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We analyze multiplexed fluorescence in situ hybridization (m-FISH) data for human and mouse cell lines. The m-
FISH technique uses fluorescently-labeled single stranded probes which hybridize to specific chromosomal regions,
thereby allowing the measurement of the spatial positions of up to ∼ 100 tagged sites for several thousands interphase
chromosomes. Our analysis focuses on a wide range of different cell lines and two distinct organisms and provides
a unified picture of chromatin structure for scales ranging from 5 kb (kilo bases) up to 2 Mb (mega bases), thus
covering a genomic region of almost three orders of magnitude. Confirming recent analysis (Remini et al., Phys. Rev.
E 109, 024408 (2024)) we show that there are two characteristic arrangements of chromatin referred to as phase α

(crumpled globule) and β (looped domain) and discuss the physical properties of these phases. We show that a simple
heterogeneous random walk model captures the main behavior observed in experiments and bring considerable insights
on chromosomal structure.

I. INTRODUCTION

The spatial organization of chromosomes within the cell
nucleus plays a crucial role in regulating gene expression and
other nuclear processes1. Understanding the folding princi-
ples of chromatin, the complex of DNA and proteins consti-
tuting chromosomes, is essential for deciphering the mecha-
nisms underlying genome function and is a topic which has
attracted considerable interest in the recent years2–8. Recent
advances in experimental techniques, such as multiplexed flu-
orescence in situ hybridization (m-FISH), have enabled high-
resolution imaging of chromatin structure, providing sev-
eral insights into its spatial arrangement5,9,10. Unlike the
High-throughput Chromosome Conformation Capture (Hi-C)
technique11, which allows to identify contact regions for the
whole genome in a single experiment, m-FISH provides a
more limited information on spatial position of some selected,
fluorescently tagged, genomic loci. Current m-FISH experi-
ments can tag about ∼ 100 sites, probing several thousands
cells/chromosomes in a single run9,12,13. m-FISH data display
a high correlation with Hi-C contact frequency matrices9.

In our previous work14, we analyzed m-FISH data from
Bintu et al.9 to investigate the spatial organization of chro-
matin within specific regions of human chromosome 21. By
examining the probability distributions of distances between
pairs of labeled genomic sites, we identified two coexisting
chromatin conformations, referred to as the α and β phases,
arranged in alternated micro-domains. The geometric prop-
erties of these phases were inferred from scaling laws14 re-
vealing a crumpled globule behavior15 for the α phase and a
localized, possibly looped, domain, for the β phase.

We extend this analysis here to novel experimental data sets
for mouse chromosome 1916, which confirms the microphase
separation scenario reported earlier for human chromosome
2114. The more recent mouse m-FISH data16 have an in-
creased genomic resolution which allows us to explore the
scaling behavior of the two phases at shorter scales compared
to the earlier study14. Combining mouse and human m-FISH
data we infer a general unified picture for chromatin struc-

ture for a range of genomic scales encompassing almost three
order of magnitudes of genomic distances (from ∼ 5 kb up
to ∼ 2 Mb), such picture is supported by a simple heteroge-
neous random walk model. In addition, we explore several
features of the chromosomes organization as its intrinsic non-
markovianity, the short scale behavior of contact probabilities,
and multi-point distribution functions. Overall the analysis
reported here illustrates the power and advantages of quanti-
tative high resolution microscopy combined with a statistical
physics modeling framework for data analysis. While cur-
rently restricted to specific selected chromosomal regions of
a few organisms, we expect that future m-FISH experiments
will shed lights and bring further insights on chromosomal or-
ganization.

This paper is organized as follows. In Sec. II we review the
main features of the analysis of the m-FISH technique, dis-
cussing the distance distributions, contact probabilities, gyra-
tion radii and other quantities which point to the existence of
distinct phases of chromatin. In Sec. III we provide a unified
description of the chromatin organization highlighting differ-
ent scaling regimes at different length scales. We introduce
a heterogeneous random walk model which reproduces the
main features observed in experiments. Some open issues are
also discussed in Sec. III.

