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Abstract : This paper proposes a method for the automatic 
tuning of the cascade structure CNC controllers. The 
design takes into account constraints on the system such as 
delays induced by numerical control effects and elasticity of 
bodies. The robustness of the algorithm is ensured by 
requiring minimal stability margins. 

1. Introduction 

The controllers of industrial CNC are usually based on 
cascade structure with a fast inner loop for torque control 
and outer loops for speed and position control. This 
structure improves the robustness of the controller with 
respect to the disturbances and modeling errors. The speed 
control loop is classically implemented with proportionnal 
and integral (PI) controllers (Pl or IP structure) with anti
windup strategy. The position loop is designed with a P 
controller. In order to decrease the tracking errors, velocity 
and acceleration feedforward signals might be added to the 
control loops. For a given structure, the problem is to tune 
the controller gains considering the CNC components, the 
mechanical device and the drive chain structure. PI 
controllers have traditionally been tuned empirically e.g. by 
the method described by Ziegler and Nichols in [ l ]. In 
recent years, several methods have been proposed [2], [3], 
[4], (5], [6]. In [2], for instance, considering the emerging 
auto-tuners and tuning devices, the design problem is solved 
as an optimization problem based on sensitivity constraint 
and is fully adapted for an extended class of complex 
systems. In [5] and [6], the digital RST is designed using 
pole placement and/or sensitivity function shaping. The 
robustness indicator is based on the modulus margin or 
given in terms of time response and delay margin. 
Following recent works [7] dealing with the modeling and 
simulation of a machine tool axis, the objective is now to 
provide a complete simulation toolbox to predict the 
performances of the machine tool at the stage of its design 
and before its prototyping or manufacturing. The problem 
for the machine tool manufacturer is to assembly different 
existing components (numerical controllers, actuators, 

sensors and mechanical devices) available on the market 
without knowing the global resulting performances. 
Considering the main problems of such a process that is the 
dynamics of rigid bodies, the elasticity of bodies and 
mechanical transmission, the dynamics and saturations of 
electric actuators, the effect of numerical control as delays 
and quantization, the last stage of the design is to define a 
procedure to tune the controllers taking into account all the 
previous components of the modeling. Therefore, the main 
contribution of this work is to propose an efficient procedure 
based on a frequency approach and stability margins, using 
a combination of very more simple but still efficient tuning 
methods. Basically, the digital control systems are 
redesigned in the continuous space. Then the gain values are 
tuned using a simplified rigid model. These values initialize 
an optimization procedure using the full model to perform 
an accurate tuning. The paper is organized as follows : 
Section 2 describes the proposed design tuning method. 
Section 3 briefly recalls the control tuning strategies 
developed in [2] and [5]. Section 4 exhibits comparative 
results. The simulation tests are performed on a simplified 
machine tools axis model. 

2. The proposed design method 

2.1 Digital controller design in case of a rigid model 

Two basic approaches to the design of digital control 
systems can be considered : i) a direct discrete-time design 
or ii) a continuous controller redesign [8]. The second one

-
is 

preferable because it allows continuous time techniques to 
be used, specially the design in the frequency domain which 
appears as the most convenient way to observe stability 
margin indicator. The proposed tuning procedure is based on 
the second one and is composed of two steps. Gain values 
are first tuned using a rigid model. More precisely a 
continuous time control law is first defined. Secondly it is 
discretized and finally it is approximated by continuous 
transfer function. Therefore the gains can be calculated with 
a continuous controller taking into account the effect of 
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digital control in the bandwidth of the closed loop. At the 
end, these values are introduced to start an optimization 
procedure using a complete model considering the 
mechanical flexibility to perform an accurate tuning. 

2.1.l Continuous time case 
As a first approximation, the velocity loop and the rigid 
model can be represented as given on Figure I : 

Figure 1: Velocity loop and rigid model 

J101 is the total inertia moment of the rigid model (motor, 
mechanical transmission, load), 
Gi is the gain of the amplifier, 

K1 is the torque constant. 

