModR(A) = (CoModA(Cop))op, and since the
opposite of a symmetric monoidal category is symmetric monoidal.

(2) Given N,M ∈ LModR(A), we see RHomR(M,N) as an A-module
via the forgetful functor through the algebra homomorphism A

∆−→
A ⊗R A

s⊗1−−→ Aop ⊗R A. To prove the ⊗-RHom adjunction, since
both functors arise as derived functors of suitable abelian categories
with enough projectives and injectives (after fixing the cardinal κ), it
suffices to know the non-derived ⊗-Hom adjunction of the underlying
abelian categories, which is [Sch92, Example 1.2.2 (3)].
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(3) Let C = ModR. We have an equivalence of symmetric monoidal
categories ModR(A) = CoModA(Cop)op. Let f∗ : CoModA(Cop) →
Cop be the forgetful functor taking the underlying object in Cop, and
let f∗ be its right adjoint. In the opposite category f∗,op is the
forgetful from A to R-modules, and f∗ is its left adjoint fop

∗ = A⊗L
R

−. The functor f∗ is symmetric monoidal, we then have a natural
transformation

f∗R⊗M → f∗f
∗M

for M ∈ CoMod(Cop). In the opposite category this translates to a
natural transformation

A⊗R M0 → A⊗L
R M.

We claim that it is an isomorphism. By writing M as filtered colimits
of projective generators, and since A[S] = A⊗RR[S], one is reduced
to the case when M = A0. Following the construction, the map of
A-modules A⊗R A0 → A⊗R A is adjoint to the map

A0
1⊗id−−−→ A⊗R A.

An inverse of this map can be given explicitly by the composite

A⊗R A
∆⊗id−−−→ A⊗R A⊗R A

id⊗s⊗id−−−−−→ A⊗R A⊗R A
id⊗∇−−−→ A⊗R A0,

where m : A ⊗R A → A is the multiplication map. Finally, the
untwisting map Φ for the internal Hom follows from adjunction and
the untwisting map Ψ.

(4) The natural transformation for the tensor product is a consequence
of the following natural equivalences for N,M, Y ∈ ModR(A).

RHomR(R⊗L
A (N ⊗R M), Y ) = RHomA(N ⊗R M,Y )

= RHomA(M,RHomR(N,Y )⋆1,3)

= RHomA(M,RHomR(ι(N), Y ))

= RHomR(ι(N)⊗L
A M,Y ).

The natural equivalence for the internal Hom’s follows by the ad-
junction of point (2).

(5) Suppose that B is an idempotent A-algebra. Then we have that

B ⊗L
A R = B ⊗A (B ⊗L

B R) = (B ⊗L
A B)⊗L

B R = B ⊗L
B R = R.

Conversely, suppose that B⊗L
AR = R, then by (the version for right

modules of) part (4) we have

B ⊗L
A B = (B ⊗R ι(B))⊗L

A R
= (B0 ⊗R ι(B))⊗L

A R
= B0 ⊗R (B ⊗L

A R)
= B,
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in the third equality we used the antipode s : Bop ∼−→ B to identify
the right and left actions of A on B. An explicit diagram chasing
shows that the resulting map B⊗L

AB → B is the multiplication map,
proving that B is an idempotent A-algebra.

□

2. Distribution algebras

We record in this chapter basic properties of the several spaces of functions
and algebras of distributions we will be working throughout the text. Most
of the results are probably well known but we give statements and proofs
for the sake of notation and completeness. Let L be a finite extension of Qp

and ϖ ∈ L a pseudo-uniformizer. Let G be a p-adic Lie group over L. We
normalize the p-adic absolute value of L such that |p| = p−1.

2.1. Locally analytic distribution algebras. Let G be a compact p-adic
Lie group of dimension d over L. Let g denote the Lie algebra of G, and let
L ⊂ g be an OL-lattice such that [L,L] ⊂ pL. Let L■[G] be the Iwasawa
algebra of G, i.e., L■[G] = (lim←−H⊂G

OL[G/H])[1p ] where H runs over all the
compact open subgroups. As it is explained in [Eme17, §5.2], the Lie algebra
L can be integrated to an analytic group GL over L whose underlying adic
space can be identified with a polydisc of dimension d. More precisely, let
X1, . . . ,Xd be an OL-basis of L, then the map

(T1, . . . , Td) 7→ exp(T1X1) . . . exp(TdXd)

induces an isomorphism of adic spaces between the polydisc Dd
L = Spa(L⟨T ⟩,OL⟨T ⟩)

and GL. After shrinking L if necessary we can assume that GL(L) ⊂ G is
a normal compact open subgroup which is moreover a uniform pro-p-group.
In the following, we will always assume that L is small enough such that this
holds.

The previous construction can be slightly generalized as follows. Let L
be an algebraic closure of L, and let L ⊂ gL be a free OL-lattice such that
[L,L] ⊂ pL. There exists a finite extension F of L such that L is defined
over F , one can define an affinoid group GL,F over F by integrating L.
Furthermore, suppose that the action of GalL leaves L stable, then GL,F can
be obtained as the base change from L of an affinoid group that we denote
as GL. A locally free lattice L ⊂ gL is said good if it is GalL-stable and
[L,L] ⊂ pL, if L is defined over F we let LF denote the GalF -invariants of
L.

Example 2.1.1. Let us fix a good OL-lattice L0 ⊂ g with group G0. For
h > 0 a rational, the lattice phL0 over gL is good, and it defines an affinoid
subgroup Gh ⊂ G0 which is nothing but the polydisc of radius p−h:

Gh = G0

( T
ph

)
.
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Given a good lattice L we can also define analytic groups which are Stein
spaces, namely, we let G̊L =

⋃
h>0GphL. If L is already defined over L then

G̊L is an open polydisc.
Finally, we can construct affinoid and Stein group neighbourhoods of G

by taking finitely many translates of the groups GL and G̊L. Indeed, since
GL(L) and G̊L(L) are normal subgroups of G, we can define

G(L) := GGL =
⊔

g∈G/GL(L)

gGL and G(L+) := GG̊L =
⊔

g∈G/G̊L(L)

gG̊L.

If L0 is a fixed good lattice and L = phL0 we will simply denote G(h) = G(L)

and G(h+) = G(L+).
With the previous notations we can now define the following distribution

algebras and analytic functions.

Definition 2.1.2. Let L ⊂ gL be a good lattice defined over F/L.

(1) Let G be one of the adic groups GL, G̊L, G(L) or G(L+). The space
of analytic functions of G with values in L is the space C(G, L) =
O(G). The algebra of distributions of G is the dual space D(G, L) =
HomL(C(G, L), L). If L0 is fixed as in Example 2.1.1 and L = phL0,
we will simply denote Dh(G,L) = D(G(h+), L) and Ch(G,L) =

C(G(h+), L).
(2) We let Û(L)+ be the GalF/L-invariants of the p-adic completion of

the enveloping algebra of LF . We also denote Û(L) = Û(L)+[1p ].
(3) Finally, we let C la(g, L) := lim−→L⊂g

C(GL, L) and C la(G,K) = lim−→L⊂g
C(G(L), L)

be the spaces of locally analytic functions of g and G respectively. We
letDla(g, L) = HomK(C la(g, L), L) andDla(G,L) = HomL(C

la(G,L), L)
be the spaces of locally analytic distributions of g and G respectively.

Remark 2.1.3.
(1) We note that, for G = GL or G(L) (resp. for G = G̊L or G(L+)), the

space C(G, L) is a Banach space (resp. a nuclear Fréchet space), and
the distribution algebra D(G, L) is a Smith space (resp. an LB-space
of compact type), cf. [RJRC21], [ST03] or [Sch02].

(2) The algebra Ch(G,L) is by definition the space of functions of G

that are analytic with radius p−h′ for any h′ > h with respect to
the coordinates of GL. The reason for considering analytic functions
on open balls instead of affinoid balls comes from the fact that the
algebras Dh(G,L) are idempotent over Dla(G,L), cf. Corollary 2.1.6
below.

(3) The colimit diagrams {C(GL, L)}L and {C(G̊L, L)}L (resp. {C(G(L), L)}L,
{C(G(L+), L)}L and {Ch(G,L)}h) are isomorphic and their colimit is
the space of locally analytic functions of g (resp. of G). Dually, the
limit diagrams of distribution algebras {D(GL, L)}L, {D(G̊L, L)}L
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and {Û(L)}L (resp. the limit diagrams {D(G(L), L)}L, {D(G(L+), L)}L
and {Dh(G,L)}h) are isomorphic and their limit is equal to Dla(g, L)
(resp. Dla(G,L)). In particular, for h′ > h ≥ 0 we have the inclu-
sions

D(G̊ph′L0
, L) ⊂ D(Gph′L0

, L) ⊂ D(G̊phL0
, L),

Dh′
(G,L) ⊂ D(G(ph

′L0), L) ⊂ Dh(G,L).

On the other hand, we have that

(2.1) D(G̊phL0
, L) = lim−→

h′→(h− 1
p−1

)+

Û(p−h′L)

for h > 1
p−1 , see [Eme17, Proposition 5.2.6] and [RJRC21, Corollary

4.18].
(4) Let L ⊂ gL be a good lattice defined over F and let X1, . . . ,Xd be a

base of LF over OF . One has a power-series description

Û(L)⊗L F =
⊕̂

α∈Nd
FXα.

2.1.1. Koszul complexes and idempotency. Let L ⊂ gL be a good lattice,
our next goal is to prove that the distribution algebras of Definition 2.1.2
are idempotent algebras over the enveloping algebra U(g) or the locally an-
alytic distribution algebra Dla(G,L). Since all the algebras involved are
co-commutative Hopf algebras, the idea is to show that the co-unit is pre-
served by base change and to apply Proposition 1.2.6 (5). Without loss of
generality let us assume that L is defined over L.

Proposition 2.1.4. Let L ⊂ g be a good lattice, and let Kos(g, U(g)) be the
standard Koszul resolution of L:

0→ U(g)⊗
d∧
g→ · · · → U(g)⊗ g→ U(g)→ L→ 0,

where the differentials are given by

d(v ⊗ Z1 ∧ . . . ∧ Zk) =
k∑

i=1

(−1)i+1vZi ⊗ Z1 ∧ . . . ∧ Ẑi ∧ . . . ∧ Zk

+
∑
i<j

(−1)i+jv ⊗ [Zi, Zj ] ∧ · · · ∧ Ẑi ∧ · · · ∧ Ẑj · · · ∧ Zk.

Let D denote D(G̊L, L), Û(L) or Dla(g, L). Then

Kos(g,D) := D ⊗U(g),■ Kos(g, U(g))

is a resolution of L as D-module. In particular, D ⊗L
U(g),■ L = L.

Proof. Let Kos(L, U(L)+) be the standard resolution of the trivial represen-
tation OL and ε : Kos(L, U(L)+) → OL the augmentation map. There is
an OL-linear homotopy h• : U(L)+ ⊗

∧• L → U(L)+ ⊗
∧•+1 L such that
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d•+1h• + h•−1d• = id−ε ([Wei94, Theorem 7.7.2]). Taking a p-adic com-
pletion and inverting p, one obtains an homotopy ĥ• between id and ε for
Kos(g, Û(L)+). Inverting p we have an equivalence Kos(g, Û(L)) ε−→ L. Tak-
ing colimits of the Koszul resolutions for ph

′L as h′ → (h− 1
p−1)

+, one gets
an equivalence Kos(g,D(G̊L, L))

ε−→ L. Taking limits of phL as h → ∞, by
topological Mittag-Leffler [RJRC21, Lemma 3.27] one gets an equivalence
Kos(g,Dla(g, L))

ε−→ L. □

Proposition 2.1.5. Let G be a compact p-adic Lie group over L. There is
a Koszul resolution of the trivial D(G(L+), L)-module L

0→ D(G(L+), L)⊗
dim g∧

g→ · · · → D(G(L+), L)⊗g→ D(G(L+), L)→ L→ 0

obtained as the dual of the de Rham complex of G(L+). Furthermore, the limit
along all the lattices L defines a Koszul resolution of L as Dla(G,L)-module.
In particular, D(G(L+), L)⊗L

Dla(G,L)
L = L.

Proof. This is roughly [RJRC21, Proposition 5.12] which is based on the
Poincaré Lemma for open polydiscs [Tam15, Lemma 26]. Let G(L+) be
the Stein group defined by L, since L is defined over L, G(L+) is a finite
disjoint union of open polydiscs. We can then consider the de Rham com-
plex DR(G(L+)) of G(L+). Taking a basis of the tangent space by right
invariant vector fields, the de Rham complex is written explicitly as a left
G-equivariant complex

[C(G(L+), L)→ · · · → C(G(L+), L)⊗
i∧
g∨ → · · · → C(G(L+), L)⊗

dim g∧
g∨]

and differentials induced by right derivations. By the Poincaré Lemma, the
natural map L → DR(G(L+)) is an equivalence. Taking duals, one gets a
resolution of D(L+(G), L)-modules

Kos(D(G(L+)), L) := DR(G(L+))∨ → L

which is noting but finitely many translates of the Koszul resolution of Propo-
sition 2.1.4. Taking limits along all lattices L, one gets an equivalence of
Dla(G,L)-modules

Kos(Dla(G,L))→ L.

One clearly has

D(G(L+), L)⊗L
Dla(G,L) L = D(G(L+), L)⊗L

Dla(G,L) Kos(Dla(G,L))

= Kos(D(G(L+)), L)

= L.

□
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Corollary 2.1.6. (1) Let L ⊂ g be a good lattice and let D denote
D(G̊L, L), Û(L) or Dla(g, L). Then D⊗L

U(g),■D = D. In particular,
the ∞-category ModL■

(D) of solid D-modules is a full subcategory of
ModL■

(U(g)).
(2) We have D(G(L+), L)⊗L

Dla(G,L),■D(G
(L+), L) = D(G(L+), L). In par-

ticular ModL■
(D(G(L+), L)) is a full subcategory of ModL■

(Dla(G,L)).

Proof. This follows from the Koszul resolutions of Propositions 2.1.4, 2.1.5,
and the idempotent algebra criterion for co-commutative Hopf algebras of
Proposition 1.2.6 (5). □

Next, we want to relate the distribution algebras associated to an immer-
sion of Lie algebras h ⊂ g.

Proposition 2.1.7. Let g be a Lie algebra over L and let h ⊂ g be a subal-
gebra. Let L ⊂ g be a good lattice and let Lh = L∩h. Let D(L) denote Û(L),
D(G̊L, L) or Dla(g, L) (resp. for Lh), and let D(L/Lh) := D(L)⊗D(Lh) L.

(1) Let T ⊂ L be a free complement of Lh in L with basis Y1, . . . ,Ys

and t = T [1p ]. Let GT ⊂ GL be the image by the exponential of
the ordered basis Y1, . . . ,Ys, and let G̊T =

⋃
h>0GphT be the open

polydisc. Then we have isomorphisms of solid L-vector spaces

D(L/Lh) ∼= D(T )
where

D(T ) =


Û(T ) :=

⊕̂
α∈NsLYα,

D(G̊T , L) := HomL(OG̊T
, L)

Dla(t, L) := lim←−h→∞ Û(phT ).

(2) We have an isomorphism of right D(Lh)-modules

D(L) = D(T )⊗L
L■
D(Lh).

Furthermore, we have an equivalence of left D(L)-modules Kos(h,D(L)) ε−→
D(L/Lh) where Kos(h,D(L)) is the Koszul complex

Kos(h,D(L)) = [0→ D(L)⊗L

dim h∧
h→ · · ·D(L)⊗L h→ D(L)].

In particular, D(L/Lh) = D(L) ⊗L
D(Lh),■

L, and taking h = g, one
recovers Proposition 2.1.4.

Proof. The proof of the proposition follows the same lines as those of Propo-
sitions 2.1.4 and 2.1.5. Since L = Lh ⊕ T , we can write G̊L = G̊T × G̊Lh

.
Taking global sections one finds that D(G̊L, L) = D(G̊T , L)⊗L

L■
D(G̊Lh

, L).
We can then take the relative de Rham complex of the map

G̊L → G̊L/G̊Lh
∼= G̊T ,
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and by taking duals we find the Koszul complex Kos(h,D(G̊L), L) which is
quasi-isomorphic toD(G̊L, L) by the Poincaré Lemma. The case forDla(g, L)
and Dla(h, L) is obtained by taking limits along all lattices L in the previous
construction.

Finally, for Û(L) and Û(Lh), consider the Koszul resolution of U(L) as
Lh-module. Since U(L) = U(Lh)⊗OL

U(T ) where U(T ) =
⊕

αY
α, the same

argument of [Wei94, Theorem 7.7.2] provides an homotopies between id and
the augmentation map

Kos(Lh, U(L) ε−→ U(T ).
Taking p-adic completions and inverting p one gets the Koszul complex for
the Û -algebras, and the equality Û(L) = Û(T )⊗L

L■
Û(Lh). □

The following particular case will be of special interest: Let g̃ be the Lie
algebra g seen as a Lie algebra over Qp, similarly we let G̃ be the restriction
of G to Qp. Take k = ker(g̃ ⊗Qp L → g). Let L ⊂ gL be a good lattice and
let L̃ be its restriction to Qp, i.e. the lattice obtained by its GalQp /GalL-
translates in

g̃L = g⊗Qp L =
∏

σ:L→L

gσ,L.

Corollary 2.1.8. Let D denote one of the algebras D(G(L+), L), Û(L),
D(G̊L, L), Dla(g, L) or Dla(G,L). Let D̃ be the analogue algebra associated
to G̃ and L̃. Then there is a natural equivalence of right Dla(k, L)-modules

D̃ ⊗Qp L = D ⊗L
L■
Dla(k, L).

In particular, (D̃ ⊗L
Qp

L)⊗Dla(k,L) L = D.

Proof. This follows from Proposition 2.1.7 once we note that D(G(L+), L) =

D(G̊L, L)⊗LL[G/G̊L(L)] = L[G/G̊L(L)]⊗LD(G̊L, L). The case of Dla(G,L)

follows by taking limits of the G(L+)-cases. □

2.1.2. Locally analytic functions and distributions. We now define locally
analytic functions on G taking values in a solid vector space V . Recall from
[RJRC21] that we have defined analytic rings

C(G(h), L)■ = (C(G(h), L), C(G(h),OL))■

in order to define h-analytic and locally analytic vectors of a solid represen-
tation. The following Lemma says basically that, in the limit, the analytic
structure becomes trivial.

Lemma 2.1.9. Let h′ > h, we have natural maps of analytic rings

(O(G(h)),O+(G(h)))■ → (O(G(h′)),OL)■ → (O(G(h′)),O+(G(h′)))■.

In particular for V ∈ Mod(L■) we have maps

C(G(h), L)■ ⊗L
L■

V → C(G(h′), L)⊗L
L■

V → C(G(h′), L)■ ⊗L
L■

V.
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Proof. By [And21, Lemma 3.31] one has that for an affinoid ring (A,A+),
(A,OL)■ = (A,Amin,+)■ where Amin,+ is the integral closure of OL + A00.
The lemma follows from [And21, Proposition 3.34] and the fact that we have
morphisms of Huber pairs (O(G(h)),O+(G(h)))→ (O(G(h′)),O(G(h′))min,+)→
(O(G(h′)),O+(G(h′))). Indeed, if T

ph
denotes a variable of the group G(h), one

can write T
ph

= ph
′−h T

ph′
, proving that the image of T

ph
in O(G(h′)) is topo-

logically nilpotent. □

Definition 2.1.10. Let V ∈ Mod(L■), we define the following spaces of
functions with values in V .

(1) For G compact the space of G(h)-analytic functions

C(G(h), V ) := C(G(h), L)■ ⊗L
L■

V.

(2) For G compact the space of G(h+)-analytic functions

Ch(G,V ) = R lim←−
h′>h

C(G(h′), V ) = R lim←−
h′>h

(C(G(h′), L)⊗L
L■

V )

where the second equality holds by Lemma 2.1.9.
(3) For G arbitrary the space of locally analytic functions

C la(G,V ) :=
∏

g∈G/G0

(C la(gG0, L)⊗L
L■

V )

with G0 ⊂ G an open compact subgroup.
(4) For G arbitrary we define the algebra of locally analytic distributions

of G as
Dla(G,L) = HomL(C

la(G,L), L).

Remark 2.1.11. Let G be a compact p-adic Lie group and V ∈ Mod(L■).
Then we have that

C la(G,V ) = lim−→
h

C(G(h), L)⊗L
L■

V = lim−→
h

C(G(h), V ) = lim−→
h

Ch(G,V ) = lim−→
h

Ch(G,L)⊗L
L■

V,

where the first equality is by definition, the others follow by Lemma 2.1.9
and the cofinality of the algebras in Remark 2.1.3 (3).

Lemma 2.1.12. We have

Dla(G,L) = L■[G]⊗L■[G0] D
la(G0, L) =

⊕
g∈G/G0

Dla(gG0, L)

for any G0 compact open subgroup of G. Moreover, Dla(G,L)∨ = C la(G,L).

Proof. The first claim is trivial in the compact case, and the duality between
the space of distributions and locally analytic functions follows by the duality
of nuclear Fréchet and LB spaces of compact type, see [RJRC21, Theorem
3.40]. Let us prove the general case.
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Provided the first formula is proved, then we immediately have:

Dla(G,L)∨ =
∏

g∈G/G0

(Dla(gG0, L))
∨ =

∏
g∈G/G0

C la(gG0, L) = C la(G,L),

which proves the last statement.
We now prove the first formula of the statement. We write

C la(G,L) =
∏

g∈G/G0

C la(gG0, L)

=
∏

g∈G/G0

lim−→
h>0

Ch(G0, L)

= lim−→
g∈G/G0

hg>0

∏
g∈G/G0

Chg(G,L).