II. ANALYSIS OF MULTIPLEXED FISH DATA

In a m-FISH experiment the position of a set of 1 ≤ i ≤ N
fluorescently tagged genomic loci are recorded for M cells in
a single experimental run9,13,16. This results in three dimen-
sional coordinates [x(k)i ,y(k)i ,z(k)i ] denoting the position of the
tag i for the chromosome 1 ≤ k ≤ M. Typical experimental
spatial accuracy is of 50 nm.
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FIG. 1. Black circles: m-FISH experimental distance distributions
over M distinct cells between two fixed tags i and j as specified by
the labels (i, j) shown in the panel. (Top) data from Bintu et al9 and
(Bottom) data from Liu et al16. Red and blue dashed lines are the
gaussian components fα g(r;Rα ) and (1− fα )g(r;Rβ ) representing
the contribution of the two phases, see Eqs. (2) and (3). Purple lines
are the sum of the two contributions, with shaded areas indicating the
fits uncertainties. The fitted values for Rα , Rβ and fα are reported
in the graphs. We find consistent values for fα ≈ 0.6 for the two
organisms. Distance distributions for other datasets and different tags
are given in Supplementary Material.

A. Two phases from distance distributions analysis

Our previous analysis of m-FISH data14 focused on pair-
wise distance of two given tags 1 ≤ i, j ≤ N in chromosome k
defined as

r(k)i j ≡
[(

x(k)i − x(k)j

)2
+
(

y(k)i − y(k)j

)2
+
(

z(k)i − z(k)j

)2
]1/2

(1)
Experimental distributions over the M chromosome repli-

cates for a few selected tags and experiments are shown in
Fig. 1 as solid circles (See Supplementary Figures S1, S2, and
S3 for more examples). The analysis reveals a distribution of
distances over the 1≤ k ≤M different cells which can be fitted
by the combination of two gaussians14

Pi j(r) = fα g(r;Rα)+(1− fα)g(r;Rβ ) (2)

where we defined

g(r;R) ≡ 4πr2
(

3
2πR2

)3/2

e−3r2/(2R2) (3)

the radial distance distribution, which includes a factor 4πr2

obtained by integrating over polar angles. The distribution

g(r;R) contains R as single fitting parameter, which implies a
three parameters fit for Eq. (2): Rα and Rβ are the character-
istic radii of the two phases, and 0 ≤ fα ≤ 1 is the fraction of
phase α . The analysis with Eq. (2) is done for every pair of
tags i and j, encompassing a total of N(N−1)/2 pairs, result-
ing in radii Rα(i, j), Rβ (i, j) and fraction fα(i, j) which de-
pend on the tagged sites considered i and j. Figure 1 shows ex-
perimental distributions for different pairs of tags (circles), as
well as fits of Eq. (2). Data are from Refs. 9 and 16 (See Sup-
plementary Material for details about the experimental data).
The former reference reports m-FISH experiments in human
chromosome 21 with ∼ 80 fluorescent tags placed at consec-
utive genomic sites separated by 30 kb. The latter one is a
study of mouse chromosome 19 measuring 19 different tags
separated by a 5 kb distance along the genome, thus allowing
to explore the chromatin spatial arrangement at higher reso-
lution. At short genomic distances (s ≲ 200 kb), the fit with
a single gaussian distribution clearly fails14, but at larger ge-
nomic scales the radii Rα and Rβ tend to approach each other
and the distance distributions tend to merge into Eq. (3), see
Supplementary Material for more examples.

