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34 Abstract

35

36 The aim of this study was to evaluate the long-term effects of the insecticide 
37 chlorpyrifos on the moulting and growth of the terrestrial isopods Armadillo officinalis. Adult 
38 woodlice were exposed to chlorpyrifos at concentrations of 5, 10, 20, 40 mg/kg dry soil and 
39 compared to a control. During 100 days of exposure, effects on moulting and growth were 
40 investigated. The duration of premoult, ecdysis and intermoult stages were estimated. Also, 
41 the cuticle width (CW) and length (CL) were measured and their size increase and specific 
42 growth were calculated. The results showed that exposure to chlorpyrifos induced adverse 
43 effects on moulting in the terrestrial isopod Armadillo officinalis, mainly at the higher 
44 concentrations (20 mg and 40 mg/kg dry soil). Indeed, it decreased the percentage of moulting 
45 animals, delayed moulting, decreased the number of completed moult, extended the premoult 
46 stage, prolonged ecdysis, and reduced intermoult duration. Furthermore, these findings 
47 showed that chlorpyrifos exposure impaired also growth of Armadillo officinalis, mainly at 
48 the highest concentration (40mg/kg dry soi), by decreasing weight gain (0.94 ± 2.14 mg), 
49 cuticle length gain (0.26 ± 0.06 mm) and specific growth rate (SGR) (0.04 ± 0.01 mm/days) 
50 compared to the control (Weight gain = 16.5 ± 1.84 mg ; CL gain = 0.65± 0.07mm ; SGR = 
51 0.08 ± 0.01) . The present study highlighted the adverse effects of chlorpyrifos on moulting 
52 and growth of Armadillo officinalis, which raises concern about consequences of chlorpyrifos 
53 exposure on population dynamic of this species.

54
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65 1. Introduction
66

67 Pesticides are intensively used in agriculture. However, these compounds raised 
68 concerns about their hazardous effects in soil organisms such as earthworms, springtails, 
69 snails and terrestrial isopods (Paoletti and Bressan, 1995; Hubbard et al., 1999; Robinson and 
70 Sutherland, 2002; Bengtsson et al., 2005; Bianchi et al., 2006; Sánchez-Bayo, 2011).

71 Among these pesticides, chlorpyrifos [O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) 
72 phosphorothioate] is an organophosphate insecticide applied to control a wide range of insect 
73 pests in agricultural production as well as houseflies (EPA, 2011). In the Soummam valley, 
74 which is an important agricultural area in the north of Algeria, chlorpyrifos is one of the most 
75 commonly used insecticides (Benmouhoub et al., 2019). However, due to its broad-spectrum 
76 effectiveness, chlorpyrifos may have harmful consequences on non target organisms as 
77 inducing mortality, oxidative stress and metabolic disorders (Barron and Woodburn, 1995; 
78 Zhang et al., 2017; Xinget al., 2019). The direct toxicity of chlorpyrifos is assumed to result 
79 from its specific inhibition of acetylcholinesterase (AChE), an enzyme that is primary 
80 involved in neurotransmission, and which also has many other physiological functions that are 
81 not related to the cholinergic system (Sepčić et al., 2019).

82 One of the most efficient approaches for assessing the effects of pesticides in the 
83 environment is bio-monitoring, which involves the monitoring of bio-indicators in treated 
84 versus untreated environments (Salines, 2012; Ferrante et al., 2015). In this context,  several 
85 studies have investigated the toxic impacts of chlorpyrifos using bio-indicators such as 
86 terrestrial invertebrates (Gatti et al., 2002; Venkateswara et al., 2003; Fountain et al., 2007; 
87 Jagar et al., 2007; Wang et al., 2012; Pelosi et al., 2014; Muangphara, 2015; Dolar et al., 
88 2021) and numerous effects have been reported. For instance, chlorpyrifos impairs growth 
89 (Booth and O’Halloran, 2001) and fecundity (Alshawish et al. 2004; Zhou et al., 2007) in 
90 earthworms, and reduces springtail abundance (Endlweber et al., 2006; Fountain et al., 2007). 
91 Furthermore, it induces lethality (Nair et al., 2022; Morgado et al., 2016; Benmouhoub et al., 
92 2019), oxydative stress (Morgado et al., 2018) and changes in immune function (Dolar et al., 
93 2021) in terrestrials isopods. 