Therefore,

(2.2) C la(G,L)∨ = lim←−
g∈G/G0

hg>0

⊕
g∈G/G0

Dhg(G,L).

We want to prove that the RHS is equal to
⊕

g∈G/G0
Dla(gG0, L). Notice that

the RHS injects into lim←−g∈G/G0

hg>0

∏
g∈G/G0

Dhg(G0, L) =
∏

g∈G/G0
Dla(gG0, L).

let (ag)g∈G/G0
be a sequence in the RHS of (2.2), it suffices to prove that all

but finitely many elements ag ∈ Dla(gG0, L) vanish. Suppose the opposite,
then we can find infinitely many g ∈ G/G0, and numbers hg > 0, such that
the image of ag in Dhg(gG0, L) is non-zero, but this contradicts the fact
that (ag) defines an element in

⊕
g∈G/G0

Dhg(gG0, L). Moreover, the same
applies when evaluating at an arbitrary profinite set S. The proposition
follows. □

The same proof of the above lemma implies the analogous duality between
continuous functions and the Iwasawa algebra.

Lemma 2.1.13. Let G be an arbitrary p-adic Lie group, then C(G,L)∨ =
L■[G].

Proof. This follows by the duality between Fréchet and LS spaces [RJRC21,
Theorem 3.40] and the last argument of Lemma 2.1.12 to commute products
with sums. Namely,

C(G,L)∨ =

 ∏
g∈G/G0

C(gG0, L)

∨

=
⊕

g∈G/G0

L■[gG0] = L■[G].

□
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2.2. Smooth functions and distribution algebras. Let L be a finite
extension of Qp, G a p-adic Lie group over L. For defining smooth functions
and distributions on G one only needs G to be a locally profinite group.
However, since we will be only interested in p-adic Lie groups we prefer to
stay in this situation.

Definition 2.2.1 ([Man22b, Definition 3.4.7]). Let S be a profinite set and
V ∈ Mod(L■), the space of smooth functions from S to V is the solid L■-
vector space given by

Csm(S, V ) = Cont(S,Z)⊗Z V.

In particular, since Z is discrete, we have Csm(S, V ) = lim−→i
Cont(Si, V )

where S = lim←−i
Si is written as a limit of finite subsets.

Lemma 2.2.2 ([Man22b, Lemma 3.4.8]). Let S be a profinite set and V ∈
Mod♡(L■). The following hold

(1) The values of Csm(S, V ) at a profinite set T are given by

Csm(S, V )(T ) := Cont(S, V (T )),

where V (T ) is discrete.
(2) The natural map Csm(S, V )→ Cont(S, V ) is injective.

Definition 2.2.3 ([Man22b, Definition 3.4.9]). Let G be a locally profinite
group and V ∈ Mod(L■) a solid L-vector space. We define the space of
smooth functions of G with values in V to be the solid L-vector space with
values at a profinite T given by

Csm(G,V )(T ) = Cont(G,V (T )).

Equivalently, if H ⊂ G is an open compact subgroup, we have that

Csm(G,V ) =
∏

g∈G/H

Csm(gH, V ).

Definition 2.2.4. The algebra of smooth L-valued distributions of G is
defined as

Dsm(G,L) := Dla(G,L)/(g).

Proposition 2.2.5. The following assertions hold.
(1) If G is compact, then

Dsm(G,L) = lim←−
H⊂G

L■[G/H] = Csm(G,L)∨.

Furthermore, Csm(G,L) = Dsm(G,L)∨.
(2) For arbitrary G and any open compact subgroup G0 ⊂ G, we have

Dsm(G,L) = L■[G]⊗L■[G0] D
sm(G0, L) = Dsm(G0, L)⊗L■[G0] L■[G].

Furthermore, we have Dsm(G,L) = Csm(G,L)∨ and Csm(G,L) =
Dsm(G,L)∨.
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(3) For G arbitrary, there is an isomorphism of left Dla(g, L)-modules

Dla(G,L) = Dla(g, L)⊗L■
Dsm(G,L),

resp. for right Dla(g, L)-modules.
(4) For G arbitrary, there is an isomorphism

Dsm(G,L) = L⊗L
Dla(g,L),■ D

la(G,L).

Proof. We first prove (1), (2) and (3) at the same time. For any open compact
subgroup H of G we have an Dla(H,L)-equivariant isomorphism

Dla(G,L) = Dla(H,L)⊗L■
L■[G/H].

Taking limits for H ⊂ G we get a Dla(g, L)-equivariant isomorphism

Dla(G,L) = Dla(g, L)⊗L■
( lim←−
H⊂G

L■[G/H])

so that Dsm(G,L) = L⊗L
Dla(g,L),■D

la(G,L) = lim←−H⊂G
L■[G/H]. The dual-

ity betweenDsm(G,L) and Csm(G,L) follows from the previous computation
and the duality between Fréchet and LS spaces of [RJRC21, Theorem 3.40].

Finally we prove (4), it follows the same lines of the proof of Lemma
2.1.12. By loc. cit. we have Dla(G,L) = L■[G] ⊗L■[G0] Dla(G0, L) =

Dla(G0, L) ⊗L■[G0] L■[G] for any compact open subgroup G0. The tensor
product formula of (4) follows by (3). Finally, we prove the duality between
Dsm(G,L) and Csm(G,L) in the non-compact case. We can write

Dsm(G,L) =
⊕

g∈G/G0

Dsm(gG0, L) and Csm(G,L) =
∏

g∈G/G0

Csm(gG0, L).

Then

Dsm(G,L)∨ =
∏

g∈G/G0

(Dsm(gG0, L))
∨ =

∏
g∈G/G0

Csm(gG0, L) = Csm(G,L).

For the other duality, we write

Csm(G,L) =
∏

g∈G/G0

Csm(gG0, L)

=
∏

g∈G/G0

lim−→
H⊂G0

Csm(gG0/H,L)

= lim−→
g∈G/G0
Hg⊂G0

∏
g∈G/G0

Csm(gG0/Hg, L).

Therefore,

(2.3) Csm(G,L)∨ = lim←−
g∈G/G0
Hg⊂G0

⊕
g∈G/G0

L■[gG0/Hg].
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We want to prove that the RHS is equal to
⊕

g∈G/G0
Dsm(gG0, L). Notice

that the RHS injects into lim←−g∈G/G0
Hg⊂G0

∏
g∈G/G0

L■[gG0/Hg] =
∏

g∈G/G0
Dsm(gG0, L).

let (ag)g∈G/G0
be a sequence in the RHS of (2.3). It suffices to prove that all

but finitely many elements ag ∈ Dsm(gG0, L) vanish. Suppose the opposite,
then we can find infinitely many g ∈ G/G0, and open subgroups Hg, such
that the image of agi in L■[gG0/Hgi ] is non-zero, but this contradicts the fact
that (ag) defines an element in

⊕
g∈G/G0

L■[G/Hg]. Moreover, the previous
holds when evaluating at any profinite set S. The proposition follows. □

Corollary 2.2.6. Let G be a compact p-adic Lie group. Then Dsm(G,L) =∏
ρ ρ⊗HomDsm(G,L)(ρ,Dsm(G,L)) where ρ runs over all the irreducible finite

dimensional smooth representations of G. In particular:

(1) The functor HomDsm(G,L)(ρ,−) is an exact functor in the abelian
category of Dsm(G,L)-modules.

(2) Dsm(G,L) is self-injective (algebraically).
(3) L■[G/H] is a idempotent Dsm(G,L)-algebra for all H ⊂ G normal

open subgroup.

Proof. Any group algebra of a finite group G0 over a field of characteristic
zero is isomorphic to the product of ρ⊗HomL■[G0](ρ, L■[G0]) where ρ runs
over all irreducible representations of G0. Since Dsm(G,L) = lim←−H

L■[G/H]
if G is compact, the first part of the corollary follows. The second statement
is clear since ρ is a direct summand of Dsm(G,L), so a projective module.
The second assertion follows since any direct product of division algebras
is self-injective, cf. [Lam99, Corollary 1.33B]. For the last claim, notice
that L■[G/H] is a direct summand of Dsm(G,L), namely, the projection
Dsm(G,L) → L■[G/H] has a section given by the Haar measure of H.
Writing Dsm(G,L) = L■[G/H]⊕M as Dsm(G,L)-modules, tensoring with
L■[G/H] gives

L■[G/H] = L■[G/H]⊗L
Dsm(G,L),■ L■[G/H]⊕M ⊗L

Dsm(G,L),■ L■[G/H],

but the image of M in L■[G/H] is zero, this implies that L■[G/H] =
L■[G/H]⊗L

Dsm(G,L),■ L■[G/H] proving the corollary. □

Lemma 2.2.7. Let G be compact. Then

Dh(G,L)⊗L
Dla(G,L),■ D

sm(G,L) = L■[G/Gh+ ],

where Gh+ := GphL+
0
(L).

Proof. By (3) of 2.2.5, we haveDh(G,L)⊗Dla(G,L),■Dsm(G,L) = Dh(G,L)⊗L
Dla(g,L),■

L. On the other hand, we have Dh(G,L) = L■[G/Gh+ ] ⊗L■
D(G̊phL0

, L).
Hence we reduce to showing that D(G̊phL0

, L) ⊗L
Dla(g,L),■ L = L, which fol-

lows from Corollary 2.1.6. □
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Corollary 2.2.8. Let G be an arbitrary p-adic Lie group over L and let GQp

be G considered as a p-adic Lie group over Qp. Let k = ker(gQp ⊗ L → g).
Then

Dla(G,L) = L⊗L
U(k) D

la(GQp , L) = Dla(g, L)⊗L
Dla(gQp ,L)

Dla(GQp , L).

Proof. We have

L⊗L
U(k)D

la(GQp , L) = L⊗L
U(k)D

la(gQp , L)⊗L
L■
Dsm(G,L) = Dla(g, L)⊗L

L■
Dsm(G,L) = Dla(G,L),

where in the first and last equality we used Proposition 2.2.5 (3) and the
middle equality follows from Corollary 2.1.8. This shows the first assertion.
The last identity is proven in a similar way:

L⊗L
U(k) D

la(GQp , L) = L⊗L
U(k) D

la(gQp , L)⊗L
Dla(gQp ,L)

Dla(GQp , L)

= Dla(g, L)⊗L
Dla(gQp ,L)

Dla(GQp , L),

where the second equality follows also from Corollary 2.1.8. □

3. Solid locally analytic representations

In [RJRC21] the authors introduced the concept of a solid locally analytic
representation for compact p-adic Lie groups over Qp. The goal of this first
section is to extend the main results of loc. cit. to the case where G is a
locally profinite p-adic Lie group defined over a finite extension of Qp.

Let L be a finite extension of Qp and ϖ ∈ L a pseudo-uniformizer. Let
(K,K+) be a complete non-archimedean field extension of L. Let G be
a p-adic Lie group over L. In §3.1, motivated from the main theorems of
[RJRC21], we define the derived L-analytic vectors of a solid representation
of G. We will show that they can be recovered as the Qp-locally analytic
vectors which are killed by some “Cauchy-Riemann equations”. In §3.2 we
define the ∞-category of locally analytic representations of G, which will
be a full subcategory of the category of solid Dla(G,K)-modules, where
Dla(G,K) is the locally analytic distribution algebra of G. If in addition G
is defined over Qp, the∞-category of locally analytic representations is itself
a full subcategory of the solid G-representations. Finally, in §3.3. we give
sufficient conditions for a solid representation to be locally analytic.

3.1. Locally analytic vectors. Let G be a p-adic Lie group over a finite
extension L of Qp and let K = (K,K+) be a complete non-archimedean
extension of L. We denote K■ the analytic ring associated to K. In the
following we review the definition of locally L-analytic vectors of solid G-
modules on K■-vector spaces. We shall fix a good lattice L0 ⊂ g defined
over L, and for h > 0 we let G(h) and G(h+) denote the analytic groups
G(phL0) and G(phL+

0 ) containing G (resp. we let Gh and Gh+ denote GphL0

and G̊phL0
).
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Remark 3.1.1. When G is compact and L = Qp, the notation of [RJRC21]
and the one presented in this paper agree for the spaces of functions, i.e.
C(G(h),K) and C(G(h+),K). Notice however that the distribution algebras
D(G(h),K) and D(G(h+),K) are written, respectively, as D(h)(G,K) and
D(h+)(G,K) in loc. cit.. In the current paper we are writing Dh(G,K) =

D(G(h+),K) and Ch(G,K) = C(G(h+),K) instead since these are the spaces
that we use more often, we apologise for the discrepancy in the notations.

Lemma 3.1.2.
(1) Let G be a compact group, then the functors V 7→ C(G(h), V ) and

V 7→ Ch(G,V ) for V ∈ Mod(K■) are naturally promoted to exact
functors

ModK■
(Dla(G,L))→ ModK■

(Dla(G3, L)).

(2) Let G be arbitrary, then the functor V 7→ C la(G,V ) for V ∈ Mod(K■)
is naturally promoted to an exact functor

ModK■
(Dla(G,K))→ ModK■

(Dla(G3,K)).

Moreover, the functors V 7→ C(G(h), V ) and V 7→ C la(G,V ) are exact in the
abelian categories.

Proof. For the compact case it suffices to prove the lemma for C(G(h),−),
namely the other functors are constructed as limits or colimits of this. But
then by [RJRC21, Corollary 2.19] we have

C(G(h), V ) = RHomL(D(G(h), L), V ),

as D(G(h), L) is a Dla(G,L)-algebra one has the desired left and right natural
actions of Dla(G×G,K) = Dla(G,L)⊗L

L■
Dla(G,L)⊗L

L■
K■ on C(G(h), V ).

On the other hand, D(G(h), L) is a Smith space, so projective as L■-vector
space by [RJRC21, Lemma 3.8 (2)], this implies that V 7→ C(G(h), V ) is
exact in the abelian category. If in addition V is a Dla(G,K)-module then
one has the full action of Dla(G3,K) as wanted.

In the non-compact case, note that we have natural equivalences

C la(G,V ) = RHomDla(G0,K)(Dla(G,K), C la(G0, V ))

for both the left or right regular action of Dla(G,K) on C la(G0, V ) and any
compact open subgroup G0 ⊂ G. This endows C la(G,V ) with commuting
left and right regular action of Dla(G,K), if in addition V is a Dla(G,K)-
module then we have the compatible action of

Dla(G3,K) = Dla(G,K)⊗L
K■
Dla(G,K)⊗L

K■
Dla(G,K)

as desired. Finally, since C la(G,V ) = lim−→h
C(G(h), V ), the functor V 7→

C la(G,V ) is exact in the abelian category. □
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Remark 3.1.3. The action of G3 on a function f in any of the three cases is
heuristically given by ((g1, g2, g3) ⋆ f)(h) = g3 · f(g−1

1 hg2). If V arises as the
solid vector space attached to a locally convex vector space then the action
of G×G×G is given precisely by these formulas.

Given I ⊂ {1, 2, 3} a non-empty subset and V ∈ ModK■
(Dla(G3,K)) we

let V⋆I ∈ ModK■
(Dla(G,K)) be the restriction of V to the I-diagonal of

Dla(G3,K), i.e. V equipped with he Dla(G,K)-module structure induced
by the embedding ιI : G→ G3, ιI(g)j = g if j ∈ I and ιI(g)j = eG if j /∈ I,
where eG ∈ G denotes the identity element.

Definition 3.1.4. Let G be a p-adic Lie group over L.
(1) For G compact the functor of (derived) G(h)-analytic vectors (−)Rh−an :

ModK■
(Dla(G,K))→ ModK■

(Dla(G,K)) is defined as

V Rh−an := RHomDla(G,K)(K, (C(G(h), V )⋆1,3),

where the action of Dla(G,K) on V Rh−an is induced by the ⋆2-action
(the right regular action). Similarly, the (derived) G(h+)-analytic
vectors is the functor on solid Dla(G,K)-modules given by

V Rh+−an := R lim←−
h′>h

V Rh′−an = RHomDla(G,K)(K,Ch(G,V )⋆1,3).

If V ∈ Mod♡K■
(Dla(G,K)) we let V h−an and V h+−an denote the H0

of their derived analytic vectors.
(2) For G compact, we say that an object V ∈ ModK■

(Dla(G,K)) is h-
analytic (resp. h+-analytic) if the natural arrow V Rh−an → V (resp.
V Rh+−an → V ) is an equivalence. If V ∈ Mod♡K■

(Dla(G,K)), we
say that V is non-derived h-analytic if the map V h−an → V is an
equivalence (resp. for h+).

(3) For G arbitrary we define the functor of locally analytic vectors
(−)Rla : ModK■

(Dla(G,K))→ ModK■
(Dla(G,K)) as

V Rla = RHomDla(G,K)(K,C la(G,V )⋆1,3)

where we see V Rla endowed with the ⋆2-action of Dla(G).
(4) For G arbitrary, we say that an object V ∈ ModK■

(Dla(G,K))

is locally analytic if the natural arrow V Rla → V is an equiva-
lence. If V ∈ Mod♡K■

(Dla(G,K)) we write V la := H0(V Rla). If
V ∈ Mod♡K■

(Dla(G,K)), we say that V is non-derived locally ana-
lytic if V la → V is an isomorphism.

Remark 3.1.5. The distinction between derived and non derived locally an-
alytic representations might look subtle at the beginning, we will see in
Proposition 3.2.5 that there is no actual difference.

Remark 3.1.6. The definition of locally analytic vectors might seem slightly
strange since we are taking as an input a module over the distribution algebra
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instead of a solid representation of G as it is usual. Note that, for any
V ∈ ModK■

(K■[G]) one can define the analytic vectors of V as

V Rla := RHomK■[G](K,C la(G,V )⋆1,3).

If G = GQp is a defined over Qp, then Dla(G,K) is an idempotent algebra
over K■[G] and the inclusion of ModK■

(Dla(G,K)) into ModK■
(K■[G]) is

fully faithful. Then, for any V ∈ ModK■
(Dla(G,K)) one has

RHomK■[G](K,C la(G,V )⋆1,3)

= RHomDla(G,K)(K,RHomK■[G](Dla(G,K), C la(G,V )⋆1,3))

= RHomDla(G,K)(K,RHomDla(G,K)(Dla(G,K)⊗L
K■[G] D

la(G,K), C la(G,V )⋆1,3))

= RHomDla(G,K)(K,C la(G,V )⋆1,3),

proving that both definitions agree. However, if G is defined over L ̸= Qp and
V is a Dla(G,K)-module, then the locally analytic vectors of V considered
as a solid G-representation are given by V Rla⊗RΓ(k, L), where V Rla are the
locally analytic vectors as Dla(G,K)-module and RΓ(k, L) is the Lie algebra
cohomology of k = ker(g ⊗Qp L → g), see Theorem 6.3.4. This shows that
there are different versions of “locally analytic vectors”, depending on the
category we start with.

Let us prove some basic properties of the functor of locally analytic vectors.

Proposition 3.1.7. The following assertions hold.

(1) Let G0 ⊂ G be any open subgroup and V ∈ ModK■
(Dla(G,K)), there

is a natural equivalence V Rla|G0 = (V |G0)
Rla between the restriction

to G0 of the G-locally analytic vectors of V and the G0-locally analytic
vectors of V |G0.

(2) The functor (−)Rla : ModK■
(Dla(G,K)) → ModK■

(Dla(G,K)) is
the right derived functor of W 7→W la on the abelian category Mod♡K■

(Dla(G,K)).
(3) The functor (−)Rla : ModK■

(Dla(G,K))→ ModK■
(Dla(G,K)) pre-

serves small colimits. The same holds for (−)Rh−an and G-compact.
(4) If G is compact, then V Rla = lim−→h

V Rh−an = lim−→h
V Rh+−an.

Proof.

(1) By construction one has that

C la(G,V ) = RHomDla(G0,K)(Dla(G,K), C la(G0, V ))
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where the Dla(G0,K) acts by left multiplication on Dla(G,K) and
by the left regular action on C la(G0, V ). One finds that

V Rla = RHomDla(G,K)(K, (C la(G,V ))⋆1,3)

= RHomDla(G,K)(K,RHomDla(G0,K)(Dla(G,K), C la(G0, V )⋆1,3))

= RHomDla(G0,K)(K,C la(G0, V )⋆1,3)

= (V |G0)
Rla.

(2) By Lemma 3.1.2 the functor V 7→ C la(G,V ) is exact in the abelian
category of solid Dla(G,K)-modules. Then, one has that

V Rla = RHomDla(G,K)(K,C la(G,V )⋆1,3)

is a derived Hom-functor, which implies that it is the right derived
functor of the invariants V la = C la(G,K)G⋆1,3 .

(3) By (1), we can assume that G is compact. By definition of (−)Rla

and (−)Rh−an, since V 7→ C la(G,V ) = C la(G,K) ⊗L
K■

V and V 7→
C(G(h), V ) = C(G(h),K)■ ⊗L

K■
V commute with colimits, it suffices

to show that K is compact as Dla(G,K)-module, this follows from
Proposition 2.1.5.

(4) Since taking locally analytic vectors commutes with colimits by (3),
and since one can assume G to be compact by (1), this is as con-
sequence of the compacity of K as Dla(G,K)-module and Remark
2.1.11.