B. Scaling laws for phases α and β

For any fixed tag i, one could analyze the scaling behavior
of the characteristic radii of the two phases using the following
ansatz

Rα ∼ |i− j|να ∼ sνα , Rβ ∼ |i− j|νβ ∼ sνβ (4)

with s the genomic distance between tags i and j measured in
bases (for equally spaced tags |i− j| and s are proportional to
each other). Figure 2 shows a log-log scale plot of the radii Rα

and Rβ obtained from averaging over different tags positions
for any given data set. We show in the same figure human
chromosome 21 data from Bintu et al9 covering a genomic
range of s = 30 kb to 2 Mb and mouse data from Liu et al16

which has higher resolution, but more limited range s = 5 kb
to 95 kb. The mouse data set considered in this papers is an
ensemble cells from all tissues studied in Liu et al16. Scaling
for different mouse cells are shown in Fig S4. Figure 2 shows
a good numerical overlap for Rβ between human and mouse
data. We note a discontinuous jump in Rα in the two organ-
isms, indicating that the α phase is more compact in the hu-
man chromosome 21 as compared to the mouse dataset. The
resulting scaling exponent, as inferred by the slope in the log-
log scale, seems to be consistent in both cases.

1. The α phase is consistent with crumpled globule behavior

The emerging picture from the analysis of multiple loci is
that the phase α has scaling properties consistent with those
of a crumpled globule, characterized by an exponent να = 1/3
(see Fig. 2, red symbols). The crumpled globule is a long-
lived metastable state obtained from quenching a long poly-
mer from a good solvent condition to a temperature below its
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FIG. 2. Log-log plot of average radii Rα (red lines) and Rβ (blue lines) vs. s for different human cell lines as well as mouse data, with
the shaded areas giving the uncertainties over the averages. Human cell lines are indicated in the graphs (IMR90, HCT116, A549 . . . see
Supplementary Material for dataset specifications) and are from Bintu et al9. They correspond to a genomic range 30 kb ≤ s ≤ 2.5 Mb. The
mouse data reported are averages over cells of different types from experiments from Liu et al16 corresponding to 5 kb ≤ s ≤ 95 kb. Thin
dashed lines are power-law fits (see Eq. (4)) over s≤ 350 kb region for untreated samples and s≤ 160 kb for auxin treated ones, see Section II E
for details. Fitted values for the scaling exponents να and νβ reported in each graph.

θ -point. The quenching leads to a crumpling of the polymer
to longer and longer scales until a stationary state is reached,
which is referred to as crumpled or fractal globule15. Dif-
ferently from its equilibrium counterpart, e.g. a polymer be-
low its θ -point undergoing a collapse transition, the crumpled
globule is unknotted and also less dense. This is believed
to be advantageous for the chromosomal structure as it fa-
cilitates the accessibility to different parts of the long chro-
mosomes in living cells17 by enzymes and other regulatory
factors. The crumpled globule was identified in early Hi-
C experiments11, which reported a contact probability pc(s)
scaling as pc(s) ∼ s−1, asymptotically for large genomic dis-
tances s.

2. The β phase is strongly localized

For the phase β (Fig. 2, blue symbols) most of the dataset
and tags give consistently a small estimate for the scaling ex-
ponent νβ ≈ 0.15 suggesting a confined phase, such as a chro-
matin conformation with multiple loops. The return to the

loops origin yields a characteristic scaling radius which does
not grow with the genomic distance Rβ ∼ s0. Multiple loops
with disjoint origins may lead to a small increase of the radius
Rβ with the genomic distance, as discussed in Sec. III. We
note that the mouse and human data for Rβ agree well with
each other in the genomic region 30 kb ≤ s ≤ 95 kb where
the two data sets overlap. In the vicinity of the shortest length
scale s ≈ 5 kb, the mouse data for Rβ bend towards higher
slopes, a behavior that suggests a change in scaling, which
will be discussed more extensively in Sec. III.

