
HAL Id: hal-04741046
https://hal.science/hal-04741046v1

Submitted on 17 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transitioning from AGVs to AIVs in Integrated Job
Shop Scheduling with Transportation Tasks: a

Multi-agent Simulator for Comparative Analysis
Kader Sanogo, Abdelkader Mekhalef Benhafssa, M’hammed Sahnoun

To cite this version:
Kader Sanogo, Abdelkader Mekhalef Benhafssa, M’hammed Sahnoun. Transitioning from AGVs to
AIVs in Integrated Job Shop Scheduling with Transportation Tasks: a Multi-agent Simulator for
Comparative Analysis. SIMULATION: Transactions of The Society for Modeling and Simulation
International, In press, �10.1177/ToBeAssigned�. �hal-04741046�

https://hal.science/hal-04741046v1
https://hal.archives-ouvertes.fr


Transitioning from AGVs to AIVs in
Integrated Job Shop Scheduling with
Transportation Tasks: a Multi-agent
Simulator for Comparative Analysis

Journal Title

XX(X):1–26

©The Author(s) 2024

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

SAGE

Kader SANOGO1,2, Abdelkader MEKHALEF BENHAFSSA1 and M’hammed SAHNOUN3

Abstract

Optimizing job shop scheduling in modern factories demands flexibility and adaptability to handle unexpected events

and Unmanned Ground Vehicles (UGVs) limitations. This paper addresses these challenges by introducing a novel

multi-agent simulator for the Job Shop Scheduling Problem (JSSP) with UGVs handling transportation tasks. The

simulator, designed with Netlogo, incorporates real-world constraints, such as collision avoidance, UGV fleet size, and

battery limitations, often overlooked in prior studies. By comparing the two categories of UGVs, namely Autonomous

Guided Vehicles (AGVs) and Autonomous Intelligent Vehicles (AIVs), under different scheduling methods (static vs.

dynamic), we evaluate their performance in constrained manufacturing environments. Our findings highlight the superior

performance of AIVs in terms of overall makespan and resilience to additional constraints. Among other results, we

found that schedules with a fleet of 2 AIVs produced similar makespans than schedules with a fleet of 4 AGVs.

Consequently, the simulator and the conducted study provide valuable insights for optimizing JSSP within constrained

environments and making informed decisions regarding AIVs adoption.
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1 Introduction

In today’s competitive manufacturing landscape, companies
constantly seek to streamline operations and eliminate waste.
This relentless pursuit of efficiency compels them to discover
innovative methods and tools to enhance production and
maintain high customer satisfaction. However, managing
manufacturing processes can be complex, with numerous
interconnected elements and unforeseen events. Therefore,
companies need to rigorously test their ideas before
implementing significant changes. In this context, simulation
emerges as a powerful tool for examining and analyzing
situations that are either too intricate for mathematical
modeling or too costly to test in the real world1,2.

A persistent challenge for factories is efficiently schedul-
ing job shop tasks. In academic circles, this is referred to
as the Job Shop Scheduling Problem (JSSP)3. JSSP focuses
on determining the optimal sequence for processing prod-
ucts (jobs) through machines, including the transportation
between each processing stage4. Historically, these trans-
portation tasks were performed by human operators. But
today, with the evolution of technology, they are now carried

out by robots, namely UGVs. In this paper, we use the
term ”UGV” to refer to the mobile robots that carry out
transportation tasks. UGVs have been used in industry since
the 1950s and have steadily improved over time5. They
are divided into two main types: AGVs and AIVs (also
known as Autonomous Mobile Robots - AMRs). AGVs have
proven their effectiveness in repetitive material handling
tasks for several decades now6. However, they require dedi-
cated movement areas7, which could be expensive to set up,
and can toughly handle surprises like people or unexpected
objects in their way8, potentially causing operational down-
time. AIVs, on the other hand, can navigate around obstacles
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and people without needing special tracks, making them
better suited for modern factories in Industry 5.0 context,
where people and robots work seamlessly together5,9. They
are also more sophisticated, adaptable, and safer than older
methods5,7.

JSSP with UGVs performing transportation tasks has
been extensively studied by researchers10. The proposed
scheduling techniques can be split into two categories: static
scheduling approaches and dynamic scheduling approaches.
While static scheduling approaches in job shop scheduling
optimization excel at upfront, comprehensive planning (from
start to finish), their inflexibility can lead to disruptions
when unexpected events, such as machine breakdowns,
occur within the workshop. In this regard, the authors in11

show that optimal advanced schedules, which are schedules
where task assignments and their sequence of execution are
known in advance, could become infeasible when additional
constraints, such as collision avoidance between transporters,
are taken into account, leading to deadlocks. Dynamic
scheduling approaches, on the other side, can deal with real-
world job shop disruptions and react by adjusting schedules
in real-time, minimizing their impact on overall production
efficiency12,13. Furthermore, the limited battery capacity of
UGVs adds another constraint. Their reliance on batteries
necessitates recharging during operation to maintain activity.
This issue is gaining attention14,15 but despite research
acknowledging the influence of UGVs’ battery management
on the overall performance of the manufacturing system16,
most prior studies overlooked this important factor17 in JSSP
resolution. Hence, considering battery limitations is essential
for building a more accurate representation of the production
system. Simulation can be a useful tool to achieve this by
incorporating battery constraints into scheduling models.

Therefore, this paper introduces a simulator, based on
a multi-agent system, for addressing the JSSP with UGVs
handling transportation tasks. The simulator can handle both
advanced and dynamic schedules while ensuring UGVs
avoid collisions and operate within battery limitations.
JSSP traditionally relies on AGVs for transportation tasks.
However, introducing AIVs as an alternative transporter
within JSSP holds promise for enhancing overall system
performance compared to traditional AGVs. This paper
particularly focuses on the influence of UGV fleet size,
collision avoidance constraints, and battery limitations
under both static and dynamic scheduling techniques. This
comparative analysis aims to evaluate the performance of
AGVs and AIVs within the context of JSSP. To summarize,
the paper provides the following contributions:

• Development of a Simulator.

• Utilization of AIVs as transporters in JSSP
• Evaluation of the additional constraints’ impact on the

job shop scheduling
• Comparison of Scheduling Methods
• Investigation on the effect of UGV Fleet Size with

additional constraints

The rest of the paper is organized as follows. In
Section 2, a literature review related to simulation techniques
and their utilization to address FMS issues is presented.
Section 3 is dedicated to the problem description, where
the integration of UGVs’ battery limitation into the JSSP
is explained. Section 4 provides a comprehensive analysis
of the simulator’s functionalities, delving into its underlying
framework and core components. Section 5 presents the
experiments conducted during this work, and the results
obtained are discussed in Section 6. Finally, Section 7
contains the paper’s conclusion and the perspectives.

2 Related work

Simulation is a powerful tool that served as a valuable
asset for researchers for decades, allowing them to observe
and analyze the behavior of complex phenomena. It is a
technique that involves building a model of a real-world
system that can then be run to observe and analyze the
behavior of the system, all without impacting the actual
system itself1,2. The key to simulating a system with a
computer is being able to describe it in a way the computer
understands. This is achieved by defining a set of variables
that capture the system’s state. Each unique combination
of these variable values represents a specific condition,
or “snapshot,” of the system. By changing these variables
according to pre-defined rules, the simulated system is
essentially moved from one state to another. This process
of manipulating variables to represent the system’s dynamic
behavior is the essence of simulation2,18. The usefulness
and efficiency of simulation have led to its adoption in a
wide range of fields19, and it’s particularly valuable for
representing systems that are challenging to model with
traditional methods20,21. For instance, J. de Moij et al.22 use
simulation to develop a framework to study how complex
social behaviors and interventions can influence disease
outbreaks. This framework is used to model the spread of
COVID-19 in Virginia, demonstrating its ability to handle
large-scale simulations with complex agents. Likewise, C.
Adam et al.23 developed a simulator for studying disease
outbreaks. It was designed for educational purposes to
lead users to understand the complex core mechanisms of
epidemics over predicting real-world scenarios. Simulation
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is also used to study how media influence crowd behavior24

for understanding the conditions that could lead to or prohibit
the formation of revolutionary crowds.

