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1. Abstract 13 

B-mode ultrasound has long been a first-line examination tool for the diagnosis of many 14 

musculoskeletal diseases in children. Due to the high acoustic impedance contrast between 15 

echogenic bone structures and adjacent soft tissue, B-mode ultrasound can only see the outer 16 

surface of bone structures, not what lies inside. In this context, linear ultrasound computed 17 

tomography can visualize the different morphologies of small organs (bone structures and adjacent 18 

soft tissues), but does not provide quantitative, parametric images. This article proposes a non-19 

linear approach to ultrasound computed tomography using a full waveform inversion algorithm, 20 

based on a complete numerical modeling of wave propagation in media and on the minimization, in 21 

the L
2
-norm sense, of a functional based on the iterative solution of the inverse problem. Our study 22 

was performed in two dimensions, as justified by current conventional experimental setups in 23 

medical imaging. We used an acoustic modeling for simplification and computational cost 24 

reduction. The inverse problem was solved iteratively using a quasi-Newton method known as the 25 

memory-limited Broyden-Fletcher-Goldfarb-Shanno method. The gradient of the misfit function 26 

was obtained based on the adjoint state method, which required only two simulations of the wave 27 

propagation problem per source at each iteration. Experiments were conducted on a newborn arm 28 

phantom containing the humerus, radius and ulna, deep radial and ulnar veins, embedded in 29 

homogeneous adipose tissue. We show the images obtained for different configurations of 30 

initialization and a priori information on the medium: without any a priori information on the 31 

medium, a priori information on the initial map of mass densities, and ultrasonic wave velocities. 32 

Convergences were of the order of 10 iterations in practice for each frequency band used, typically 33 

150 kHz to 600 kHz. The normalized error was limited to less than 11%. 34 

2. Keywords 35 

Ultrasound computed tomography, Full waveform inversion, Musculoskeletal organ imaging, 36 

Children's limbs 37 

3. Introduction 38 

Today, there is a growing interest in children's musculoskeletal health, firstly because children are 39 

concerned by musculoskeletal disorders and damages, and specific infantile osteopathologies (such 40 
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as fractures, bone infections or tumors), and secondly because musculoskeletal health in childhood 41 

is of a great importance for musculoskeletal health in adulthood. Therefore, musculoskeletal 42 

development in children is a key issue. For pediatricians, radiologists and orthopedic surgeons, the 43 

knowledge of the musculoskeletal disorders and bone quality of the child's limbs remains a major 44 

objective, in order to anticipate the evolution of diseases, to guide diagnoses and thus define and 45 

follow optimal therapeutic strategies. 46 

B-mode ultrasound has long been a first-line examination tool for the diagnosis of many 47 

musculoskeletal diseases in adults and children.
1
 The other modalities, such as X-ray or magnetic 48 

resonance imaging, are often associated with inconveniences of variable importance (cost, 49 

irradiation, sedation, accessibility) that are constraining for pediatric applications. B-mode 50 

ultrasound is all the more interesting because the functional advantages associated with it are 51 

favorable to pediatric use, as the number of procedures can be increased without (known) harmful 52 

effects. But the ultrasonic waves are disturbed by the presence of bony structures and have 53 

difficulty penetrating bone. In its clinical use, this modality only makes it possible to see the outer 54 

surface of a bony structure, and not what lies within. Also, B-mode ultrasound is not a quantitative 55 

and parametric modality. The grayscale levels of the map are not linked to any significant physical 56 

parameters of the organs. However, the development of a quantitative ultrasound imaging modality, 57 

adapted to the musculoskeletal tissues and organs of children's limbs, as a complementary modality, 58 

remains a major challenge. 59 

The interactions between ultrasonic waves, hyper-echoic bony structures and adjacent hypo-echoic 60 

soft tissues, along with the associated propagation problems, have been studied for more than thirty 61 

years.
2
 In this context, linear ultrasound computed tomography (USCT) in the orthogonal plane, 62 

with several planar projections at different angles, provides images of musculoskeletal organs, at 63 

the cost of adapted and time-consuming signal-processing algorithms.
3,4

 For example, linear 64 

reflection-mode USCT, with an adapted filtering and wavelet processing algorithm, makes it 65 

possible to reach, with a strong contrast-to-noise ratio, the different morphologies of small organs, 66 

such as an artificial newborn arm or a chicken drumstick.
5
 With this method one can visualize small 67 

X-ray invisible blood vessels in the artificial newborn arm, and, more specifically, muscles, nerves, 68 

tibia and the much smaller fibula, fat and skin in the chicken drumstick. But the images obtained are 69 

only morphometric, better defined than B-mode ultrasound images, and non-parametric. To 70 
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quantify the information, it is necessary to change the mathematical paradigm, and deal with the 71 

case of non-linear USCT. 72 

The approach proposed in this work consists in importing the highly sophisticated nonlinear full 73 

waveform inversion (FWI), based on the full numerical modeling of wave propagation in media 74 

(the object to be imaged and the background). FWI is at the forefront of the field of geophysics,
6,7