3. Microphase separation in α and β domains

Unlike most common thermodynamic phase separating sys-
tems (such as liquid-gas) in which each phases becomes
macroscopically extended, here the chromatin separates in mi-
crophases i.e. in alternating finite-sized domains of phase
α and phase β . A typical example of microphase separa-
tion is given by block copolymers, where the material spon-
taneously organizes into distinct, nanometer-scale domains or
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FIG. 3. Comparison of the mean experimental mean squared radius
of the raw data from Bintu et al9 Rhuman(s) (black) with the recon-
structed radius Rg(s) from the single-phase model (green) and the
total radius RT (s) from the two-phase model for untreated (Top) and
auxin-treated (Bottom) HCT116 cell line. The dotted black line is
the the mean squared radius extracted from all mouse cells data of
Liu et al16 covering a higher genomic resolution interval. The thin
dashed lines are the scaling exponents of the β phase (blue) and the
crumpled globule (black). More cell lines are shown in Figures S5
and S6 in the Supplementary Material.

microphases as lamellar phase. Complete phase separation is
not possible due to the finite length of each domain. The typi-
cal width of α and β domains can be inferred from the behav-
ior of the local radius of gyration14 and is about ≈ 150 kb. The
Supplementary Material reports several plots of local radius of
gyration for single cells for different data sets for human9 and
mouse16 cell lines.

C. Total radius

Given the probability density function of the two-phase
model provided by Eq. (2) one obtains the total mean square
radius R2

T for any two given tags i and j as a linear combina-

tion of R2
α and R2

β
:

R2
T (s) ≡ ⟨r2⟩= fα R2

α(s)+(1− fα)R2
β
(s) (5)

As we have seen from the analysis of Fig. 2 at short scales
Rβ ≫ Rα , we therefore expect RT ∼ Rβ , i.e. the short scale
behavior of the total radius is dominated by the phase β .
This is indeed observed in Fig. 3 showing RT for human and
mouse data. There is a remarkable overlap between these
two datasets within the genomic distances covered by both
experiments resolutions. The mean-squared radius calculated
from the raw human cell data is accurately reproduced by the
two-phase model RT (represented by the purple solid line),
fitting well within its statistical uncertainty across all scales.
The microphase coexistence model, as previously discussed,
becomes invalid beyond the average width of the coexisting
phases. This transition is illustrated in Fig. 3, where both
the experimental and reconstructed radii converge and align
with the one-phase model fit (shown in green), which scales
with a factor of 1/3. This indicates a convergence towards a
crumpled globule organization. In wild-type cells, this transi-
tion occurs at approximately ≈ 300 kb, while in auxin-treated
cells, it occurs at around ≈ 200 kb. The faster convergence
to the one-phase model in auxin-treated cells might be due
to the depletion of cohesin-mediated loops, which typically
span 100− 200 kb18,19, potentially leading to a reduction in
the domain size of the β phase in these samples. Note that
in some cases in the very large s limit Rhuman does not grow
further, possibly due to the effect of territorial confinement of
the chromosome.

D. Contact probability

Hi-C data focus on contact probability pc(s) of any two
given genomic sites separated by a genomic distance s. One
can infer the behavior of pc(s) from the two phase model (2)
by integrating Pi j(r) for distances r ≤ λ with λ a small length
scale such that (λ ≪ Rα ,Rβ )

pc(s) =

√
6
π

λ
3

[
fα

R3
α(s)

+
1− fα

R3
β
(s)

]
(6)

Unlike the case of the total radius, here the contact probabil-
ity at short distances is dominated by the α phase. Indeed
Rα ≪ Rβ at small s implies pc(s) ∼ R−3