Agent-based modeling (ABM) is a simulation technique
where independent entities (agents) follow programmed
rules to interact with their surroundings and each other25.
This method is particularly useful for modeling and
simulating intricate systems characterized by interactions
between their constituent parts, like social and economic
systems. In this way, Andrew J. C. and Erika F.26 explore
strategic group formation with an agent-based model while
focusing on modeling people as group members, rather than
individuals. From their side, Gayane G. et al. used a hybrid
agent-based modeling approach, called ABMSCORE, to
compare which of the computerized agents and actual
humans is more efficient in finding an ideal coalition in
glove games. Moreover, ABM has also been used to address
issues related to mobility and smart cities. For example,
to understand how changes in bus fares affect passenger
choices, Baozhen Y. et al.27 employed an agent-based
simulation model to mimic passenger flow by simulating
their decision-making processes. Similarly, Garcı́a-Suárez
A. et al.28 adopted ABM, combined with cellular automata,
to analyze the deployment of electric vehicle charging
stations through microscopic traffic simulations.

In recent years, various challenges in Flexible Manufac-

turing System (FMS)29,30 have been addressed with sim-
ulation techniques. Running simulations can uncover sur-
prising effects that might be missed when relying solely
on theoretical models11,31. Simulations offer an advantage
because they can handle complex limitations that might
be tricky to express in theoretical models32. Zaidi et al.33

showcase this by using simulation to reveal the discrepancies
between a theoretical schedule and a simulated one, even
in a straightforward example. Furthermore, optimizing job
shop scheduling in FMS is a major challenge, especially
when mobile robots handle transportation tasks. Bilge et

al.34 addressed this by treating machines and vehicles as
resources that need to be scheduled simultaneously. They
introduced ten job sets and four layouts, becoming valuable
benchmarks for subsequent research. Ham35 tackled the
job shop scheduling problem with UGV transport using
a constraint programming approach. He emphasizes that
both machines and UGVs have limitations that need to be
considered. Similarly, Abderrahim et al. view workstations
and vehicles as resources in their solution to job shop
scheduling problems (JSSP) with automated transportation.
They employ a Variable Neighborhood Search (VNS) algo-
rithm to optimize the makespan - the total time required to

complete all jobs - by scheduling both manufacturing and
transportation tasks together. Traditional job shop scheduling
methods rely on precise mathematical models. However,
these models struggle when dealing with complex situations
with many variables and uncertainty11,36. To address this
limitation, simulation has been positioned as an alternative
approach37. Moreover, simulation allows the development
of dynamic scheduling algorithms13,38 that are capable of
optimizing scheduling while being resilient to disruptions
that occur in the workshop.

Dynamic scheduling approaches offer several advantages
over static scheduling approaches in job shop scheduling
optimization39,40. Indeed, they can deal with real-world job
shop disruptions like machine breakdowns, unexpected job
arrivals, and changes in due dates. Dynamic algorithms
can react to these events and adjust schedules in real-
time, minimizing their impact on overall production
efficiency12,13. Dynamic scheduling algorithms can consider
real-time information about machine availability and job
status to optimize resource allocation38,41. By actively
responding to changes, dynamic scheduling can potentially
help reduce the makespan compared to static schedules
that may become outdated with disruptions. Concerning
this, in11, The authors show that previously considered
optimal schedules could become infeasible when additional
constraints, such as collision avoidance between transporters,
are taken into account. This can lead to deadlocks.

Furthermore, the energy consumption of manufacturing
workshops is one of major interests today, especially in
the current context of decarbonization42 and industrial
sustainability29,43. Particularly, the energy management of
battery-powered UGVs within the workshop has been
gaining attention for several years now14,15. As UGV
batteries deplete during operation, recharging becomes
necessary, which could significantly affect the manufacturing
process44. While research acknowledges the influence of
UGVs’ battery management on the overall performance
of the manufacturing system16, most of the prior studies
have not considered this important factor in JSSP
resolution17,45,46. Hence, incorporating battery management
constraints into models is essential for creating a more
realistic representation of the production system.

Through this literature review, it appears that simulation
techniques, particularly agent-based modeling, are valuable
tools for studying complex systems like FMS and addressing
issues like the JSSP. The significance of our simulation-
based approach, in comparison with classical techniques, lies
in its capability to integrate complex constraints, like space
and shape constraints mentioned in11,30, which are intricate
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to model formally. This enables theoretical solutions to be
evaluated under more constrained conditions and reduces
the gap between theory and actual implementation. Besides,
AIVs, which are more recent transportation robots than
AGVs, have received very little attention in JSSP problems
with transportation tasks, even though they have the potential
to improve the overall performance of production systems
and enable the transition to Industry 5.047,48. In addition,
while battery management is a major issue in the current
context, it has often been overlooked in previous research
related to JSSP with UGVs. Likewise, the influence of UGVs
fleet size within integrated JSSP with transportation tasks is
not investigated enough. As a consequence, our study stands
out within the literature by addressing simultaneously the
following contributions:

• Development of a Simulator: we developed a
simulator specifically designed to address the JSSP
with transportation tasks performed by UGVs.
Particularly, in this paper, the simulator incorporates
UGV battery limitation, fleet size variation, and
collision avoidance, which make it more realistic for
studies and analysis.

• Utilization of AIVs as transporters in JSSP: unlike
AGVs, which have been widely used in JSSPs, to
our knowledge, AIVs have received little attention in
JSSPs. Even in the previous work49, battery limitation
and fleet size were not addressed. Thus, this work
introduces them and highlights their effectiveness
compared with AGVs.

• Evaluation of the additional constraints’ impact
on the job shop scheduling: This work addresses
JSSP by considering battery and collision avoidance
constraints for each UGV type (AIV vs. AGV)
and highlights AIVs’ potential for efficiency and
resilience.

• Comparison of Scheduling Methods: the paper
assesses the performance of static and dynamic
scheduling methods, demonstrating the advantages
and disadvantages of each while comparing AGVs and
AIVs in different scenarios.

• Investigation on the effect of UGV Fleet Size with
additional constraints: The paper examines how the
number of UGVs influences both transportation and
production scheduling performance when collision
avoidance and battery limitation constraints are
considered.

3 Problem description

This paper focuses on the Job Shop Scheduling Problem
(JSSP) that involves transportation tasks handled by
Unmanned Grounded Vehicles (UGVs). It is assumed
that the UGVs can operate until their batteries reach
a certain threshold15. Once that happens, the UGV
must stop all activities and head to a charging station.
This aims to understand how these mandatory charging
breaks during operation affect the overall production time
(makespan) in the scheduling process. Besides, three types
of energy consumption for UGVs are considered: idle
consumption, empty consumption, and loaded consumption.
Idle consumption refers to the energy used when the UGV
is operational but not in motion. Empty consumption occurs
when the UGV moves without carrying any load, while
loaded consumption represents the energy usage when the
UGV is transporting a job. These distinctions are defined
for accurately modeling the UGV usage, as suggested in
references15,50.