94

95 Terrestrial isopods are widely used as bioindicators of environmental pollution due to 
96 their sensitivity to the effects of anthropogenic activities (Longo et al., 2013; Mazzei et al., 
97 2013; Agodi et al., 2015). They also represent an abundant and widespread component of the 
98 soil fauna (Caruso et al., 1987; Messina et al., 2011; Messina et al., 2012). The species 
99 Armadillo officinalis has been reported as a good test-organism to assess soil contamination or 

100 other environmental changes in its habitat (Agodi et al., 2015; Montesanto and Cividini, 
101 2017).

102 Terrestrial isopods moult frequently throughout their life cycle in order to grow. So, 
103 they shed their old cuticle and develop a new exoskeleton (Lefebvre, 2002). Moulting in 
104 Oniscidea is regulated by a variety of neuroendocrine signalling cascades which involve 
105 various hormones such as the ecdysteroid moulting hormones, the moult-inhibiting hormone 
106 (MIH), and the crustacean hyperglycemic hormone (CHH) (Leblanc, 2007; Zou, 2020). 
107 Several authors have recently shown that these endocrine pathways are highly sensitive to 
108 aberrant signalling by environmental chemicals (Leblanc, 2007; Jubeaux, 2012; Legrand, 
109 2016; Hosamani et al., 2017; Zou, 2020). 

https://www.sciencedirect.com/science/article/pii/S0048969720384333#bb0450
https://www.sciencedirect.com/science/article/pii/S0048969720384333#bb0240
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110 Numerous studies have highlighted the effects of pesticides on moulting (Baldwin et al., 
111 2001; Lemos et al., 2009; Palma et all., 2009; Lemos et al., 2010) and growth (Montagna and 
112 Collins, 2007; Lemos, 2010; Singh et al., 2021) in Oniscidea crustacean. However, although 
113 there have been some researches on the consequences of chlorpyrifos exposure (Volz et al., 
114 2003; Montagna and Collins, 2007; Taylor, 2020), to our knowledge, there is no data about 
115 the impacts of chlorpyrifos on moulting in terrestrial isopods.

116 In ecotoxicological risk assessment of pesticides, particulary in isopods bioassay, most 
117 studies use acute toxicity tests (Benmouhoub et al., 2019; Santos et al., 2010; Loureiro et al., 
118 2009; Kolar et al., 2008). Although these assays are effective for survival parameters (Calhôa 
119 et al., 2012; Santos et al., 2010) or avoidance behaviour parameters (Loureiro et al., 2002), 
120 they are limited when more detailed and comprehensive effects of the toxicant on life stage 
121 such as moulting and growth of the animal are aimed. In this case, long term exposure tests 
122 are advisable as they could cover all the life stage of the animal and track the impacts of 
123 pesticides over the time (Guimarães et al., 2023).

124 The aim of the present study was to evaluate the long-term effects of chlorpyrifos on the 
125 terrestrial isopod Armadillo officinalis using moulting parameters such as moulting frequency, 
126 the duration of premoult, ecdysis and intermoult stages and growth parameters such as weight 
127 gain, size gain and specific growth rate (SGR). 

128 2. Materials and methods 

129 2.1. Sampling and breeding

130 Adult males and females terrestrial isopods of the species Armadillo officinalis were 
131 collected in unpolluted natural area of the National Institute of Agricultural Research, Algeria 
132 (INRA) (latitude 36°21'8 N; longitude 3°53'E). Then, they were bred in the laboratory of 
133 Applied Zoology and Animal Ecophysiology, Bejaia, Algeria, at room temperature 
134 (21C°±1C°), with a photoperiod of 13h/11h (light/dark). Twice a week, the colonies were 
135 sprayed with water and fed with potato tubers.

136

137 2.2. Chemical compound and soil

138 The pesticide tested in this experiment was the organophosphorus insecticide 
139 chlorpyrifos (CICLONER 48 EC with 480 g/L of chlorpyrifos).