□

The following proposition relates the functor of analytic vectors with the
distribution algebras.

Proposition 3.1.8. Let G be a compact p-adic Lie group over L, and let
V ∈ ModK■

(Dla(G,K)). Then

V Rh−an = RHomDla(G,K)(D(G(h),K), V )

V Rh+−an = RHomDla(G,K)(Dh(G,K), V ).

In particular, an object V ∈ ModK■
(Dla(G,K)) is h+-analytic if and only if

it is a module over the idempotent Dla(G,K)-algebra Dh(G,K).

Proof. This follows from the same proof of Theorem 4.36 of [RJRC21] using
Corollary 2.19 of loc. cit. □

Remark 3.1.9. It should be not true that the distribution algebra D(G(h),K)
is an idempotent Dla(G,K)-algebra for general G. For example, if G = Zp,
then D(G(h),Qp) can be described as the generic fiber of the formal complete
PD-envelope of X of a polynomial algebra Zp[X], which is not an idempotent
Zp[X]-algebra.

For general groups, we have the following immediate consequence.
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Corollary 3.1.10. Let G be a p-adic Lie group over L and let V ∈ ModK■
(Dla(G,K)).

Then

V Rla = lim−→
h

RHomDla(G0,K)(Dh(G0,K), V ) = lim−→
h

RHomDla(G0,K)(D(G
(h)
0 ,K), V ),

where G0 is any open compact subgroup of G.

The following result verifies that taking locally analytic vectors defines an
idempotent functor.

Proposition 3.1.11. Suppose that G is compact. Let V ∈ ModK■
(Dla(G,K)),

then V Rh−an = (V Rla)Rh−an and V Rh+−an = (V Rla)Rh+−an. In particular,
for any group G, (V Rla)Rla = V Rla, and the locally analytic vectors of a
Dla(G,K)-module is a locally analytic representation of G.

Proof. It suffices to prove that V Rh−an = (V Rla)Rh−an, the other cases follow
from this after taking limits or colimits.

(V Rla)Rh−an = lim−→
h1

(V Rh1
+−an)Rh−an

= lim−→
h1

RHomDla(G,K)(D(G(h),K), RHomDla(G,K)(Dh1(G,K), V ))

= lim−→
h1

RHomDla(G,K)(Dh1(G,K)⊗L
Dla(G,K) D(G

(h),K), V )

= lim−→
h1

RHomDla(G,K)(D(G(h),K), V )

= V Rh−an,

where the first equality follows from Proposition 3.1.7 (3), the second equality
follows from Proposition 3.1.8, the third equality is a ⊗-Hom adjunction,
the fourth equality follows from the fact that Dh1(G,K) is an idempotent
Dla(G,K)-algebra and that D(G(h),K) is a Dh1(G,K)-module for all h1 big
enough, and the last equality is Proposition 3.1.8 again. □

The following proposition provides a different way to compute locally an-
alytic vectors as a relative tensor product of Dla(G,K)-modules.

Proposition 3.1.12. Let G be a compact p-adic Lie group. The following
assertions hold.

(1) Let V,W ∈ ModK■
(K■[G]). Let V ⊗L

K■
W be endowed with the

diagonal action. Then there is a natural equivalence

RHomK■[G](K,V ⊗L
K■

W ) = (K(χQp)⊗L
K■

ι(V ))⊗L
K■[G] W [−d]

where ι(V ) is the right G-module induced by V under the natural
involution ι : K■[G]→ K■[G], χQp = det(gQp)

−1, and d = dimQp G.
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(2) Let D denote Dla(G,K) or Dla(g,K). Let V,W ∈ ModK■
(D), then

there is a natural equivalence

RHomD(K,V ⊗L
K■

W ) = (K(χ)⊗L
K■

ι(V ))⊗L
D W [−d]

where ι(V ) is the right D-module obtained by the involution of D,
χ = det(g)−1 and d = dimLG.

Proof. Without lose of generality we can take K to be a finite extension of
Qp, the general case is deduced by taking a base change. By Theorem 5.19
of [RJRC21] one has that

RHomK■[G](K,V ⊗L
K■

W ) = K(χQp)⊗L
K■[G] (V ⊗

L
K■

W )[−d].

where we see K(χQp) as a right representation. By Proposition 1.2.6 (4), we
have natural equivalences

K(χQp)⊗L
K■[G] (V ⊗

L
K■

W )[−d] = 1⊗L
K■[G] (ι(K(χQp))⊗L

K■
V ⊗L

K■
W )[−d]

= (K(χQp)⊗L
K■

ι(V ))⊗L
K■[G] W [−d],

this shows (1). By Propositions 2.1.4 and 2.1.5, the trivial representation is
a perfect D-module, in particular dualizable, this implies that the natural
functor

RHomD(K,D)⊗L
D W → RHomD(K,W )

for any W ∈ ModK■
(D) is an equivalence. Then, for V,W ∈ ModK■

(D), by
Proposition 1.2.6 (4) we have natural equivalences

RHomD(K,V⊗L
KW ) = RHomD(K,D)⊗L

D(V⊗L
K■

W ) = (RHomD(K,D)⊗L
K■

ι(V ))⊗L
DW.

We are left to compute RHomD(K,D) = K(χ). For D = Dla(g,K) this
follows by an explicit computation using the Koszul resolution of Proposition
2.1.4. For D = Dla(G,K) one argues as follows: K is a Dsm(G,K)-module
and Dsm(G,K) = K ⊗L

Dla(g,K)
Dla(G,K) by Proposition 2.2.5 (3). Then

RHomDla(G,K)(K,Dla(G,K)) = RHomDla(G,K)(Dsm(G,K)⊗L
Dsm(G,K) K,Dla(G,K))

= RHomDsm(G,K)(K,RHomDla(G,K)(Dsm(G,K),Dla(G,K)))

= RHomDsm(G,K)(K,RHomDla(g,K)(K,Dla(G,K)))

= RHomDsm(G,K)(K,K(χ)⊗L
Dla(g,K) D

la(G,K))

= RHomDsm(G,K)(K,K(χ)⊗K■
Dsm(G,K))

= K(χ).

□

Remark 3.1.13. The last calculation in the proof is a special case of our
cohomological comparison isomorphisms that will be shown in §6.

Remark 3.1.14. In Proposition 3.1.12 we see χ as a right Dla(G,K)-module.
It arises as the determinant of the right action of G on g∨ given by

(H · g)(v) = H(gvg−1)
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for H ∈ g∨, v ∈ g and g ∈ G. We will often consider χ as a left representa-
tion as well, in this case, it arises as the determinant of the contragradient
representation g∨ with action

(g ·H)(v) = H(g−1vg).

Corollary 3.1.15. Let G be an arbitrary p-adic Lie group over L of dimen-
sion d. The following assertions hold.

(1) Let V ∈ ModK■
(Dla(G,K)), then for any open compact sugroup

G0 ⊂ G one has

V Rla = (ι(C la(G0,K)⋆1)⊗K(χ)[−d])⊗L
Dla(G0,K) V.

In particular, the functor (−)Rla has cohomological dimension d.
(2) Suppose that G is defined over Qp and let V ∈ ModK■

(K■[G]). Then
for any open compact sugroup G0 ⊂ G one has

V Rla = (ι(C la(G0,K)⋆1)⊗K(χ)[−d])⊗L
K■[G0]

V

where the locally analytic vectors are as in Remark 3.1.6.
(3) Let V,W ∈ ModK■

(Dla(G,K)), there is a natural equivalence

(V ⊗L
K■

WRla)Rla = V Rla ⊗K■
WRla.

Proof. (1) By Proposition 3.1.7 the locally analytic vectors are indepen-
dent of G0 ⊂ G compact open, so we can assume without loss of
generality that G is compact. Then, by Proposition 3.1.12 (2) one
has

V Rla = RHomDla(G)(K,C la(G,K)⋆1 ⊗L
K■

V )

= (ι(C la(G,K)⋆1)⊗K(χ))⊗L
Dla(G,K) V.

(2) This follows from the same argument of the previous point using
Proposition 3.1.12 (1) instead.

(3) We can assume that G is compact. The orbit map OW : WRla →
C la(G,K)⊗L

K■
WRla induces a natural equivalence

(3.1) C la(G,WRla)⋆1
∼−→ C la(G,WRla)⋆1,3 ,

at the level of functions this maps sends f : G→ W to the function
f̃ : G→W given by f̃(g) = g · f(g). Then, one computes

(V ⊗L
K WRla)Rla = (ι(C la(G,K)⋆1)⊗K(χ))⊗L

Dla(G,K) (V ⊗
L
K■

WRla)

= (ι(C la(G,K)⋆1 ⊗L
K■

WRla)⊗K(χ))⊗L
Dla(G,K) V

= (ι(C la(G,WRla)⋆1,3)⊗K(χ))⊗L
Dla(G,K) V

= (ι(C la(G,WRla)⋆1)⊗K(χ))⊗L
Dla(G,K) V

=

(
(ι(C la(G,K)⋆1)⊗K(χ))⊗L

Dla(G,K) V

)
⊗L

K■
WRla

= V Rla ⊗L
K■

WRla.
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In the first equality we use part (1). In the second equality we move
W to the left part of the tensor using Proposition 1.2.6 (4). The third
equality is the definition C la(G,W ) = C la(G,K)⊗L

K■
W . The fourth

equality uses the natural equivalence (3.1). In the fifth equality we
take out the tensor with WRla since Dla(G,K) is acting trivially on
it. In the last equality we use part (1) again.

□

The previous computation implies that there are representations with
higher locally analytic vectors.

Corollary 3.1.16. Let G be a p-adic Lie group over L of dimension d. Then
for any profinite set S we have

(Dla(G,K)⊗K■
K■[S])

Rla = (C la
c (G,K)⊗K(χ)[−d])⊗K■

K■[S]

where C la
c (G,K) = Dla(G,K)⊗Dla(G0,K)C

la(G0,K) is the space of compactly
supported locally analytic functions of G. If G is defined over Qp we also have

(K■[G× S])Rla = (C la
c (G,K)⊗K(χ)[−d])⊗K■

K■[S].

Proof. By Corollary 3.1.15 (1) we have that

(Dla(G,K)⊗K■
K■[S])

Rla

= (ι(C la(G0,K))⋆1 ⊗K(χ)[−d])⊗Dla(G0,K) (Dla(G,K)⊗K■
K■[S])

=

(
(ι(C la(G0,K))⋆1 ⊗K(χ)[−d])⊗Dla(G0,K) Dla(G,K)

)
⊗K■

K■[S]

= (C la
c (G,K)⊗K(χ)[−d])⊗K■

K■[S].

The second claim follows by the same argument using Corollary 3.1.15 (2)
instead. □

3.2. The category of locally analytic representations. Let L be a finite
extension of Qp. Our next goal is to define the∞-category of locally analytic
representations and discuss some general properties of it.

Definition 3.2.1. We define the ∞-category of locally analytic representa-
tions, denoted as ReplaK■

(G), to be the full subcategory of ModK■
(Dla(G,K))

whose objects are locally analytic representations of G. In other words,
ReplaK■

(G) is the full subcategory of solid Dla(G,K)-modules whose objects
are the V such that V Rla = V .

Our next task is to show that the derived category of locally analytic
representations has a natural t-structure and that it is the derived category
of its heart.

Lemma 3.2.2. Given V ∈ ModK■
(Dla(G,K)), one has that

V Rla = lim−→
b→+∞

lim←−
a→−∞

(τ [a,b]V )Rla,
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in the homotopy category, where a, b ∈ Z with a ≤ b and τ [a,b] = τ≥a ◦ τ≤b is
the canonical truncation in the interval [a, b] in cohomological notation.

Proof. This follows from the fact that (−)Rla has finite cohomological di-
mension, see Corollary 3.1.15 (1). □

We now prove some basic and fundamental properties of the category of
solid locally analytic representations.

Proposition 3.2.3. ReplaK■
(G) is stable under all small colimits of ModK■

(Dla(G,K))
and tensor products over K■.

Proof. This follows from the fact that taking locally analytic vectors pre-
serves colimits, cf. Proposition 3.1.7, and the projection formula of Corollary
3.1.15 (2). □

Lemma 3.2.4. Let G be compact. Then ReplaK■
(G) is the full subcategory of

ModK■
(Dla(G,K)) stable under all small colimits containing the categories

ModK■
(Dh(G,K)) for all h ≥ 0.

Proof. This follows from Corollary 3.1.10. □

Proposition 3.2.5. An object V ∈ ModK■
(Dla(G,K)) is locally analytic if

and only if H i(V ) is non-derived locally analytic for all i ∈ Z. In particular,
the t-structure of ModK■

(Dla(G,K)) induces a t-structure on RepK■
(G).

Proof. We can assume without lose of generality that G is compact. If V is
locally analytic then V Rla = lim−→h

V Rh+−an and H i(V ) = lim−→h
H i(V Rh+−an),

but V Rh+−an is a Dh(G,K)-module. This shows that the cohomology groups
H i(V ) are colimits ofDh(G,K)-modules for h→∞ and is locally analytic by
Lemma 3.2.4 (so afortriori non-derived locally analytic). Conversely, suppose
that H i(V ) is non-derived locally analytic for all i ∈ Z. We want to show
that V is locally analytic. By Lemma 3.2.2 we can assume that V is bounded
with support in cohomological degrees [0, k]. By an inductive argument one
the lenght of the support of V , we can assume that τ≥1V is locally analytic,
then V is an extension

H0(V )→ V → τ≥1V → H0(V )[1].

Since H0(V ) is non-derived locally analytic, it can be written as a filtered
colimit of Dh(G,L)-modules, then it is actually locally analytic by Lemma
3.2.4. This exhibits V as the fiber of τ≥1V → H0(V )[1] which is a locally
analytic representation by Proposition 3.2.3. □

Proposition 3.2.6. The category Repla,♡K■[G] is a Grothendieck abelian cate-

gory. Moreover ReplaK■
(G) is the ∞-derived category of Repla,♡K■[G].

Proof. To show that Repla,♡K■
(G) is a Grothendieck category, by the above

results, it is enough to see that it has a small family of generators. Let
G0 ⊂ G be a compact open subgroup. Since we are working with κ-small
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condensed sets, by Lemma 3.2.4 the category ReplaK■
(G) is generated by

{Dla(G,K) ⊗Dla(G0,K) Dh(G0,K) ⊗K■
K■[S]}h,S where h > 0 and S runs

over all the κ-small profinite sets.
Let us first prove that the right adjoint of the fully faithful inclusion

Repla,♡K■
(G)→ Mod♡(Dla(G,K)) of abelian categories is given by the (non-

derived) locally analytic vectors. Let V ∈ Repla,♡K■
(G) and W ∈ ModK■

(Dla(G,K)),
we want to prove that the natural map

HomDla(G,K)(V,W
la)→ HomDla(G,K)(V,W )

is an equivalence. Then, it suffices to take V = Dla(G,K) ⊗Dla(G0,K)

Dh(G0,K)⊗K■
K■[S] and show that the natural map

RHomDla(G,K)(V,W
Rla)→ RHomDla(G,K)(V,W )

is an equivalence. Indeed, one can find a resolution P • → V of V where each
term is a direct sum of elements in {Dla(G,K) ⊗Dla(G0,K) Dh(G,K) ⊗K■

K■[S]}h,S and calculate RHomDla(G,K)(V,W ) in terms of this resolution.
Let V = Dla(G,K) ⊗Dla(G0,K) Dh(G0,K) ⊗K■

K■[S], since we are taking
internal Hom, we can assume that S = ∗. By Proposition 3.1.11 we have
that

RHomDla(G,K)(V,W ) = RHomDla(G0,K)(Dh(G0,K),W )

= WRh+−an

= (WRla)Rh+−an

= RHomDla(G,K)(V,W
Rla),

proving the claim.
Now, let I be a κ-small injective Dla(G,K)-module. By [Sta22, Tag 015Z]

I la = IRla is an injective object in Repla,♡K■
(G). Moreover, we have that

IRla = lim−→
h

RHomDla(G0,K)(Dh(G0,K), I)

= lim−→
h

HomDla(G0,K)(Dh(G0,K), I)

= I la.

Then, if V ∈ Repla,♡K■
(G) and I• is an injective resolution of V as Dla(G,K)-

module, we have
V = V Rla = I•,Rla = I•,la,

so that I•,la is an injective resolution of V in Repla,♡K■
(G). The previous

implies that the RHom in the derived category of Repla,♡K■
(G) can be com-

puted as the RHom in ModK■
(Dla(G,K)). Since Repla,♡K■

(G) is left com-
plete by Lemma 3.2.2, one deduces that it is the ∞-derived category of
Repla,♡K■

(G). □

https://stacks.math.columbia.edu/tag/015Z
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As a byproduct of the proof of Proposition 3.2.6, we have the following
result.

Corollary 3.2.7. The fully faithful inclusion ReplaK■
(G)→ ModK■

(Dla(G,K))

has for right adjoint the functor of locally analytic vectors V 7→ V Rla.

We end this section briefly discussing some functorial properties of the
categories of locally analytic representations. Let H → G be a morphism of
p-adic Lie groups over L and denote by h→ g the corresponding map between
their Lie algebras. We have a natural morphism of projective systems of good
lattices {M}M⊂hL

→ {L}L⊂gL
. In particular, if M maps to L, we have a

morphism of distribution algebras Û(M) → Û(L). On the other hand, the
forgetful functor F : ModK■

(Dla(G,K)) → ModK■
(Dla(H,K)) restricts to

a forgetful functor ReplaK■
(G) → ReplaK■

(H). It has a right adjoint which is
given by the locally analytic induction

F : ReplaK■
(G) ⇌ Modla■ (H,K) : la- IndGH(−)

where
la- IndGH(V ) := RHomDla(H,K)(Dla(G,K), V )RH−la.

If H ⊂ G is an open subgroup, then the forgetful functor commutes with
limits in the category of locally analytic representations (computed as the
locally analytic vectors of the limit in ModK■

(Dla(G,K))). Then it has a
left adjoint called the compactly supported induction and is given by

la-cIndGH(V ) = Dla(G,K)⊗L
Dla(H,K) V.

3.3. Detecting locally analyticity. We finish this section with some addi-
tional results that can come in handy when proving that a solid representa-
tion is locally analytic. In the following we let G be an uniform pro-p-group
over Qp of dimension d and let log : G→ g = LieG be its logarithm.

Lemma 3.3.1. Let g1, . . . , gs ∈ G and let Γ1, . . . ,Γs ⊂ G be their gener-
ated pro-p-groups. Suppose that the smallest Lie subalgebra of g containing
Lie Γ1 + · · · + Lie Γs is g itself. Then there exists a tuple (i1, . . . , ir) with
ij ∈ {1, . . . , s} such that the multiplication map

m : Γi1 × · · · × Γir → G

has open image around 1 ∈ G. Furthermore, the map m admits a section of
p-adic manifolds locally around 1 ∈ G.

Proof. Let Xi = log(gi) ∈ Lie Γi. Let S ⊂ G be the subset of elements
that can be written as a product of powers of g′is. We claim that {hXih

−1 :
1 ≤ i ≤ s, h ∈ S } contains a basis of g. Indeed, by density of S
in an open subset of G, the Qp-spam V of the objects hXih

−1 is a G-stable
subspace of g which in addition is stable under the Lie bracket. By hypothesis
V = g and we can find such a base. Let us take h1, . . . , hd ∈ S , and
κ1, . . . , κd ∈ {1, . . . , s} such that {Yi := hiXκih

−1
i }di=1 is a basis of g, and

set g̃i = higκih
−1
i . Given a tuple ι = (ι1, . . . , ιr) let us write Γι = Γι1×· · ·Γιr
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and let m(Γι) ⊂ G be its image under the multiplication map. Let us take ι

big enough so that hi, h
−1
i ∈ m(Γι) for all i = 1, . . . , d. We claim that

m : (Γι × Γκ1 × Γι)× · · · × (Γι × Γκd
× Γι)→ G

has open image around 1 ∈ G. Indeed, denoting Γ̃i = g̃
Zp

i , we have inclusions
Γ̃i → (Γι × Γκi × Γι) induced by γ̃ai = hig

a
κi
h−1
i , but the multiplication

map m̃ : Γ̃1 × · · · × Γ̃d → G has open image around 1 ∈ G since it is
an isomorphism at the tangent space of the identity. Finally, m̃ is a local
isomorphism and we can find a local section s : G → Γ̃1 × · · · × Γ̃d ⊂
(Γι × Γκ1 × Γι)× · · · × (Γι × Γκd

× Γι) as wanted. □

Proposition 3.3.2. Keep the hypothesis of Lemma 3.3.1. An object V ∈
ModK■

(K■[G]) is locally analytic if and only if its restriction to Γi is locally
analytic for all i = 1, . . . , s. Furthermore, if the restriction to each Γi is h-
analytic for some h, then V is itself h-analytic representation of G for some
(maybe different) h.

Proof. If V is an analytic representation of G it is obviously a analytic rep-
resentation of Γi for all i. Let us show the converse. By Proposition 3.2.5
(2) we can assume that V ∈ Mod♡K■

(K■[G]) is concentrated in degree 0. By
Lemma 3.3.1, there is a tuple ι = (ι1, . . . , ιr) of elements in {1, . . . , s} such
that the multiplication map

m : Γι := Γι1 × · · · × Γιr → G

is surjective, and such that we can find a section s : G0 → Γι from an open
compact subgroup.