The JSSP, involves organizing a set of jobs (denoted by
J = {J1, J2, ..., JI} to be processed on a set of machines
(denoted byM = {M1,M2, ...,MM}. Each job, Ji, consists
of a specific sequence of operations (Oi1, Oi2, ..., Oin).
These operations must be completed one after another. Each
operation, Oij (meaning operation j of job i), can only be
performed on a designated machine, Mk ∈M, and takes
τk time units to complete. An important aspect is that a
machine can only handle one operation at a time, and once
an operation starts, it must be finished without interruption.
Additionally, each machine, Mk, has two buffers: an input
buffer, BI

k , for storing jobs waiting to be processed, and an
output buffer, BO

k , for jobs that have been processed. All jobs
are located at a central loading/unloading (L/U) station at the
beginning of the process. After all processing is finished, the
jobs are returned to this same L/U station.

Each job, Ji, has a specific manufacturing process
represented by an ordered sequence of operations. This
sequence includes both transportation and processing
operations: (Ti1, Oi1, Ti2, Oi2, ..., Tin, Oin, Tin+1). Here,
Ti,j represents the movement of job Ji to the machine
assigned for operation Oij . For example, Ti1 is the initial
transport of Ji from the L/U station to the machine for its first
operation, Oi1. Similarly, Tin+1 signifies the final transport
of Ji from its last operation’s machine back to the L/U
station. In this context, the makespan refers to the total time
needed to complete all jobs. This duration is measured from
the moment the first job starts its process until the very last
job returns to the L/U station.

Prepared using sagej.cls



Kader SANOGO et al. 5

It is assumed that the battery level of the UGVs decreases
gradually as they work. Three types of consumption are
distinguished: idle consumption, empty consumption, and
loaded consumption. All jobs have equal weight and are
lower than the maximum capacity of the UGVs. The
workshop has one charging station for all UGVs, but it has
enough space and power to charge them all simultaneously.
Once the battery level of a UGV reaches the set threshold, it
stops all its activities and heads towards the charging station.
However, if it reaches the threshold while transporting a job,
it first completes the delivery before going to recharge. It
remains in charge for a certain time and then returns to work.

4 Simulator description

This section delves into a detailed exploration of the
simulator. It begins by presenting the framework upon which
it is built. Next, it investigates the various elements of
the user interface that allow interaction with the simulator.
Finally, it delves into the core components that constitute the
backbone of the simulator program.

4.1 Framework

Our simulator was developed with Netlogo*, which is
both a multi-agent programming language and a modeling
environment for simulating natural and social phenomena51.
Designed to simulate real-world interactions, NetLogo
is specifically built for modeling complex systems with
multiple agents. These “agents”, which can number in the
hundreds or thousands, act independently and concurrently,
allowing users to explore how individual behaviors shape
larger, long-term patterns. NetLogo goes beyond just running
simulations - it fosters exploration. Users can “play” with
simulations, adjusting conditions to see how the system
reacts. Furthermore, as evoking52, NetLogo prioritizes
ease of use, reflecting its roots as an educational tool.
This is evident in its programming language, featuring
high-level structures and primitives that minimize coding
complexity. Additionally, comprehensive documentation is
readily available.

A NetLogo program consists of 3 tabs:

• Interface: This is the tab for viewing and interacting
with the simulation.

• Info: This tab provides information about the program
being simulated. For example, you can enter a
description of the phenomenon you are simulating, or
explain how to use it or how it works.

• Code: this is the tab where the entire simulation code
is written.

NetLogo uses turtle as its individual agents, and these agents
are grouped into distinct categories called breeds. Parameters
can be defined to the entire model or just to specific breeds.
Importantly, these breed-specific characteristics cannot be
accessed by other breeds. The simulation starts with the
setup button, which initializes or resets the model and its
environment. Once everything is prepared, the simulation
can be launched using the go button. This button has two
modes: “one time” and “forever”. In “one time” mode, the
simulation runs for one iteration (action) and then stops. In
“forever” mode, the simulation will continuously run until a
stop condition is programmed into the code, or you press the
go button again. The simulation time is counted in ticks, and
each tick represents a simulation step.

The simulation environment, called world, is a 2D grid
that allows the coded program to be visualized in real-time.
This 2D grid is made up of tiny squares called patches. These
patches act as the playing field for the turtles, and each patch

has its own unique location, identified by x and y coordinates
(pxcor and pycor). This allows us to track which agents are
on specific patches, and vice versa, figuring out which patch

a particular turtle is currently occupying.

For our purposes, it is assumed that 20 ticks correspond
to 1 second, and 20 patches correspond to 1 meter. UGVs,
machines, stocks (machine buffers and the L/U station), and
jobs are considered as the four main breeds of our model.

4.2 Multi-agent system (MAS) model

The concept of MAS comes from the area of distributed
artificial intelligence (DAI)53. These systems do not need
a central controller, but rather independent entities called
“agents” that work on tasks at the same time. Therefore,
MAS is characterized by a decentralized control and a
parallel execution of processes54,55. Each agent can act on its
own to reach its goals, and/or they can collaborate to each
other if they need information or skills they do not have
themselves56, which helps to study and analyze emergent
behavior23.

Our simulator is built on a MAS with four main types
of agents: Transporters (UGVs), machines, stocks (machine
buffers and the L/U station), and jobs. These agents work
together as shown in Figure 1.

∗https://ccl.northwestern.edu/netlogo/
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Figure 1. The MAS of the simulator

Interaction Description
1 Machines retrieve Jobs from Stocks.
2 Stocks store Jobs.
3 Machines process Jobs.
4 Transporters deliver Jobs to Stocks.
5 Transporters pick Jobs from Stocks.
6 Transporters transport Jobs.
7 Machines put processed Products in Stocks.

Table 1. Description of the MAS interactions

4.3 Benchmark instances and workshop
layouts

The experiments are based on the benchmark test instances
proposed by Bilge and Ulusoy34. These test instances
involve four different workshop layouts, each with a
loading/unloading (L/U) station and four machines. They
also proposed 10 different sets of jobs, each set containing 5
to 8 jobs. Each job consists of several operations that require
specific machines with corresponding processing times. The
test cases are labeled ”EXαβ,” where α represents the job set
and β represents the layout. Both travel times and processing
times are measured in seconds. Each layout represents a
physical workshop arrangement, with different locations of
machines and the L/U station. This latter acts as a storage
unit (stock) for raw materials and finished products. Two
identical UGVs handle all transportation tasks, which always
start and end at the L/U station. If there are multiple ways
to get from one location to another, the fastest route is
privileged.

In the original benchmark instances, the transportation
tasks are carried out by two AGVs. Thus, the workshop
layouts are characterized by specific designs, namely
the travel orientations, as shown in Figures C.1-C.4, in
Appendix C. Tables C.1-C.4 present the minimum required
travel time for AGVs to travel between two locations.
However, switching from AGVs to AIVs eliminates the
need for pre-defined travel orientation. Unlike AGVs, AIVs
can navigate and plan their routes independently. This has
a significant impact on both workshop design and travel

times between locations. As shown in Figures 2-5, travel
orientations are no longer required, and the resulting travel
times are presented in Tables 2-5. For instance, the travel
time between M2 and the L/U station in layout 4 is equal
to 20s with AGVs, whereas this time drops to 8s with AIVs.

4.4 User interface

As illustrated in Figure 6, the user interface of our simulator
is composed of several key elements. Each of these elements
plays a specific role in facilitating interaction with the
simulation:

• Buttons: The interface features buttons that trigger
specific actions. The setup button functions like
a game’s “reset” button, initializing the simulation
environment. The go button acts as a play/pause
control, starting or stopping the simulation run.

• Sliders: sliders are used to vary the numerical values of
a variable. In this case, they allow to set the number of
jobs or transporters and to count the number of times
a simulation has been run.