140 The soil used in this experiment was natural soil collected in the National Institute of 
141 Agricultural Research, Algeria (INRA). The main properties of this soil are: pH = 8.56 ; total 
142 limestone = 3.6 (%) ; texture : 24 (%) clay ; 24 (%) silt ; 52 (%) sand. 

143

144 2. 3. Experimental set up

145 The toxicity test was conducted according to a modified version of the guideline for 
146 earthworm’s sub-lethal test established by the Organization for Economic Co-operation and 
147 Development (OECD) (OECD, 2015). The selection of chlorpyrifos concentrations for this 
148 experiment was based on a preliminary assay where an acute toxicity test on Armadillo 
149 officinalis species was carried out in order to determine the lethal concentration 50 (LC50) for 
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150 chlorpyrifos. After 14 days of exposure, the result showed that the LC50 of chlorpyrifos was 
151 80.5 mg/kg. Thus, for the long-term exposure, chlorpyrifos was diluted in water to the 
152 following concentrations: 5, 10, 20 and 40 mg/kg soil (dry weight), which were about 1/16, 
153 1/8, 1/4, 1/2 of LC50-14days respectively. Pure Water was used as a control. Four replicates of 
154 each concentration and the control were prepared. Toxicity tests were performed in twenty 
155 transparent plastic boxes with perforated lids (30 cm x 20 cm x10 cm), containing 250 g of 
156 moist soil. Each solution was sprayed on the soil of its respective box, before introducing 10 
157 woodlice (5 males and 5 females) in intermoult phase with an average weight of 150 ± 7.6 mg 
158 per box. Woodlice were fed with potato tubers twice a week. Soil was kept moist during all 
159 the experiment by spraying water when necessary. Woodlice were exposed to the chemical 
160 for 100 days, during which moult monitoring and growth were also performed.

161

162 2.4. Moulting monitoring 

163

164 To avoid the parturial moulting, and focus only on the growth moulting, the experiment 
165 was carried out outside the reproductive period of Armadillo officinalis that is from October 
166 to January. Moulting monitoring was launched along with the organisms exposure, and for 
167 100 days, woodlice were systematically examined every 24hr. In fact, the observations were 
168 based on the appearance, size, and shape of white calcium sternal deposits on the first four 
169 pereon. This way, premoult phase (proecdysis) and its three main subphases (named PE1, 
170 PE2, PE3, as in Zidar et al., 1998) as well as the biphasic ecdysis and its subphases (Ea and 
171 Ep) were recorded and their duration calculated. In addition, intermoult period was calculated 
172 as a the duration between the end of the first ecdysis to the end of the experiment for the 
173 woodlice that moult only once, and from the end of the first ecdysis to the beginning of the 
174 second premoult for the woodlice that moulted twice.

175

176 2.5. Growth monitoring

177

178 Tested woodlice were weighed every week. Then at the end of the experiment, the 
179 weight gain was calculated.

180 Also, at the beginning of the experiment, tested woodlice were photographed under a 
181 stereo microscope Optika 4083.B5. Then, cuticle width (CW) and cuticle length (CL) were 
182 measured using ImageJ software (version 1.45 s). The same process was repeated at the end 
183 of the experiment and then the increase in size of (CW) and (CL) were calculated. 

184 The specific growth rate (SGR) of size and weight were calculated using the following 
185 formula (as in Romano and Zeng, 2016): SGR = (lnWf lnW0)/IP  100, where SGR is - ×
186 specific growth rate; Wf is the final size or weight; IP is the intermoult period; W0 is the initial 
187 size or weight.

188

189 2.6. Statistical analysis
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190

191 Normality and equal variance tests were performed for all data. Statistical analysis was 
192 carried out using one-way analysis of variance (ANOVA) with Tukey post hoc test for 
193 multiple comparisons of means to determine significant differences relatively to control 
194 treatment. The level of significance was set at p 0.05. All statistical analyses were  <   
195 performed using R software package (version 3.3.2).