Jc, Gic•K•c are the estimated values of J'"'' Gi,K, 
respectively and C(s) the transfer function of the velocity 
controller. Assuming that there is no model error i.e. 
Jc =J,ot, Gic =G1, K,. = K,, a general continuous model 

without any physical parameters (Figure 2) may be used for 
the tuning of the velocity and position controllers : 

2.1.2 

�� q::tr -u -L:_Jr. � 
Figure 2 : Controllers with the rigid mo,del 

Numerical implementation 
Among a few methods of discretizing continuous-time 
controllers, (Tustin's approximation, matched pole-zero, ... ), 
the most popular in industry is to approximate the derivative 
by backward difference and the integral by a forward Euler 
rule. The gains of numeric elements are calculated using 
classical continuous approximations of the discrete transfer 

functions. Details of their computations are given in [7). In 
the following only the PI structure tuning is developed. The 
digital control scheme is -3dB approximated by the 
continuous one in the range of the Nyquist frequency fe/2. 
Figure 3 shows the continuous digital control redesign : 

qm 

Figure 3: ConJinuous model of the digital controller 

Tc is the computation delay. 
Te==htrve1 is the sampling period of the velocity loop. 
Time delays in this control scheme introduce irrational 
transfer function. But it is suitable to perform the calculation 
of the control gains in the frequency domain, using stability 
margins, without the need of using rational approximations 
as Pade approximants. 

· 

2.1.3 Performance index 

The performance index i.s defined in the frequency domain 
and is based on optimization techniques to guarantee the 
desired phase and gain margins. In that way, the speed loop 
controller is first calculated in order to get a phase margin 
cpm• at a given frequency rovi1 • This frequency is related to 

the first flexible mode ( fmec•) of the process and is usually 

chosen between [fmcc./10 fmcc./2]. Then the controller of 

the position loop is calculated in order to get a phase margin 
<!lmp. Adding some test on the gain margin ensure satisfying 

stability margin. 

2.1.4 Speed loop controller tuning 

For a PI structure, Ti is first calculated to obtain the desired 
phase margin for the open loop transfer function given on 
Figure 3, i.e. : 

Tbov(s) = q_ e .. 
The gain KP is then computed such as jThov (jw,. )j =I . 
It leads to the following analytic expressions : 

1 sin Wv•• t tan(cpmv+Wvi1(T.+Tc))+cos Wv;, i - == (J)' -�--'---:-----�---..,..�--'-----' T; vu 
tan { q>mv + (l)vir (T. +Tc}} 

K,= --;===============T�'=w�'.,,=============== 
( T, w,,.cos( w,,, �· ))' +(1-T, w,,,sin( w,,, �· )J 

2.1.5 Position loop controller tuning 

(I) 

(2) 

(3) 

(4) 

The continuous time model of the position closed loop is : 

s h�r. Tw: :� i L...:::J 

Figure 4: Position closed loop 

htr is the position loop sampling time, ( htr � htr,e1 ), 

T0P is the position loop computation delay, 

Tbfv(s) is the velocity closed loop transfer function. 
Kv is calculated to ensure a phase margin q>mp· Because there 
is only one degree of freedom in the P controller, the 
frequency Wpo, corresponding to q>mp cannot be chosen 
independently of q>mp· Indeed, it is given as the solution of 
the following equation : 

1t htr Arg(Tbfv(jw >) = --+cp +w (-+T) pc.. 2 mp P"' 2 •l' (5) 
No analytical solution exists, but a numerical one can be 
calculated with an optimization procedure 'fmins' [9]. 
Finally, Kv is computed such as : 
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11_K _. T_bf _v _(joo_pos_ ) I = 1 � K (l)pos • ITbfv{j(l) .. )j (6) 

At the end of this procedure, perfonnance indexes are 
checked with classical frequency techniques (Bode, Black
Nichols charts) and time analysis (step responses), with the 
complete model implemented in the simulator [7] developed 
in the environment Matlab/Simulink. If the performances 
are too far from the desired ones, it is possible to improve 
the previous controller tuning with an optimization 
procedure as detailed below. 
2.2 Accurate tuning of the controller 
Accurate tuning is performed using the full model 
implemented in the simulator which takes into account the 
lumped model of the mechanics, digital control and location 
of measurements. 