• Choosers: They enable the selection of a specific value
from a predefined set for a variable. Supported value
types include numbers, Boolean values (true/false),
and strings. They are used, among other things, to
select the layout and instance of the problem to be
simulated.

• Switches: They enable the modification of a variable’s
state between two predefined options. Typically, these
options can be true/false, on/off, left/right, etc. In the
simulator, switches are used to activate the collision
avoidance mechanism or to record the simulation
details.

• Monitors: Once the simulation is running, you can
display information about the simulated program on
a monitor. In our case, this monitor keeps track of the
completion time (in ticks) of each job.

• The simulation environment (world): It provides a
window into the program’s execution, allowing you
to observe its behavior as it runs. In our simulation,
the world represents the workshop layout with the
different agents. To represent the workshop floor, the
patches are colored differently. White patches are
corridors where UGVs can move freely, while gray
patches represent areas that are currently occupied.

The simulator allows users to specify the type of UGV for
carrying transportation tasks. This selection is made via the
chooser “robot” as shown in Figure 7:
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Figure 2. Layout 1 with AIVs

L/U M1 M2 M3 M4
L/U 0 6 8 8 6
M1 6 0 6 8 10
M2 8 6 0 6 8
M3 8 8 6 0 6
M4 6 10 8 6 0

Table 2. Travel times of AIVs on layout 1

Figure 3. Layout 2 with AIVs

L/U M1 M2 M3 M4
L/U 0 4 6 6 4
M1 4 0 2 4 2
M2 6 2 0 2 4
M3 6 4 2 0 2
M4 4 2 4 2 0

Table 3. Travel times of AIVs on layout 2

Figure 4. Layout 3 with AIVs

L/U M1 M2 M3 M4
L/U 0 2 4 4 2
M1 2 0 2 6 4
M2 4 2 0 6 6
M3 4 6 6 0 2
M4 2 4 6 2 0

Table 4. Travel times of AIVs on layout 3

Figure 5. Layout 4 with AIVs

L/U M1 M2 M3 M4
L/U 0 4 8 10 14
M1 4 0 4 6 10
M2 8 4 0 6 6
M3 10 6 6 0 6
M4 14 10 6 6 0

Table 5. Travel times of AIVs on layout 4

• if robot = agv: the transportation tasks are performed
by AGVs. In this case, the UGVs move along
predefined paths dictated by the workshop’s layout.

• if robot = aiv: the transportation tasks are performed
by AIVs. Unlike AGVs, AIVs are not restricted
to following predetermined paths. They possess the
intelligence to navigate and find the most suitable
route on their own. This autonomy translates to greater
flexibility and agility, allowing them to maneuver
around both stationary and dynamic obstacles.

Users are also able to activate the collision avoidance
constraint during simulations using the “without-collisions?”
switch, as depicted in Figure 8. When this constraint is
activated, collisions between UGVs are not tolerated. Ref-
erence11 explains how this mechanism works with AGVs.
However, when the transportation tasks are performed by
AIVs, they employ two safety zones49: a larger zone for
obstacle detection and speed reduction, and a smaller zone
for immediate stopping. Within the larger zone, both AIVs
halve their speed. Inside the smaller zone, they determine
which one has the right of way according to the priority
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Figure 6. The simulation user interface

Figure 7. The choice of UGV for carrying the transportation
tasks

Figure 8. Activation of the collision avoidance constraint during
simulations

management system. The one with the priority does a go-
around maneuver, further reducing its speed, while the other
has to stop. Once the path is clear, both AIVs gradually
accelerate back to their cruising speed and resume their tasks
as normal.

4.5 Simulation types

The simulator is designed to simulate two types of
scheduling:

• Advanced scheduling: the simulator takes the results
of a schedule that has been defined beforehand. In
this scenario, task assignments are predetermined, and
the simulator acts as an execution tool, running the
simulation based on this pre-defined plan.

• Dynamic scheduling: the scheduling is generated
dynamically by a simulation-optimization (sim-optim)
approach through a dynamic scheduling optimization
algorithm embedded in the simulator.

The type of scheduling simulation is selected using the
chooser “simulation-type”. For example, in Figure 9, the

simulator is set on dynamic scheduling simulation. However,

Figure 9. The choice of the scheduling simulation type

in both cases, the UGVs have to transport the jobs from one
place to another. When a UGV receives an instruction (an
order), it first locates the job to be transported before moving
to find it. Then, once it has retrieved it, it sends it to its
destination.

Algorithms 1-6 describe how the simulation program
works.

Algorithm 1 Pseudocode of the simulation main program

Require: available jobs, machines, stocks and robots
Ensure: simulate the job-shop scheduling

1: procedure GO
2: TRANSPORT-JOBS
3: PROCESS-JOBS
4: if all jobs have been processed then
5: print makespan ▷ or any other relevant

information
6: stop the simulation
7: end if
8: end procedure

Prepared using sagej.cls
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Algorithm 2 Pseudocode of the transportation task program

Require: available jobs and robots
Ensure: Execute the transportation task scheduling

1: procedure TRANSPORT-JOBS
2: for each available transporter Tp do
3: if simulation-type = “advanced” then
4: if orders list is empty then
5: FIND-ORDERS-FROM-

SCHEDULING-MATRIX
6: else
7: if current order is empty then
8: current order ←− orders list[0] ▷

get the first element of orders-list
9: end if

10: end if
11: else
12: if current order is empty then
13: FIND-JOB-TO-TRANSPORT ▷ run

the dynamic scheduling algorithm
14: end if
15: end if
16: if status = idle and battery level > theshold

then
17: PLAN-TRAVEL(current robot)
18: else
19: go-to charge station
20: end if
21: end for
22: end procedure

Algorithm 3 Pseudocode of job transportation program

Require: the robot and its current task
Ensure: the robot to execute the transportation task

1: procedure PLAN-TRAVEL(current robot)
2: read current order ▷ to get the job location and its

next destination
3: if job picked? = false then
4: MOVE-TO-PICK-JOB
5: else
6: MOVE-TO-DESTINATION
7: end if
8: end procedure

Algorithm 4 Pseudocode of job picking program

Require: the robot and the job location
Ensure: the robot to pick the job

1: procedure MOVE-TO-PICK-JOB(current robot)
2: if reach the job location then
3: if the job is being processed then
4: wait
5: else
6: pick-job
7: job picked?←− true
8: end if
9: else

10: move-on
11: job picked?←− false
12: end if
13: end procedure

Algorithm 5 Pseudocode of job delivering program

Require: the robot and the job destination
Ensure: the robot to deliver the job

1: procedure MOVE-TO-DESTINATION(current robot)
2: if reach the destination then
3: deliver-job
4: job picked?←− false
5: current order ←− [] ▷ empty list
6: else
7: move-on
8: job picked?←− true
9: end if

10: end procedure

Algorithm 6 Pseudocode of job processing program

Require: available machines
Ensure: the jobs processing

1: procedure PROCESS-JOBS
2: for each machine Mk do
3: if input-buffer is not empty then
4: if simulation-type = “advanced” then
5: process job according to the machine

processing schedule
6: status←− occupied
7: else
8: process job in FIFO mode
9: status←− occupied

10: end if
11: end if
12: if the job processing is completed then
13: put job in the output-buffer
14: status←− free
15: end if
16: end for
17: end procedure
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4.5.1 Advanced scheduling

When the simulator is set on advanced scheduling
simulation, the simulator takes the advanced scheduling
matrix as input. This comprehensive matrix serves as a
central hub for all task-related information. It details all
tasks involved, specifies who is assigned to each task, and
defines the order in which they should be executed. As an

J1 J1 J2 J1 J2 J2 J1 J2
M1 M2 M1 M4 M3 M2 L/U L/U
T2 T1 T1 T2 T1 T2 T1 T2

O11 O12 O21 O33 O22 O23 R R
Table 6. A structure of an advanced scheduling matrix

illustration, Table 6 presents an advanced scheduling matrix
for a scenario with two jobs, each involving three operations.
This table provides a detailed overview of the schedule. The
first row identifies the jobs (denoted as Ji). The second row
specifies the destination for each operation, which can be
a machine (denoted as Mk) or the loading/unloading (L/U)
station. The third row indicates the transporter (denoted as
Tp) responsible for moving jobs between locations. Finally,
the fourth row details the specific operations (denoted as Oij)
that each job must undergo. The letter ”R” signifies the job’s
return to the L/U station after processing. The information in
this table is best understood by reading each column. Take
the first column, for instance. It tells us that transporter 2 has
to move job 1 to machine 1 for its first operation. Following
this logic, we can extract all the transportation tasks for each
transporter and create their individual order lists. Similarly,
production tasks can be extracted for each machine from the
schedule.