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218



7

219

220

221

222

223

224

225

226 3. Results

227 3.1. Percentage of moulting animals during 100 days of exposure to chlorpyrifos

228 After 20 days of experiment, the results didn’t show significant difference between the 
229 groups treated with the different concentrations of chlorpyrifos and the control (Fig. 1). 
230 However, a significant difference compared to the control was noted after 40 and 60 days of 
231 exposure to the highest concentration of chlorpyrifos (40mg/kg soil) (p < 0.05). Also, a 
232 significant difference compared to the control was found after 80 days of exposure to the 
233 higher concentrations (20 and 40mg/kg soil) (p < 0.01 and p < 0.001, respectively). After 100 
234 days of experiment, 100% of animals moulted in the control group. The same percentage of 
235 moulting animals was observed at the concentrations 5 and 10 mg/kg soil. However, a 
236 significant lower percentage of moulting animals was observed when they were exposed to 20 
237 mg/kg soil (72%) and 40 mg/kg soil (65.63%) (p < 0.01 and p < 0.001, respectively).

238
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240 Fig.1. Percentage of moulting animals during 100 days of exposure to chlorpyrifos. Bars are means ± SEM. Bars 
241 with different letters are significantly different (p 0.05); one asterisk (*) indicates p 0.01; two asterisks  <   <  
242 (**) indicate p 0.001. <  

243
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244

245

246

247 3.2. Distribution of the first moult per month of animals exposed to chlorpyrifos during 
248 100 days

249 In the control group, 82.5% of animals had moulted after two months of experiment, 
250 of which 30% in the first month and 52.5% in the second month (Fig. 2). Similar results were 
251 found in the groups exposed to the 5 and 10 mg/kg soil concentrations, with 77.67% and 
252 80.77% of moulted animals after two months, respectively. In the group exposed to 20 mg/kg 
253 soil, only 41% of animals had moulted after two months of exposure, of which 24.32% the 
254 first month and 16.67% the second month. In the group treated with the highest concentration 
255 (40 mg/kg soil), moult seemed to be drastically delayed, with only 8.57% of animals that had 
256 moulted in the first month and 34.38% in the second month.

257

258

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Control 5 10 20 40

First month Second month Third month

chlorpyrifos (mg/kg)

Pe
rc

en
ta

ge
 o

f m
ou

lti
ng

 a
ni

m
al

s (
%

)

259 Fig.2. Distribution of the first moult per month of animals exposed to chlorpyrifos. Data are presented as 
260 percentage of animals that moulted during each period.

261

262 3.3. Number of moults completed by animals during 100 days of exposure to 
263 chlorpyrifos

264 The results showed that the number of moults were not significantly different 
265 compared to the control when exposing animals to the lower concentrations (5 and 10 mg/kg 
266 soil) of chlorpyrifos (Fig. 3). However, a significant decrease in the number of moults was 
267 noted at the higher concentrations 20 mg/kg soil (p < 0.05) and 40 mg/kg soil (p < 0.001).
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269 Fig.3. Mean number of moults completed by animals during 100 days of exposure to chlorpyrifos. Bars are 
270 means ± SEM. Bars with different letters are significantly different (p 0.05); two asterisks (**) indicate p <   <  
271 0.001.

272

273 3. 4. Effects of chlorpyrifos on the premoult duration (in days) and its substage duration 
274 (in days)

275 The results showed no significant difference between the groups treated with the lower 
276 concentrations (5 and 10 mg/kg soil) of chlorpyrifos and the control (Tab.1). Concerning the 
277 groups treated with the higher concentrations (20 and 40 mg/kg soil) a significant increase in 
278 the premoult duration compared to the control was observed (p < 0.01 and p < 0.001, 
279 respectively).

280  Regarding the effects of chlorpyrifos on the duration of the premoult substages, the 
281 results showed no significant difference on PE1 duration at the lower concentrations (5 and 10 
282 mg/kg soil) compared to the control (Tab. 1). However, a significant prolongation in PE1 
283 length at the higher concentrations (20 and 40 mg/kg soil) was noticed (p < 0.05 respectively). 
284 Concerning the effects on PE2 duration, except the lowest concentration (5 mg/kg soil), 
285 results demonstrated a significant difference to the control in all treatments and mainly at the 
286 highest concentration 40mg/kg soil (p < 0.001). Finally, no significant difference in PE3 
287 duration was found between the groups treated with the various concentrations of chlorpyrifos 
288 and the control.