α (s) ∼ s−1. When s
grows Rα approaches Rβ and this should lead to a slower de-
cay of pc(s) with s. Finally, for even longer s, the two phase
model breaks down and in analogy with the total radius scal-
ing we expect a crumpled globule scaling ∼ s−1. Figure 4
shows a plot of pc(s) inferred from m-FISH data, estimated
from the fraction of samples in which tags have a spatial dis-
tance r < 0.01 µm. Crumpled globule behavior predicts a
scaling pc(s) ∼ s−1, which has been observed in Hi-C data
at scales above s > 1 Mb. At shorter genomic distances, in
the range s ≈ 100 kb, deviations from the 1/s power-law be-
havior have been reported19–21, resulting in a characteristic
shoulder-like profile as illustrated in the inset of Fig. 4. This
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genomic distance s, are shown for wild-type HCT116 (blue), IMR90
(orange), and auxin-treated HCT116 cells (red). The circles repre-
sent data inferred from raw experimental m-FISH histograms, while
the solid lines correspond to predictions from the two-phase model.
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treated versus auxin-treated cells, based on findings reported in19–21.
(Bottom) Log-derivatives of the contact probabilities displayed in the
main figure, highlighting the deviation from the 1/s power-law be-
havior in untreated cell lines.

shoulder has been attributed to the effect of cohesin-mediated
loops forming on top of a crumpled globule19,20.

E. Non-markovianity

One of the advantages of m-FISH data, is that one can per-
form the analysis of correlations between more than two chro-
matin sites9. We discuss here these correlations focusing on
conditional distributions Pi j(r|rkn > rc) and Pi j(r|rkn < rc), de-
fined as the distributions for distances between two tags i and
j, with a constrain on the distance between the tags k and n,
which is required to be larger or smaller than some threshold
value rc. Figure 5 shows plots of Pi j(r|ri,i−1 > rc) (in blue)
and Pi j(r|ri,i−1 < rc) (in red) for j = i+ 1, i+ 2 . . . averaged

over all i for HCT116 (untreated), HCT116 (+auxin 6h) and
IMR90 cell-lines. The fact that we observe different distribu-
tion Pi j(r|ri,i−1 > r̄) and Pi j(r|ri,i−1 < r̄) is a proof of the ex-
istence of correlations between distances across multiple dis-
tinct sites. The two conditional distributions differ from the
unconditional one Pi j(r) (black) as follows: Pi j(r|ri,i−1 > rc)
shows an enhancement of the β phase, while the distribution
Pi j(r|ri,i−1 < rc) shows an enhancement of the α phase. As
tag separation ∆n ≡ | j− i| increases, these phase-specific en-
hancements gradually diminish, leading to the eventual con-
vergence of all three distributions as the system transitions
across multiple α and β domains. This convergence is es-
pecially noticeable in the auxin-treated HCT116 cells (see
∆n = 13), suggesting a more rapid loss of correlation as com-
pared to untreated cell lines. We quantify the convergence
of the two conditional probabilities through the mean squared
deviation between the two distributions Γ(∆s), with ∆s being
the genomic distance between tags i and j expressed in num-
bers of base-pairs.

Γ(∆s) ≡ ⟨(Pi j(r|ri−1,i > rc)−Pi j(r|ri−1,i < rc))
2⟩

∆s≫1−−−→ e−∆s/ξ (7)

where ⟨.⟩ refers to an averaging over all tag positions i. The
decay of Γ for large values values of ∆s is well captured by an
exponential decay as illustrated in Fig.5c. The decay length
ξ in wild-type cell lines of HCT116 and IMR90 is approxi-
mately 350± 30 kb and 300± 30 kb respectively. However,
for the auxin treated HCT116 cell line Γ shows a strongly di-
minished decay length of about 130±30 kb. The uncertainty
on the numerical values of ξ arises from its dependency on
rc chosen between 0.1 µm and 0.6 µm. Although quantita-
tively ξ depends on the choice of rc, the qualitative picture re-
mains unaltered, untreated cell lines show correlations across
larger genomic distances compared to the auxin treated cell
line. This rapid loss of correlation in the auxin treated case
might reflect microdomains of smaller sizes as compared to
the untreated cell lines. This result aligns with the interval
of validity of the two-phase model discussed in Section II C
and provides a rough estimate of the microdomain sizes. The
shorter decay length in the auxin-treated cells suggests that the
depletion of cohesin-mediated loops leads to a more compact
domain structure, corroborating the findings from the analysis
of the mean squared experimental radius Rhuman.