For this paper, the VNS (Variable Neighborhood Search)
algorithm developed by Abderrahim et al.57 was utilized.
This approach relies on switching between different
neighborhoods to escape local optima. It uses two types
of local searches: vertical and horizontal. The vertical
search aims to improve the schedule within the current
task allocation for machines. The horizontal search explores
different transportation assignments for vehicles. The
algorithm works by representing schedules as two strings.
One string encodes the tasks assigned to each machine, and
the other encodes the transportation tasks for the vehicles. It
then performs a two-step local search:

1. Local Search on Transportation String: The algorithm
searches within the current set of possible transporta-
tion assignments to find a better option.

2. Local Search on Production String: Given the new
transportation string, the algorithm performs a local
search on the machine task assignments to find the best

combination that minimizes the makespan considering
the current transportation plan.

This two-step search process is repeated for all possible
transportation options until a stopping criterion is met
(e.g., no improvement found) or a better combination of
production and transportation tasks is identified. The entire
process is then iterated with new transportation options until
another stopping criterion is reached. Readers are invited
to refer to57 for a more detailed explanation of the VNS
algorithm.

In this study, we opted to use the VNS algorithm in its
unmodified form due to its suitability for our requirements.
Notably, the algorithm facilitated the exploration of varying
UGV fleet sizes and enabled us to address benchmark
instances encompassing both scenarios with and without job
returns to the L/U station.

4.5.2 Dynamic scheduling

For dynamic scheduling, the simulator employs a sim-
optim approach, where it simulates and optimizes the
schedule simultaneously. Whenever a transporter becomes
available, the simulator triggers the optimization algorithm.
This algorithm analyzes the current workshop state and
determines the next job for the transporter. Transportation
tasks are represented as triplets (Ji, d, Oij), where Ji is the
job to transport, d is its designated destination (a machine or
the L/U station), and Oij (or R) is the operation to undergo.
Meanwhile, the machines process jobs in FIFO (first in, first
out) mode according to the order in which they arrive in their
input buffer.

In this paper, the dynamic optimization method developed
by Yiyi et al.38 was employed and adapted for our needs.
This method, developed for multi-objective optimization,
lies within the Pareto-based approaches. All objectives are
improved at the same time using a dynamic lexicographic
ranking system. However, this ranking system requires
decision-makers (the transporters) to figure out which
objectives are most important before starting the process.
In practice, it can be tricky to come up with a definitive
ranking of all the objectives. Additionally, lexicographic
rankings do not allow for small improvements in a more
important objective to be balanced out by bigger drawbacks
in a less important objective. To overcome these drawbacks,
the dynamic lexicographic ranking system is combined with
entropy and goal programming (to rank the objectives).
When assigning transportation tasks, the system considers
how uncertain (how much randomness there is) in achieving
different objectives. This uncertainty is reflected in the
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entropy value of each objective. Based on real-time data,
like a job’s next steps, locations of UGVs, or backlog in
buffers, the entropy values are constantly updated. Next,
decision-makers typically set desired achievement levels for
each objective beforehand. Then, the system finds a solution
that comes closest to meeting those targets by using goal
programming. This approach is an improvement on the work
carried out by Eloundou58.

Our approach differs from Yiyi et al.’s original
method in two ways. First, the focus is on just three
objectives: minimizing the makespan (Cmax), minimizing
the transportation time, and minimizing the distance to the
destination. Second, the objectives ranking and their entropy
values calculation were adapted. Our adjustments now take
into account the physical layout of the workshop area and the
processing steps for each job, ensuring alignment with our
benchmark instances. However, the structure of the method
and the main algorithms remain the same. For more details,
please refer to38.

5 Experiments

This work aims to conduct a comparative study between
AIVs and AGVs within integrated JSSP with transportation
tasks. To do so, the experiments conducted during this study
focus on three main objectives:

• Incorporating Transporter Battery Constraint: The
battery limitation of UGVs was integrated into our
simulation model. This allows us to investigate the
impact of this constraint on scheduling decisions
within the manufacturing system.

• Comparing Scheduling Strategies (or Types): We
compare the performance of static and dynamic
scheduling approaches when applied to the same test
instances. This comparison will help us understand
how each approach handles the additional constraint
of UGVs.

• Varying the UGV fleet size: We compare the
execution of each scenario with a different number
of UGVs, ranging from 2 to 5. This allows us to
observe the influence of the fleet size in the makespan
minimization for each instance. It should be noticed
that adding more than 5 UGVs won’t significantly
impact the makespan. There might even be situations
where there are more UGVs than tasks, making some
of them useless.

To achieve our research goals, the following experimental
protocol is adopted:

1. Develop an algorithm that specifically addresses the
UGVs’ battery management constraint, as explained in
Section 3. UGVs in our simulation require recharging
when their battery level drops to 20%. This choice is
justified by the study of Qazi S. K. and Yoshinori S.59

that suggest the 20% threshold both preserves UGV
battery’s life cycle and limits the impact of recharging
on overall system performance. Upon reaching the
charging station, they undergo a 5-second charging
process, where their battery level rises by 20%. This
duration aligns with the timescale observed in the
benchmark used. Following the completion of this
charging period, the UGV will prioritize the execution
of any pending transportation tasks. In the absence
of such tasks, it will resume the charging process
until its battery level reaches 80%. Indeed, it is
recommended to maintain the UGV’s battery state-
of-charge (SoC) within a range of 20% to 80%
to optimize battery health and lifespan60. Moreover,
based on references15,50, it was assumed three different
battery depletion rates: 1mA (milliampere) per second
while idle, 5mA per second while moving empty,
and 7mA per second when transporting a job. As
assumed in the work of Moussa Abderrahim et al.15,
the UGV has a maximal capacity of 100Ah (ampere-
hour), corresponding to 100% of battery level. Thus, a
UGV standing idle for an hour consumes 0.001A/s×
3600s = 3.6A, i.e. 3.6% of the maximum battery
level.

2. Using the well-known benchmark instances of Bilge et

al.34, the VNS method developed by Abderrahim et

al.57 is employed to generate a set of advanced
schedules. These schedules varied the number of
UGVs from 2 to 5. It was decided not to explore
scenarios with more than 5 UGVs for two reasons.
First, such scenarios could lead to situations where
there are more UGVs than actual jobs. Second, in
most of all cases, the makespan exhibited minimal
difference between using 4 and 5 UGVs. However,
varying the number of UGVs allows us to better
analyze how battery recharging affects the initial
schedules.