 75 

and has been used in medical imaging for a few years now with relevance (3D imaging, increased 76 

resolution, limited computation time, multi-parameterized images, deep learning, programming on 77 

GPU system). The goal of FWI is to iteratively reconstruct physical and elastic/acoustical 78 

parameters in the various media, without having to resort to any of the classical limiting 79 

assumptions currently made in USCT, for instance that tissue density is spatially constant. Indeed, 80 

FWI is an imaging method for heterogeneous media (objects and/or background) that is based on 81 

the full numerical modeling of wave propagation in these media, and on the minimization, in the L
2
-82 

norm sense, of the difference between recorded and simulated waveforms. The term "full" refers to 83 

the use of the full-time series.
8–13

 84 

FWI has gained in popularity in the medical field because it achieves higher resolution and 85 

accuracy than methods that use only part of the information (e.g., the arrival times of the waves) or 86 

that are based on approximations (ray tracing, first-order Born approximation, uniform geometrical 87 

theory of diffraction, Bojarski's inverse theory, etc.), at the cost of an often high computational 88 

burden. The most widely studied application for nonlinear USCT in medicine today is female breast 89 

imaging.
14–16

 In the presence of bones with surrounding soft tissues and marrow, solutions consist 90 

of iterative and adaptive schemes to integrate the induced nonlinear effects, either by retaining the 91 

Radon projection-like geometry and variation shapes of the higher-order Born approximation, or by 92 

extending the problem to FWI. Indeed, adapted iterative nonlinear methods have been proposed for 93 

objects whose acoustic impedance is strongly contrasted against a homogeneous reference (soft 94 

tissues, water), such as the Kaczmarz-model based method,
17

 the Distorted Born Iterative 95 

method,
18–21

 the Phase Shift Migration method,
22

 or the Full-Matrix Spectrum-Domain method,
23–25

. 96 

Belanger et al. have adapted a hybrid algorithm for the mapping of ultrasound velocity in the 97 

cortical bone.
26

 These algorithms have been tested on numerical and experimental data on a bone-98 

mimicking phantom and an ex vivo isolated single bone, without surrounding tissues, or by 99 

modeling a single layer (muscle tisue for example), and the results are very encouraging. J. Wiskin 100 

et al.,
27–29

 worked on a complete knee organ (skin, muscle, and bone) using a full wave 3D inverse 101 
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scattering transmission-based USCT. This approach is appropriate for the anatomical reconstruction 102 

of the bone, but the images do not seem to correctly quantify the wave velocity in the bone. 103 

This article introduces, after the assumptions involved, the forward problem, the adjoint state 104 

method and the Broyden-Fletcher-Goldfarb-Shanno method. Then, the experimental results 105 

obtained on a newborn arm phantom studied with an ultrasound scanner are discussed, for 106 

measurements of mass density and ultrasonic wave velocity, for several frequencies ranging from 107 

150 kHz to 600 kHz, and three configurations for the initial maps: without any a priori information 108 

about the phantom, with a priori information for the mass density and ultrasonic wave velocity 109 

maps. 110 

4. Full waveform inversion 111 

4.1. Forward problem and adjoint-state method 112 

Let us consider xyz-space    with the origin  , and a 2D (xy-plan) non-circular cylindrical object to 113 

be imaged with generators parallel to the z-axis, immersed in a continuous surrounding 114 

homogeneous water-like background. The acoustic pressure wave field        [ , 2D-space vector, 115 

t, time variable] is described by the equation state system: 116 

(1)   

                         

                         
 

    
                                     

 117 

where      and      are the spatially-varying mass density and bulk modulus, respectively.    and 118 

   are the components of the particle velocity vector.    is the point source term. 119 

The spatially variable parameters of the medium to be imaged using FWI are obtained by 120 

minimizing the difference between signals recorded at certain positions (receivers) and the 121 

corresponding modeled signals for one or more propagation events (sources) (Figure 1). 122 

Figure 1: Approximately here 123 

Given   recorded signals,   
                   , for           receivers, and for a single 124 

source, the cost function to minimize writes: 125 

(2)              
          

         
 
  

 

 
 
     , 126 
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with   the parameters of the object to be estimated, for instance,          , on a spatial grid. 127 

  
                        is the synthetic signal computed numerically in the inversion 128 

process, and   is the recorded time period (or time length of the signal).  129 

The main classical difficulties encountered in the minimization of      are its significant 130 

nonlinearity with respect to  , and thus the presence of numerous local minima. An iterative 131 

method based on the calculation of the gradient of the cost function is generally chosen to minimize 132 

    , either a simple gradient descent method or a more sophisticated quasi-Newton technique, 133 

which uses information based on second-order derivatives in order to accelerate convergence. These 134 

methods make it possible to converge to the minimum of the function in a larger or smaller number 135 

of iterations, depending on the method used and on the complexity of the problem. Nevertheless, 136 

the gradient of     , i.e., its partial derivatives with respect to each element of  , cannot easily be 137 

calculated based on a standard and simple finite-difference approach, because this would require 138 

performing as many forward calculations of wave propagation as the number of parameters, and 139 

this for each iteration of the minimization algorithm. The adjoining field method, introduced in the 140 

seismological domain in the 1970s,
30

 makes it possible to overcome this difficulty. It can be shown 141 

that the gradient of the cost function can be obtained as the convolution product of the forward field 142 

with an adjoint field obtained by calculating the time-reversed wave propagation: 143 