289

290

291

292 Table 1

293  Effects of chlorpyrifos on the duration (in days) of the first premoult substages (mean ± SEM). Within a same 
294 column, values with different letters are significantly different (P 0.05); one asterisk (*) indicates p 0.01; <   <  
295 two asterisks (**) indicate p 0.001. <  
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296

297

298

299

300

301

302

303

304

305 3.5. 
306 Effe
307 cts 
308 of 
309 chlo
310 rpy
311 rifo
312 s on 
313 the 
314 dur
315 atio
316 n of 
317 ecd
318 ysis 
319 and 
320 its 
321 sub
322 stag
323 es

324 E
325 cdysis duration was not significantly affected by the chlorpyrifos treatments (Tab. 2). 
326 Concerning the substages, the only significant difference observed was an increase in Ep 
327 duration at a chlorpyrifos concentration of 20 mg/kg soil (p < 0.05).

328 Table 2 

329 Effects of chlorpyrifos on the mean duration (in days) of ecdysis and its substages Ea and Ep (mean ± SEM).                                            
330 Within a same column, values with different letters are significantly different (p < 0.05).

331

                                      Whole premoult 
Duration (days)

Premoult substage duration (days)

____________________________________

PE1 PE2      PE3

Control 11.48 ± 0.42a 4.98 ± 0.33a 4.13 ± 0.16a 2.38 ± 0.1a

Min−Max          8−18        3−11        3−6        1−4

5 mg/kg 12.95 ± 0.39a 5.92 ± 0.28a 4.76 ± 0.21a 2.27 ± 0.11a

Min−Max          9−19       3−10        3−8        1−4

10 mg/kg 13.78 ± 0.72a 6.05 ± 0.45a 5.32 ± 0.34b* 2.41 ± 0.13a

Min−Max          9−34        3−17        3−15        2−5

20 mg/kg 14.88 ± 0.96b* 6.96 ± 0.7b 5.23 ± 0.31b 2.69 ± 0.17a

Min−Max          9−33        4−21        3−9        2−5

40 mg/kg 15.52 ± 1.32b** 7.05 ± 0.98b 5.90 ± 0.43b** 2.57 ± 0.13a

Min−Max          9−35       4−23        3−10        2−4

Whole Ecdysis substages
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332

333

334

335

336

337

338

339

340

341

342

343

344

345 3.6. Effects of chlorpyrifos 
346 on intermoult duration

347 The results showed that 
348 chlorpyrifos reduced 
349 significantly the intermoult 
350 duration of all exposed groups 
351 compared to the control. The effect was stronger at the concentrations of 5 mg/kg and 40 
352 mg/kg soil (p < 0.0001 respectively) (Fig.4).

353
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354 Fig. 4. Mean duration (in days) of intermoult (mean ± SEM) of all animals exposed to chlorpyrifos during 100 
355 days. Values with different letters are significantly different (p < 0.05); one asterisk (*) indicates p 0.01; three  <  
356 asterisks (***) indicate p 0.0001. <

Ecdysis _______________________

Ep                       Ea

Control 2.08 ± 0.04a 1.08 ± 0.04a 1.0 ± 0.0a

Min−Max        2−3        1−2        1−1

5 mg/kg 2.35 ± 0.1a 1.35 ± 0.1a 1.0 ± 0.0a

Min−Max        2−4        1−3        1−1

10 mg/kg 2.46 ± 0.28a 1.27 ± 0.13a 1.19 ± 0.16a

Min−Max        2−12        1−5        1−7

20 mg/kg 2.58 ± 0.16a 1.5 ± 0.13b 1.08 ± 0.05a

Min−Max        2−5      1−3        1−2

40 mg/kg 2.14 ± 0.08a 1.14 ± 0.08a 1.0 ± 0.0a

Min−Max        2−3        1−2        1−1
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357

358 3.7. Effects of chlorpyrifos on growth 

359 3.7.1. Effects of chlorpyrifos on weight gain

360

361 After 20 and 40 days of experiment, no significant difference was noted between the 
362 groups treated with different concentrations of chlorpyrifos and the control (Fig.5). A 
363 significant difference was found at the higher concentrations of chlorpyrifos (20 and 40 mg/kg 
364 soil) after 60 days (p < 0.05 respectively) and 80 days of experiment (p < 0.01 and p < 0.001 
365 respectively). After 100 days of exposure to chlorpyrifos, the results did not show any 
366 significant difference between the control and treatment with the lower concentrations (5 and 
367 10 mg/kg soil). However, chlorpyrifos impaired significantly the weight gain of animals 
368 exposed to the higher concentrations of chlorpyrifos (20 and 40 mg/kg soil) (p < 0.0001 
369 respectively).

