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Abstract

This paper proposes a method to identify the joint sti�-

ness of a robot using a bandpass �lter. It is based on

moving one axis at a time. The dynamic model re-

duces to a model which is linear in relation to a min-

imum set of dynamical parameters which have to be

identi�ed. These parameters are estimated using the

least squares solution of an over determined linear sys-

tem obtained from the sampling of the dynamic model

along a closed loop tracking trajectory. Conditions for

a good data processing before identi�cation are exhib-

ited through practical aspects concerning data sampling

and data �ltering. An experimental study shows the ef-

�ciency of the method with two sets of data depending

on motor and joint position measurements.

1 Introduction

Accurate dynamic models of robots are required to
control or simulate their motions. These models are
function of the geometric parameters of robots (length
of links, angle between joint axis, ...) and the dynamic
parameters of links (inertia, �rst moments, masses)
and drive chain (sti�ness, friction). In the last years,
subspace methods for estimating 
exible modes of me-
chanical systems with the direct dynamic model have
received a lot of attention [1][2]. An other alternative
consists in performing identi�cation in the frequency
domain with a spectral analysis [3]. However, most
of the investigations do not underline the diÆculty to
estimate the physical parameters of the system using
the identi�ed state space or transfer function model.
This paper is focused on estimating the joint sti�ness
which is the major source of 
exibility in many appli-
cations. The method is based on special test motions
moving one joint at a time while the others are locked.
The dynamic model reduces to a model which is lin-

ear in relation to gravity parameters (�rst moments),
joint moment of inertia, friction and sti�ness param-
eters. These parameters are estimated from sampled
data of motor current reference and available position
measurements using a least squares identi�cation tech-
nique. In the case of 
exible systems, 
exible degrees
of freedom are not all measured. This is a main dif-
ference and diÆculty compared with the rigid multi
body systems where all the joint positions are mea-
sured. The method which is presented takes into ac-
count this problem. This article is divided into four
sections. Section 2 describes the dynamic modeling
of a 
exible joint robot. Section 3 is devoted to the
identi�cation using the inverse dynamic model. Some
practical aspects about the data �ltering necessary to
perform the least squares identi�cation algorithm are
exhibited. Experimental results of the dynamic iden-
ti�cation of a joint prototype robot will illustrate the-
oretical results in section 4.

2 Modeling

2.1 The dynamic model

The description of the geometry of the robot is car-
ried out using the modi�ed Denavit and Hartenberg
notation [4]. The inverse dynamic model of a 
exible
joint robot composed of n moving links calculates the
motor torque vector (the control input) as a function
of the generalized coordinates (the state vector and
it's derivative). It can be written as [5][6]:

0 =M(q)�q +N(q; _q)�K(qm � q) (1)

�m = Jm�qm + �fm +K(qm � q) (2)

where : q, _q, �q are the (nx1) vectors of joint posi-
tions, velocities and accelerations respectively, M(q)
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is the (nxn) robot inertia matrix, N(q; _q) is the (nx1)
vector of centrifugal, Coriolis, gravitational and joint
friction torques �f . �f is usually modelized at non
zero velocity as following:

�fj = FSjsign( _qj) + FVj _qj (3)

_qj is the joint j velocity. sign(x) denotes the sign func-
tion. FVj and FSj are the viscous and Coulomb fric-
tion coeÆcients of joint j. qm, _qm, �qm are the (nx1)
vectors of motor positions, velocities and accelerations
respectively. �fm is the drive chain slip friction torque
given as following:

�fmj = FSmjsign( _qm) + FV mj _qm (4)

FVmj and FSmj are the viscous and Coulomb friction
coeÆcients of drive chain j. Jm is a (nxn) diagonal
matrix with the drive chain inertia moment on its di-
agonal (polar moments of motor and gears). K is a
(nxn) diagonal matrix with the joint sti�ness on its
diagonal, assuming that the elastic joints can be ap-
proximated by pure torsional springs that is to say
taking into account only the �rst mode of the 
exible
joint. Moving one axis j at a time while the others are
locked reduces the dynamic model to the following:

0 = JLj(qL)�qj +Qj(qL) + �fj �Kj(qmj � qj) (5)

�mj = Jmj �qmj + �fmj +K(qmj � qj) (6)

Where: qL are the locked joints from j+1 to n.