(3)               
          

         , 144 

with each receiver acting as a source. Two calculations of the propagation in each medium  (object 145 

and background) are then sufficient to obtain the gradient (in the case of multiple sources, two 146 

calculations per source are needed). 147 

Minimization algorithms based on the gradient converge to the solution only if they are started 148 

close to the global minimum, i.e., provided that the initial model is already of good quality, which is 149 

of course rarely the case. In practice, this global minimum is unknown and there is therefore a risk 150 

of remaining trapped in a local minimum. In particular, if there is a difference in propagation time 151 

greater than half a period between the computed and real data, the algorithm will attempt to match 152 

different cycles of the signals and will not be able to converge (a problem known as "cycle 153 

skipping",
13

). A method to reduce this risk is to use an (incremental) "frequency-hopping" approach: 154 

first, a low-pass filter is used to retain only the lowest frequencies and then, once a minimum is 155 
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obtained, the maximum frequency is slightly increased and the process is run again, until all the 156 

frequency information has been included.
31

 157 

The FWI method means that the model sought must minimize the mean squared difference between 158 

the numerical synthetic time series and the observed basic time series  to be fitted:  159 

(4)            
 

 
     

           
          

 
  

 

 
 
     

 
     . 160 

In other words, the goal is to find a model of the object that can explain a large portion of the 161 

recorded signals. This is basically the reason why drastically-enhanced pictures can be obtained. 162 

This functional quantifies the L
2
 difference between the observed waveforms,     

        163 

                at receivers   , r = 1, …,   , produced by sources at   , s = 1, …,  , and the 164 

corresponding synthetic time series,     
                             computed in model  . 165 

In the vicinity of    the misfit function can be expanded into a Taylor series: 166 

(5)                                  , 167 

where        
     

  
 is the gradient of the waveform misfit function,        

      

    the 168 

Hessian, and   denotes the transpose. The nearest minimum of   in  equation (5) with respect to the 169 

model perturbation    is reached for            . The local minimum of equation (4) is thus 170 

given by perturbing the model in the direction of the gradient preconditioned by the inverse 171 

Hessian. A direct method to compute the gradient is to take the derivative of equation (4) with 172 

respect to model parameters: 173 

(6)  
     

  
       

     
         

  
     

              
         

 

 
 
     

 
       174 

This equation can be reformulated as the matrix-vector product,           , where    is the 175 

adjoint of the Jacobian matrix of the forward problem that contains the Fréchet derivatives of the 176 

data with respect to model parameters,    is the vector that contains the data residuals. The 177 

determination of   would require computing the Fréchet derivatives for each time step in the time 178 

window considered and for all the source-station pairs, which is completely prohibitive on current 179 

computers, even the latest and greatest ones. As mentioned above, it is however, and fortunately, 180 

possible to obtain this gradient without computing the Jacobian matrix explicitly. The idea is to 181 

resort to the adjoint state, which corresponds to the wave field transmitted and back-propagated 182 
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from the receivers The approach to determine the gradient without computing the Fréchet 183 

derivatives was introduced in nonlinear optimization by Chavent et al. in the 1970s.
30,32

 The 184 

Lagrangian functional is the cost function augmented by the following constraint given by the 185 

equation of state,
33

: 186 

(7)                 187 

         
                

       
 
  

 

 

 

     

 

     

                                            

  

 

 

   

with              
 
,           

   
   

   
  
 ,      

   
   
   

 ,      
   
   
   

 ,  188 

and              
 . 189 

        is the Lagrange multiplier to be found by zeroing the partial derivative of the Lagrangian 190 

functional, equation (7), with respect to the wave field,  .
34

 191 

By zeroing the misfit function, equation (7), with respect to the model parameters,    , the gradient 192 

of the misfit function can then be found: 193 

(8)              
 

 
       

                                      

 

 
  

         , 194 

which gives the expression of the gradient kernels for   and   in terms of direct   and the adjoint 195 

   field: 196 

(9)                  
              

                
 

 
 
       197 

(10)               
  
    

     
       

 

 
 
       198 

with    is the adjoint acoustic pressure wave field. As the above equations show, the principle of 199 

the adjoint-state method is to correlate two wave fields: the forward field propagating from the 200 

sources to the receivers, and the adjoint wavefield propagating from the receivers backwards in 201 

time. Calculating the gradient of the misfit function therefore requires only two simulations of the 202 

wave propagation problem per source. 203 
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4.2. The Limited-memory Broyden-Fletcher-Goldfarb-Shanno method 204 

Gradient descent is the most commonly used iterative optimization algorithm for finding the local 205 

minimum of a function:  206 

(11)                    207 

with       
  
  
  the parameters of the object at iteration  ,          

       

       
   the gradient of 208 

the cost function at iteration  , and       the step size. 209 

The parameter is updated by perturbing its value in the direction opposite to that of the gradient. 210 