370 3.7.2. Effects of chlorpyrifos on weight’s specific growth rate

371 The results showed no significant difference between the groups treated with the lower 
372 concentrations (5 and 10 mg/kg soil) of chlorpyrifos and the control. However, a significant 
373 decrease in weight’s specific growth rate (SGR) was noted at the higher concentrations of 
374 chlorpyrifos ((20 and 40 mg/kg soil) compared to the control (p < 0.05 respectively) (Fig.5).
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378 Fig. 5. Effects of chlorpyrifos on weight. (A) weight gain (mg); (B) SGR of weight (mg/days). Bars are means ± 
379 SEM. Bars with different letters are significantly different (p < 0.05); three asterisks indicate p < 0.0001.

380

381 3.7.3. Effects of chlorpyrifos on size gain

382 The results showed that chlorpyrifos exposure impaired significantly size gain of the 
383 treated groups (Fig.6). Cuticle length (CL) gain decreased with increasing concentrations of 
384 chlorpyrifos and was significantly different from the control at the concentrations of 10, 20 
385 and 40 mg/kg soil (p < 0.01 respectively). 

386 Concerning the effects of chlorpyrifos on the cuticle width (CW) gain, the results did 
387 not show any significant difference between the treated and control groups (Fig.6).

388

389 3.7.4. Effects of chlorpyrifos on specific growth rate of cuticle length and cuticle width

390 The results showed that the specific growth rate of cuticle length was significantly 
391 lower in the groups treated with the higher chlorpyrifos concentrations (20 mg and 40 mg/kg 
392 soil) compared to the control (p < 0.05 respectively) (Fig.6).

393 On the other hand, no significant difference in specific growth rate of cuticle width 
394 was found between the groups treated with the different concentrations of chlorpyrifos and the 
395 control (Fig.6).
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415

416

417

418 4. Discussion

419

420 In the present study, our results have firstly highlighted that the exposure to chlorpyrifos 
421 altered the moulting of Armadillo officinalis. Indeed the percentage of moulting animals 
422 during the 100 days of exposure was significantly lower at the higher chlorpyrifos 
423 concentrations (20 and 40 mg /kg) compared to the control. Several studies revealed that 
424 environmental chemicals could impair moulting in Oniscidea crustaceans (Leblanc, 2007; 
425 Jubeaux, 2012; Legrand, 2016; Hosamani et al., 2017; Zou, 2020). For instance, Drobne and 
426 Strus (1996) also reported a decrease in rate of moulting in the terrestrial isopods Porcellio 
427 scaber exposed to zinc. 

428

429 Our research showed also that chlorpyrifos delayed drastically the first moult, mainly 
430 at the highest concentration (40 mg/kg). Chlorpyrifos has been noted as the primary inhibitor 
431 of the enzyme acetylcholinesterase which leads to the accumulation of acetylcholine in the 
432 synaptic cleft, inducing the failure of translation of hormonal regulation and consequently the 
433 impairment of endocrine homeostasis in the organism (EPA, 1992; Ubaidurrahman, 2020). 
434 According to Leblanc (2007), the disruption of the normal moult cycle by toxicant exposure 
435 can be attributed to an alteration in levels of ecdysteroide moulting hormone produced by the 
436 moulting gland Y organ. Hirano et al. (2009) documented that exposure of the mysid 
437 Americamysis bahia to nonylphenol delayed significantly moulting and this effect was linked 
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438 to the suppression of ecdysteroid 20-hydroxyecdysone (20E) content. However, Lemos et al. 
439 (2009) who exposed the terrestrial isopods Porcellio scaber to the fungicide Vinclozolin 
440 noted a delay in moulting despite an increase in 20E concentration. According to the authors, 
441 this could be a result of side effects associated with hyperecdysonism.