For each i ∈ {1, . . . , s} we let Oi : V → Cont(Γi, V ) and O la
i : V →

C la(Γi, V ) denote the orbit maps. Then, composing orbit maps we obtain a
commutative diagram

Cont(Γιr , V ) Cont(Γιr−1 × Γιr , V ) · · · Cont(Γι, V )

V

C la(Γιr , V ) C la(Γιr−1 × Γιr , V ) · · · C la(Γι, V ).

Oιr−1 Oι1

Oιr

Ola
ιr Ola

ιr−1 Ola
ι1

Then, taking pullbacks along s, we have a commutative diagram

Cont(Γι, V ) Cont(G0, V )

V

C la(Γι, V ) C la(G0, V )

s∗

Oι

Ola
ι

s∗
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such that s∗ ◦ Oι = OG0 is the orbit map of G0. It is easy to see that
s∗ ◦ O la

ι lands in V la, namely, we have to see that s∗ ◦ O la
ι (V ) lands in the

⋆1,3-invariant vectors of C la(G0, V ), but this can be easily prove using the
fact that each O la

i lands in the ⋆1,3-invariant vectors of C la(Γi, V ) for all
i. Thus, we find a G0-equivariant map V → V la whose composition with
the natural map V la → V is the identity. One deduces that V is a direct
summand of V la and afortriori a locally analytic representation of G.

The proof for the h-analyticity follows the same lines as above, knowing
that the product mΓι → G and the section s : G0 → Γι is locally on the Γi

and G given by some analytic power series. □

The following proposition tells us when the generic fiber of a p-adically
complete G-representation is locally analytic.

Proposition 3.3.3. Let V ∈ ModK■,≥0(K■[G]) a connective solid K■[G]-
module. Suppose that the following holds:

(1) There exists a p-adically complete object V + ∈ ModK+
■ ,≥0(K

+
■ [G])

with V + ⊗L
K+

■
K = V .

(2) The action of G on V +/p factors through a finite quotient, i.e. there
exists an open subgroup G0 ⊂ G such that the restriction of V +/p
to G0 belongs to the image of Mod((K+/p)■) into ModK+

■
(K+

■ [G0])

via the trivial representation.
Then V is a h-analytic representation for some h > 0.

Proof. We can assume without loss of generality that K is a finite extension
of Qp. Let g1, . . . , gd ∈ G be a local basis of G, and set Γi = g

Zp

i . By
Proposition 3.3.2, it is enough to show that the restriction of V to Γi is h-
analytic for i = 1, . . . , d. Thus, we can assume that G = Zp. In this case we
have OK,■[Zp] = OK [[X]] with X = [1] − 1, and being h-analytic for some
h > 0 is equivalent to the existence of ε > 0 such that V is a K⟨Xpε ⟩-module,
or equivalently, that K⟨Xpε ⟩ ⊗

L
OK [[X]] V = V .

The tensor product K⟨Xpε ⟩ ⊗
L
OK [[X]] V is represented by the cone

(3.2) cone[V ⊗L
K,■ K⟨T ⟩ pεT−X−−−−→ V ⊗L

K,■ K⟨T ⟩].
By taking the gi small enough, we can assume that the multiplication by X
is homotopic to 0 on V +/p. Then, the multiplication map X : V + → V +

factors through a map

V + V +

V +.

X̃

X
p

Take ε = 1, the cone (3.2) is equivalent to the cone

cone[V ⊗L
K,■ K⟨T ⟩ T−X̃−−−→ V ⊗L

K■
K⟨T ⟩]
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which is the generic fiber of

C = cone[V + ⊗L
OK ,■ OK⟨T ⟩

T−X̃−−−→ V + ⊗L
OK ,■ OK⟨T ⟩].

On the other hand, we have a natural equivalence

cone[V + ⊗L
OK
OK [T ]

T−X̃−−−→ V + ⊗L
OK
OK [T ]] = V +.

Taking derived p-completions and using [Man22b, Proposition 2.12.10] one
gets an equivalence

cone[V + ⊗L
OK ,■ OK⟨T ⟩

T−X̃−−−→ V + ⊗L
OK ,■ OK⟨T ⟩] = V +.

By inverting p one deduces that (3.2) is equivalent to V finishing the proof.
□

Remark 3.3.4. The same proof of Proposition 3.3.3 holds for a quotient
V +/pε for any ε > 0, namely, it is enough to suppose that V +/pε arises
as a trivial G0-representation.

4. Geometric interpretation of locally analytic
representations

Let G be a p-adic Lie group over a finite extension L of Qp. The pur-
pose of this section is to identify the category of locally analytic represen-
tations inside the category ModK■

(Dla(G,K)). If G is compact, the alge-
bra Dla(G,K) can be though as the global sections of a non-commutative
Stein space. Global sections of sheaves over this space will give objects of
ModK■

(Dla(G,K)), and we will prove that the functor of “global sections
with compact support” induces an equivalence of stable ∞-categories be-
tween quasi-coherent sheaves of this space and ReplaK■

(G).
In a second interpretation, for general G, we will show that the category

of solid locally analytic representations of G can be described as the derived
category of co-modules of the coalgebra C la(G,K) of L-analytic functions.
Heuristically, if Gla denotes the “analytic spectrum of C la(G,K)”, the previ-
ous description provides a natural equivalence between ReplaK■

(G) and solid
quasi-coherent sheaves of the classifying stack [∗/Gla].

4.1. Locally analytic representations as quasi-coherent Dla(G,K)-
modules.

Definition 4.1.1. Let us write Dla(G,K) = lim←−h→∞D
h(G,K) as a limit of

h-analytic distribution algebras. We define the category ModqcK■
(Dla(G,K))

of solid quasi-coherent modules over Dla(G,K) as the ∞-category

ModqcK■
(Dla(G,K)) := lim←−

h>0

ModK■
(Dh(G,K)),

where the transition maps in the limit are given by base change.
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Objects in the category C = ModqcK■
(Dla(G,K)) are sequences of mod-

ules (Vh)h with Vh ∈ ModK■
(Dh(G,K)) such that for h′ > h one has

Dh(G,K) ⊗L
Dh′ (G,K)

Vh′ = Vh. Given two objects (Vh)h and (Wh)h in

ModqcK■
(Dla(G,K)), the spectra of morphisms is given by

RHomC((Vh)h, (Wh)h) = lim←−
h

RHomDh(G,K)(Vh,Wh).

The following lemma will give a sufficient condition for a morphism of objects
in C to be an equivalence.

Lemma 4.1.2. Let (Rn)n∈N be a limit sequence of E1-K■-algebras and let
C = lim←−n

ModK■
(Rn) be the limit category along base change. Let f• :

(Xn)n → (Yn)n be a morphism of objects in C, and suppose that there are
arrows hn+1 : Yn+1 → Xn of Rn+1-modules making the following diagram
commutative

Xn+1 Xn

Yn+1 Yn.

fn+1 fn
hn+1

Then f• is an equivalence in C.

Proof. We have to prove that each fn+1 : Xn+1 → Yn+1 is an equivalence.
We have a commutative diagram by extension of scalars

Xn+1 Rn ⊗L
Rn+1

Xn+1 Xn

Yn+1 Rn ⊗L
Rn+1

Yn+1 Yn.

fn+1 1⊗fn+1

∼

fn

∼
1⊗hn+1

A diagram chasing shows that the map Yn
∼−→ Rn ⊗L

Rn+1
Yn+1

1⊗hn+1−−−−−→ Xn

defines a homotopy inverse of fn proving that f• is an equivalence. □

Next, we define natural functors between the category of modules over
Dla(G,K) and ModqcK■

(Dla(G,K)).

Lemma 4.1.3. Let j∗ : ModK■
(Dla(G,K)) → ModqcK■

(Dla(G,K)) be the
localization functor sending a Dla(G,K)-module V to the sequence (Vh)h
with Vh = Dh(G,K)⊗L

Dla(G,K)
V . Then j∗ has a right adjoint j∗ given by

j∗(Vh)h = R lim←−
h

Vh.

Proof. Let us denote C = ModqcK■
(Dla(G,K)), let V = (Vh) ∈ C and W ∈

ModK■
(Dla(G,K)). We have a natural map W → R lim←−h

(Dh(G,K)⊗L
Dla(G,K)
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W ), and by construction we have

RHomC(j
∗W,V ) = R lim←−

h

RHomDh(G,K)(Dh(G,K)⊗L
Dla(G,K) W,Vh)

= R lim←−
h

RHomDla(G,K)(W,Vh)

= RHomDla(G,K)(W,R lim←−
h

Vh),

proving that the right adjoint of j∗ is j∗ as wanted. □

Our next goal is to construct a left adjoint j! for the localization functor
j∗ : ModK■

(Dla(G,K)) → ModqcK■
(Dla(G,K)). We shall exploit the fact

that the maps Dh′
(G,K) → Dh(G,K) and Ch(G,K) → Ch′

(G,K) are of
trace class for h′ > h. Moreover, they factor through Dla-modules

Dh′
(G,K)→ Dh′

(G,K)→ Dh(G,K)

and
Ch(G,K)→ C

h
(G,K)→ Ch′

(G,K)

with Dh′
(G,K) and C

h
(G,K) being compact projective as K■-vector spaces.

We will write Ch′,B(G,K) and Dh,B(G,K) for the duals of Dh′
(G,K) and

C
h
(G,K) respectively, these are K-Banach spaces.

Lemma 4.1.4. Let f : V → W be a trace class map of K■-vector spaces.
There is a morphism RHomK(W,−) → V ∨ ⊗L

K■
− making the following

diagram commutative

W∨ ⊗L
K■
− RHomK(W,−)

V ∨ ⊗L
K■
− RHomK(V,−)

Proof. This is analogue to [CS22, Lemma 8.2]. By definition the map f arises
from a morphism K → V ∨ ⊗L

K■
W . Let P ∈ Mod(K■) we have morphisms

functorial in P

RHomK(W,P )→ RHomK(V
∨ ⊗K■

W,V ∨ ⊗K■
P )

→ RHomK(K,V ∨ ⊗L
K■

P )

= V ∨ ⊗K■
P

→ RHomK(V, P ).

□

Corollary 4.1.5. Let f : V → W be a morphism of Dla(G,K)-modules
which is trace class as K■-vector spaces such that the morphism f̃ : K →
V ∨⊗L

K■
W defining f is Dla(G,K)-equivariant. Then there is a map RHomDla(G,K)(W⊗
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χ[−d],−)→ V ∨⊗L
Dla(G,K)

− (depending on f̃) making the following diagram
commutative

W∨ ⊗L
Dla(G,K)

− RHomDla(G,K)(W ⊗ χ[−d],−)

V ∨ ⊗L
Dla(G,K)

− RHomDla(G,K)(V ⊗ χ[−d],−)

where V ∨ = RHomK(V,K), χ = (detg)−1 and d = dimL(G).

Proof. By Lemma 4.1.4 we have morphism functorial on P

RHomK(W ⊗ χ[−d], P )→ (V ⊗ χ[−d])∨ ⊗L
K■

P → RHomK(V ⊗ χ[−d], P ),

since the map K → (V )∨ ⊗K■
W is Dla(G,K)-equivariant, then the pre-

vious are morphisms of Dla(G,K)-modules. Taking invariants and using
Proposition 3.1.12 (2) one finds the desired commutative diagram. □

Lemma 4.1.6. Let h > h′, the trace class maps Dh′
(G,K)→ Dh(G,K) and

Ch(G,K) → Ch′
(G,K) arise from a natural Dla(G,K)-equivariant arrow

K → Ch′
(G,K)⊗K■

Dh(G,K).

Proof. Without lose of generality we can assume that K is a finite extension
of Qp. We can factor Dh′

(G,K)→ Dh′
(G,K)→ Dh(G,K) where Dh′

(G,K)
is a distribution algebra whose underlying K■-vector space is compact pro-
jective with dual Ch,B(G,K). Then the morphism Dh′

(G,K) → Dh(G,K)
comes from the map

K → HomK(Dh′
(G,K),Dh(G,K)) = Ch′,B(G,K)⊗K■

Dh(G,K)→ Ch′
(G,K)⊗K■

Dh(G,K),

which isDla(G,K)-equivariant by construction. Similarly, the map Ch(G,K)→
Ch′

(G,K) factors through a smith space C
h
(G,K) with dual Dh,B(G,K).

Thus, Ch(G,K)→ Ch′
(G,K) arises from the map

K → RHomK(C
h
(G,K), Ch′

(G,K)) = Dh,B(G,K)⊗K■
Ch′

(G,K)→ Dh(G,K)⊗K■
Ch′

(G,K).

□

Theorem 4.1.7. The map j∗ has a left adjoint j! given by

j! : ModqcK■
(Dla(G,K))→ ModK■

(Dla(G,K))

j!(Vh)h = (R lim←−
h

Vh)
Rla.

The functor j! is fully faithful, and j!j
∗W = WRla for all W ∈ ModK■

(Dla(G,K))

so that the essential image of j! is the category ReplaK■
(G). In particular, it

induces an equivalence of (stable ∞)-categories

ModqcK■
(Dla(G,K))

∼−→ ReplaK■
(G).
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Proof. The lines of the proof are as follows. We will first prove that there
is a natural equivalence j∗j!V

∼−→ V for V ∈ Modqc(Dla(G,K)). Then,
we show that for W ∈ ModK■

(Dla(G,K)), the map W → j∗j
∗W gives

rise a natural equivalence WRla ∼−→ j!j
∗W . Taking inverses, these define

a unit V
∼−→ j∗j!V and a counit j!j

∗W
∼−→ WRla → W which will give

automatically an adjunction such that j! is fully faithful with essential image
the category of locally analytic representations. To lighten notations, we will
denote Dla = Dla(G,K), Dh = Dh(G,K) and Ch = Ch(G,K) for any h > 0,
and we omit the decoration for derived limits and tensor products. We will
also use Corollary 3.1.10 to write the locally analytic vectors as colimits of
Hom’s spaces from distribution algebras.

Step 1. We first show that there is a natural equivalence j∗j!(Vh)h →
(Vh)h. Unravelling the definitions, we have

j∗j!(Vh)h =
(
Dh3 ⊗Dla lim−→

h2

RHomDla(Dh2 , lim←−
h1

Vh1)
)
h3
.

In the above description, observe that we can assume that h1 ≥ h2 ≥ h3.
Observe that the map Dla → Dh2 induces a map

(4.1) Dh3 ⊗Dla lim−→
h2

RHomDla(Dh2 , lim←−
h1

Vh1)→ Vh3 .

Indeed, this follows since

Dh3 ⊗Dla lim−→
h2

RHomDla(Dla, lim←−
h1

Vh1) = Dh3 ⊗Dla lim←−
h1

Vh1 → Vh3 .

This provides a natural morphism j∗j!(Vh)h → (Vh)h for (Vh)h ∈ ModqcK■
(Dla).

We want to prove that this map is an equivalence, for this we will use Lemma
4.1.2. The key idea to will be to successively use that, for h > h′ the restric-
tion maps Ch → Ch′ are trace class maps and use Corollary 4.1.5 to move
from one sequencial diagram to the other.

Consider, for any h2 ≥ h3 > h′3 the following commutative diagram:

Dh3 ⊗Dla RHomDla(Dh2 , lim←−h1
Vh1) Dh′

3 ⊗Dla RHomDla(Dh2 , lim←−h1
Vh1)

lim←−h1

(
Dh3 ⊗Dla RHomDla(Dh2 , Vh1

)
)

lim←−h1

(
Dh′

3 ⊗Dla RHomDla(Dh2 , Vh1
)
)

RHomDla(Ch3 ⊗ χ[−d], RHomDla(Dh2 , lim←−h1
Vh1

)) RHomDla(Ch′
3 ⊗ χ[−d], RHomDla(Dh2 , lim←−h1

Vh1
))

The horizontal maps are the obvious maps, and the first vertical maps are
the natural maps. The only maps needing explanation are the last verti-
cal ones and the dotted diagonal arrows. The last vertical arrows are con-
structed as follows: we have Ch3 = lim←−h′<h3

Ch′ and Dh3 = lim−→h′<h3
Dh′

=

lim−→h′<h3
RHomK(Ch′

,K) with trace class transition maps. The second equal-

ity for the distribution algebras follows since the maps Ch → Ch′ factor
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through the compact projective K■-vector space C
h, so in the colimit the

derived or non-derived Hom’s are equal. Then, the second vertical arrows
arise from the natural maps

lim−→
i

V ∨
i ⊗ (−)→ lim−→

i

RHom(Vi,−)→ RHom(R lim←−
i

Vi,−).

The dashed arrows are given by applying Corollary 4.1.5 to the restriction
map f : V = Ch3 → W = Ch′

3 which is trace class and evaluating it
at RHomDla(Dh2 , Vh1) for each h1 and passing to the limit. Furthermore,
evaluating Corollary 4.1.5 at the object RHomDla(Dh2 , X) with X = Vh1

and lim←−h1
Vh1 gives us a map

RHomDla(Ch3 ⊗ χ[−d], RHomDla(Dh2 , X))→ Dh′
3 ⊗Dla RHomDla(Dh2 , X).

Corollary 4.1.5 also implies that the previous functors are natural on X and
that the dashed arrows in the diagram above are compatible. We note that
by adjunction

RHomDla(Ch3 ⊗ χ[−d], RHomDla(Dh2 , lim←−
h1

Vh1))

= RHomDla(Ch3 ⊗ χ[−d]⊗Dla Dh2 , lim←−
h1

Vh1))

= RHomDla(Ch3 ⊗ χ[−d], lim←−
h1

Vh1)),

where the last equality follows since Ch3 is already a Dh2-module, as h2 ≥ h3.
The same holds for the analogous term with h′3.

On the other hand, we have another commutative diagram

lim←−h1
RHomDla(Ch3 ⊗ χ[−d], Vh1) lim←−h1

RHomDla(Ch′
3 ⊗ χ[−d], Vh1)

lim←−h1

(
Dh3 ⊗L

Dla Vh1

)
lim←−h1

(
Dh′

3 ⊗L
Dla Vh1

)
Vh3 Vh′

3

≀ ≀

Summarizing, joining both diagrams and taking colimits as h2 →∞ we get
a commutative diagram

Dh3 ⊗Dla lim−→h2
RHomDla(Dh2 , lim←−h1

Vh1) Dh′
3 ⊗Dla lim−→h2

RHomDla(Dh2 , lim←−h1
V1)

lim←−h1
RHomDla(Ch3 ⊗ χ[−d], Vh1) lim←−h1

RHomDla(Ch′
3 ⊗ χ[−d], Vh1)

Vh3 Vh′
3
.
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Finally, a diagram chasing shows that the vertical maps commute with the
morphism (4.1), obtaining a (final!) commutative diagram

Dh3 ⊗Dla lim−→h2
RHomDla(Dh2 , lim←−h1

Vh1) Dh′
3 ⊗Dla lim−→h2

RHomDla(Dh2 , lim←−h1
Vh1)

Vh3 Vh′
3
.

Now Lemma 4.1.2 concludes the proof of Step 1.
Step 2. Next, we will prove that for W ∈ ModK■

(Dla(G,K)) the unit map
W → j∗j

∗W induces an equivalence on locally analytic vectors WRla ∼−→
(j∗j

∗W )Rla = j!j
∗W . Composing the inverse of this map together with the

natural arrow WRla → W one obtains a counit j!j
∗W → W . To prove the

equivalence on locally analytic vectors note

(j∗j
∗W )Rla = lim−→

h2

RHomDla(Dh2 , lim←−
h1

(Dh1 ⊗L
Dla W ))

= lim−→
h2

lim←−
h1

RHomDla(Dh2 ,Dh1 ⊗L
Dla W )

= lim−→
h2

lim←−
h1

((Ch2 ⊗ χ[−d])⊗Dla Dh1 ⊗L
Dla W )

= lim−→
h2

(Ch2 ⊗ χ[−d])⊗L
Dla W

= lim−→
h2

RHomDla(Dh2 ,W )

= WRla,

where the first equality is just the definition, the second one is obvious, in
the third and fifth equalities we use Corollary 4.1.5, and the fourth follows
since Ch2 is already a Dh1-module since one can assume h1 ≥ h2 in the limit.

Step 3. We now show the adjunction using the first two steps. Indeed, let
V ∈ Modqc(Dla(G,K)) and W ∈ Mod(Dla(G,K)). We have

RHomDla(j!V,W ) = RHomDla(j!V,W
Rla)

= RHomDla(j!V, (j∗j
∗W )Rla)

= RHomDla(j!V, j∗j
∗W )

= RHomC(j
∗j!V, j

∗W )

= RHomC(V, j
∗W ),

where in the first and third equalities we used the adjunction of Corollary
3.2.7 since j!V is locally analytic. The second equality follows from Step 2,
the fourth equality follows from Lemma 4.1.3, and the last equality follows
from Step 1.

Step 4. Finally, the last thing to check is that the essential image of j!
are the locally analytic functions. But this follows immediately from Step 2
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since WRla = j!j
∗W for any W ∈ ModK■

(Dla(G,K)). This concludes the
proof of the theorem. □

Corollary 4.1.8. Let V ∈ ModqcK■
(Dla(G,K)), then the counit map j∗j∗V →

V is an equivalence. In particular, j∗ also defines a fully faithfull embedding
from ModqcK■

(Dla(G,K)) into ModK■
(Dla(G,K)) with essential image those

Dla(G,K)-modules W such that W = j∗j
∗W .