3. Employ the dynamic scheduling approach developed
by Yiyi et al.38 to the same scenarios and settings
used for advanced schedules. First, this allowed us to
directly compare the performance of static scheduling
versus dynamic scheduling. Second, by introducing
the robot battery recharging constraint, we could
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observe how the dynamic scheduling algorithm adapts
to this disturbance.

4. The simulations (of advanced and dynamic schedules)
were conducted under the four (04) following
scenarios to achieve the targeted contributions
previously mentioned:

• Unconstrained Scenario (US): neglecting both
collision avoidance and battery constraints;

• Collision Avoidance Scenario (CAS): consider-
ing solely the collision avoidance constraint, but
not the battery constraint;

• Battery Limited Scenario (BLS): considering
solely the battery constraint, but not the collision
avoidance constraint;

• Constrained Scenario (CS): considering both
collision avoidance and battery constraints.

5. When the battery constraint is considered, the average
initial SoC across the UGVs fleet is assumed to be
50%. In other words, the sum of the initial SoC of
each UGV divided by the fleet size gives the value of
50%. This assumption is inspired by the study of Ozan
Yesilyurt et al.61 where they set the initial SoC of each
UGV to 50%. However, to prevent all the UGVs from
needing to recharge simultaneously, and then avoid
any downtime in the manufacturing process, it was
decided in this work to set different initial SoC for each
UGV.

6. To realize a comprehensive performance comparison,
all experiments within each of the aforementioned
scenarios were conducted with both AGVs and AIVs,
under the same conditions with the same assumptions,
while varying the fleet size.

7. Each simulation was replicated 30 times, with the
makespan recorded for each run. Subsequently, the
average and standard deviation of the makespan values
were calculated.

6 Results and discussion

The results of the experiments are presented in separate
tables in Appendix A. Tables A.1-A.4 detail the findings
for AGVs, and Table A.5 presents the results for AIVs.
The VNS column shows the outcome after optimization
using the VNS algorithm developed by Abderrahim et

al.57. We labeled the simulations based on the scheduling
technique (AS for Advanced Schedules and DS for Dynamic
Schedules) and the experiment scenario. For example, AS-

US refers to the simulation of advanced schedules in the
unconstrained scenario. However, it should be noted that

there is no unconstrained scenario with AIVs because
collision avoidance is inherent to their operation. This
explains the absence of these columns in Table A.5. In
addition, the results presented are the average of the
makespan recorded over 30 runs, followed by the standard
deviation in brackets.

In the AGV simulations, the AS-US cases exhibit
minimal variation (standard deviation below 1). This is
because the advanced schedule is repeated without external
disruptions, leading to consistent results. However, the AS-
CAS cases show occasional spikes in standard deviation.
This indicates deadlocks encountered and resolved during
the simulations. As presented in the previous work11,
an algorithm is developed for deadlock resolution by
permuting the remaining transportation tasks of two AGVs,
causing a deviation from the initial schedule. This issue
is alleviated with AIVs due to their inherent collision
avoidance capabilities. Moreover, the AS-BLS case exhibits
significant variations in AGV simulation results, with a
few exceptions. Indeed, despite a uniform initial SoC of
50% for the fleet, individual UGVs have different initial
SoC. Consequently, the frequency of recharging for each
AGV fluctuates across simulations, contributing to the
observed variations. This phenomenon is also present in
AIV simulations, as incorporating the battery constraint
inherently increases standard deviation.

In contrast, dynamic scheduling simulations, regardless
of UGV type (AGV or AIV), exhibit significantly higher
result variability. This stems from the inherent characteristic
of dynamic scheduling, where each UGV’s schedule adapts
based on real-time conditions during each simulation
run. Consequently, the inclusion of additional constraints
exacerbates the overall volatility inherent to dynamic
scheduling.

Complementary analysis of the results reveals the
following key observations:

• Globally, in the unconstrained scenario (US),
advanced schedules (AS) yield better makespan
than dynamic schedules (DS): AS utilizes an
optimization process to establish a comprehensive
plan for all tasks from initiation to completion. This
method identifies the most efficient configuration,
resulting in a fully optimized schedule. Each UGV and
machine is assigned all its tasks within this predefined
plan. Conversely, DS employs an adaptive approach
where task optimization occurs concurrently with the
manufacturing process. UGVs operate based on real-
time data, lacking prior knowledge of subsequent
tasks.
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• AIVs can mitigate DS drawbacks: Interestingly,
a comparison of the AGVs AS-US case (advanced
scheduling without constraints) with the AIVs
DS-CAS case (dynamic scheduling with collision
avoidance) in Figure 10 reveals comparable average
performance. This suggests that even under DS with
the additional constraint of collision avoidance, AIVs
maintain performance levels similar to AS with AGVs.
This highlights the potential of AIVs to mitigate
the drawbacks of DS, potentially offering a balance
between efficiency and adaptability.
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Figure 10. Comparison between the AGV AS-US scenario and
the AIV DS-CAS scenario.

• Considering additional constraints typically leads
to a longer makespan: As mentioned in reference11

regarding collision avoidance, and now evident for
battery limitations as well, including these additional
constraints generally increases makespan, regardless
of the type of UGV used for transportation tasks.
Figure 11 shows this perfectly. It combines the
Gantt diagrams of EX22 simulated with two AGVs,
under the unconstrained scenario (US) and the battery
limitation scenario (BLS). In particular, it can be
seen that under the US scenario, AGV1 starts TO4,3

2 seconds after completing TO6,2 , i.e. the minimum
required time to move from machine 2 to machine
3 in layout 2. But under the BLS, there is a nearly
30-second delay before AGV1 starts TO4,3 because
its battery needs to be recharged. This unexpected
operation disturbs the initial schedule. In contrast,
making such observations with DS is challenging due
to the inherent variability in UGV schedules across
simulations. However, a notable increase in makespan

is consistently observed in cases involving at least
one additional constraint, regardless of the UGV type
(AGV or AIV).

• AIVs exhibit better performance than AGVs:
The observation of the simulation results across
all instances reveals a noteworthy improvement in
makespan when AGVs are replaced by AIVs in the
same experimental scenario. Under the CAS, for
example, the simulation of advanced schedules with
two AIVs improves the makespan by an average of 9%
across all instances, compared to the simulation with
two AGVs. This translates to an average time savings
of approximately 12 seconds when switching from
AGVs to AIVs. The observed reduction in makespan
persists even with an increase in the number of UGVs,
as evidenced in Figure 12.

• AIVs are better suited to constrained environments
than AGVs: Excluding the AS simulations with
only two (02) UGVs, simulations employing AIVs
under the constrained scenario (CS) consistently
demonstrate a better average makespan compared
to simulations utilizing AGVs within the CAS.
This observation underscores the enhanced flexibility
inherent to AIVs and their aptitude for navigating
in more complex and constrained environments.
Furthermore, we observe that employing DS with
AGVs increases the makespan when the number of
AGVs exceeds 4 (see Figure 12b). However, with
AIVs, the reduction in makespan continues even with
5 AIVs, albeit at a diminished rate. This shows
the potential to utilize a greater number of AIVs
due to their enhanced routing flexibility and inherent
collision avoidance capability.