JLj =Mjj(qL) is the j
th diagonal coeÆcient in M, Qj

is the gravity torque:

Qj =MXLj(qL)g cos(qj) +MYLj(qL)g sin(qj) (7)

MXLj andMYLj are the �rst moments, g is the grav-
ity acceleration.

JLj , MXLj and MYLj depend on the locked joint qL.

2.2 The standard identi�cation model

The dynamic model (5) and (6) can be rewritten in a
relation linear to the dynamic parameters as following,
where the subscript j is omitted for simplicity:

y = DsXs (8)

with:

y =

�
�m
0

�
(9)

Ds=

�
�qm _qmsign( _qm) (qm�q) 0 0 0 0 0
0 0 0 �(qm�q) �q gcos(g) gsin(q) _q sign ( _q)

�
(10)

Xs =
�
Jm FVm FSm K JL MXL MYL FV FS

�
T

(11)

There are 9 parameters to identify which are called
the standard parameters of the moving link j.

2.3 The minimal identi�cation models

The minimal model is the model which calculates y
with the minimum set of parameters X in (12) (see
Section 3.1). It is computed using the expression of
the standard model (8), (9), (10), (11) and depends on
the available measurements. It is noted as following:

y = DX (12)

Two minimal models are considered.

2.3.1 Identi�cation model using joint and mo-

tor positions

The minimal model corresponds to the standard
model (8), (9), (10), (11) and it is given by:

D = Ds X = Xs y =

�
�m
0

�
(13)

2.3.2 Identi�cation models with only the mo-

tor position

Assuming that 
exible degree of freedom q and its
derivatives are not measured which is the case for in-
dustrial robots, q and its derivatives must be calcu-
lated from (6). The 
exible position is given by:

q =
Jm�qm + FSmsign( _qm) + FVm _qm +Kqm � �m

K
(14)

The �rst and second derivatives of (14) give _q and �q
where sign( _qm) is removed because its derivative is
not de�ned:

_q =
Jm

...
q
m + FVm�qm +K _qm � _�m

K
(15)

�q =
Jm

....
q
m + FVm

...
q
m +K�qm � ��m

K
(16)

By substituting (16), (15) and (14) in (5), (7) and (3)
do not allow to rewrite (5) as a linear relation to the
dynamic parameters because of cos(q) and sin(q) in
(7) and sign( _q) in (3). We propose to overcome this
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diÆculty by using a chirp signal as a trajectory which
is exciting for all the parameters of XS but less excit-
ing forMXL,MYL. Working near the rest position qo
of the robot with respect to the gravity force is a solu-
tion to decrease the e�ect of the gravity in the model.
If a priori knowledge is available qo can be calculated
as:

qo = � arctan

�
MXL

MYL

�
(17)

Choosing this value implies that the contribution of
the gravity torque decreases in (5) because the term
(7) remains small. Moreover, we assume that the chirp
trajectory does not excite FS. This assumption will
be veri�ed in the experimental validation (see Section
4). In the case where the e�ects of the gravity terms
and FS can be neglected on the used trajectory, the
substitution of (16), (15) and (14) in (5) lead to a
minimal linear model as (12), with:

D=
�
���m � _�m

....
q
m

...
q
m �qm _qm sign ( _qm)

�
(18)

X =
�
X1 X2 X3 X4 X5 X6 X7

�T
(19)

y = �m (20)

where:

X1 =
JL

K
X2 =

FV

K

X3 =
JmJL

K
X4 =

JmFV+JLFVm
K

X5 =
JmK+JLK+FV FVm

K
X6 = FV + FVm

X7 = FSm

3 Identi�cation method and �l-

tering aspects

3.1 Identi�cation method

The identi�cation method developed for robot manip-
ulators is applied for 
exible systems. From a sam-
pling of the dynamic model along di�erent trajecto-
ries [6][7][8], at di�erent times t, i=1,...,n , X can be
estimated as the least squares (L.S.) solution X̂ of the
linear system:

y =WX + � (21)

where: W is a (rxNp) observation matrix, which is a
sampling of the regressor (10) or (18), Y is a (rx1)

vector which is a sampling of (9) of (20), � is a (rx1)
vector of errors due to model error and noise measure-
ments, r > Np is the number of equations.

The L.S. solution minimizes the 2 norm jj�jj of the
vector of errors �. The unicity of the L.S. solution
depends on the rank of the observation matrix W. The
rank de�ciency of W can come from two origins:

- structural rank de�ciency which stands for any sam-
ples of (qm; _qm; �qm) and (q; _q; �q) samples constrainted
by (5). This is the structural parameters identi�abil-
ity problem which is solved using base (or minimal)
parameters [9].

- data rank de�ciency due to a bad choice of the trajec-
tory (q; _q; �q; qm; _qm; �qm) which is sampled in W. This is
the problem of optimal measurement strategies which
is solved using closed loop identi�cation to track ex-
citing trajectories [8][10].

Calculating the L.S. solution of (21) from noisy dis-
crete measurements or estimations of derivatives, may
lead to bias because W and Y may be non indepen-
dent random matrices [6]. Then it is essential to �lter
data in Y and W, before computing the L.S. solution.

3.2 Filtering aspects

The derivatives of q in (21) are obtained without phase
shift using a central di�erence algorithms of the low-
pass �ltered position. The low pass �lter without
phase shift and without magnitude distortion into the
bandwidth is easily obtained with a non causal zero-
phase digital �ltering by processing the input data
through an IIR lowpass Butterworth �lter in both the
forward and reverse direction using a '�lt�lt' proce-
dure from Matlab. The recursive equation of the cen-
tral di�erence algorithms is given by:

qcd[k] =
q[k + 1]� q[k � 1]

2Ts
(22)

where q is the joint position and qcd the central di�er-
ence of q. The discrete transfer function corresponding
to (22) is given by:

qcd

q
(z�1) =

1

2Ts

1� z�2

z�1
(23)

z�1 = e�Tss is the unit delay in the time domain. Tak-
ing z�1 = e�Tsj! in (23) gives the transfer function
D(j!) in the frequency domain:

D(j!) =
qcd

q
(j!) = j!

sin(!Ts)

!Ts
(24)
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(24) is an approximation of the continuous derivative
transfer function, s = j!, without phase distortion,

but with the amplitude distortion sin(!Ts)

!Ts
. In the case

where the Nyquist frequency !s=2 is larger than the
cuto� frequency !n of the lowpass Butterworth �l-
ter, the magnitude of the forward and reverse discrete
Butterworth �lter can be well approximated by the
continuous �lter H(j!) in the range frequency close
to !n and it is given by:

jH(j!)j =
1

1 +
�

!

!n

�2m (25)

where m is the order of the forward �lter. The product
of the lowpass �lter H(j!) and the central di�erence
�lter D(j!) transfer functions gives a bandpass �lter
F (j!) which is a band-limited derivative �lter. Fig-
ure 1 shows the Bode's diagram of the di�erent �lters
with !s=2 = 103rad=s.
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Figure 1: Magnitude of �lters (m=2)

Therefore, two parameters have to be tuned to de�ne
the bandpass �lter: The frequency !n of the Butter-
worth �lter H(j!) and the sampling time Ts. These
parameters must be tuned in order to avoid magnitude
distortion inside the bandwidth of the derivatives be-
cause some distortion of data in the dynamic range of
the system yields errors in the observation matrix W
and lead to bias estimation. Let us de�ne the mag-
nitude distortion A(!) of the bandpass �lter Fnd(j!)
which approximates the derivative of order nd:

A(!) =
1

1 +
�

!