III. DISCUSSION

A. Microphase separation

The organization of interphase chromosomes is believed
to be driven by the combined effect of two main distinct
processes22: one based on affinity-mediated interactions and
another relying on active (i.e. ATP-dependent) processes such
as loop extrusion. Chromatin folding models based on the first
type of processes have been proposed as due to binders bridg-
ing between different chromatin sections23 (see Fig. 6(a)), due
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FIG. 5. Non-Markovianity analysis of chromatin configuration in
HCT116, auxin-treated HCT116, and IMR90 cell lines. (a) and
(b) probability density distributions of Auxin -treated HCT116 and
IMR90 Pi,i+∆n(r) averaged over all tag positions. The black lines
represent the total distance distributions. The red and blue curves
depict the conditional probability distributions based on the step
(i− 1, i), where the blue curve shows Pi,i+∆n(r | ri−1,i > rc) and the
red curve represents Pi,i+∆n(r | ri−1,i < rc), with rc as a cutoff dis-
tance. This demonstrates that larger (smaller) ri−1,i correlates with
larger (smaller) ri,i+∆n, indicating the formation of microdomains
(α- and β -phases). (c) linear-log plot of the mean squared devia-
tion Γ(∆s) between the two conditional distributions.

to diffusing transcription factors24 or segregation as in block-
copolymers25. Active loop extrusion26,27 is known to origi-
nate from the action of motor-like protein complexes of the
SMC group, such as cohesin and condensin22. The emerging
picture of chromatin organization as obtained from the anal-
ysis of m-FISH data discussed in Sec. II is shown schemati-
cally in Fig. 6(a). This figure illustrates the phase separation
process resulting in alternating α and β domains shown in
red and blue, respectively, where presumably both affinity-
mediated and active processes take part. We expect, though,
that loop extrusion is a key factor in the shaping of β domains.

Experimental m-FISH data for the α phase indicate a scal-
ing consistent with a crumpled globule15

Rα(s) ∼ Aα s1/3 (8)

over a broad range of genomic scales, see Fig. 2. The situa-
tion is more complex for the phase β . In a phase with multi-
ple loops one expects at least two distinct scaling regimes: an

high density 
crumpled globule

low density 
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βα
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binders

microphase separation
loops 
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inter-loops
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3
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log R

log s

Rα ~ s1/3

Rβ ~ s1/3

Rβ ~ s0.15

intra-loop
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FIG. 6. (a) Représentation schématique de la micro-séparation de
phase. La fibre de chromatine, sous l’effet probable de liaisons pas-
sives et d’extrudeurs de boucles actifs (complexes protéiques SMC),
subit une séparation de phase en microdomaines, avec des phases
α et β représentées respectivement en rouge et en bleu. (b) Vue
schématique de la mise à l’échelle observée et attendue des rayons
caractéristiques Rα et Rβ des deux phases en fonction de la dis-
tance génomique s. Pour la phase α , les données sont cohérentes
avec l’échelle d’un globule enchevêtré, voir Eq. (8). Pour la phase
β , nous observons un très faible exposant sur des distances inter-
médiaires, compatible avec un domaine bouclé. L’échelle de Rβ (s)
varie selon les distances intra-boucles et inter-boucles, comme pro-
posé dans l’Eq. 9.

intra-loop regime (s < s0) and an inter-loops regime (s > s0)
with s0 the characteristic loop length, see Fig. 6(a). The ef-
fect of confinement should manifest itself at scales beyond the
loop length-scale s0. The mouse data in Fig. 2 show indeed a
signature of the onset of a different scaling regime at lengths
below s0 ≈ 10 kb for the phase β . This value of s0 could be
used as estimated average loop size. Although it is not possi-
ble to extract a reliable exponent in the low s regime from the
current m-FISH data, one plausible scenario is that loops are
formed by crumpled polymer segments. This would suggest
the following scaling behavior