,.---�--·--�, ' � ! Accurate velocity q;.,. · model estimation 
l_____����� 

Figure 5: Pl speed loop with the full model 

Discrete transfer functions Tbov(z) and Tai(z) (Figure 5) are 
calculated with the 'dlinmod' Matlab function [9]. Because 
of high order transfer functions, it is not possible to get 
analytical expressions for the gains. They are computed with 
optimization techniques, using 'fmins' Matlab function [9] 
starting with the initial values calculated with Eq. (3), (4) 

and (6) in order to satisfy the phase margins and bandwidth. 
2.2.l Speed loop controller 

T; is calculated by optimization such as : 
Arg(Tbov(wvii)) = -7t+ <jlmv - Arg(Tai(Wvi•)) 
KP is calculated such as : 

K = I P I Tai Tbovl "'·• 

2.2.2 Position controller 

OOpos is calculated such as : 
Arg (Tbop(e--)} = -7t + <P.,. 
Kv is calculated such as : 

K, 

2.2.3 Gain margin tuning 

(7) 

(8) 

(9) 

(IO) 

In case of the complete model, the delays introduced by the 
CNC and the presence of multiple oscillatory modes make 
the control more delicate. In fact, sometimes, despite of a 
good phase margin, a bad stability of the complete model in 
closed loop results of the very small gain margin. 

-180 
6dB 

II CdBJ 

Arg [0) 
-90 0 

Figure 6: Speed Loop transfer obtained with an optimization 
based on phase margin criterion 

The example Figure 6, illustrates the problem. In spite of a 
good phase margin, the gain margin is too small (typically 
6dB gain margin is needed). The tuning procedure consists 
then in computing again by optimization the gain Kp if the 
problem is on the speed loop or the gain K v if the problem 
occurs on the position loop with respect to gain margin 
criterion Eq. (11). (12). 
i) Speed controller 
� = MJv /!Tai( e'°t�"") ll:xw( e'°t�,., � (l l )

Wviso is the critical frequency of the velocity loop such as 
Arg (Tbov(jw, 180)) = -180° , 
MGv is the desired gain margin on the velocity loop. 

ii) Position controller : 

Kv =MCVITufv(ej111roop1ro) I (12) 
Wprso is the critical frequency of the position loop 
( Arg(Tbop(jwp1RO)) =-180° ), 
MGp is the desired gain margin on the position loop. 

3. Other control tuning strategies 
Recently two procedures (2,5] have been proposed to tune 
controllers automatically. In this section, we will briefly 
describe their principles. 
3.1 Robust pole placement 
In [5], the robust poles placement is presented for a RST 
structure whose the classical scheme is given on Figure 7 : 

d ' 
.----_. -"--� B(s)/A(s) __ --1_, :.:'_'J,-_ .. _'/\ _______ !___ r ---� T(s) ___ ..,·,, ___ , l/S(s) , , • · ___ ___I 
i----

--; R(s) :•--
figure 7 : RST structure 

Let's define the output/disturbance sensitivity function : 
A(s)S(s) 

A(s)S(s) + B(s)R{s) 
A(s)S(s) 

P(s) 
B(s)/ A(s) is the process transfer function, 
P(s) = A(s)S(s) + B(s)R (s) = C(s)F(s) 

(13) 

(14) 
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C(s) and F(s) are respectively interpreted as the control 

polynomial and the filtering polynomial. 
The principle of the pole placement consists in choosing the 

stability polynomial P(s) in order to guarantee constraint 

specifications on the sensitivity function. Three conditions 
are then required to guarantee a robust controller [5] : 
l. C(s) should be close to B(s) 

2. F(s) should be closed to sA(s) such that 
jF( jw)j � jjwA( jo>)j 

The compromise between performances and robustness is 

achieved through two synthesis parameters Tc and T0 
which will be used in the poles definition of C(s) and 
F(s) in order to fulfill the three previous conditions. These 

parameters may be interpreted as two dominating time 
constants of the process. They assign the poles of the closed 
loop. Usually, Tc will be dedicated to the tracking 
performances and T0 to the disturbance rejection. Details of 
the procedure may be found in [5]. 
3. 1. 1 Speed loop controller 
Applying the robust pole placement technique with suitable 
degrees for tuning the speed loop PI controller needs the use 
of the first order rigid model (Figure 8). 