This method converges slowly and depends on the learning rate of the descent step  . The smaller 211 

the step size, the greater the chance of the algorithm converging, which considerably increases 212 

convergence time. This method is therefore not recommended for complex problems requiring high 213 

computing power to calculate the cost function and its gradient. In contrast to the gradient descent 214 

method, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method has a higher 215 

convergence speed, and the direction of perturbation is guided by the computation of the Hessian 216 

matrix    which is the matrix of partial second derivatives. This method is obtained from a second 217 

order Taylor series development. 218 

The second-order Taylor series expansion of a function   infinitely differentiable in    is: 219 

(12)                             
 

 
                  220 

where * denotes the matrix multiplication. The derivative with respect to   is then written: 221 

(13)                           222 

An extremum is reached for          . The final result is: 223 

(14)                    224 

And so, the numerical scheme of the L-BFGS method is defined by: 225 

(15)                           226 

with     the inverse of the Hessian matrix: 227 

(16)       
                 

                 
   228 
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Calculating the inverse of the Hessian matrix requires a large storage capacity (theoretical value,
35

 229 

of around 600 GB in this work) and is time-consuming. To overcome these difficulties, the matrix 230 

is calculated iteratively, resulting in the calculation of a single matrix, updated at each iteration as 231 

follows: 232 

(17)            
        

 

    
 

    
 

            
 

    

    
 

        
 233 

with               ,                     . 234 

Using this iterative method ensures that when an extremum is reached, it is a minimum, as it 235 

preserves the symmetry and positivity properties of a matrix. (i.e.,       is minimum of   only if 236 

           and          is a positive-definite function). 237 

4.3. Discretization 238 

For their numerical implementation, the above equations need to be discretized both in time and 239 

space. We resort to a velocity-stress finite-difference approximation of the wave equation, with 240 

explicit conditionally-stable time stepping in a staggered 2D Cartesian grid.
36

 However, it is 241 

important to note that other numerical approximations could be used, for instance the spectral-242 

element method.
37

 243 

The time and space coordinates are discretized as follows: 244 

(18)         , 245 

(19)        , 246 

(20)        , 247 

with    and   the time and space steps, respectively, and            , i          , and 248 

           , temporal and spatial indices such as: 249 

(21)         , 250 

(22)         , 251 

(23)         . 252 

In the spatial domain, the isotropic grid step   is chosen to obtain smooth, less pixelated images, 253 

according to the criterion of Bernard et al.,
34

: 254 
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(24)    
    

 
, 255 

     being the smallest wavelength obtained at the highest frequency. In the time domain, the step 256 

   must respect the Courant-Friedrichs-Lewy (CFL) stability condition: 257 

(25)          
 

      
, 258 

with             and      the highest velocity of ultrasonic waves in the object. 259 

To avoid wave reflection on the domain contours, a Perfectly Matched absorbing Layer (PML),
38

 is 260 

considered around the simulation grid. It is used to model wave propagation in the infinite domain 261 

by means of PML coefficients, which are zero inside the physical domain and non-zero outside it, 262 

and an integer       that is used to set the layer width (Figure 2). 263 

Figure 2: Approximately here 264 

In this discretized framework, the cost function involves a sum over the time steps instead of a time 265 

integral: 266 

(26)                
                  

                 
   
     

 
      , 267 

(27)              
  
      

     
         

   
     

 
     , 268 

  ,   
 ,   ,   

 ,    and   
  are obtained by simulation of the forward problem at time     and points 269 

(     .  270 

Using the trivially applied Chain Rule, the previous gradient can be expressed in terms of       , 271 

with    the compression wave (ultrasonic wave) velocity (which from now on will be called US 272 

velocity). The parameters to be achieved in this study are:  273 

(28)                        
              274 

(29)                                  275 

         and    are respectively the bulk modulus gradient, the mass density gradient, and the US 276 

velocity map. 277 
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4.4. Regularization 278 

The presence of electronic noise (or other noise, such as thermal noise) is handled adding a 279 

regularization term to the cost function. There are several types of regularization, depending on the 280 

assumptions made about the parameter to be optimized. For example, a Tikhonov-type 281 

regularization is suitable for smoothly varying signals, while a total variation (TV) regularization is 282 

suitable for rapidly varying signals. For the purposes of this project, total variation regulation has 283 

been adopted and the regulation term is formulated as follows: 284 

(30)             
 

  
           

        
 
 

           
        

 
 

     
   
     

   
      285 

  
 

  
                  

 
                  

 
      

with       10
-8

.
34

 The formulation of the forward problem is defined as follows: 286 

(31)                      287 

with   a variable for adjusting the weight of the regularization term. After a number of tests, the 288 

value retained for   is 10
-15

.
34

 289 

4.5. Precision of the reconstruction 290 

To evaluate the precision of the reconstruction, the Normalized Root Mean Square Error (NRMSE) 291 

is computed to quantify the difference between theoretical US velocity   
      and mass density 292 

       maps, and estimated ones [      and     ], as follows39: 293 

(32)              
 

  
  

    
   

   
        

 
 

   
   

   