Proof. By definition one has j∗V = R lim←−h
Vh. By Theorem 4.1.7 j∗ is a right

adjoint, in particular it commutes with limits, one deduces that j∗j∗V =
R lim←−h

j∗Vh, by definition this object is the sequence

((R lim←−
h

j∗Vh)h′)h′ = (lim←−
h

(Dh′ ⊗Dla Vh))h′ = (Vh′)h′

which proves the corollary. □

We now give some examples showing how this equivalence behaves. In
particular, it does not preserve the natural t-structures on both sides and
hence does not induce at all an equivalence of abelian categories.

Example 4.1.9. We have
(1) j∗Dla(G,K) = (Dh(G,K))h.
(2) j!j

∗Dla(G,K) = C la(G,K)⊗ χ[−d].
(3) j∗C la(G,K) = (Dh(G,K)⊗ χ−1[d])h.
(4) If V is a Dh(G,K)-module then the sequence (V )h′>h defines an

element in ModqcK■
(Dla(G,K)) and one has j!(V )h = j∗(V )h = V . In

particular, for each h > 0, Theorem 4.1.7 restricts to the equivalences
of [RJRC21, Theorem 4.36].

Proof. The first point follows by definition. Part (2) follows from (1) and
Corollary 3.1.16. Indeed, we have

j!j
∗Dla(G,K) = (lim←−

h

Dh(G,K))Rla = Dla(G,K)Rla.

Applying j∗ to the second example, we obtain

j∗C la(G,K) = j∗j!j
∗Dla(G,K)⊗χ−1[d] = j∗Dla(G,K)⊗χ−1[d] = (Dh(G,K)⊗χ−1[d])h,

where for the second equality we used the equivalence of j∗j! → id of
Theorem 4.1.7. The last point follows directly from the definitions. In-
deed, if V ∈ ModK■

(Dla(G,K)) is in fact a Dh(G,K)-module, then j∗V =

(Dh′
(G,K)⊗Dla(G,K) V )h′ = (V )h′≥h, which is a constant sequence, and we

have j∗(V )h = lim←−h
V = V and j!(V )h = (j∗V )Rla = V Rla = V . □

Example 4.1.10. As the notation suggests, the functors j∗, j∗ and j! should
come from a 6-functor formalism of “non-commutative spaces” which at the
moment is not available. When G = Zp, nevertheless, the functors j∗, j∗
and j! can be interpreted as part of the six functors of the open rigid ball of
radius one.
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Definition 4.1.11. We define a duality functor on C = ModqcK■
(Dla(G,K))

by mapping an object V = (Vh)h to

D(V ) := j∗
(
lim←−
h

RHomDla(Vh,Dh(G,K)⊗χ−1[d])
)
= lim←−

h

j∗RHomDla(Vh,Dh(G,K)⊗χ−1[d]).

Lemma 4.1.12. Let V ∈ ModK■
(Dla(G,K)), then

j∗RHomDla(V,Dla(G,K)) = j∗(lim←−
h

(RHomDla(Vh,Dh(G,K))).

Proof. We compute

j∗RHomDla(V,Dla) = (Dh ⊗L
Dla RHomDla(V,Dla))h.

By Corollary 4.1.5, this system is cofinal with the system

(RHomDla(Ch ⊗ χ[−d], RHomDla(V,Dla))h.

But

RHomDla(Ch ⊗ χ[−d], RHomDla(V,Dla)) = RHomDla(Ch ⊗ χ[−d]⊗Dla V,Dla)

= RHomDla(V,RHomDla(Ch ⊗ χ[−d],Dla)),

and hence, applying again Corollary 4.1.5, we get that the Pro-system (RHomDla(Ch⊗
χ[−d],Dla))h is equivalent to the Pro-system (Dh⊗DlaDla)h = (Dh)h. We de-
duce from Corollary 4.1.8 a natural equivalence of Pro-systems j∗RHomDla(V,Dla) =
(RHomDla(Vh,Dh)h which proves the lemma. □

Proposition 4.1.13. Let V ∈ ModK■
(Dla(G,K)), then

j∗RHomK(V,K) = D(j∗V )

where we use the involution of Dla(G,K) to see both modules as left Dla(G,K)-
modules. In other words, the duality functors as K-vector space or Dla(G,K)-
module become the same (modulo a twist) in the category of quasi-coherent
Dla(G,K), e.q. in the category of solid locally analytic representations.

Proof. By definition we have that j∗RHomK(V,K) = (Dh⊗L
DlaRHomK(K,V ))h.

By Corollary 4.1.5 the Pro-system j∗(RHomK(V,K)) is cofinal with the Pro-
system

(RHomDla(Ch ⊗ χ[−d], RHomK(V,K)))h.

We also have that

RHomDla(Ch ⊗ χ[−d], RHomK(V,K)) = RHomK(Ch ⊗ χ[−d]⊗L
Dla V,K)

= RHomDla(V,RHomK(Ch ⊗ χ[−d],K)).

Using Lemma 4.1.4 we see that the Pro-system (RHomK(Ch⊗χ[−d],K))h is
cofinal with (Dh ⊗ χ−1[d])h. One deduces that j∗(RHomK(V,K)) is cofinal
with the Pro-system (RHomDla(V,Dh⊗χ−1[d]))h. One concludes by Lemma
4.1.12. □
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4.2. Admissible and coadmissible representations.

Definition 4.2.1. We define the derived category of perfect Dla(G,K)-
modules to be the inverse limit ModperfK (Dla(G)) = lim←−h

ModperfK (Dh(G,K))

of perfectDh(G,K)-modules. Under the fully faithful embedding j∗ : ModqcK■
(Dla(G,K))→

ModK■
(Dla(G,K)), we denote by ModcoadK (Dla(G)) the essential image of

ModperfK (Dla(G)) and call it the derived category of coadmissible Dla(G,K)-
modules. Analogously, under the equivalence j! : ModqcK■

(Dla(G,K)) →
ReplaK■

(G), we denote by RepadK (G) the essential image of ModcoadK (Dla(G))
and call it the derived category of admissible locally L-analytic representa-
tions of G.

Let us relate RepadK (G) with a more classical definition of the category of
admissible representations. We first need to recall some properties of the
distribution algebras.

Proposition 4.2.2 ([ST03]).
(1) There are Banach distribution algebras D(h)(G,K) with dense and

trace class transition maps D(h′)(G,K) → D(h)(G,K) for h′ > h,
such that Dla(G,K) = lim←−h

D(h)(G,L) is presented as a Fréchet-
Stein algebra. In particular the rings D(h)(G,K) are noetherian so
any finite D(h)(G,K)-module is naturally a Banach space, and the
morphisms of algebras Dla(G,K) → D(h)(G,K) and D(h′)(G,K) →
D(h)(G,K) for h′ > h are flat.

(2) The rings D(h)(G,K) are Auslander of dimension d = dimLG. In
particular, any D(h)(G,K)-module of finite type has a finite projective
resolution of length at most d.

Remark 4.2.3. The algebras D(h)(G,K) used by Schneider and Teitelbaum
(denoted by Dr(G,K) in loc. cit.) are different from those Dh(G,K)
used in this paper. It should be true that that algebras Dh(G,K) are
noetherian and Auslander of dimension d, and that the transition maps
Dla(G,K) → Dh(G,K) and Dh′

(G,K) → Dh(G,K) are flat for h′ > h,
see [CS22, Theorem 10.5]. On the other hand, the systems (D(h)(G,K))h
and (Dh(G,K))h are cofinal, this implies that we can also write

ModqcK■
(Dla(G,K)) = lim←−

h

ModK■
(D(h)(G,K)).

Corollary 4.2.4. The category ModcoadK (Dla(G,K)) has a natural t-structure
with heart given by the abelian category of coadmissible Dla(G,K)-modules,
i.e. Dla(G,K)-modules of the form V = lim←−h

(Vh)h, where the Vh’s are
D(h)(G,K)-modules of finite type such that D(h)(G,K) ⊗L

D(h′) Vh′ = Vh for
h′ > h.

Proof. The flatness of the rings of distribution algebras implies that the t-
structures on the categories ModperfK (D(h)(G,K)) are preserved under base
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change, this shows that ModcoadK (Dla(G,K)) has a natural t-structure and
that the heart is, by definition, the abelian category of coadmissibleDla(G,K)-
modules of [ST03]. □

Remark 4.2.5. One can ask for the relation of the (triangulated) bounded
derived category of the abelian category of coadmissible Dla(G,K)-modules
and the homotopy category of the bounded objects in ModcoadK (Dla(G,K)).
We do not have an answer to this question, however the first could be poorly
behaved as the abelian category of coadmissible Dla(G,K)-modules might
not have enough injectives or projectives.

Lemma 4.2.6. Let V ∈ Modperf,♡K■
(Dla(G)) be a perfect Dla(G,K)-module

in the heart. Then (j∗V )∨,Rla is a locally analytic representation concentrated
in degree 0.

Proof. Let V = (Vh)h be a perfect Dla(G,K) module. By definition we have

(j∗V )∨,Rla = lim−→
h

RHomDla(D(h), RHomK(j∗V,K)) = lim−→
h

RHomK(D(h)⊗L
Dlaj∗V,K).

By Corollary 4.1.8 we have j∗j∗V = V , so thatD(h)⊗Dlaj∗V = Vh. Therefore

(j∗V )∨,Rla = lim−→
h

RHomK(Vh,K),

but Vh′ is a D(h′)-module of finite presentation, and Vh = D(h) ⊗D(h′) Vh′ .
One deduces that Vh′ → Vh is a trace class map, defined by a trace map
K → H0(V ∨

h′ )⊗K■
Vh′ . Let Wh′ := H0(V ∨

h′ ), one then has a factorization

V ∨
h → RHomK(Wh′ ⊗L

K■
Vh,Wh′)

→Wh′

→ V ∨
h′

where the first map is the obvious one, the second follows from the trace map
K → H0(V ∨

h′ )⊗K■
Vh′ , and the last from the natural map Wh′ = H0(V ∨

h′ )→
V ∨
h′ . One concludes that

lim−→
h

V ∨
h = lim−→

h

Wh

sits in degree 0 which proves the lemma. □

The reader might ask about the relation between the equivalence provided
by Theorem 4.1.7 and the classical anti-equivalence of categories [ST03, The-
orem 6.3] of Schneider and Teitelbaum. In [RJRC21, Proposition 4.42] we
have shown how one can recover this result from our previous work. The
following result, which is a summary of many of the previous results of this
section, shows how Schneider and Teitelbaum’s equivalence sits inside the
equivalence of Theorem 4.1.7, proving that our theorem can be seen as a
refinement of [ST03, Theorem 6.3].
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Proposition 4.2.7. We have a commutative diagram

ModK■
(Dla(G,K)) ModqcK■

(Dla(G,K))

ReplaK■
(G) ModqcK■

(Dla(G,K)),

j∗

(−)∨,Rla D(−)

j!

where the right vertical arrow is given by the dualizing functor of Definition
4.1.11. Moreover, when restricted to the abelian category of coadmissible
Dla(G,K)-modules, the composition j!◦D◦j∗ restricts to the anti-equivalence
of [ST03, Theorem 6.3].

Proof. We first prove that the diagram is commutative. By Proposition
4.1.13, we know that D ◦ j∗V = j∗RHomK(V,K), so that

j! ◦ D ◦ j∗ = (j!j
∗V ∨) = (V ∨)Rla

by the second step of the proof of Theorem 4.1.7. Lemma 4.2.6 shows
that, when we restrict to the subcategory Modcoad,♡K■

(Dla(G,K)), this com-
position of functors is concentrated in degree 0 and hence coincides with
V 7→ HomK(V,K) which is an admissible locally analytic representation. □

Proposition 4.2.8. Let V ∈ RepadK (G) be an admissible locally analytic
representation. Then, letting V ∨ := RHomK(V,K), we have

D(j∗V ∨) = j∗V

Proof. Since V is admissible one has that V = j!W for W ∈ ModperfK (Dla(G,K)),
in particular j∗V = W . The object W is reflexive for the functor D(−) be-
ing a limit diagram of perfect Dh(G,K)-modules, one deduces that W =
D(D(W )). On the other hand, Proposition 4.1.13 says that D(W ) = j∗(V ∨),
one deduces that j∗V = D(D(W )) = D(j∗V ∨) proving the proposition. □

We conclude by studying the dualizing functor in the non-compact case.
Let G be a locally profinite p-adic Lie group over L and G0 ⊂ G an open
compact subgroup. We denote

Dla
(G,K) = RHomDla(G0,K)(Dla(G,K),Dla(G0,K)) =

∏
g∈G/G0

Dla(G0,K),

one easily verifies that this is the dual space of the locally analytic functions
of G with compact support. We define a duality functor in ModK■

(Dla(G,K))

by D(W ) = RHomDla(G,K)(W,Dla
(G,K)⊗ χ−1[d]). Notice that by adjunc-

tion
D(W ) = RHomDla(G0,K)(W,Dla(G0,K)⊗ χ−1[d])

so that it is the natural induction of the duality functors from compact p-
adic Lie groups. Observe that the duality functor just defined is compatible
with the duality functor on ModqcK■

(Dla(G0,K)) of Definition 4.1.11, namely
if W ∈ ModK■

(Dla(G0,K)), then by Lemma 4.1.12 one has D(j∗W ) =
j∗D(W ). We have the following proposition.
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Corollary 4.2.9. We have a commutative diagram

ReplaK■
(G) ModK■

(Dla(G))

ReplaK■(G) ModK■
(Dla(G)).

(−)∨,Rla

(−)Rla

D(−)

(−)Rla

In other words, the duality functor D is compatible with the duality functor
(−)∨,Rla of ReplaK■

(G).

Proof. Observe that, if G0 ⊂ G is an open compact subgroup, since for
any W ∈ ModK■

(Dla(G,K)) we have j∗(W ) = j∗j!j
∗(W ) = j∗(WRla) by

Theorem 4.1.7, the diagram of Proposition 4.2.7 can be written as

ReplaK■
(G0) ModqcK■

(Dla(G0,K))

ReplaK■
(G0) ModqcK■

(Dla(G0,K)).

(−)∨,Rla D(−)

j!

j!

The corollary follows since D(W ) = RHomG0
(W,Dla(G0,K)⊗χ−1[d]) is the

duality functor for G0, and the duality functor D : ModqcK■
(Dla(G0,K)) →

ModqcK■
(Dla(G0,K)) is the pullback by j∗ of the duality functor on ModK■

(Dla(G0,K))

by Lemma 4.1.12. □

4.3. Locally analytic representations as comodules of C la(G,K). Let
G be a p-adic Lie group over L. In this section we show that the category
of locally L-analytic representations of G can be undestood as the derived
category of quasi-coherent sheaves over a suitable “classifying stack” [∗/Gla]
of G. Throughout this paper we will only see this stack as a formal object
for which the category of quasi-coherent sheaves can be defined by hand as
a limit of a cosimplicial diagram; an honest definition as a stack will require
a notion of stack on analytic rings that we will not explore in this work.

Definition 4.3.1.
(1) Let G be a group acting on a space X. We define the simplicial

diagram (Gn×X)[n]∈∆op with boundary maps din : Gn×X → Gn−1×
X for 0 ≤ i ≤ n defined by

din(gn, · · · , g1, x) =


(gn, . . . , g2, g1x) if i = 0

(gn, . . . , gi+1gi, . . . , g1, x) if 0 < i < n

(gn−1, . . . , g1, x) if i = n

and degeneracy maps sin : Gn ×X → Gn+1 ×X for 0 ≤ i ≤ n given
by sending the tuple (gn, . . . , g1, x) to (gn, . . . , 1, . . . , g1, x) with 1 in
the i+ 1-th coordinate.
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(2) Let G0 ⊂ G be an open compact subgroup. We define the category
of quasi-coherent sheaves on Gla to be

ModqcK■
(Gla) :=

∏
g∈G/G0

ModK■
(C la(gG0,K)).

(3) We define the category of quasi-coherent sheaves on the classifying
stack [∗/Gla] to be the limit

ModqcK■
([∗/Gla]) = lim←−

[n]∈∆
ModqcK■

(Gn,la).

Remark 4.3.2. The definition of ModqcK■
(Gla) is made in such a way that for

G compact we can see Gla as the analytic spectrum of C la(G,K), and that
for G arbitrary Gla =

⊔
g∈G/G0

gGla
0 . Then, the definition of ModqcK■

([∗/Gla])

follows the intuition that [∗/Gla] is the geometric realization of the simplicial
space (Gn,la)n∈∆op .

Theorem 4.3.3. There is a natural equivalence of symmetric monoidal sta-
ble ∞-categories

ReplaK■
(G) = ModqcK■

([∗/Gla]),

where the tensor product in the LHS is the tensor product over K■.

We need a lemma.

Lemma 4.3.4. There is a natural symmetric monoidal equivalence between
the abelian category Repla,♡K■

(G) of locally analytic representations of G, and
the abelian category of comodules of the functor C la(G,−) mapping V ∈
Mod♡(K■) to C la(G,V ) =

∏
g∈G/G0

(C la(gG0,K)⊗K■
V ).

Proof. Given a map O : V → C la(G,V ) we have a morphism V → C la(G,V )→
HomK(Dla(G,K), V ) which by adjunction gives rise a map ρ : Dla(G,K)⊗K

V → V . If O is a comodule then ρ is a module structure and V defines an
object in Mod♡K■

(Dla(G,K)). Restricting the co-module structure to G0 one
finds that the morphism O|G0 : V → C la(G0,K)⊗K■

V lands in the invari-
ants of the ⋆1,3-action of Dla(G,K) in right term. Thus, by taking invariants
one finds that V is a direct summand of V la which implies that V is locally
analytic itself, i.e. V ∈ Repla,♡K■

(G). Conversely, given V ∈ Repla,♡K■
(G) one

has an orbit map O : V → C la(G,V ) which is clearly a comodule for the
functor C la(G,−). It is easy to check that these constructions are inverse
each other. □

Proof of Theorem 4.3.3. By [Man22b, Proposition A.1.2] the category ModqcK■
([∗/Gla])

is the derived category of descent datum of ∗ over Gla via the trivial action,
which is the same as the abelian category of comodules V → C la(G,V ). By
Lemma 4.3.4 this abelian category is naturally isomorphic to Repla,♡K■

(G) as
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symmetric monoidal categories, taking derived categories one has an equiv-
alence

ReplaK■
(G) = ModqcK■

([∗/Gla])

as symmetric monoidal stable ∞-categories. □

Corollary 4.3.5. Let G be a compact p-adic Lie group over L, then we have
natural equivalences of stable ∞-categories

ModqcK■
(Dla(G,K)) = ReplaK■

(G) = ModqcK■
([∗/Gla]).

4.4. Classifying stack of rank one (φ,Γ)-modules and locally ana-
lytic representations of GL1. In this section, we explore an interesting
application of Theorem 4.1.7 for the group O×

L to the locally analytic cate-
gorical p-adic Langlands correspondence for GL1 as formulated in [EGH23].

We let X1 be the classifying stack of rank 1 (φ,Γ)-modules over the Robba
ring on affinoid Tate algebras over K = (K,K+), cf. [EGH23, §5]. This stack
is represented (cf. [EGH23, §7.1]) by the quotient

[(W̃ ×Gan
m )/Gan

m ]

with trivial action of Gan
m , where W̃ is the rigid analytic weight space of O×

L
whose points on an affinoid ring A are given by continuous (eq. Qp-locally
analytic) characters Hom(O×

L , A), and where Gan
m denotes the rigid analytic

multiplicative group. Let L×
Qp

be the restriction of scalars of L× from L to
Qp. In [EGH23], the authors conjecture that the natural functor

(4.2) LLla
p : ReplaK■

(L×
Qp

)→ Modqc■ (X1)

given by LLla
p (π) = OX1 ⊗L

Dla(L×
Qp

,K)
π (cf. [EGH23, Equation (7.1.3)]) is

fully faithful when restricted to a suitable category of “tempered” (or finite
slope) locally analytic representations.

On the other hand, for the functor LLla
p to be fully faithful without re-

stricting to a smaller subcategory of ReplaK■
(L×

Qp
), one can also modify the

stack X1, namely, we consider

Xmod
1 := [W̃ ×Galg

m /Galg
m ]

where Galg
m is the analytic space attached to the ring (K[T±1],K+)■ =

K■ ⊗Z Z[T±1]. To lighten notation we will use the version of X1 and Xmod
1

involving the space W ⊂ W̃ of L-locally analytic characters, and the group
L× instead. The same arguments will hold for the spaces defined over Qp.

To describe the category of solid quasi-coherent sheaves of the original
stack X1 in terms of representation theory we need to introduce a certain
algebra of “tempered sequences” on Z.

Definition 4.4.1.
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(1) We let ℓtemp
Z,K ⊂

∏
ZK be the subalgebra with respect to the point-

wise multiplication consisting on sequences (an)n∈Z such that there
exists r > 0 such that supn∈Z{|an|p−r|n|} < ∞. Equivalently, Let
O(Gan

m ) = lim←−n→∞K⟨pnT, p
n

T ⟩, then ℓtemp
Z,K = O(Gan

m )∨. We let Ztemp

denote the analytic space defined by the algebra ℓtemp
Z,K .

(2) We let L×,temp be the analytic space associated to the algebra Ctemp(L×,K) :=

C la(O×
L , L)⊗L

K■
ℓtemp
Z,K of tempered locally analytic functions on L×.