• The influence of fleet size depends on UGV type:
Consistent with prior observations, increasing the
number of UGVs generally reduces makespan as
observed in Figure 12. However, a noteworthy finding
emerges when comparing AGVs and AIVs. In the AS-
CAS case, a fleet of only 2 AIVs achieves almost
identical results (avg. Cmax = 121.6s) than a fleet of
4 AGVs (avg. Cmax = 121s). Even a fleet of 5 AGVs
demonstrates a marginal efficiency gain of just 3.2%
compared to 2 AIVs. Next, in the AS-CS case, a fleet
of 3 AIVs achieves better results (avg. Cmax = 117.3s)
than a fleet of 5 AGVs (avg. Cmax = 130.3s). Even
more impressive, a fleet of 3 AIVs in the AS-CS case
outperforms a fleet of 5 AGVs in the AS-CAS case
(avg. Cmax = 117.7s). This suggests that the battery
constraint, even when considered, does not hinder the
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Figure 11. Combined EX22 Gantt diagrams in both unconstrained and battery limitation scenarios
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Figure 12. Evolution of the average makespan based on the
number of UGVs for both dynamic and advanced schedules,
under collision avoidance and constrained scenarios.

ability of AIVs to outperform AGVs. This advantage
becomes even more pronounced under DS, where
a fleet of 3 AIVs in the DS-CS case demonstrates
significantly greater efficiency (avg. Cmax = 116.6s)
compared to a fleet of 5 AGVs in the DS-CAS case
(avg. Cmax = 134.3s).

• Dynamic scheduling outperforms advanced
scheduling when multiple jobs share identical
processing steps: As presented in Appendix B,
job sets 6 and 8 have a striking characteristic: a
significant portion of jobs share identical processing
sequences. In job set 8. For instance, all jobs follow
the M2 −→M3 −→M4 manufacturing process.
This phenomenon fosters deadlocks, bottleneck
formation, and increased robot encounters during
the simulation of advanced schedules. In contrast,
simulations of dynamic schedules demonstrate the
absence of deadlocks and a lower risk of bottlenecks.
Furthermore, dynamic scheduling outperforms
advanced scheduling in 91% of the simulations
conducted on job sets 6 and 8, employing AIVs under
the CS. This success rate diminishes to 59% when
AGVs are utilized.

• Dynamic scheduling is more adaptable to addi-
tional constraints than advanced scheduling:
Regardless of the scheduling method, additional con-
straints lead to a makespan increase. However, this
does not occur equally in both cases. The impact of
collision avoidance and battery limitations on schedul-
ing is demonstrably greater for the advanced sched-
ules, as shown in Figure 13. For example, in Fig-
ure 13a, it can be seen that for a scenario with 4 AGVs,
these constraints increased the makespan by 28% in
advanced scheduling, while the impact on dynamic
scheduling was only 10%.

• Workshop layouts significantly impact the behavior
of UGV fleets: Beyond the impact of UGV fleet size,
the workshop layout itself plays a significant role in
influencing their effectiveness as shown in Figures 14
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Figure 13. Evolution of makespan increase according to the
fleet size for advanced scheduling and dynamic scheduling
methods.

and 15. In the AS-CS case, increasing the number of
AGVs from 2 to 3 yielded an average productivity
gain of 16% for layout 1, 19% for layout 4, but only
2% for layout 2, and 7% for layout 3. This suggests
that layouts 1 and 4, with greater routing flexibility
compared to layouts 2 and 3, can better accommodate
the increased AGV traffic. However, further increasing
the fleet size from 3 AGVs to 4 generally led to a
decrease in productivity. Notably, on layout 3, adding
an extra AGV resulted in a -4% decline compared to
3 AGVs. This observation is further corroborated by
analyzing the DS-CS case results. Here, increasing the
fleet size from 4 AGVs to 5 leads to a productivity
decline across all layouts. However, the impact is more
pronounced in layouts 2 and 3, where losses reach -
7% and -5% respectively. Layouts 1 and 4, with their

inherent flexibility, mitigate the decline to -1% and
-4%, respectively. Likewise, the influence of layout
on AIV performance aligns with the observations for
AGVs. Increasing the AIV fleet size from 3 to 4 in
the AS-CS case results in productivity gains of 2%
and 9% for layouts 1 and 4, respectively. However,
layouts 2 and 3 exhibit performance degradation,
with productivity losses of -4% and -5%, respectively.
Nevertheless, in DS-CS cases, increasing the number
of AIVs does not lead to productivity losses, even
though the gains observed tend to diminish.
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Figure 14. Variation in system productivity based on AGV fleet
size for each layout.

Beyond the technical considerations explored in the
analyses above, a significant challenge associated with
adopting any new technology in industries is overcoming
resistance due to change aversion and uncertainty62.
In this regard, the simulator presented in this paper
offers a valuable decision-support tool. It allows for the
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Figure 15. Variation in system productivity based on AIV fleet
size for each layout.

exploration of AIVs within JSSPs and the quantification
of potential productivity gains. Our findings, for example,
demonstrate that a fleet of 3 AIVs outperforms a fleet of 5
AGVs. This information can be instrumental for decision-
makers, guiding future investments and optimizing resource
allocation. Nevertheless, despite potentially higher initial
investment costs compared to AGVs, AIVs can offer a
more favorable overall cost structure. This stems from two
factors: reduced infrastructure modifications required for
AIVs due to their inherent flexibility, and the possibility
of achieving similar performance with a smaller AIV
fleet size compared to AGVs. However, implementing
AIVs necessitates investment in personnel training and
education, as these UGVs share the workspace with human
workers. This potential intrusion into the human worker’s
environment may lead to initial acceptance challenges.

7 Conclusion

This paper introduced a novel multi-agent system-based
simulator for addressing the Job Shop Scheduling Problem
(JSSP) with Unmanned Ground Vehicles (UGVs) handling
transportation tasks. The simulator incorporates real-world
constraints often overlooked in previous research, such as
collision avoidance, the UGV fleet size, and the limited
battery capacity of UGVs. By enabling users to explore
the impact of these factors on both advanced and dynamic
scheduling with different robot types (AGVs vs. AIVs), this
simulator provides valuable insights for optimizing JSSP in
constrained manufacturing environments.

Our findings reveal that while advanced scheduling shows
generally a better makespan than dynamic scheduling,
the latter is more resilient to additional constraints such
as collision avoidance and battery limitations. Besides,
dynamic scheduling is more efficient when dealing with
instances where several jobs have identical processing steps.
Additionally, when both AGVs and AIVs are employed
under the same scenario, simulations typically show that
AIVs outperform AGVs regardless of the scheduling
method. Even when they are employed under the constrained
scenario, they still outperform the AGVs used in the collision
avoidance scenario solely.

In addition, the transition from AGVs to AIVs constitutes
a strategic technological shift necessitating managerial
precaution. To ensure well-informed decision-making, a
data-driven approach is paramount. This paper presents
a comparative analysis to highlight the efficacy of
AIVs relative to AGVs. We quantify the productivity
enhancements achievable through AIVs, even within the
limitations of real-world operating environments. Therefore,
both the simulator employed in this study and the study itself
serve as valuable tools to empower managers in their pursuit
of optimizing production system performance.