 
   
     

   
     , 294 

(33)             
 

  
  

      
   
        

 

     
   

 
   
     

   
     . 295 
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5. Experimental setup and sample 296 

5.1. USCT scanner 297 

The mechanical ultrasound scanner used consisted of two bistatic arms articulated in the horizontal 298 

plane (Figure 3). Each arm carried two transverse carriages allowing the parallel translation of the 299 

transducers, for the correct adjustment of the ultrasonic beam to targets. The rotation of the target 300 

holder allowed an angular scan. In this work, (S x R) signals were recorded over 360°. All motions 301 

were insured by stepper motors sequentially driven by a programmable translator-indexer device 302 

fitted with a power multiplexer. The translator-indexer device and power multiplexer were 303 

integrated in a control rack that also included other remote controls, such as the distance adjustment 304 

of the arms, or the out-of-water setting system. 305 

Figure 3: Approximately here. 306 

5.2. Electro-acoustic devices 307 

The transducers were Ultran™ transducers with a center frequency of 648 kHz, and the 6dB-308 

bandwidth is 515 kHz (from 375 kHz to 890 kHz) (Figure 4). They were driven using a pulse-309 

receiver generator (Sofranel 5077 PR, Olympus, Waltham, MA 02453, USA). The radio-frequency 310 

signals (RF-signals) were conveyed from the 12-bit oscilloscope (Lecroy HDO 6104, Teledyne Inc., 311 

Thousand Oaks, CA, USA) to a personal computer using a USB interface file transfer, and stored. 312 

The signal and image processing algorithms were implemented using Matlab
®
 (The MathWorks, 313 

Inc., Natick, MA, USA). 314 

Figure 4: Approximately here 315 

5.3. Newborn arm phantom 316 

The object studied was a phantom of a newborn baby's arm  (True Phantom Solutions Inc., 317 

Windsor, Canada). This phantom, initially used for ultrasound guidance training for nurses and 318 

doctors, was composed of 3 different materials representing adipose soft tissue, artificial blood 319 

vessels and bone. All media were considered isotropic and homogeneous. Only compression waves 320 

were propagated (no shear waves). Measurements on the phantom were taken at a distance H = 10 321 

cm (± 0.2 cm) cm from the tip of the hand (index finger) (Figure 3). The blood vessels were made 322 

of a flexible material containing a fluid that mimics blood. The bone part was made of a composite 323 



 14 

material of urethane reinforced with ceramic powder. It had a mass density similar to that of human 324 

bone, but US velocity was much lower and attenuation higher. Some of the properties of these 325 

materials are presented in Table 1. Data for soft (adipose) tissue, vessels and blood were provided 326 

by the manufacturer. US velocity values in bone were determined using an interferometric 327 

method,40 on a block-sample (10 x 10 x 2 cm) of material identical to that constituting the phantom 328 

bone. Mass densities were measured based on Archimedes’ principle with a micrometric balance 329 

and a density kit (Voyager 610 GX, Ohaus Corporation, Florham Park, NJ, USA). 330 

Table 1: Approximately here. 331 

5.4. Experimental and numerical parameters 332 

The positions of the transmitter and the receiver transducers (S x R) described two concentric circles 333 

with identical centers of rotation, corresponding to the position of the object studied, but with 334 

different diameters (since the transducers cannot be in the same place). The following parameters 335 

correspond to those of the experiment and the numerical simulation: 336 

 S = 72 sources;    = 22.7 cm 337 

 R = 180 receivers;    = 36.2 cm 338 

     = 0.495 339 

      = 16 340 

   = 0.14 mm 341 

   = 5447;            = 76.4 cm 342 

   = 5447;            = 76.4 cm 343 

Adding 4 cm allows the model to fully recover the spatial domain. 344 

   = 560 s;    = 50 ns 345 

        = 1467 m/s 346 

        = 1000 kg/m 347 

        = 1.47 MRayls 348 

 In this work,                                     and                         349 

which are respectively US velocity in water and in the material composing the bone. 350 

      = 1 MHz 351 

        
    

    
   1.129 mm 352 
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 For the incremental frequency-hopping method, the cut-off frequency of the filter was 353 

increased in several steps, starting at 150 kHz, then 250 kHz, 400 kHz and finally 600 kHz. 354 

5.5. High performance computing resources 355 

The inversion was done at the Centre de Calcul Intensif d’Aix-Marseille (Mesocentre), using 32 356 

nodes. Each 384 node was a Dell PowerEdge C6420 and contained 32 cores CPU Intel Xeon Gold 357 

6142 (Sky Lake) 2.6 GHz and had 192 Gigabytes RAM. The computing was done using multiple 358 

cores by dividing the spatial domain into 1024 pieces (32386 x 32) and each piece of the domain 359 

was computed with one core. The computation took 12 hours for one 387 frequency, so 2 days in 360 

total. 361 

6. Results 362 

6.1. Methodology 363 

The methodology adopted for this work is as follows: 364 

1. The reference images, which were the objective, were defined by extracting the contours 365 

and binarizing the X-ray images of the object. 366 

2. Initial maps were purely numerical, reconstructed from simulated data derived from 367 

previous reference maps. 368 

3. For reconstructions from experimental data, three tests were carried out: without any a 369 

priori information on the object; by initializing the method with a mapping of a priori 370 

values for mass density, then another for US velocity.  371 

For each configuration, NRMSE were evaluated (Figure 9, Figure 12, Figure 16, Figure 20). 372 