!n

�2m
�
sin(!Ts)

!Ts

�nd

(26)

The cuto� frequency !c bounds the magnitude dis-
tortion of Fnd(j!) to Ac such A(!) � Ac for any !

inside the bandwidth [0; !c], and Ac = A(!c). The
frequency !c is chosen into the dynamic range of the

exible joint between 2!1 and 10!1, where !1 is the
�rst mode of the joint. Let us de�ne rc as the ratio
between the amplitude distortion introduced by the
lowpass �lter and the distortion due to the derivative
�lter:

rc =

1

1+( !c
!n
)
2m

�
sin(!cTs)

!cTs

�nd (27)

Straightforward computations show that:

!n = !c

�
1

p
rcAc

� 1

�� 1

2m

(28)

and !s =
2�
Ts

= 2
xc
!c, where xc solves the equation:

sinc(xc) =
sin(�xc)

�xc
=

sin(!cTs)

!cTs
=

�
Ac

rc

� 1

2nd

(29)

A typical value for rc is 1 which equals the distortion
between the lowpass �lter and the central di�erence.

Ac equal
p
2
2

de�nes the usual �3dB bandwidth of the
�lter Fnd(j!). Starting from these initial values, !n
and Ts can be improved by optimization in order to
bound the estimation error relative to a priori values
[11].

The torque �m is perturbed by high frequency torque
ripple of the joint drive chain and has also to be �l-
tered. Then y and each column of W in (21) are �l-
tered by a lowpass �lter and then are resampled at a
lower rate (decimate Matlab procedure), keeping one
sample over Nd to get a new �ltered linear system. It
is to be noted that the distortion of this �ltering pro-
cess doesn't introduce any error in the linear relation
(21).

4 Experimental validation

Experimental identi�cation has been carried out on
one axis of a prototype robot, starting from two sets of
data measurements. A closed loop identi�cation, us-
ing classical position and velocity feedback PI control,
has been performed, tracking a chirp function sweep-
ing between 0:05Hz and 30Hz, in order to excite the
system around its �rst natural frequency, f1 = 3:9Hz

with a pay load. It is recommended to load the robot
in order to increase the excitation of the sti�ness pa-
rameter, which is better estimated than without pay
load. For the prototype, the experimental sampling
frequency is imposed by the data acquisition system
at Fs = 1=Ts = 350:87Hz.
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4.1 Identi�cation results with both

joint and motor position measure-

ments

The maximum order of derivatives is nd = 2. Choos-
ing !c = 6!1 = 12�f1, Ac =

p
2
2
, rc=1, m = 4

gives the Butterworth frequency !n2 = 181rad=s. The
sampling frequency obtained with (29) is equal to
Fs2 = 205Hz. Experimental results show that a good
estimation is obtained with a Butterworth frequency
!n2 = 176rad=s. This value is close to the theoretical
value. The decimate procedure is tuned to keep one
sample over Nd = 26 which gives a cuto� frequency
equal to 5:4Hz and close to f1.

The minimal model is given by (13) and the esti-
mated values are given in Table 1 with their con�-
dence interval 2�

X̂i
and their relative standard devia-

tion %�
X̂ri

=
�
X̂i

X̂ri
100.