442 Moreover, the number of moults completed by the terrestrial isopods exposed to the 
443 higher concentrations (20 and 40 mg/kg soil) of chlorpyrifos was significantly lower 
444 compared to the control group. The same results were also reported by Lemos et al. (2010) 
445 when exposing the terrestrial isopods Porcellio scaber to 100 mg/kg of Vinclozolin. 
446 Similarly, Ohmstead and Leblanc (2001) noted that the insecticide methoprene decreased 
447 moulting frequency in the crustacean Daphnia magna and associated this effect to the 
448 negative impact of methoprene on the terpenoid hormone Methyl farnesoate (MF) produced 
449 by the mandibular organs, which is involved in the modulation of ecdysteroids. In fact, it was 
450 demonstrated that some insecticides would mimic insect juvenile hormones and could act in 
451 the same manner as methyl farnesoate (MF) and impact crustacean moulting (Zou, 2020).

452

453 Furthermore, our findings showed a significant increase in the premoult stage and 
454 substage (PE1, PE2) durations in the groups treated with the higher chlorpyrifos 
455 concentrations (20 and 40 mg/kg). Lemos et al. (2009) reported the same results when 
456 exposing the terrestrial isopods P.scaber to the fungicide Vinclozolin and related the premoult 
457 prolongation to the too high level of 20E found in animals exposed to Vinclozolin. In fact, the 
458 required decrease in ecdysone concentration below the threshold value for which the 
459 exuviation factor is released, (and which is indispensable to complete the premoult), has not 
460 been attained. It seems that chlorpyrifos also can cause an elevation in the ecdysteroid titers. 
461 That was observed by Volz et al. (2003) in female Grass Shrimp Palaemonetes pugio exposed 
462 to 100 and 200 ng/L nominal chlorpyrifos. This enhancement in the 20E titre could be due to 
463 disruptions in ecdysteroidogenesis in Y-organs and/or changes in inhibitory peptide 
464 hormones, such as the moult-inhibiting hormone (MIH) or the crustacean hyperglycemic 
465 hormone (CHH) which are involved in the regulation of moulting (Zou, 2020). Also, this 
466 alteration could be caused by a direct disruption in epidermal ecdysteroid signaling by 
467 interfering with ecdysteroid receptor (EcR) (Leblanc, 2007). 

468 Regarding the effect of chlorpyrifos on ecdysis duration, a significant delay in the 
469 duration of posterior ecdysis (Ep) at the high concentration of 20 mg/kg was observed. This 
470 could be due to the adverse impact of chlorpyrifos on the ecdysis-triggering hormone (ETH) 
471 either by its direct inhibition or by interfering with its release. This neuropeptide from the 
472 central nervous system (CNS) is involved in ecdysis regulation and its lack causes ecdysis 
473 deficiencies (Mykles et al., 2010). Furthermore, according to Zou (2020), environmental 
474 toxicants could in theory impact the signalling of this neurohormone, and thereby, affect the 
475 moulting process. Lemos et al. (2009) also noted a disruption in ecdysis when exposing the 
476 terrestrial isopods Porcillio Scaber to vinclozolin, and explained it as being the result of the 
477 too high level of ecdysteroid and the lack of exuviation factor. 

478

479 Also, our results showed that chlorpyrifos exposure significantly reduced intermoult 
480 duration compared to the control. On the opposite, Taylor (2020) noted a prolongation in 
481 intermoult stage when exposing the American Lobster Larvae (Homarus americanus) to 
482 different concentrations of chlorpyrifos. Nevertheless, our results corroborate the observations 
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483 of Montagna and Collins (2007) who found that chlorpyrifos significantly decreases 
484 intermoult duration in Palaemonetes argentinus. During intermoult period, ecdysteroids are 
485 under the negative regulatory control of the moult-inhibiting hormone (MIH), which 
486 maintains low-circulating ecdysteroid levels until the next moult (Leblanc, 2007). 
487 Chlorpyrifos exposure probably induced an inhibition of this hormone and consequently 
488 enhanced ecdysteroid that led to stimulate the next moult and reduced the intermoult stage. 