Rβ (s) ∼
{

Aβ s1/3 s < s0
sνβ s > s0

(9)

as schematically illustrated in Fig. 6(b). The crumpling in the
phase β produces polymer conformations with lower density
than in the α phase, implying Aβ > Aα . We argue on the basis
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alternating with short segments. We use different “monomer” sizes
for the two phases with aα < aβ to mimick the higher density of the
former. Starting from a reference point in the phase β the model
predicts three regimes for the mean squared radius (11): intra-loop,
inter-loop and multi-domain as described by Eqs. (12), (13) and (14),
respectively.

of a random walk model that the scaling νβ ≈ 0.15 for s > s0
is due to multiple loops originating from slightly displaced
locations indicated as “1”, “2”, “3” in Fig. 6(a). Such dis-
placement does not produce perfect localization which would
result in νβ = 0.

B. A heterogeneous random walk model

It is instructive to consider a simple random walk model
of the above chromatin structure. Although such model will
not be able to predict the correct scaling exponents (crumpled
globule), we believe it can shed some light on the behavior
of the different scaling regimes in the two phases. We build
such a model using the Gaussian propagator for a segment of
chromatin of length l (measured in base-pairs)

pi(⃗r, l) =
(

1
2πla2

i

)3/2

e−3⃗r2/2la2
i (10)

where i = {α,β} labels either of the two phases and r⃗ is the
vector connecting the two end-points of the segment. We set
aα < aβ to generate a denser polymer conformation in the α

phase (see Fig. 7). We are interested in the calculation of the
average square distance from a given reference location s∗,
which is defined as

R2(∆s,s∗) =
〈
(⃗u(s)− u⃗(s∗))2〉 (11)

where u⃗(s) denotes the position vector for the genomic site s
(where we use the vertex of the first loop as origin, see Fig. 7),
∆s ≡ s− s∗ and s∗ can be either located in the α or in the β

phase. We note that as the system is not translationally invari-
ant R2 does not depend only on ∆s, but also on the initial point

s∗. In what follows, we omit the explicit dependence on s∗ in
Eq. (11) for brevity.

The phase α is assumed to be of total length Lα , unstruc-
tured and thus simply described by the propagator pα (⃗r, l) as
in (10). To simplify the analysis we consider a β phase com-
posed by loops of fixed length L, whose origins are separated
by segments of length n. A sequence of m loops with interdis-
persed segments generates a phase β of length Lβ = m(L+n).
We start by considering s∗ in the mid-point of the first loop and
0≤∆s≤ L/2, i.e. an intra-loop distance. A simple calculation
gives

R2(∆s) = a2
β

∆s(L−∆s)
L

(12)

as it can be simply obtained from the product of two propaga-
tors pβ (⃗r,∆s)pβ (⃗r,L−∆s) with r⃗ ≡ u⃗(s)− u⃗(s∗). For short
distances ∆s ≪ L one recovers the Brownian motion limit
R2(∆s) ≈ a2

β
∆s. For u⃗(s) = 0, corresponding to the point O

in Fig. 7, we get R2(L/2) = ⟨⃗u2(s∗)⟩ = a2
β

L/4. We consider
now s∗ as in the previous case and s located in the k-th loop
(k > 1). Being in distinct loops u⃗(s) and u⃗(s∗) are statistically
independent, hence

R2(∆s) =
〈⃗
u2(s)

〉
+
〈⃗
u2(s∗)

〉
= a2

β

[
L
4
+(k−1)n+

∆s̃(L−∆s̃)
L

]
(13)

where ∆s̃≤ L is the length of the segment connecting the point
s on the k-th loop with its vertex, see Fig. 7 and where we
used ⟨⃗r2

i ⟩= a2
β

n. We note that the characteristic radius grows
with increasing ∆s mainly via the contribution of inter-loop
segments r⃗i, as the loop contribution which is proportional to
∆s̃(L−∆s̃) remains bounded. If the length of the inter-loop
segments is small compared to the length of the loops (i.e.
n ≪ L), then R(∆s) grows very weakly in the inter-loop re-
gion. In the analysis of the experimental data we estimated a
scaling exponent ≈ 0.15, but this is more likely a crossover
region. Finally at even longer genomic length scales ∆s com-
prises several combined α and β domains. In the random
walk model the contributions to R2 for the two domains are
independent. The contribution of one α and of one β domain
together is

R2(Lα +Lβ ) = a2
α Lα +a2

β
mn (14)

where in the phase β only the m inter-loop segments (of length
naβ ) contribute.