6.2. Reference images 373 

The first stage of the protocol involved performing X-ray micro-computed tomography (μCT) 374 

(EasyTom XL 150 "Mechanic Ultra", RX Solutions, Chavanod, France) of the newborn arm 375 

phantom (Figure 5). Full details of the protocol are presented in Doveri et al..
5
  376 

Figure 5: Approximately here 377 



 16 

From the previous X-ray image, two theoretical maps were defined for each of the two properties 378 

studied in this work, US velocity,   , and mass density,  , (Figure 6). These images will be the 379 

expected reference images for FWI. 380 

Figure 6: Approximately here 381 

6.3. Reconstructions from simulated data 382 

In this section, data inversion was performed (Figure 7) on simulated data by solving the forward 383 

problem for theoretical US velocity and mass density maps, without any initial a priori information 384 

on the different media. Starting maps were initialized with measured values for water (i.e.,    = 385 

1467 m/s and   = 1000 kg/m
3
). Figure 8 shows the gradient of the cost function at the last iteration 386 

with respect to the US velocity and the mass density. 387 

Figure 7: Approximately here 388 

Figure 8: Approximately here 389 

Figure 9: Approximately here 390 

6.4. Reconstruction from experimental data 391 

 No a priori information on the different media  392 

In this section, data inversion was performed (Figure 10) on experimental data without any signal 393 

processing, by solving the forward problem for theoretical US velocity and mass density maps, 394 

without any initial a priori information on the different media. Starting maps were initialized with 395 

measured values for water (i.e.,    = 1467 m/s and   = 1000 kg/m
3
). Figure 11 shows the gradient 396 

of the cost function at the last iteration with respect to the US velocity and the mass density. 397 

Figure 10: Approximately here 398 

Figure 11: Approximately here 399 

Figure 12: Approximately here 400 

 A priori information on mass densities 401 

In this section, data inversion was performed (Figure 14) on experimental data without any signal 402 

processing, by solving the forward problem for theoretical US velocity and mass density maps, 403 

starting from the theoretical map of mass densities (Figure 13). Starting US velocity map was 404 
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initialized with measured values for water (i.e.,    = 1467 m/s). Figure 15 shows the gradient of the 405 

cost function at the last iteration with respect to the US velocity and the mass density. 406 

Figure 13: Approximately here 407 

Figure 14: Approximately here 408 

Figure 15: Approximately here 409 

Figure 16: Approximately here 410 

 A priori information on US velocities 411 

In this section, data inversion was performed (Figure 18) on experimental data by solving the 412 

forward problem for theoretical US velocity and mass density maps, starting from the theoretical 413 

US velocity map (Figure 17). Starting mass density map was initialized with measured values for 414 

water (i.e.,   = 1000 kg/m
3
). Figure 19 shows the gradient of the cost function at the last iteration 415 

with respect to the US velocity and the mass density. 416 

Figure 17: Approximately here 417 

Figure 18: Approximately here 418 

Figure 19: Approximately here 419 

Figure 20: Approximately here 420 

7. Discussion 421 

Table 2 shows the normalized root mean square errors (NRMSE) calculated for each of the images 422 

presented at the last inversion iteration.  423 

Table 2: Approximately here 424 

The error is more important on the mass density maps than on the US velocity maps. It can be 425 

explained by the fact that the US velocity contrasts affect every wave (through time shifts for 426 

transmitted waves and through amplitude variations for diffracted waves) while the mass density 427 

contrasts only affect reflection coefficients at the interfaces. In linear USCT, this phenomenon is 428 

well known, and the transfer functions linked to physical parameters such as mass density, 429 

compressibility or acoustic impedance, are a function of the diffraction angle. For example, linear 430 
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ultrasonic impediography is reflection-mode USCT (backscatter imaging) 
3,5

. In this work, the small 431 

angles of observation (reflected waves) contain information on mass density contrasts 
34

. This can 432 

be clearly seen on the US velocity and mass density maps obtained from the inversion of simulated 433 

data (Figure 6), where the US velocity map is accurate whereas the mass density map is not, 434 

especially in the bone part. The US velocity (~1115 m/s) is closer than the theoretical velocity 435 

(1129 m/s) while the mass density (~1050 kg/m
3
) is half the theoretical mass density (2160 kg/m

3
). 436 

This can also be seen on the gradients of the cost function (Figure 8), where the gradient with 437 

respect to the mass density (b) oscillates more than the gradient with respect to the US velocity (a). 438 