Equivalently, we have

Ctemp(L×,K) = O(W ×Gan
m )∨.

(3) We let Reptemp
K■

(L×) := Modqc■ ([∗/L×,temp]) be the category of tem-
pered (locally analytic) representations of L×.

Remark 4.4.2. In [CS20, Definition 13.5] Clausen and Scholze have intro-
duced a notion of analytic space as certain sheaves in the category of ana-
lytic rings with respect to steady localizations. The analytic spaces Ztemp and
L×,temp can be considered in this category, or equivalently, as the presheaves
on analytic rings corepresented by the corresponding algebra.
Lemma 4.4.3. The spaces Ztemp and L×,temp have unique commutative
group structures compatible with the natural maps Z → Ztemp and L×,la →
L×,temp.
Proof. A commutative group structure on Ztemp and L×,temp is the same
as a commutative Hopf algebra structure on their spaces of functions. But
by definition ℓtemp

Z,K and Ctemp(L×,K) are the duals of the global sections
of Gan

m and W × Gan
m which are themselves commutative groups, proving

that ℓtemp
Z,K and Ctemp(L×,K) have a natural structure of commutative Hopf

algebras. □

Theorem 4.4.4. There are natural equivalences of stable ∞-categories
(4.3)
ModqcK■

([Z/L×,la])
∼−→ ModqcK■

(Xmod
1 ), ModqcK■

([Ztemp/L×,temp])
∼−→ ModqcK■

(X1)

Furthermore, the functor LLla
p defined in (4.2) induces equivalences

(4.4)
ReplaK■

(L×)
∼−→ ModqcK■

(W ×Galg
m ), Reptemp

K■
(L×)

∼−→ ModqcK■
(W ×Gan

m ).

Remark 4.4.5. The equivalences of Theorem 4.4.4 (1) should follow from
a Cartier duality theory for quasi-coherent sheaves in analytic spaces, this
would imply that the natural symmetric monoidal structures are transformed
in the convolution products via the Fourier-Moukai transform. In the cases
of the theorem, we will roughly prove that modules over the Hopf algebras
of the groups are equivalent to comodules of the dual Hopf algebras.
Proposition 4.4.6. Let A be a flat solid K■-algebra. Then there are natural
equivalences

ModqcK■
([AnSpecA/Galg

m ]) = Func(Z,ModK■
(A))
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and
ModqcK■

(AnSpecA×Galg
m ) = ModqcK■

([AnSpecA/Z])

functorial with respect to base change B ⊗L
A,■ −. In particular, the same

statement hold for analytic spaces glued from flat K-algebras.

Proof. By [Man22b, Proposition A.1.2], the∞-category ModqcK■
([AnSpecA/Galg

m ])

is the derived category of A[T±1]-comodules over A. The data of a A[T±1]-
comodule is the same as the data of a Z-graded A-algebra, namely, given M
an A[T±1]-comodule and O : M →M⊗AA[±1] the co-module map, one has
a graduation M =

⊕
iM(i) by defining M(i) = O−1(M ⊗T−i). Conversely,

if M =
⊕

i∈ZM(i) one defines the co-module structure O : M →M⊗A[T±1]

by mapping O : M(i)
∼−→M(i)⊗T−i. We have constructed a natural equiv-

alence
Mod♡K■

(AnSpecA/Gm)
∼−→ Func(Z,Mod♡K■

(A)),

taking derived categories we get the first equivalence.
For the second one, the category ModqcK■

(AnSpecA × Galg
m ) is by defi-

nition the derived category of K■-solid A[T±1] = A[Z]-modules, i.e. Z-
representations on solid A-modules. This gives a natural equivalence

Mod♡K■
(A[T±1]) = Modqc,♡K■

([AnSpecA/Z]),

taking derived categories one obtains the second equivalence of the lemma.
□

Remark 4.4.7. In the proof of the following lemma we are going to use some
facts coming from a 6-functor formalism for solid quasi-coherent sheaves of
analytic stacks over Qp,■ in the D-topology as in [Sch23, Definition 4.14].
This theory has been partially constructed in [CS19] and [CS22] for schemes
or complex analytic spaces, and the methods of [Man22b, Appendix A.5],
[Man22a, §5-9] and [Sch23] are enough to give proper foundations. In par-
ticular, we assume that:

(1) The family E of morphisms in the 6-functor formalism (see [Man22b,
Definition A.5.7]) contains all maps f : X → Y of rigid spaces. In
particular, we have shriek functors f! and f ! satisfying proper base
change and projection formula, and compatible under compositions.

(2) Let f : A → B be a map of analytic rings that defines a map
of analytic spectra f : AnSpecB → AnSpecA. If the pullback
f∗ : ModA → ModB is an open immersion in the sense of [CS22,
Proposition 6.5], then f ∈ E and f! is the left adjoint of f∗. Simi-
larly, if B = BA/ has the induced analytic ring structure, then f ∈ E
and f! = f∗ is the right adjoint of f∗.

(3) Smooth morphisms of rigid spaces are cohomologically smooth (cf.
[Sch23, Definition 5.1]). For partially proper smooth rigid spaces
over a point this follows from the proof of [CS22, Proposition 13.1]
for complex analytic spaces. Moreover, given f : X → Y a smooth
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map of rigid spaces, we have that f ! = f !OY ⊗ f∗ and we have a
natural isomorphism f !OY = ΩdimX−dimY

X/Y [dimX − dimY ], the last
equality can be proven via the same argument of [CS19, Theorem
11.6].

(4) Being cohomologically smooth is local in the target for the D-topology
(see [Sch23, Definition 4.18 (2)]), this follows from arguments ana-
logue to those of [Man22a, Lemma 8.7 (ii)]. In particular, if G is a
smooth rigid group over K = (K,K+), and ∗ = AnSpecK■, then
f : ∗ → [∗/G] is cohomologically smooth. Indeed, by definition
[∗/G] is the geometric realization of the Čech nerve {Gn}n∈∆op , so
that the map ∗ → [∗/G] is a D-cover and ∗ ×[∗/G] ∗ = G which is
cohomologically smooth over ∗ by (3).

(5) Being cohomologically proper is local in the target for the D-topology,
this follows from the same arguments of [Man22a, Lemma 9.8 (iii)].
In particular, if G = AnSpecA is the analytic affinoid group associ-
ated to a K■-algebra with the induced analytic structure, then the
map ∗ → [∗/G] is cohomologically proper.

In this section we do not pretend to give proper foundations of the theory
of analytic stacks or the 6-functor formalism of solid quasi-coherent sheaves.
Instead, we only give an example of the power of these abstract tools, and
their relation with our Theorem 4.1.7 and categorical Langlands for GL1.
This section is completely independent of the rest of the paper.

Before stating the next proposition, we explain how the formalism of cat-
egorified locales of [CS22] allows us to see Gan

m and Galg
m in the same footing.

let P1,an
K be the projective space over K with coordinates [x, y] seen as a rigid

space, let 0 = [0 : 1] and ∞ = [1 : 0] be marked points. Then P1,an
K can be

given a structure of categorified local as in [CS22, Definition 11.14]. We can
identify Gan

m as the complement of {0,∞} in P1,an
K as rigid analytic spaces.

We can embed
j : Gan

m ⊂ Galg
m

as the open subspace in the sense of categorified locales whose complement
is the idempotent K[T±1]-algebra

C = K{T}[T−1]⊕K{T−1}[T ]

where K{U} = lim−→r→∞K⟨ Upr ⟩ is the algebra of germs of functions of A1,an
K

at 0, and unit map K[T±1]→ C given by (1,−1). Indeed, by [CS22, Propo-
sition 5.3 (4)] the idempotent algebra defined by {0,∞} in P1,an

K is equal
to

D = K{T} ⊕K{T−1}
with T = x/y, namely, we can write {0,∞} as the intersection of the union
of two discs centered in 0 and ∞ and radius going to 0. By [CS22, Theorem
6.10] we have a natural isomorphism of analytic spaces P1,an

K = P1,alg
K between

the rigid analytic and the schematic projective spaces (in the notation of
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loc. cit. the rigid analytic and the schematic projective space correspond
to C(X,X) and C(X) respectively). Taking pullbacks of D through the
map Galg

m → P1,alg
K one obtains that C = K{T}[T−1] ⊕ K{T−1}[T ] is the

complement idempotent algebra of Gan
m in Galg

m as claimed.

Proposition 4.4.8. Let A be an animated solid K■-algebra. There are nat-
ural equivalences

ModqcK■
([AnSpecA/Gan

m ]) = ModqcK■
(AnSpec(A⊗K■

ℓtemp
Z,K ))

and
ModqcK■

(AnSpecA×Gan
m ) = ModqcK■

([AnSpec(A)/Ztemp])

natural with respect to base change B⊗L
A−. In particular, the same statement

holds for analytic spaces glued from animated K■-algebras.

Proof. To simplify notation we will assume that A = K, the same arguments
hold for general A. Let ∗ = AnSpecK■. We start with the proof of the first
equivalence. Consider the map f : ∗ → [∗/Gan

m ] of stacks obtained as the
geometric realization of the morphism of simplicial analytic spaces

(4.5) f• : (Gan,n+1
m )n∈∆op → (Gan,n

m )n∈∆op ,

where the map fn : Gan,n+1
m → Gan,n

m is the projection towards the first n
components. In particular, as Gan

m is cohomologically smooth, the map f
is cohomologicaly smooth. This implies that f ! ∼= f∗ ⊗ f !1 and f !1 invert-
ible, which shows that f∗ has a left adjoint given by f♮ = f!(− ⊗ f !1) (the
homology). Then, f∗ is a conservative functor that preserves limits and col-
imits and, by Barr-Beck-Lurie theorem [Lur17, Theorem 4.7.3.5], we have a
natural equivalence

ModqcK■
([∗/Gan

m ]) = Modf∗f♮(Mod(K■)).

By the projection formula, f∗f♮ is a Mod(K■)-linear functor, this shows that
Modf∗f♮(Mod(K■)) = ModK■

(f∗f♮(K)) by [Lur17, Theorem 4.8.4.1]. By
Lemma 4.4.9 below we have that the object f∗f♮(K) is naturally isomorphic
to ℓtemp

Z,K as Hopf algebras, and hence we obtain

ModqcK■
([∗/Gan

m ]) = ModK■
(ℓtemp

Z,K )

which shows the first part of the lemma.
For the second part, we consider the projection map q : Gan

m → ∗ and let
g : Galg

m → ∗ so that q = g ◦ j, we also write h : ∗ → [∗/Ztemp]. It suffices to
prove that the adjunction q♮ ⇌ q∗ is co-monadic. Indeed, assuming this, by
Barr-Beck-Lurie one has

ModqcK■
(Gan

m ) = CoModq♮q∗(Mod(K■)).

The projection formula implies that the functor q♮q
∗ is Mod(K■)-linear so

that by Lemma 4.4.9 we have

CoModq♮q∗(Mod(K■)) = CoModℓtemp
Z,K

(Mod(K■)).
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Finally, by [Lur17, Theorem 4.7.5.2] (3) we have a natural equivalence

CoModh∗h∗(Mod(K■)) = ModqcK■
([∗/Ztemp]).

Indeed, the left adjointable condition is a consequence of proper base change
as h is a proper map (cf. Remark 4.4.7 (5)). By projection formula and
proper base change h∗h∗ is Mod(K■)-linear and one has CoModh∗h∗(Mod(K■)) =
CoModh∗h∗(K)(Mod(K■)), but [Lur17, Theorem 4.7.5.2] (2) implies that
h∗h∗(K) = ℓtemp

Z,K as co-algebra, proving what we wanted.
We are left to prove co-monadicity of the adjunction q♮ ⇌ q∗:
• The functor q♮ is conservative: it is (modulo a twist) the composition

of the forgetful functor g∗ : ModK■
(K[T±1]) → Mod(K■) and the

fully faithful inclusion j! : ModqcK■
(Gan

m )→ ModK■
(K[T±1]).

• The functor q♮ preserves q♮-split totalizations. Since q♮ = q!(− ⊗
Ω1
Gan

m
[1]), it suffices to see that q! preserves q!-split totalizations. Let

M ∈ ModK■
(K[T±1]), we can write

q!(j
∗M) = g∗(j!j

∗M) = [K[T±1]→ C]⊗L
K[T±1],■ M,

and since K[T±1] is a Hopf-algebra we have that

(4.6) [K[T±1]→ C]⊗L
K[T±1],■ M = ([K[T±1]→ C]⊗L

K■
M)⊗L

K[T±1] K

where K[T±1] acts antidiagonally in [K[T±1] → C] ⊗L
K■

M and K

is the trivial representation of Galg
m . Observe that K is a perfect

K[T±1]-module by the exact sequence

0→ K[T±1]
T−1−−−→ K[T±1]→ K → 0

and hence the functor − ⊗L
K[T±1] K commutes with limits. Let

(Mn)[n]∈∆ be a cosimplicial diagram in ModK■
(K[T±1]) such that

(j∗Mn)[n]∈∆ is q!-split. Then we have

q!( lim←−
[n]∈∆

j∗Mn) = q!( lim←−
[n]∈∆

j∗j!j
∗Mn)

= q!(j
∗ lim←−
[n]∈∆

j!j
∗Mn)

= ([K[T±1]→ C]⊗L
K■

lim←−
[n]∈∆

q!j
∗Mn)⊗L

K[T±1] K

= ( lim←−
[n]∈∆

([K[T±1]→ C]⊗L
K■

q!j
∗Mn))⊗L

K[T±1] K

= lim←−
[n]∈∆

(([K[T±1 → C]⊗L
K■

q!j
∗Mn)⊗L

K[T±1] K)

= lim←−
[n]∈∆

q!j
∗Mn.

In the first equivalence we used that j∗j! is the identity. In the second
equivalence we used that j∗ commute with limits being the pullback
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of an open immersion. In the third equality we use (4.6). The fourth
equivalence follows by [Mat16, Examples 3.11 and 3.13]. The fifth
follows since the functor − ⊗L

K[T±1] K commutes with limits. The
last equality follows from (4.6) again.

□

Lemma 4.4.9. Consider the cartesian square

Gan
m ∗

∗ [ ∗ /Gan
m ].

q

q f

f

Then f∗f♮K = q♮q
∗K is canonically isomorphic to ℓtemp

Z,K as Hopf algebras.

Proof. Let j : Gan
m ⊂ Galg

m and g : Galg
m → ∗. We have that

f∗f♮(K) = q♮q
∗(K)

= q!(Ω
1
Gan

m
[1])

∼= q!(OGan
m
[1])

= g∗(j!(OGan
m
))[1]

= [K[T±1]→ C][1]

∼= ℓtemp
Z,K .

The first equality follows from proper base change. The second one follows
from the identity q♮ = q!(− ⊗ (q!K)) and Remark 4.4.7 (3). The third
one follows since Ω1

Gan
m

∼= OGan
m

by taking the differential dT/T as a basis.
The fourth one follows since f = g ◦ j, j is an open immersion, and Galg

m =
AnSpecK[T±1] has the induced analytic structure from K■, see Remark 4.4.7
(2). The fifth one follows from the formula for j! for an open immersion
given in [CS22, Lecture V]. In the last isomorphism we write [K[T±1] →
C][1] = TK{T}

⊕
K

⊕
T−1K{T−1} to identify it with ℓtemp

Z,K . This shows
that f∗f♮(K) is a solid K■-vector space that is abstractly isomorphic to
ℓtemp
Z,K , which is an LB space of compact type.

We claim moreover that they are actually naturally isomorphic. For this,
by the duality of LB and Fréchet spaces of compact type (see [RJRC21,
Theorem 3.40]) it suffices to see that their duals are naturally isomorphic.
Indeed

RHomK(f∗f♮K,K) = RHomK(K, f∗f∗K)

and f∗f∗K is naturally isomomorphic to q∗q
∗K = O(Gan

m ) by smooth base
change [Man22a, Proposition 8.5 (ii.b)]. This shows that f∗f♮K is naturally
isomorphic to the (abelian) dual of O(Gan

m ) which by definition is ℓtemp
Z,K .

It is left to see that the Hopf algebra structure of f∗f♮K = q♮q
∗K is

identified with the Hopf algebra structure of ℓtemp
Z,K . The proof of this fact is
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probably standard but we include it for completeness. Let us start with the
algebra structure. Let us write G = Gan

m , and consider the Čech nerve G•

and G•+1 of the maps ∗ → [∗/G] and G → [G/G] with respect to the left
multiplication map, see Definition 4.3.1. Let f• : G•+1 → G• be the natural
map of simplicial spaces corresponding to the G-equivariant map G → ∗.
The boundary map d0n : [n− 1]→ [n] defines a functor d0• : ∆

op → ∆op. Let
Mod■(G•) be the category of quasi-coherent sheaves of the simplicial analytic
space G•. The pullback of G• along d0• is the simplicial space G•+1 and the
associated map d0• : G•+1 → G• is equal to f•. This shows that the co-unit
f•,♮f

∗
• → 1 is computed in a co-cartesian section (Mn)[n]∈∆ ∈ Mod■(G•) as

the co-unit
d0•,♮d

0,∗
• M• →M•.

This map is adjoint to the orbit or co-multiplication map M• → d0•,∗d
0,∗
• M .

This proves that the algebra structure of f∗f♮(K) is the dual of the coalge-
bra structure of O(G), which by definition is the algebra structure of ℓtemp

Z,K .
We now prove that the natural isomorphism f∗f♮K = ℓtemp

Z,K = q♮q
∗K is as

coalgebras, namely, it arises from the diagonal map Gan
m → Gan

m ×Gan
m (equiv-

alently, from the comonad q♮q
∗), and this map is dual to the multiplication

map O(Gan
m )⊗ O(Gan

m )→ O(Gan
m ), proving what we wanted. □

We now show the analogue of Proposition 4.4.8 for the weight space W.

Proposition 4.4.10. Let A be an animated K■-algebra. Then there are
natural equivalences

ModqcK■
(AnSpecA×W) = ModK■

([AnSpecA/O×,la
L ])

and
ModK■

(AnSpecA×O×,la
L ) = ModK■

([AnSpecA/W])

natural with respect to base change B⊗L
A−. In particular, the same statement

hold for analytic spaces glued from animated K■-algebras.

Proof. We just mention how to modify the main points of the proof of
Proposition 4.4.8. Since W is a smooth group over K, the only differ-
ence with the case of Gan

m is to find a replacement for Gan
m ⊂ Galg

m . Let
D = Dla(O×

L ,K) be the distribution algebra over K. We claim that the
pullback map j∗ : ModK■

(D) → ModqcK■
(W) is an open localization as in

[CS22, Proposition 6.5]. Indeed, by Theorems 4.1.7 and 4.3.3 j∗ has a fully
faithful left adjoint

j! : ModqcK■
(W)→ ModK■

(D)

such that

(4.7) j!j
∗M = RHomD(K,C la(O×

L )⊗
L
K■

M) = C la(O×
L ,K)⊗ω−1⊗L

D,■M.

where ω is a suitable dualizing sheaf. This implies that j! satisfies the pro-
jection formula and that j∗ is indeed an open localization. Then, replacing
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K[T±1] with D and (4.6) with (4.7) the same proof of Proposition 4.4.8 holds
in this situation. □

Remark 4.4.11. The first equivalence of Proposition 4.4.10 for A = K is
Theorem 4.1.7 for G = O×

L . It should be possible to give a proof of Theorem
4.1.7 using the more categorical approach of the Proposition 4.4.10.

Remark 4.4.12. The flatness assumption in Proposition 4.4.6 can be dropped
by using the same arguments as in Proposition 4.4.8. Indeed, one considers
the Cartesian square

Z ∗

∗ [ ∗ /Z],

1

q f

f

then one computes that the Hopf algebra f∗f♮K is naturally isomorphic to
K[T±1], and that the conditions of the (co)monadicity theorem are satisfied.

We can finally move to the proof of the main result of this section.

Proof of Theorem 4.4.4. We start with the proof of the first equivalence. By
Propositions 4.4.6 and 4.4.10 we have natural equivalences

ModqcK■
([W ×Galg

m /Galg
m ]) = ModqcK■

(W ×Galg
m × Z)

= ModqcK■
([W × Z/Z])

= ModqcK■
([Z/O×,la

L × Z])

= ModqcK■
([Z/L×,la]).

Observe that, in the third equivalence, we used that

ModK■
([W × Z/Z]) = lim←−

[n]∈∆
ModK■

(W × Z× Zn)

= lim←−
[n]∈∆

ModK■
([Z× Zn/O×,la

L ])

= lim←−
[n]∈∆

lim←−
[m]∈∆

ModK■
(Z× Zn × (O×,la

L )m)

= lim←−
[n]∈∆

ModK■
(Z× Zn × (O×,la

L )n)

= ModK■
([Z/O×,la

L × Z]).
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Analogously, Propositions 4.4.8 and 4.4.10 show that

ModqcK■
([W ×Gan

m /Gan
m ]) = ModqcK■

(W ×Gan
m × Ztemp)

= ModqcK■
([W × Ztemp/Ztemp])

= ModqcK■
([Ztemp/O×,la

L × Ztemp])

= ModqcK■
([Ztemp/L×,temp]).

This finishes the proof of the first equivalences. The second equivalences
follow from the exact same arguments and Theorem 4.3.3, the fact that the
functor defining the equivalence if given by LLla

p follows from construction
and the adjunction of j! and j∗ in Theorem 4.1.7. □

5. Solid smooth representations

Let G be a p-adic Lie group over a finite extension L of Qp and let K =
(K,K+) be a complete non-archimedean field extension of L. In this section
we construct the ∞-category of smooth representations of G on K■-vector
spaces and study its main properties.