,-- I , r"' , I <i. 
q�.,.: T 1-"'(X';-1 l/S � � 1----i-

L_J T �· �· .. . i
:_J� 

Figure 8 : Speed loop RST controller 

Therefore the transfer function between the motor velocity 
and the torque is given by : 

q. /r (s) = B(s) = l/J /(s+ F.m l m m A(s) 101 Jiot ) 
The RST robust controller specifications give : 

(15) 

S(s)=s, degree ofR(s)= 1, C(s)=l/J,01, F(s)=(s+l/T0j.
where Ta, is the desired "filtering horizon". A possible set 
for Ta, is: l/10 (J 10. /Fvm) $ T0, S l/2(110./Fvm) · 
Eq .14 leads to a simplified expression : 

R(s)= F(s)-sA(s) J r�-F·m ]s+J,01 
l/J,o, •o• Ta, 1101 T� 

Finally, the controller is written in the PI form as : 

R(s) = KJ 1 + _!_) 
S(s) l T;s 

(16) 

(17) 

K = 21101 - F and � = � ( 18) P vm " T0, T; T� 
Several strategies may be investigated to design the pre
filter T .Hereafter, T is chosen to ensure a unitary static gain 
in closed loop i.e .T(s) = R(O) . 

3.1.2 Position loop controller 
In order to perform the tuning of the P pos1tton loop 
controller, the velocity closed loop is approximated by a 

first order transfer function : 1/(1 + Tvs) , where Tv is 

calculated as the (-45°) cut off frequency : 

Arg {Tbfv(j (Irr.)) = -45° 

The P position controller is then obtained with : 

Sp(S) =I, RP= K., C(s) = l/T., F(s)=(s+lff0p) (19) 

where Tap is the tuning parameter of the position controller 
fixed by the desired time response. A possible set for Tap is 
approximately given by : T./100 $Tap $ T./10. Finally, the 
controller can be written in the P form : 

K = Tv -1v T Op 

3.2 Non-Convex Optimization [2] 

(20) 

(21) 

Let's define the process G(s) and its PI controller. The loop 
transfer L is written as : 

L(s) = (k + k; /s )G(s) (22) 
The optimization problem is to find controller parameters 
that maximize k; to the constraints that the closed-loop 
system is stable and that the Nyquist curve of the loop 
transfer function is outside a circle with center s = -C and 
radius R. The design parameter M, , which tunes the tradeoff 
between performances and robustness, represents the 
maximum of the sensitivity function Syd (s) . It is defined : 

M, = Max!S,d(s)l = Max l-1-l · l+L(s) 
The sensitivity constraint is then written as follows : 

f(k,ki'w)= !c+( k-i � )a(iw)l2 
�R2 

(23) 

(24) 
The optimization problem is to maximize k; subject to the 
sensitivity constraint (Eq. 24). An interesting advantage of 
this algorithm is that the optimization will compute the best 
solution ( k;, k )  with respect to w ,  given M, , that is the 
best bandwidth. In spite of the very simple concept of the 
method, two important aspects of the procedure have to be 
underlined. First the problem is not trivial because the 
constraint defines a set in parameter space which is not 
convex. Moreover the initialization of the optimization 
algorithm play a crucial role. But for special classes of 
system such as systems with monotonic transfer function, a 
method for providing good initial conditions is given. An 
other point is the need to explicitly calculate the function 
f (k, k;. w) and its derivatives, which is not necessary 
simple. 
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As previously, this method is applied to a cascade structure 
composed of PI and P controllers. The last case leads to a 
simplified optimization ·on t�o parameters w and k. The 
model used to 'perl'orm the controller tuning is the rigid 
model with a delay to fulfill the required condition of 
monotonic decreasing phase necessary for providing good 
initial conditions. This delay is not restrictive at all in the 
context of the digital design. 

4. Simulatipn Results 

The different design procedures have been tested on a 
machine tool axis which is modeled by a simplified 2 
masses and one spring model. 
The digital elements such as delay, quantization and the 
dynamics and saturations of electric actuators are taken into 
account also. 
The mechanical system is given by: 

d ql . 
0 =  JI-+ Fvl qi+ K(ql - Nqm) 

dt "' 
K is the stiffness of the flexible drive joint, 

(25) 

qm and q1 are respectively the displacement of the motor and 
the load, 
qm and q1 are respectively the velocity of the motor and the 
load, 
Fvm and Fv1 are respectively the viscous coefficient of the 
motor and the load, 

The simulations are carried out with the following 
parameters· : 
Jm = 0.003 l kg.m2, J1=153.5366kg , N = 0.0032m-1, 
K = 2.7154e7N / m , f= = 0.2250Nm /rad/s, f,1 =0.Cffi:N/(m/s), 
htr=2 ms, htrvii=0.125 ms, Tc=3* htrvih Tcp=htr. 