Parameters X 2�
X̂

%�
X̂r

Jm 174.7996 2.7741 0.7952

K 20341.0458 437.1569 1.0746

JL 47.4458 1.6281 1.7157

FSm 41.4254 5.5393 6.6858

FVm 235.9100 127.9280 27.1137

FV 83.1508 41.4113 24.9013

MX -0.7241 1.1948 82.5056

MY -53.4201 10.3659 9.7023

FS 8.4612 2.5726 15.2025

Table 1: Identi�cation results (ISO units)

The relative standard deviations show that the joint
sti�ness K and the parameters Jm, JL, FSm are ac-
curately identi�ed. MY is identi�able but at less ac-
curacy while the others are not signi�cant on the used
trajectory.

4.2 Identi�cation results without joint

position measurement

The maximum order of derivatives is nd = 4. Choos-
ing !c = 6!1 = 12�f1, Ac =

p
2
2
, rc=1, m = 6 gives

the Butterworth frequency !n4 = 169rad=s which is
close to !n2. The sampling frequency obtained with
(29) is equal to Fs4 = 289Hz. For the comparison
of both methods we use the same bandpass �lter as
previously that is to say !n4 = !n2 = 176rad=s and
Nd = 26.

The minimal model is given by (18), (19) and (20).
It should be noted that the identi�ed parameters Xi,

i=1,...7, are non linear in relation to the physical ones,
which makes diÆcult to compute the standard devia-
tions of the inertial and friction estimated values in the
identi�cation procedure. Table 2 exhibits estimated
values with their con�dence interval and their relative
standard deviation.

Parameters X 2�
X̂

%�
X̂r

X1 0.0021 0.0001 2.5977

X2 0.0046 0.0022 23.6303

X3 0.3554 0.0176 2.4774

X4 3.1739 0.3569 5.6218

X5 205.4558 7.9221 1.9279

X6 1246.5690 165.1359 6.6236

X7 5.1624 7.4232 71.8975

Table 2: Identi�cation results (ISO units)

The relative standard deviations show that the iden-
ti�cation model given by (18), (19) and (20) leads to
estimated parameters which are accurately identi�ed
except for X2 and X7.

The physical dynamic parameters are calculated in-
verting the relations X1; X2; X3; X4; X5; X6; X7 and
are given in Table 3. It is to be noted that the values
of Jm, K and JL are close to the values obtained with
the model given by (13), despite of the e�ect of MY

which has been neglected, while friction parameters
are not identi�ed. The direct validation on Figure 2
shows that the predicted motor torque is close to the
measured one.

Parameters Estimation Values

Jm Ĵm = X3=X1 172.1890

K K̂ = F̂ V =X2 19552.6214

JL ĴL = X1K̂ 40.3601

FSm ^FSm = X7 5.1624

FVm ^FVm = (X4 � ĴmX2)=X1 1157.4716

FV F̂V = X6 � ^FVm 89.0974

Table 3: Physical parameters (ISO units)

We get a good estimation of the joint sti�ness for both
methods but each of them have their advantages and
drawbacks. On the one hand the method based on mo-
tor and joint position measurements has the advantage
to use the complete inverse model which gives the op-
portunity to identify the physical parameters. Unfor-
tunately the major drawback of this method is to use
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Figure 2: Direct validation

two encoders which is expensive and is not the case in
most industrial robots. On the other hand, the identi-
�cation method using only the motor position is based
on a simpli�ed model which identi�es parameters as
non linear relations to the physical ones. Then only
the joint sti�ness and the inertia can be accurately
identi�ed. The main drawback is that some parame-
ters as friction parameters and gravity parameters are
not identi�ed.

5 Conclusion

This paper has proposed a method to identify the sti�-
ness of robot joint. It is based on moving one axis at a
time. The dynamic model reduces to a model which is
linear in relation to a set of parameters which are esti-
mated as the least squares solution of the sampled and
�ltered dynamic model. Conditions for a good data
processing before identi�cation are exhibited through
practical aspects concerning data sampling and data
�ltering. Finally, an experimental study shows the ef-
�ciency of the identi�cation procedure with two sets
of data depending on motor and joint position mea-
surements and highlights advantages and drawbacks
of each method.
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