5.1. Solid smooth representations. Let G be a p-adic Lie group, and
let Mod(Dsm

K■
(G,K)) be the derived (∞-)category of Dsm(G,K)-modules on

K■-vector spaces. In this paragraph we will define the category of smooth
representations of G on K■-vector spaces as a suitable full subcategory of
ModK■

(Dsm(G,K)).

Definition 5.1.1.
(1) Let V ∈ Mod♡K■

(Dsm(G,K)), the smooth vectors of V are defined
by

V sm = lim−→
H⊂G

V H = lim−→
H⊂G

HomDsm(G,K)(K■[G/H], V )

where H runs over all the open compact subgroups of G. We say
that V is a smooth representation of G is the natural map V sm → V
is an isomorphism.

(2) We let (−)Rsm : ModK■
(Dsm(G,K)) → ModK■

(Dsm(G,K)) be the
functor of derived smooth vectors

V Rsm = lim−→
H⊂G

V RH = lim−→
H⊂G

RHomDsm(G,K)(K■[G/H], V ).

We say that an object in ModK■
(Dsm(G,K)) is smooth if the nat-

ural arrow V Rsm → V is an equivalence. We let RepsmK■
(G) ⊂

ModK■
(Dsm(G,K)) be the full subcategory consisting of smooth ob-

jects.

Remark 5.1.2. In (1) of the previous definition we defined smooth vectors
for a module over the smooth distribution algebra. One can of course give a
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similar definition for a solid G representation, namely, if V ∈ Mod♡(K■[G])
one defines

V sm = lim−→
H⊂G

V H = lim−→
H⊂G

HomK■[G](K■[G/H], V ).

If V is in addition a Dsm(G,K) then both definitions are the same. However,
at derived level it turns out that the smooth distribution algebra is better
suited to define derived smooth representations, e.g., the derived smooth
representations will embed fully faithfully into ModK■

(Dsm(G,K)), but not
into Mod(K■[G]), see §6 for a more concrete explanation of this fact.

We start by proving some basic facts on smooth representations.

Lemma 5.1.3. Let V ∈ ModK■
(Dsm(G,K)), then

V Rsm = lim−→
H⊆G′

RHomDsm(G′,K)(K■[G
′/H], V )

for any open subgroup G′ ⊆ G. Moreover, we have (V Rsm)Rsm = V Rsm. In
particular, the derived category RepsmK■

(G) ⊂ ModK■
(Dsm(G,K)) is stable

under all colimits.

Proof. Observe that, for V ∈ Mod(Dsm(G,K)), G′ ⊆ G an open subgroup,
G0 ⊆ G′ open compact and H ⊆ G0 an open compact, since K■[G

′/H] =
Dsm(G′,K)⊗L

Dsm(G0,K) K■[G0/H], by a base change we have

lim−→
H⊂G′

RHomDsm(G′,K)(K■[G
′/H], V ) = lim−→

H⊂G0

RHomDsm(G0,K)(K■[G0/H], V ).

This shows the first claim. For the second one, let G0 ⊆ G be a compact
open subgroup. Then we have

(V Rsm)Rsm = lim−→
H⊂G0

RHomDsm(G0)(K■[G0/H], lim−→
H′⊂G0

RHomDsm(G0,K)(K■[G0/H], V ))

= lim−→
H⊂G0

lim−→
H′⊂G0

RHomDsm(G0)(K■[G0/H], RHomDsm(G0,K)(K■[G0/H], V ))

= lim−→
H⊂G0

RHomDsm(G0)(K■[G0/H]⊗L
Dsm(G0,K) K■[G0/H], V )

= lim−→
H⊂G0

RHomDsm(G0)(K■[G0/H], V )

= V Rsm,

where the first and last equalities follow from definition, the second one from
the fact that K■[G0/H] is a compact Dsm(G0,K)-module and the third one
follows since K■[G0/H] is idempotent over Dsm(G0,K) (cf. Corollary 2.2.6).

Finally, for the last statement, let {Vi}i∈I be a colimit diagram of smooth
representations, to check that lim−→i

Vi is smooth we can restrict to G compact,
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in this case we have that

(lim−→
i

Vi)
Rsm = lim−→

H⊂G

RHomDsm(G,K)(K■[G/H], lim−→
i

Vi)

= lim−→
i

lim−→
H⊂G

RHomDsm(G,K)(K■[G/H], Vi)

= lim−→
i

V Rsm
i = lim−→

i

Vi,

where in the second equality we used again the compacity of the Dsm(G0,K)-
module K■[G0/H] □

The following two lemmas describe the smooth vectors in a similar way
as we have previously defined continuous and loclaly analytic vectors (cf.
[RJRC21]).

Lemma 5.1.4. The functor V 7→ Csm(G,V ) of smooth functions induces
an exact functor of derived categories

Csm(G,−) : Mod(K■[G])→ Mod(K■[G
3])

and
Csm(G,−) : ModK■

(Dsm(G,K))→ ModK■
(Dsm(G3,K))

where (g1, g2, g3) acts on a function f : G → V by ((g1, g2, g2) · f)(h) =
g3f(g

−1
1 hg2).

Proof. Let V ∈ Mod♡(K■). If G0 is compact we have that Csm(G0, V ) =
lim−→H⊂G0

HomK(K■[G0/H], V ). One deduces that the functor V 7→ Csm(G0, V )

is exact and that it is a Dsm(G,K)-module for the left and right regular ac-
tions. This implies the lemma for G = G0 compact. For general G and V ∈
Mod♡(K■), by definition we have that Csm(G,V ) =

∏
g∈G/G0

Csm(gG0, V ) =

HomDsm(G0,K)(Dsm(G,K), Csm(G0, V )) for both the left or right regular ac-
tion of G0 on Csm(G0, V ). Therefore the functor V 7→ Csm(G,V ) is exact
and the left and right regular actions of G are upgraded to left and right
regular actions of Dsm(G,K), proving the lemma. □

Lemma 5.1.5. Let V ∈ ModK■
(Dsm(G,K)). Then, for any open subgroup

G′ ⊆ G we have

V Rsm = RHomDsm(G′,K)(K,Csm(G′, V )⋆1,3).

Proof. We start by proving the result for a compact subgroup. Let now
G0 ⊂ G be a compact open and let V ∈ ModK■

(Dsm(G0,K)). We recall
that we have

(5.1) Csm(G0, V ) = lim−→
H⊂G0

C(G0/H, V ) = lim−→
H⊂G0

RHomK(K■[G0/H], V )

where H runs over all the normal open compact subgroups. Notice that the
⋆1,3 on the LHS translates to the contragradient action of the RHS (heuris-
tically we have g · f(x) = gf(g−1x) for f ∈ RHomK(K■[G0/H], V ) and
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x ∈ K■[G0/H]). Taking G0-invariants in Equation (5.1) (cf. Proposition
1.2.6 (4)) and since K is a direct summand of Dsm(G0,K), we obtain

RHomDsm(G0,K)(K,Csm(G0, V )⋆1,3) = RHomDsm(G0,K)(K, lim−→
H⊂G0

RHomK(K■[G0/H], V ))

= lim−→
H⊂G0

RHomDsm(G0,K)(K,RHomK(K■[G0/H], V ))

= lim−→
H⊂G0

RHomDsm(G0,K)(K■[G0/H], V )

= V Rsm.

Let now G′ ⊆ G be an open subgroup and G0 ⊂ G be an open compact
subgroup. Without loss of generality we can assume G′ = G. First observe
that for V ∈ Mod♡K■

(Dsm(G,K)) we have a natural isomorphism

HomDsm(G0,K)(Dsm(G,K), Csm(G0, V )⋆1,3)

= HomDsm(G0,K)(
⊕

g∈G0\G

Dsm(G0,K) · g, Csm(G0, V ))

=
∏

g∈G0\G

HomDsm(G0,K)(Dsm(G0,K) · g, Csm(G0, V ))

=
∏

g∈G0\G

Csm(G0g, V ) = Csm(G,V )⋆1,3

where the G-action on the first term is induced by the right action on
Dsm(G,K). The inverse Csm(G,V )⋆1,3 → HomDsm(G0,K)(Dsm(G,K), Csm(G0, V )⋆1,3)

is given by sending a smooth function f : G → V to the map f̃ : G →
Csm(G0, V ) given by f̃(g) = (g ⋆1,3 f)|G0 . We deduce a natural equivalence

Csm(G,V )⋆1,3
∼−→ RHomDsm(G0,K)(Dsm(G,K), Csm(G0, V )⋆1,3)

for all V ∈ ModK■
(Dsm(G,K)), so that

RHomDsm(G,K)(K,Csm(G,V )⋆1,3)

= RHomDsm(G,K)(K,RHomDsm(G0,K)(Dsm(G,K), Csm(G0, V )⋆1,3))

= RHomDsm(G0,K)(K,Csm(G0, V )⋆1,3)

proving the statement. □

Lemma 5.1.6. Let V ∈ ModK■
(Dsm(G,K)), then H i(V )sm = H i(V Rsm)

for all i ∈ Z, i.e., taking smooth vectors is exact in the abelian category of
solid Dsm(G,K)-modules.

Proof. Taking smooth vectors is independent of the open subgroup of G,
so we can assume that G is compact. In this case we can write V Rsm =
lim−→H⊂G

RHomG(K■[G/H], V ) where H runs over all the normal open com-
pact subgroups of G, but K■[G/H] is a projective Dsm(G,K)-algebra, the
lemma follows since taking filtered colimits is exact. □
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Proposition 5.1.7. An object V ∈ ModK■
(Dsm(G,K)) is smooth if and

only if H i(V ) is smooth for all i ∈ Z. Therefore, the natural t-structure of
ModK■

(Dsm(G,K)) induces a t-structure on RepsmK■
(G). Moreover, Repsm,♡

K■
(G)

is a Grothendieck abelian category and RepsmK■
(G) is the derived category of

its heart.

Proof. An object V ∈ ModK■
(Dsm(G,K)) is smooth if and only if the natu-

ral map V Rsm → V is an equivalence if and only if H i(V )sm = H i(V Rsm) =

H i(V ) for all i ∈ Z. the fact that the category Modsm,♡(G,K■) is an abelian
Grothendieck is clear, cf. [Man22b, Lemma 3.4.10]. Note that a system of
generators of the category is given by the objects K■[G/H]⊗K■

K■[S] where
H runs over the open compact subgroups of G and S over the (κ-small) profi-
nite sets. Let C be the derived category of Repsm,♡

K■
(G). By [Lur17, Propo-

sition 1.3.3.7] we have a natural morphism C → RepsmK■
(G). To prove that

this is an equivalence it suffices to show that for V,W ∈ Mod♡K■
(Dsm(G,K))

smooth representations we have that

RHomC(V,W ) = RHomDsm(G,K)(V,W ).

Let I• be an injective resolution of W as Dsm(G,K)-modules, then I•,Rsm =

I•,sm is an injective resolution of W in C♡ = Repsm,♡
K■

(G). We have that

RHomDsm(G,K)(V,W ) = HomDsm(G,K)(V, I
•)

= HomDsm(G,K)(V, I
•,sm)

= HomC♡(V, I•,sm)

= RHomC(V,W ),

finishing the proof of the result. □

Proposition 5.1.8. The inclusion RepsmK■
(G)→ ModK■

(Dsm(G,K)) has a
right adjoint given by the smooth vectors functor V 7→ V Rsm.

Proof. Assume first that G is compact. Let V be a smooth representation
of G and W ∈ ModK■

(Dsm(G,K)), then

RHomDsm(G,K)(V,W ) = lim←−
H⊂G

RHomDsm(G,K)(V
RH ,W )

= lim←−
H⊂G

RHomDsm(G,K)(K■[G/H]⊗L
Dsm(G,K) V

RH ,W )

= lim←−
H⊂G

RHomDsm(G,K)(V
RH , RHomDsm(G,K)(K■[G/H],W ))

= lim←−
H⊂G

RHomDsm(G,K)(V
RH ,WRH)

= lim←−
H⊂G

RHomDsm(G,K)(V
RH , (WRsm)RH)

= RHomDsm(G,K)(V,W
Rsm),
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where in the first equality we used the fact that V is (derived) smooth,
the second follows from the fact that V RH is a K[G/H]-module and that
K■[G/H] is idempotent over Dsm(G,K) (cf. Corollary 2.1.6), the third
equality follows by adjunction, the fourth by definition, the fifth one is ob-
vious, and the last one follows by applying all the first four equalities in a
reverse order with W replaced by WRsm.

Let G be a general p-adic Lie group and let V ∈ RepsmK■
(G) and W ∈

ModK■
(Dsm(G,K)). It suffices to show the adjunction at the level of abelian

categories (cf. [Sta22, Tag 0FNC]), so we can assume both V and W to be in
degree 0. Moreover, since by Proposition 5.1.7 the abelian category of smooth
representations is generated byK■[G/H]⊗K■

K■[S] for H ⊂ G open compact
and S profinite, we can assume V = K■[G/H]⊗K■

K■[S]. Moreover, since
we are computing the internal Hom we can even assume that V = K■[G/H].
But then we have that RHomDsm(G,K)(K■[G/H],W ) = WRH = WH are the
H-invariant vectors which coincide with the H-invariant vectors of W sm, i.e.

RHomDsm(G,K)(K■[G/H],W ) = RHomDsm(G,K)(K■[G/H],W sm)

proving what we wanted. □

5.2. Smooth representations as quasi-coherent Dsm(G,K)-modules.
In this section we will give two alternative descriptions of the categories of
solid smooth representations which are the analogue of those appearing in
Corollary 4.3.5.

Definition 5.2.1. Let G be a compact p-adic Lie group, we define the
category of solid quasi-coherent modules over Dsm(G,K) as

ModqcK■
(Dsm(G,K)) = lim←−

H⊂G

ModK■
(Dsm(G/H,K)),

where H runs over all the normal open subgroups and the transision maps
are base changes. We let j∗ : ModK■

(Dsm(G,K)) → ModqcK■
(Dsm(G,K))

be the pullback functor j∗W = (Dsm(G/H)⊗L
Dsm(G) W )H .

Proposition 5.2.2. The pullback functor j∗ : ModK(Dsm(G,K))→ ModqcK■
(Dsm(G,K))

has a right adjoint j∗(VH)H = R lim←−H
VH and a left adjoint j!VH = (j∗V )Rsm.

Furthermore, j∗j∗V = j∗j!V = V for V ∈ ModqcK■
(Dsm(G,K)) and j!j

∗W =

WRsm for W ∈ ModK■
(Dsm(G,K)). The functor is a fully faithful embed-

ding with essential image RepsmK■
(G).

Proof. Let V = (VH)H ∈ ModqcK■
(Dsm(G,K)) and W ∈ ModK■

(Dsm(G,K)).
One has

RHomDsm(G,K)(W, j∗V ) = R lim←−
H

RHomDsm(G,K)(W,VH)

= R lim←−
H

RHomDsm(G,K)(K[G/H]⊗L
Dsm(G,K) W,VH)

https://stacks.math.columbia.edu/tag/0FNC
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where H runs over open compact subgroups of G, proving that j∗V is the
right adjoint of j∗. The other statements of the proposition follow easily
by unraveling the definitions, ⊗-Hom adjunction and using the fact that
K[G/H] is a direct summand of Dsm(G,K), so in particular compact and
dualizable. □

5.3. Smooth dualizing functors. The following result answers a question
raised by Schneider and Teitelbaum in [ST05, p. 26] on the extension of the
contragradient functor for smooth representation to the category of locally
analytic representations.

Proposition 5.3.1. Let V ∈ RepsmK■
(G). Then

(V ∨)Rsm = (V ∨)Rla.

In other words, there is a commutative diagram

RepsmK■
(G) ReplaK■

(G)

RepsmK■
(G) ReplaK■

(G).

((−)∨)Rsm ((−)∨)Rla

Proof. This is a consequence of Corollary 4.2.9 and the analogous calculation
for smooth representations, which follow from [ST05, Corollary 3.7]. Indeed
these statements assert that both functors are given by the same duality
functor in the category ModK■

(Dla(G,K)). But we give a direct proof. We
can and do assume that G is compact, or even a uniform pro-p-group. We
have

(V ∨)Rla = lim−→
h

RHomDla(G,K)(Dh(G,K), RHomK(V,K))

= lim−→
h

RHomK(Dh(G,K)⊗Dla(G,K) Dsm(G,K)⊗Dsm(G,K) V,K)

= lim−→
h

RHomK(K[G/G(h+)(L)]⊗Dsm(G,K) V,K)

= lim−→
h

RHomDsm(G,K)(K[G/G(h+)(L)], V ∨)

= (V ∨)Rsm,

where the first, second and fourth equalities follow from definition and ad-
junction, and the third one follows from the equality Dh(G,K) ⊗Dla(G,K)

Dsm(G,K) = K[G/G(h+)(L)] of Lemma 2.2.7. The fifth one follows since
the groups G(h+)(L) form a cofinal system of open neighbourhoods of the
identity in G. □
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5.4. Smooth representations as comodules over Csm(G,K). We now
explain the analogue equivalence of Theorem 4.3.3 for smooth representa-
tions.

Definition 5.4.1. Let G be a p-adic Lie group and G0 ⊂ G an open compact
subgroup. We let

ModqcK■
(Gsm) =

∏
g∈G/G0

ModK■
(Csm(gG0,K)).

We define the quasi-coherent modules of [∗/Gsm] to be

ModqcK■
([∗/Gsm]) = R lim←−

n∈∆
ModqcK■

(Gn,sm).

Proposition 5.4.2. There is a natural equivalence of symmetric monoidal
stable ∞-categories

RepsmK■
(G) = ModqcK■

([∗/Gsm]).

In particular, if G is compact, we have natural equivalences of stable ∞-
categories

ModqcK■
(Dsm(G,K)) = RepsmK■

(G) = ModqcK■
([∗/Gsm]).

Proof. This follows by the same proof of Theorem 4.3.3, the only thing to
verify is that the abelian category of smooth representations is naturally
equivalent to the abelian category of comodules V → Csm(G,V ), which is
obvious. □

5.5. Locally algebraic representations of reductive groups. In this
last section we introduce a category of solid locally algebraic representations
for the L-points of a reductive group G/L. Let Calg(G,K) be the ring of
algebraic functions of G, i.e., the global sections of the affine group scheme
GK . For G0 ⊂ G(L) a compact open subgroup we define the space of locally
algebraic functions of G0 (relative to G) to be

C lalg(G0,K) = Csm(G0,K)⊗K Calg(G,K).

We let Dlalg(G0,K) = HomK(C lalg(G0,K),K) be the locally algebraic dis-
tribution algebra of G0 and for any G0 ⊂ G ⊂ G(L) an open subgroup we
denote

Dlalg(G,K) := K■[G]⊗K■[G0] D
lalg(G0,K)

the locally algebraic distribution algebra functions of G.

Definition 5.5.1. Let V ∈ ModK■
(Dlalg(G,K)).

(1) We let C lalg(G,V ) :=
∏

g∈G/G0
(C lalg(gG0,K) ⊗L

K■
V ) be the space

of locally algebraic functions of G with values in V . The space
C lalg(G,V ) has three commuting actions of Dlalg(G,K) given by the
left ⋆1 and right ⋆2 regular actions, and the action ⋆3 on V .
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(2) Define the functor of locally algebraic vectors (−)R lalg : ModK■
(Dlalg(G,K))→

ModK■
(Dlalg(G,K)) to be

V R lalg := RHomDlalg(G,K)(K,C lalg(G,V )⋆1,3)

endowed with the ⋆2-action of Dlalg(G,K).
(3) We say that an object V ∈ ModK■

(Dlalg(G,K)) is locally alge-
braic if the natural map V R lalg → V is an equivalence. We let
ReplalgK■

(G) ⊂ ModK■
(Dlalg(G,K)) be the full subcategory of locally

algebraic functions.

Lemma 5.5.2. Let G be a compact open subgroup of G(L). We have natural
isomorphisms of Dlalg(G2,K)-modules (for the actions ⋆1 and ⋆2)

C lalg(G,K) =
⊕
π,λ

(π ⊗ V λ)⋆1 ⊗ (π ⊗ V λ)∨⋆2

and
Dlalg(G,K) :=

∏
π,λ

(π ⊗ V λ)∨⋆1 ⊗ (π ⊗ V λ)⋆2

where π runs over all the smooth irreducible representations of G, and V λ

over all the irreducible representations of G.

Proof. This follows from Lemma 2.2.6 and [GW09, Theorem 4.2.7] describing
the algebra of functions of G in terms of irreducible representations. □

Proposition 5.5.3. The following assertions hold.
(1) Let V ∈ ModK■

(Dlalg(G,K)), the natural map (V R lalg)R lalg → V R lalg

is an equivalence.
(2) The functor (−)R lalg commute with colimits.
(3) Let V,W ∈ ModK■

(Dlalg(G,K)), then (V R lalg⊗L
K■

W )R lalg = V R lalg⊗L
K■

WR lalg. In particular, ReplalgK■
(G) has a natural symmetric monoidal

structure.
(4) The functor (−)R lalg is the right adjoint of the inclusion ReplalgK■

(G) ⊂
ModK■

(Dlalg(G,K)).
(5) The functor (−)R lalg is exact in the abelian category Mod♡K■

(Dlalg(G,K)).
In particular, ReplalgK■

(G) has a natural t-structure.
(6) The ∞-category ReplalgK■

(G,K) is the derived category of its heart.