A short analysis shows that the system has two oscillatory 
poles with a damping factor of �=0.02349 and a natural 
pulsation of w0 = 512.916rad.s-1• This pair of conjugate 
complex poles is classically due to the presence of the 
stiffness. The static behavior of the open loop is dominated 
by one slow mode (7.643 rad/s). Typically, this mode is 
introduced by viscous friction factors of the system. 

Figure 9 (resp. Figure 10) represents the Nichols diagram of 
the velocity loop transfer function (resp. position) for each 
method. Figure 11 (resp. Figure 12) exhibits the step 
response of the velocity (resp. position) loop and a load 
disturbance rejection. The step magnitude is of 1 rd/s for the 
speed loop, O.OO l l m  for the position loop and for the 
disturbance. Figure 13 (resp. Figure 14) corresponds to the 
control signal of the velocity (resp. position) loop. The full 
line corresponds to the proposed design method. The dashed 
and plot line represents the robust pole placement and 
finally the dashed line corresponds to the method of Astrom. 
In case of the proposed method, we choose <Pmv = 30° at the 
frequency Wvii=256.46 rad.s-1 depending on the first flexible 

mode and <Pmp = 80° . The contro}ler of the position loop is 
calculated in order to get a phase margin. The minimal gain 
margin of 6dB is imposed for each regulation loop. 
In case of the robust pole placement, the con�oller tuning is 
applied with To.= 1/4(J10JFvm) = 0.005 and To, =Tv/40 ..
Investigations on the choice of Ta,. and T0, must be perform 
to guarantee the best regulation performances.· 
In case of the non convex optimization, the best results have 
been computed with M,v=l .05 and M,P= l.3 . Greater values 
lead to unstable behaviors in closed loop when applied on 
the complete model. An alternative solution would be to 
perform the gains with this complete model but the need of 
analytic calculations make its use very prohibitive. 
Table 1 exhibits the obtained speed loop stability margins : 

<Jlmv (.I) vii LW:G (.I) cg 
(0) (rad/s) (dB) (rad/s) 

Proo. Method 30 256.46 28.752 4537.5 
De Larminat 69 263 21. 3 4710 

Astrom 52 330 20.6 4710 

Table 1 : Speed loop stability margins 

Table 2 presents the resulting stability margins of the 
position loop : 

<Jlmp (.I) pos LW:G (.I) cp (rad/s) 
(0) (rad/s) (dB) 

Proo. Method 82.8 42.248 6.0 239.54 
De Larminat 81.6 40.15 13.44 282.67 

Astrom 83.32 41.309 9.07023 295.19 

Table 2 : Position loop results 

Tabl 3 e summanzes t h e gam tuning : 

KP Ti KV 
(s.J) (s) (s-1) 

Prop. Method 141.685 0.00198 40.90 
De Larminat 351.84 0.0088 39 

Astrom 378.83 0.0041 40.335 

Table 3 : Gain tuning 

Results obtained with all methods are similar in term of 
parameter values of controller and behavior in close loop 
(Figure 11, 12, 13, 14). Some differences appear in the 
velocity loop but the static gain of all the controller (K/fi) 
is close. In spite of these results, the complexity of each 
technique must be also underline for a full comparison. In 
fact, the Astrom's method is not easy to apply because some 
computations must be performed at first and furthermore 
optimization procedure is delicate to initialize. 
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Figure 12: Step response of position Figure 14: Control signal of position 
loo allowed b a load disturbance loo 

s. Conclusion 
This paper presents an automatic design method for 
cascade structure CNC controllers. The procedure takes 
into account the elasticity of bodies, the effect of 
numerical control as delays. The robustness is ensured by 
requiring minimal stability margins and the performances 
are followed from this margins. Finally, we show that 
results obtained with this method give an acceptable 
controller compare with other strategies. 
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