As explained in the theoretical section, gradient-based minimization algorithms only converge to 439 

the solution if they start close to the global minimum, i.e., provided the initial model is already of 440 

good quality. But we know that this is rarely the case. However, in this work, to improve the 441 

process, a priori information was used for the initial mass density map, which is easier to estimate 442 

from the numerous patient X-rays. We used a mass density starting map based on the image 443 

obtained from the binarized X-ray µCT. Starting the inversion process with a knowledge of the 444 

mass density greatly improves the result: the contours of the bone are well defined and the US 445 

velocity is close to the theoretical velocity (~1250 m/s on the external part of the bone), and the 446 

mass density remains close to the theoretical mass density (~ 2000 kg/m
3
 in the bone part).  447 

However, starting the inversion with a priori information on the US velocity does not help much in 448 

improving the resulting maps. As the iterations progress, the US velocity map diverges from the 449 

theoretical velocity map (the NRMSE increases on Figure 20), while the mass density map remains 450 

close to the one obtained without any a priori information. It seems that the inversion falls in a local 451 

minimum: the cost function remains stable after 5 iterations (Figure 20) and it stops decreasing at 452 

the last frequency (600 kHz). 453 

The difficulties encountered can also arise from the object in itself, especially the material 454 

composing the bone part of the newborn arm phantom used in this work. On the one hand, this 455 

material greatly attenuates the ultrasonic wave (see Table 1), and the attenuation is not taken into 456 

account in the forward modeling during the inversion. On the other hand, the US velocity contrast 457 

between the material composing the bone and the other materials composing the phantom is 458 

negative and below 1: 459 

(34)  
              

        
   

    

    
         , 460 
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while for a real bone it would be around 1.5 for a velocity around 3500 m/s. It is difficult to know to 461 

what extent this negative contrast is causing the algorithm to fail, but the inversion process remains 462 

stuck in a local minimum, where the US velocity is much higher than the theoretical velocity (1129 463 

m/s). 464 

8. Conclusion 465 

For several years now, linear ultrasound computed tomography (or, in clinical terms, B-mode 466 

ultrasound) has provided qualitative images of musculoskeletal tissue in children. To go one step 467 

further, and offer radiologists parametric images relating to the elastic properties of musculoskeletal 468 

tissue, a (diffraction-mode) acoustical imaging method based on a full waveform inversion (FWI) 469 

algorithm was introduced in this work. The full waveform inversion is an imaging method for 470 

heterogeneous media that is based on full numerical modeling of wave propagation in the 471 

heterogeneous medium, and on the minimization of the difference between recorded and simulated 472 

waveforms based on the iterative resolution of an inverse problem for the estimation of the 473 

parameters of the medium. The results presented in this work on a mimetic newborn arm phantom 474 

are quite encouraging, although this object was not initially intended for ultrasonic imaging and its 475 

material properties are far from those of a real newborn arm. The reconstruction error can be 476 

estimated at less than 11%. However, it would be interesting to test this algorithm on other objects, 477 

with more realistic acoustic properties, such as the chicken drumstick used par Doveri et al. 
5
. 478 

Future work should also involve viscoelastic materials, not only acoustic materials, because, 479 

especially in the case of bone, compressional and shear wave velocities are of the same order of 480 

magnitude. Then, it would be necessary to improve the forward model in order to take shear waves 481 

and attenuation into account. However, this would raise some issues regarding the computational 482 

cost and the interface hopping between fluid and solid media. 483 

Signal acquisition and processing could also be improved. In this work, we used few positions for 484 

receivers (72) and transmitters (180), and no processing of the recorded signals. More data would 485 

have improved the results by increasing redundant angular information. Similarly, only one 486 

frequency was used, using conventional piezoelectric transducers, whereas piezo-composite 487 

technology could improve the signal-to-noise ratio by over 30 dB. In parallel, suitable signal 488 
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processing such as the wavelet-based coded excitation (WCE) method should further improve the 489 

initial observed data. 490 

When it can be made to work, full waveform inversion offers significantly improved resolution, 491 

compared with simpler methods based for example on travel times only or on a linearization of 492 

propagation in the object (Born approximation), at the cost of longer calculation time. But the 493 

computational cost issue tends to be less limiting nowadays, thanks to the continuous increase in the 494 

power of computers, easier access to high-performance computing systems, and significant progress 495 

in numerical methods, all of which making it possible to apply elastic or viscoelastic full waveform 496 

inversion to real seismic data, 41. Moreover, the understanding of the advantages and disadvantages 497 

of the method (especially with regard to the convergence problems discussed above) has increased 498 

considerably in recent years. 499 
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Figure 1: Schematic diagram of the Full Waveform Inversion (FWI). 593 

Figure 2: Simulation range with absorbent layer. 594 

Figure 3: Transmission- and diffraction-mode USCT of a mimetic newborn arm phantom. 595 

Figure 4: Temporal and spectral representation of the impulse response of the transducer (65536 596 

samples, f0 = 648 kHz, Fe = 20 MHz). The dotted red curve on the temporal representation 597 

represents the envelope of the signal (i.e., the modulus of the Hilbert transform). 598 

Figure 5: X-ray micro-tomography of the newborn arm phantom. Size of 1840 x 1456 pixels
2
 and 599 

resolution of 30 μm. Marks No. 1 and 2 identify bone contours, No. 3, 4 and 5 blood vessels, and 600 