Summarizing, starting from a point in the phase β , three
distinct regimes govern the scaling of the mean-square radius
with the genomic distance ∆s. In the intra-loop regime, de-
scribed by Eq. (12), the radius grows as R(∆s) ∼ ∆s1/2 for
distances much smaller than the loop length. The inter-loop
regime (Eq. (13)) is characterized by an average very weak
growth with ∆s. Here R2(∆s) has a term which scales lin-
early with k − 1 the number of inter-loop segments crossed,
however, the constant term proportional to L/4 dominates. Fi-
nally, for ∆s crossing several α and β domains the radius is
a multiple of (14). This behavior is shown in Fig. 8 which
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FIG. 8. Root mean squared distance (rmsd) of the heterogeneous
random walk model as a function of distance for two distinct start-
ing loci. The dashed curve shows the rmsd obtained starting from
the compact α-phase (red). The solid lines show the rmsd starting
from an interdispersed looped β domain (blue). For the calculation
we assumed a heterogeneous random walk with alternating α and β

domains of 150 kb and 125 kb each. Every β domain is comprised of
5 loops of 23 kb and interdispersed unlooped walks of 1 kb. Values
of aα and aβ were chosen to be 0.08 µm and 0.4 µm respectively.

plots R(∆s) calculated from a point s∗ either located within
the α (dashed) or the β phase solid). Despite its simplicity
the random walk model captures the main features observed
in experiments. We note that a more realistic model of chro-
matin is the fractional brownian motion (fBm), obtained by a
chain with pairwise harmonic interactions with strengths de-
caying algebraically along the chain3. Such models can ac-
commodate a crumpled globule behavior. Moreover, they can
be used to compute scaling behavior of different topologies,
as for instance in looped states (see Ref. 19 for a generaliza-
tion of (12) to the fBm case). In principle such models can
handle multiple loops, but it seems difficult to incorporate a
phase-separating behavior in the fBm formalism of Ref. 3.

C. Concluding remarks

In conclusion, we have discussed how high resolution mi-
croscopy m-FISH data reveal a complex and heterogeneous
organization of chromatin structure encompassing different
scaling laws across various genomic scales. Such complex
organization was emphasized by several authors in the past
years19,28–33, but we are not aware of observation of distinct
scaling laws in a phase separating system as done in this
work. Here we showed how distinct phases follow very natu-
rally from the analysis of the distance distribution of m-FISH

tagged sites. We showed that Human9 an Mouse16 cell lines
provide consistent and complementary results spanning over
almost three order of magnitudes across the genomes and in-
terpreted the data using a simple heterogeneous random walk
model. The m-FISH technique, relying on high resolution flu-
orescence imaging, is only relatively new and only limited
fractions of genomes have been so far analyzed. It would be
interesting to correlate scaling behavior with biological de-
tails of the tagged genomic region (actively transcribed genes
vs. silent ones). Some studies have started to explore these
correlations5, but more data are needed to establish robust
correlations. Another aspect not yet understood is the role
of dynamics in the system. The m-FISH method (as the Hi-C)
provides a snapshot of the chromatin conformation at a given
time. We have seen that a micro-phase separation takes place
in the system. One possibility is that the α and β domains are
rather dynamical so that the cell constantly swaps between
these two in the course of time, rather than being a frozen
structure. Future studies will likely elucidate these issues.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains a description of the
experimental data and additional figures.
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