489

490 Moreover, our results also highlighted that the exposure to chlorpyrifos affected 
491 significantly the growth of Armadillo officinalis by decreasing its weight gain and specific 
492 growth rate. These results corroborate previous studies, which reported weight loss in 
493 terrestrial isopods exposed to pesticides (Drobne and strus, 2008; Kolar et al., 2010; Lavtizar 
494 et al., 2016; Morgado et al. 2016). This leads to the hypothesis that growth retardation could 
495 be due to changes in the feeding behaviour of Armadillo officinalis. In fact, several previous 
496 studies highlighted a decrease in feeding behaviour in terrestrial isopods exposed to stressors 
497 (Abdel-Lateif et al., 1998; Donker et al., 1998; Morgado et al., 2016). Such an alteration in 
498 feeding behaviour could be due to neurotoxic effects of chlorpyrifos. Indeed, the fact that 
499 pesticides induced changes in feeding behaviour is often assimilated to acetylcholinesterase 
500 inhibition (Bayley and Baatrup, 1996; Morgado et al., 2016). For instance, Blažic et al. (2005) 
501 noted that the pesticide-induced inhibition of feeding in Porcillio scaber coincides with 
502 acetylcholinesterase inhibition. 

503

504 Furthermore, chlorpyrifos also impaired Armadillo officinalis growth by decreasing 
505 significantly its CL gain and its CL specific growth rate. Similarly, a significant decrease in 
506 CL specific growth rate was noted by Taylor (2020) when exposing American Lobster 
507 (Homarus americanus) larvae to chlorpyrifos. On the opposite, chlorpyrifos had no effect on 
508 size growth in glass shrimps (Palaemonetes argentinus) (Montagna and Collins, 2007). 
509 However, various synthetic molecules are also known to retard growth in animal species. For 
510 instance, Bisphenol A at a concentration of 10 and 100 mg/kg soil induced a significant 
511 decrease in terrestrial isopods P. Scaber size gain (Lemos et al., 2010). Also, Singh et al. 
512 (2021) showed that malathion exposure altered CL gain in freshwater crabs Poppiana dentata. 
513 These authors suggested that exposure to toxicants triggers the detoxification processes, 
514 resulting in a reallocation of energy to these processes at the expense of growth. In this 
515 context, Verslycke et al. (2004) found that chlorpyrifos exposure significantly hinders the 
516 allocation of energy to growth in the mysid Neomysis integer.

517 Besides, growth disruption may also be attributed to perturbations in moulting. In fact, 
518 to grow, terrestrial isopods have to periodically shed their exoskeleton during the moulting 
519 cycle, and any disturbance of this latter, can potentially lead to the alteration of growth 
520 process. As mentioned above, chlorpyrifos exposure reduced significantly intermoult duration 
521 thereby probably preventing the completion of the new exoskeleton. Indeed, intermoult stage 
522 is the time of full activity, feeding, and muscle growth (Steel, 1982; Lemos and Weissman, 
523 2020). 

524  In addition, growth alteration could also be related to the disruption by chlorpyrifos of 
525 some signalling pathways, like the mTOR pathway, which is involved in growth and 
526 developmental processes, and/or TGF, which is implicated in the growth, development and 
527 innate immunity of invertebrates, including crustaceans (Li et al., 2020).
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528

529 In summary, the present study demonstrated that the long-term exposure to chlorpyrifos 
530 induced harmful effects on moulting and growth of the terrestrial isopods Armadillo 
531 officinalis, and suggests that chlorpyrifos could also pose a potential risk to other benificail 
532 soil organisms. 
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843  Exposure to chlorpyrifos delayed moulting in Armadillo officinalis.
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845  Chlorpyrifos affected the moulting frequency in Armadillo officinalis.
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847  Exposure to chlorpyrifos extended premoult and ecdysis stages in Armadillo 
848 officinalis.
849
850  Chlorpyrifos reduced intermoult duration in Armadillo officinalis.
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852  Chlorpyrifos impaired growth by decreasing weight gain, cuticle length gain and the 
853 specific growth rate of Armadillo officinalis.
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