No. 6 adipose tissue. 601 

Figure 6: Theoretical maps defined from X-ray micro-tomography of the newborn arm phantom for 602 

(a) the US velocity,   
  , and (b) the mass density,    . 603 

Figure 7: Numerical simulation of the non-linear USCT using FWI algorithm of the newborn arm 604 

phantom. (a) US velocity map, (b) mass density map. No a priori information on the different 605 

media. Starting maps were initialized with measured values for water (i.e.,    = 1467 m/s and   = 606 

1000 kg/m3). 607 

Figure 8: Gradient of the cost function at the last iteration with respect to (a) the US velocity and (b) 608 

the mass density, for the inversion of simulated data. 609 

Figure 9: (left) NRMSE for the different cut-off frequencies of the low pass filter used during 610 

inversion, as a function of the iterations, for the US velocity (in blue) and the mass density (in red); 611 

(right) convergence of the algorithm, for the inversion of simulated data. 612 

Figure 10: Experimental non-linear USCT using FWI algorithm of the newborn arm phantom. (a) 613 

US velocity map, (b) mass density map. No a priori information on the different media: starting 614 

maps were initialized with measured values for water (i.e.,    = 1467 m/s and   = 1000 kg/m
3
) 615 

Figure 11: Gradient of the cost function at the last iteration with respect to (a) the US velocity and 616 

(b) the mass density, for the inversion of experimental data without any a priori information. 617 

Figure 12: (left) NRMSE for the different cut-off frequencies of the low pass filter used during 618 

inversion, as a function of the iterations, for the US velocity (in blue) and the mass density (in red); 619 
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(right) convergence of the algorithm, for the inversion of experimental data without any a priori 620 

information. 621 

Figure 13: Starting maps used for the first iteration of the non-linear USCT using FWI algorithm of 622 

the newborn arm phantom. (a) US velocity starting map initialized with US velocity measured in 623 

water (   = 1467 m/s), (b) theoretical density starting map obtained from the binarized X-ray CT. 624 

Figure 14: Experimental non-linear USCT using FWI algorithm of the newborn arm phantom. (a) 625 

US velocity map, (b) mass density map. A priori information for the mass density starting map 626 

obtained from the binarized X-ray CT. 627 

Figure 15: Gradient of the cost function at the last iteration with respect to (a) the US velocity and 628 

(b) the mass density, for the inversion of experimental data with a priori information for the mass 629 

density starting map obtained from the binarized X-ray CT. 630 

Figure 16: (left) NRMSE for the different cut-off frequencies of the low pass filter used during 631 

inversion, as a function of the iterations, for the US velocity (in blue) and the mass density (in red);  632 

(right) convergence of the algorithm, for the inversion of experimental data with a priori 633 

information for the mass density starting map obtained from the binarized X-ray CT. 634 

Figure 17: Starting maps used for the first iteration of the non-linear USCT using FWI algorithm of 635 

the newborn arm phantom. (a) theoretical US velocity starting map obtained from the binarized X-636 

ray CT, (b) mass density map initialized with the mass density of water (  = 1000 kg/m
3
) 637 

Figure 18: Experimental non-linear USCT using FWI algorithm of the newborn arm phantom. (a) 638 

US velocity map, (b) mass density map. A priori information for the US velocity starting map 639 

obtained from the binarized X-ray CT. 640 

Figure 19: Gradient of the cost function at the last iteration with respect to (a) the US velocity and 641 

(b) the mass density, for the inversion of experimental data with a priori information for the US 642 

velocity starting map obtained from the binarized X-ray CT. 643 

Figure 20: (left) NRMSE for the different cut-off frequencies of the low pass filter used during 644 

inversion, as a function of the iterations, for the US velocity (in blue) and the mass density (in red); 645 

(right) convergence of the algorithm, for the inversion of experimental data with a priori 646 

information for the US velocity starting map obtained from the binarized X-ray CT. 647 
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 649 

Material/Medium Mass density, 

    [kg/m
3
] 

US velocity, 

  
  [m/s] 

Acoustic impedance, 

Z [MRayls] 

Attenuation 

coefficient [dB/cm] 

Water (15.3°C)  1000 1467  1.47  0.011 

Adipose tissue 1000 1423 ± 10 1.42  1.1 ± 0.2 

Blood vessel 1020 1400 ± 10  1.43 1.7 ± 0.2 

Blood  999 1400 ± 10  1.40  1.0 ± 0.2 

Bone  2160 1129 ± 5  2.44 21 ± 2.0 

Table 1: Acoustic mean properties of water and materials in the newborn arm phantom (True 650 

Phantom Solutions Inc., Windsor, Canada). 651 

 Methods US velocity,    Mass density,   

1 Simulated data (no a priori information) 2.2% 10.6% 

2 Experimental data (no a priori information) 7% 11.2% 

3 Experimental data (a priori mass density map) 6.6% 7.7% 

4 Experimental data (a priori US velocity map) 6.8% 10.4% 

Table 2: Summary of the normalized root mean square errors (NRMSE) calculated for each of the 652 

images presented at the last iteration. 653 

  654 
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