Proof. This follows the same arguments of Propositions 3.2.3, 3.2.5 and 3.2.6
in the locally analytic case, or the Propositions 5.1.7 and 5.1.8 in the smooth
case. We give a sketch for completeness. Let G0 ⊂ G be an open compact
subgroup, by adjunction we have that

WR lalg = RHomDlalg(G,K)(K,C lalg(G,W )) = RHomDlalg(G0,K)(K,C lalg(G0,W )),

then for (1)-(3) and (5) we can assume that G is compact. By Lemma
5.5.2 any finite dimensional representation of G is a direct summand of
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Dlalg(G,K), in particular they are projective. This implies that (−)R lalg

is an exact functor in the abelian category and that it commutes with col-
imits. Moreover, we have that

WR lalg = RHomDlalg(G,K)(K, (C lalg(G,K)⊗L
K■

W )⋆1,3)

= lim−→
π,λ

RHomDlalg(G,K)(K, (π ⊗ V λ)⊗ ((π ⊗ V λ)∨ ⊗W )⋆1,3)

= lim−→
π,λ

RHomDlalg(G,K)((π ⊗ V λ)∨,W )⊗ (π ⊗ V λ)∨.

Then, to prove that the functor (−)lalg is idempotent it suffices to prove
it for the representations of the form W = (π ⊗ V λ)∨, which follows from
the previous formula and the irreducibility and projectiveness of π ⊗ V λ as
Dlalg(G,K)-modules. So far we have proven parts (1), (2) and (5). For part
(3) we can assume that W = C lalg(G,K) in which case we can untwist the
diagonal action of C lalg(G,K)⊗ C lalg(G,K)⊗ V to a representation where
Dlalg(G,K) acts trivially on the first factor. Taking invariants by Dlalg(G,K)
one gets that

(C lalg(G,K)⊗W )R lalg = C lalg(G,K)⊗WR lalg.

Parts (4) and (6) follow the same lines of their analogues for smooth repre-
sentations, see Propositions 5.1.7 and 5.1.8. □

6. Adjunctions and cohomology

In this final section, we show how the cohomology comparison theorems
of [RJRC21, §5.2] are explained in terms of adjunctions.

6.1. Geometric solid representations. Following the interpretation of
the categories of locally analytic and smooth representations as quasi-coherent
sheaves of “classifying stacks of Gla and Gsm”, one can introduce a different
category of “continuous geometric” representations where now G is the ana-
lytic space defined by the algebra of its continuous functions.

Definition 6.1.1. Let G0 ⊂ G be an open compact subgroup.
(1) Let V ∈ Mod(K■), we define the space of “geometric continuous”

functions of G on V to be

Cgeo(G,V ) :=
∏

g∈G/G0

(C(gG0,K)⊗L
K■

V ).

(2) We define the category of quasi-coherent sheaves of the underlying
profinite group Gprof to be Modqc(Gprof ) =

∏
g∈G/G0

ModK■
(C(gG0,K)).

(3) We define the category of “continuous geometric” representations of
G to be the simplicial limit

RepgeoK■
(G) := Modqc([∗/Gprof ]) := lim←−

n∈∆
Modqc(Gprof,n).
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Lemma 6.1.2. Let V ∈ Mod♡(K■) and S a profinite set. Then the natural
map C(S,K)⊗K■

V → C(S, V ) is an injection.

Proof. It is enough to take K = Qp. Since any solid Qp-vector space is a
colimit of quotients of compact projective Qp,■-vector spaces, we can assume
that V fits in a short exact sequence 0 → Qp,■[S] → Qp,■[S

′] → V → 0.
Taking lattices 0 → Zp[S] → Zp[S

′] → Q → 0 (after rescaling if necessary),
it suffices to show that the map

C(S,Zp)⊗Zp Q→ C(S,Q)

is injective. But both objects are p-adically complete, so it suffices to show
that their reduction modulo pn are injective, i.e. that we have monomor-
phisms

Csm(S,Q/pn)→ C(S,Q/pn).

This is Lemma 3.4.8 (iii) of [Man22b]. □

Lemma 6.1.3. Let A be the category of comodules V → Cgeo(G,V ) with
V ∈ Mod♡(K■). Then A is a Grothendieck abelian full subcategory of
Mod♡K■

(K■[G]) with derived ∞-category naturally equivalent to RepgeoK■
(G).

Proof. The fact that A is an abelian category follows from the fact that
V 7→ Cgeo(V,K) is an exact functor. We have a natural functor A →
Mod♡K■

(K■[G]) sending the comodule V to the representation defined by
the orbit map V → Cgeo(G,V ) → C(G,V ). It is clear that for V,W ∈ A
one has HomA(V,W ) ⊂ HomK■[G](V,W ). Conversely, let f : V → W be
a morphism of K■[G]-modules. We have a diagram whose lower square is
commutative

V W

Cgeo(G,V ) Cgeo(G,V )

C(G,V ) C(G,W )

f

and the such that lower vertical arrows are injective by Lemma 6.1.2, then the
upper square must be commutative proving that HomA(V,W ) = HomK■[G](V,W ).

To prove that A is a Grothendieck abelian category, it is left to show that
A has enough compact generators. Using [Man22b, Proposition A.1.2], one
deduces that RepgeoK■

(G) is the derived category of A. Let V ∈ A, the orbit
map gives a G-equivariant injection

V → Cgeo(G,V )

for the ⋆2-action. Then, writing V as a colimit of quotients Q = coker(K■[S]→
K■[S

′]) of compact projective generators, one sees that a family of generators
are the subobjects of Cgeo(G,Q) for Q as before. □
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We have a natural morphism of coalgebras C la(G,K) → C(G,K) which
heuristically should induce a group homomorphism Gprof → Gla and as con-
sequence a morphism of their classifying stacks f : [∗/Gprof ]→ [∗/Gla]. We
can define a pullback functor f∗ : Modqc([∗/Gla])→ Modqc([∗/Gprof ]) which
corresponds to a forgetful functor F : ReplaK■

(G) → RepgeoK■
(G) sending the

co-module V → C la(G,V ) to the co-module V → C la(G,V )→ Cgeo(G,V ).
The functor f∗ preserves colimits, so it admits a right adjoint that we can
call the pushforward f∗ : Modqc([∗/Gprof ]) → Modqc([∗/Gla]). At the level
of representations we can think of f∗ as a locally analytic vectors functor
(−)Rla : RepgeoK■

(G)→ ReplaK■
(G).

Definition 6.1.4. We define the “continuous geometric” cohomology RΓgeo(G,−) :
RepgeoK■

(G) → Mod(K■) to be the right adjoint of the trivial representation
functor Mod(K■)→ RepgeoK■

(G).

We have the following proposition.

Proposition 6.1.5. The forgetful functor f∗ : Modqc([∗/Gla])→ Modqc([∗/Gprof ])
is fully faithful. The right adjoint of f∗ on a geometric representation V can
be computed as

f∗V = RΓgeo(G,C la(G,V )⋆1,3).

Proof. By Lemma 4.3.4 the category ReplaK■
(G) is the derived category of

comodules of the functor C la(G,−). Similarly, by Lemma 6.1.3 the category
RepgeoK■

(G) is the derived category of the abelian category of comodules of
Cgeo(G,−). Moreover, we have fully faithful inclusion of abelian categories
Repla,♡K■

(G) ⊂ Repgeo,♡K■
(G) ⊂ Mod♡(K■[G]). This implies that the right

adjoint of the first inclusion is given by the locally anlaytic vectors functor
that can be computed as C la(G,V )G⋆1,3 . Taking right derived functors we
see that f∗V = RΓgeo(G,C la(G,V )) for any V ∈ RepgeoK■

[G].
It is left to show that the unit map 1 → f∗f

∗ is an equivalence. Let
G0 ⊂ G be a compact open subgroup, we have a commutative diagram of
morphisms of stacks

[ ∗ /Gprof
0 ] [ ∗ /Gla

0 ]

[ ∗ /Gprof ] [ ∗ /Gla]

f̃

g̃ g

f

The pullback functors correspond to forgetful functors, and the vertical push-
forward functions are given by inductions. Indeed, we can check this at the
level of abelian categories where the right adjoint of a forgetful functor is
clearly an induction. As a consequence one deduces that

RΓgeo(G,C la(G,V )) = RΓgeo(G0, C
la(G0, V )).

Thus, we can assume without loss of generality that G is compact. In this
case C la(G,V ) = C la(G,K)⊗L

K V and Cgeo(G,V ) = C(G,K)⊗L
K V .
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Notice that for V ∈ ReplaK■
(G) we have a natural equivalence of repre-

sentations C la(G,V )⋆1,3
∼−→ C la(G,V )⋆2 . Thus, it suffices to show that for

a trivial representation V one has RΓgeo(G,C la(G,V )⋆2) = V , equivalently,
that RΓgeo(G,C la(G,V )⋆1) = V . Writing V as limit of canonical and stupid
truncations we can assume that V is a solid K■-vector space in degree 0.
But by Proposition 6.3.3 down below one can compute this geometric coho-
mology using geometric cochains, i.e. RΓgeo(G,C la(G,V )⋆1) is represented
by the bar complex of geometric cochains

[C la(G,V )→ Cgeo(G,C la(G,V ))→ Cgeo(G2, C la(G,V ))→ · · · ],
which is the same as the tensor product of the bar complex

[C la(G,K)→ C(G,K)⊗L
K C la(G,K)→ · · · ]⊗L

K■
V.

But C la(G,K) is a nuclear K■-vector space, so that the geometric bar
complex of C la(G,K) is equal to the solid bar complex which computes
RHomK■[G](K,C la(G,K)) = K proving what we wanted. □

Remark 6.1.6. Under the hypothesis of a formalism of six functor for analytic
stacks, the previous proof simplifies a lot. Let f : [∗/Ggeo]→ [∗/Gla] be the
natural map of stacks, it suffices to prove that the natural map id→ f∗f

∗ is
an equivalence. The map f is going to be a cohomologically proper map as
the fibers are isomorphic to [Gla

0 /G
geo
0 ] for G0 any compact open subgroup,

so f∗ = f! and by projection formula we only need to prove that 1[∗/Gla] →
f∗1[∗/Ggeo] is an equivalence, this follows from the explicit computation using
the bar complexes and the description of f∗.

6.2. Adjunctions. Let G be as always a p-adic Lie group defined over a
finite extension L of Qp, K■ = (K,K+) a complete non-achimedean exten-
sion of L and K■ = (K,K+)■. To avoid any confusion, when talking about
locally analytic representations, in this section we will note GL = G to stress
that we see the group G defined over L and we denote by GQp the p-adic
Lie group G viewed over Qp. For continuous and smooth representations
this disctinction is unnecessary since their definition is independent of the
Lie group structures, and we will simply use the notation G. We have the
following diagram of categories.

(6.1) RepsmK■
(G)

F1−→ ReplaK■
(GL)

F2−→ ReplaK■
(GQp)

F3−→ RepK■
(G),

where RepK■
(G) = ModK■

(K■[G]) denotes the category of solid representa-
tions of G, and where the natural functors Fi are just the forgetful functors.
Since all these functors commute with colimits, they all have right adjoints
and the purpose of this first section is to calculate each of them.

Proposition 6.2.1.
(1) The right adjoint of F1 is given by Lie algebra cohomology RΓ(gL,−) :=

RHomU(gL)
(K,−).
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(2) The right adjoint of F2 is given by RΓ(k,−) := RHomU(k)(K,−),
where k = ker(gQp ⊗Qp L→ gL).

(3) The right adjoint of F3 is given by the functor of locally analytic
vectors (−)Rla.

Proof. Let V ∈ Repla(GL) and W ∈ Repla(GQp). Then

RHomDla(GQp ,K)(V,W ) = RHomDla(GQp ,K)(Dla(GL,K)⊗L
Dla(GL,K) V,W )

= RHomDla(GL,K)(V,RHomDla(GQp ,K)(Dla(GL,K),W )

= RHomDla(GL,K)(V,RHomU(k)(K,W )),

where the first two equalities are trivial and the last one follows from ad-
junction via Lemma 2.2.8. This proves (2).

Recall from Proposition 2.2.5 thatDsm(GL,K) = K⊗L
Dla(gL,K)

Dla(GL,K).
Then, using the exact same argument as in the proof of (2), we have, for
V ∈ RepsmK■

(G) and W ∈ ReplaK■
(GL),

RHomDla(GL,K)(V,W ) = RHomDsm(GL,K)(V,RHomDla(gL,K)(K,W )),

proving (1).
By point (1) of Proposition 3.2.5, the right adjoint to the fully faithful in-

clusion ReplaK■
(GQp)→ ModK■

(Dla(GQp , L)) is given by the functor (−)Rla.
Since the (fully faithful) inclusion ModK■

(Dla(GQp ,K)) → ModK■
(K■[G])

has a right adjoint given by RHomK■[G](Dla(GQp ,K),−), the third assertion

follows since we know that
(
RHomK■[G](Dla(GQp ,K),W )

)Rla
= WRla. □

Remark 6.2.2. Consider the following sequence of adjunctions

RepsmK■
(G) ReplaK■

(GL) ReplaK■
(GQp) RepK■

(G).
F1 F2

RΓ(gL,−)

F3

RΓ(k,−) (−)Rla

One can define functors of smooth or locally analytic vectors from different
categories of representations as right adjoint of forgetful functors. For exam-
ple, let F be the composite forgetful functor RepsmK■

(G) → RepK■
(G), then

its right adjoint can be computed as the composite of the right adjoints of
the forgetful functors

RepsmK■
(G)→ ModK■

(Dsm(G,K))→ ModK■
(K■[G]) = RepK■

(G).

This can be computed by applying simple adjunctions as follows: if V ∈
RepsmK■

(G) and W ∈ RepK■
(G), then

RHomK■[G](V,W ) = RHomDsm(G,K)(V,RHomK■[G](Dsm(G,K),W ))

= RHomDsm(G,K)(V,
(
RHomK■[G](Dsm(G,K),W )

)Rsm
)

where the first equality follows using the fact that V is a Dsm(G,K)-module
and adjunction, the second one by Proposition 5.1.8. Thus, the right adjoint
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of F is

WRsm :=
(
RHomK■[G](Dsm(G,K),W )

)Rsm

= lim−→
H⊂G

RHomDsm(G,K)(K■[G/H], RHomK■[G](Dsm(G,K),W ))

= lim−→
H⊂G

RHomK■[G](K■[G/H],W ).

6.3. Cohomology and comparison theorems. We now introduce all the
cohomology theories we are interested in, namely, Lie algebra, smooth, lo-
cally L and Qp-analytic, and solid group cohomologies. We will first define
them and show that these definitions recover the usual ones at abelian level.
Finally, we will show how they compare to each other by some formal ad-
junctions.

There is a natural map from the category Mod(K■) to each of the cate-
gories appearing in (6.1) given by trivial representations.

Definition 6.3.1. We define
• Solid group cohomology RΓ(G,−) : RepK■

(G)→ Mod(K■),
• (Qp-)Locally analytic group cohomology RΓla(GQp ,−) : ReplaK■

(GQp)→
Mod(K■),
• (L-)Locally analytic group cohomology RΓla(GL,−) : ReplaK■

(GL)→
Mod(K■),
• Smooth group cohomology RΓsm(G,−) : RepsmK■

(G)→ Mod(K■)

• Lie algebra cohomology RΓ(g,−) : ModK■
(U(g))→ Mod(K■),

as the right adjoint functor of the map from Mod(K■) to the corresponding
category.

Remark 6.3.2. As the categories RepsmK■
(G), ReplaK■

(GL) and ReplaK■
(GQp)

embed fully faithfully, respectively, in the categories ModK■
(Dsm(G,K)),

ModK■
(Dla(GL,K)) and ModK■

(Dla(GQp ,K)), we also have that

RΓla(GQp , V ) = RHomDla(GQp ,K)(K,V ),

RΓla(GL, V ) = RHomDla(GL,K)(K,V ),

RΓsm(G,V ) = RHomDsm(G,K)(K,V ).

Moreover, since the categories RepsmK■
(G) and ReplaK■

(GL) are the derived
categories of their heart, the smooth and locally analytic cohomology func-
tors can be computed as the right derived functors of the G-invariants of
their respective representation categories.

By [Man22b, Corollary 3.4.17], smooth cohomology can be computed us-
ing smooth cochains. We prove the same for geometric, solid and locally
analytic representations.

Proposition 6.3.3. Let Rep?K■
(G) denote the category of smooth, L-locally

analytic, geometric or solid representations of G, and let RΓ?(G,−) denote



76 JOAQUÍN RODRIGUES JACINTO AND JUAN ESTEBAN RODRÍGUEZ CAMARGO

their corresponding cohomology functor. Let V ∈ Rep?,♡K■
(G) be a representa-

tion in degree 0 and let [C?(G•, V ), dn] be the bar complex in Mod(K■) with
n-th term C?(Gn, V ) and n-th boundary map

dn(f)(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)

+

n∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn).

Then there is a natural equivalence

RΓ?(G,V ) = [C?(G•, V ), d•].

Proof. We follow the same proof of [Man22b, Lemma 3.4.15]. Let ? − Ind :
Mod(K■)→ Rep?K■

(G) be the right adjoint of the forgetful functor, and let
r denote the composition of the forgetful functor of Rep?K■

(G) with ?− Ind,
for n ≥ 0 we let rn(−) denote the application of n-times r. By adjunction,
we have natural transformations rn(−) → rn+1(−) for all n ≥ 0. For M ∈
Rep?,♡K■

(G), we claim that the complex

(6.2) 0→M → r(M)→ r2(M)→ · · ·

is exact and that rn(M) = C?(Gn,M). First, we claim that for any W ∈
Mod(K■) one has ?−Ind(W ) = C?(G,W ). It suffices to take W ∈ Mod♡(K■),
in which case we need to compute the right adjoint of the forgetful func-
tor of abelian categories Rep?,♡K■

(G) → Mod♡(K■). For ? solid one has
Rep?K■

(G) = Mod♡(K■[G]) and the induction is just C(G,V ). For ? being
smooth, locally analytic or geometric, the category Rep?,♡K■

(G) is the cate-
gory of comodules of the exact functor C?(G,−), and one easily checks that
the right adjoint of the forgetful functor is simply V 7→ C?(G,V ) proving
the claim.

Now, unraveling the definitions, one has that the sequence (6.2) is given
by the usual bar complex of the respective representation category, which is
an exact complex as they are constructed functorially from the augmented
cosimplicial object (Gn+1)n∈∆op

ε−→ ∗. To conclude the proof we need to
show that RΓ?(G, ?− Ind(W )) = W for any W ∈ Mod(K■), but the functor
RΓ?(G, ?− Ind(−)) is the right adjoint of the composite of the trivial repre-
sentation and the forgetful functor which is the identity on Mod(K■), so it
is equivalent to the identity. This finishes the proof. □

All our comparison results are subsumed in the following statement, which
generalizes in particular our main results [RJRC21, Theorem 5.3 and The-
orem 5.5] from the case of a compact p-adic Lie group defined over Qp to
that of a (non-necessarily compact) p-adic Lie group defined over a finite
extension of Qp .
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Theorem 6.3.4. We have the following commutative diagram:

ReplaK■
(GQp

) ReplaK■
(GL)

RepK■
(G) RepsmK■

(G)

Mod(K■)

RΓ(k,−)

RΓla(GQp ,−)

RΓ(g,−)

RΓla(GL,−)

(−)Rla

RΓ(G,−) RΓsm(G,−)

Moreover, since the embedding ReplaK■
(GQp) in RepK■

(G) is fully faithful
then, for any V ∈ RepK■

(G), we have RΓ(G,V ) = RΓ(G,V Rla). In partic-
ular, if G is defined over Qp, we have

RΓ(G,V ) = RΓ(G,V Rla) = RΓla(G,V Rla) = RΓsm(G,RΓ(g, V Rla)).

Proof. It follows by the adjunctions of Proposition 6.2.1. □

6.4. Homology and duality. We conclude with some applications to du-
ality between cohomology and homology. The following result is the infini-
tesimal analoge of [RJRC21, Theorem 5.19].

Proposition 6.4.1. Let V ∈ ModK■
(U(g)). Then we have

RΓ(g, V ) = K(χ)[−d]⊗L
U(g) V.

In particular, if V ∈ RepK■
(G), then

RΓ(G,V ) = RΓsm(G,K(χ)[−d]⊗L
U(g) V

Rla).

Proof. This follows exactly the same argument as in [RJRC21, Theorem
5.19] replacing the Lazard-Serre resolution by Chevalley-Eilenberg resolution
to calculate cohomology. The last assertion follows from the first one and
Theorem 6.3.4. □

The problem for showing a global result when G is not compact is that
the trivial object K might not be a perfect K■[G]-module. Nevertheless,
this is indeed the case when either G = G(Qp) arises as the Qp-points of a
connected reductive group over Qp by [Koh11, Theorem 6.6] or G is solvable
by [Koh11, Theorem 6.5]. From these facts, one immediately deduces the
following:

Corollary 6.4.2. Let G be either given by the Qp-point of a connected re-
ductive group G defined over Qp or solvable and let V ∈ RepK■

(G). Then

RΓ(G,V ) = RHomDla(G,K)(K,Dla(G,K))⊗L
Dla(G,K) V

Rla.
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