Future research directions could involve expanding the
simulator’s capabilities to handle even more complex
scenarios, such as integrating machine breakdowns or
rush orders and increasing variability in the workshop.
Besides, exploring alternative scheduling algorithms within
the simulator framework could offer further optimization
opportunities for JSSP with UGVs. We could also explore
the integration of battery constraints as an optimization
criterion. This approach would have the potential to enhance
the energy efficiency of UGVs and mitigate disruptions
to the overall production system caused by recharging
requirements. Besides, as mentioned in the discussion,
acceptance can be a significant issue that managers must
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consider when implementing AIVs. This aspect should be
addressed in future research efforts.
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2 AGVs
Instance VNS AS-US DS-US AS-CAS DS-CAS AS-BLS DS-BLS AS-CS DS-CS
EX11 120 119.9 (0.1) 156.5 (5.2) 120.0 (0.1) 152.7 (1.1) 126.3 (6.2) 164.2 (7.7) 128.1 (5.6) 166.6 (8.3)
EX21 122 122.4 (0.1) 147.3 (8.9) 125.6 (0.1) 141.4 (11.9) 135.1 (4.6) 149.7 (7.8) 164.6 (51.3) 152.6 (7.1)
EX31 132 132.0 (0.1) 155.4 (7.6) 132.2 (0.1) 160.9 (8.0) 157.5 (12.5) 166.1 (10.6) 155.1 (6.9) 175.5 (11.4)
EX41 147 147.0 (0.1) 162.7 (12.4) 147.1 (0.1) 155.2 (6.4) 161.2 (1.5) 173.4 (7.6) 175.2 (5.2) 169.7 (8.5)
EX51 116 116.0 (0.1) 140.2 (10.2) 116.2 (0.1) 138.0 (7.2) 131.3 (7.6) 151.2 (11.4) 132.9 (10.9) 153.5 (9.8)
EX61 138 138.0 (0.1) 182.3 (17.7) 142.8 (0.1) 192.5 (10.4) 218.9 (4.0) 193.2 (10.3) 226.4 (15.9) 204.7 (14.6)
EX71 159 159.1 (0.1) 175.2 (11.0) 160.2 (0.1) 173 (7.4) 166.1 (2.3) 190.8 (13.3) 172.2 (8.4) 190.7 (13.0)
EX81 167 167.3 (0.1) 177 (17.3) 171.5 (0.1) 177.1 (15.4) 176.4 (8.6) 182.1 (7.9) 175.1 (4.2) 186.4 (8.3)
EX91 130 130.0 (0.1) 163.5 (17.5) 130.1 (0.1) 162.4 (6.9) 150.7 (14.9) 176.5 (11.1) 164.3 (34.1) 178.6 (10.1)
EX101 169 169.0 (0.1) 200.4 (7.5) 173.5 (0.1) 196.8 (6.8) 181.6 (8.2) 195.8 (9.3) 198.8 (14.9) 200.6 (11.5)
EX12 99 99.2 (0.1) 122.8 (10.5) 99.2 (0.1) 127.6 (10.3) 117.8 (4.8) 121.3 (6.1) 121.6 (8.7) 123.7 (11.0)
EX22 82 82.3 (0.1) 111.9 (8.7) 82.6 (0.1) 114.4 (10.1) 90.7 (11.5) 118.9 (10.6) 90.7 (11.4) 121.2 (8.3)
EX32 95 95.1 (0.1) 127.4 (10) 95.5 (0.1) 127.9 (10.1) 104.0 (1.0) 126.3 (14.7) 105.3 (0.8) 132.7 (9.5)
EX42 109 109.2 (0.1) 137.1 (9.7) 109.6 (0.1) 134.3 (8.6) 124.4 (0.1) 139.9 (12.8) 124.6 (0.1) 144.7 (12.3)
EX52 84 84.2 (0.1) 118 (10.1) 84.2 (0.1) 117.4 (6.6) 98.7 (0.6) 117.8 (10.9) 98.8 (0.6) 118.1 (9.7)
EX62 102 102.4 (0.1) 137.0 (9.2) 102.7 (0.1) 140.3 (13.6) 112.8 (1.6) 140.1 (7.4) 114.6 (0.6) 140.8 (10.9)
EX72 101 101.1 (0.1) 140.7 (11.3) 101.2 (0.1) 143.2 (6.9) 120.7 (0.1) 147.6 (13.5) 120.7 (0.0) 146.9 (16.7)
EX82 155 155.7 (0.1) 167.2 (15.7) 155.7 (0.1) 155.7 (11.9) 156.4 (1.6) 157.5 (17.2) 163.5 (10.0) 166.7 (12.6)
EX92 106 106.5 (0.1) 129.8 (8.9) 106.5 (0.1) 131.1 (12.5) 115.5 (0.1) 135.3 (9.0) 115.9 (0.2) 140.8 (7.5)
EX102 145 145.2 (0.1) 164.5 (8.4) 145.6 (0.1) 161.2 (9.5) 160.6 (1.4) 168.5 (8.5) 162.4 (0.3) 173.9 (12.2)
EX13 99 99.2 (0.1) 148 (10.4) 99.2 (0.1) 147.9 (7.6) 102.6 (8.2) 153 (8.7) 116.2 (8.3) 140.2 (13.3)
EX23 92 92.0 (0.1) 129.2 (5.6) 92.3 (0.1) 128.3 (7.5) 108.1 (0.3) 130.4 (8.4) 116.7 (11.9) 130.8 (5.2)
EX33 104 104.1 (0.1) 138.5 (8.9) 104.2 (0.1) 139.6 (6.8) 120.0 (0.7) 139.1 (13.8) 120.7 (1.6) 139.9 (11.9)
EX43 112 112.0 (0.1) 138.2 (6.7) 112.2 (0.1) 136.0 (6.5) 124.6 (7.2) 142.4 (10.6) 118.2 (8.9) 145.8 (9.5)
EX53 93 93.0 (0.1) 122.2 (6.7) 93.1 (0.1) 126.2 (6.2) 126.8 (10.3) 122.6 (2.7) 128.0 (9.2) 131.0 (8.5)
EX63 110 110.4 (0.1) 126.2 (14.0) 117.8 (0.1) 160.5 (15.5) 115.4 (5.0) 162.7 (11.9) 126.4 (7.0) 167.2 (14.8)
EX73 112 112.1 (0.1) 122.7 (15.8) 112.1 (0.1) 160.2 (19.6) 127.3 (6.0) 165.7 (17.6) 119.4 (5.8) 164.5 (12.1)
EX83 155 155.0 (0.1) 156.6 (12.4) 155.2 (0.1) 156.4 (6.3) 162.0 (0.1) 158.5 (9.5) 183.1 (1.9) 162.3 (13.9)
EX93 109 109.0 (0.1) 139.5 (6.9) 109.2 (0.1) 143.5 (8.2) 119.9 (7.7) 143.0 (6.3) 123.5 (9.7) 144.5 (9.8)
EX103 148 148.0 (0.1) 161.0 (10.3) 148.1 (0.1) 176.6 (6.8) 163.4 (2.0) 166.6 (7.1) 168.0 (8.4) 176.2 (8.2)
EX14 144 144.0 (0.1) 172.8 (7.3) 144.3 (0.2) 187.3 (4.8) 161.4 (2.1) 180.1 (7.5) 164.6 (1.1) 182.4 (8.4)
EX24 156 156.2 (0.1) 192.9 (11.9) 156.3 (0.1) 178.8 (9.3) 179.8 (3.0) 184.4 (11.6) 190.5 (7.0) 190.8 (13.7)
EX34 160 160.2 (0.2) 195.3 (13.3) 162.2 (0.2) 198 (11.9) 176.2 (0.2) 178.6 (11.6) 177 (0.1) 185.8 (13.9)
EX44 180 180.0 (0.1) 201.1 (12.0) 180.1 (0.1) 193.4 (11.9) 206.7 (12.3) 204.9 (11.1) 211.2 (10.1) 214.2 (11.6)
EX54 140 140.0 (0.2) 171 (14.0) 140.2 (0.2) 166.2 (10.4) 185 (9.2) 176.2 (14.1) 185.3 (9.2) 180.6 (13.9)
EX64 168 168.0 (0.1) 210 (15.0) 168.2 (0.1) 203.9 (12.6) 171.4 (9.6) 213.4 (16.7) 175.8 (11.5) 222.2 (18.0)
EX74 191 191.3 (0.1) 225 (16.6) 191.3 (0.1) 213.5 (13.1) 210.9 (0.2) 221.8 (15.3) 210.9 (0.1) 216.7 (9.5)
EX84 190 190.2 (0.3) 204.9 (9.8) 190.3 (0.3) 202.5 (10.6) 200.5 (2.9) 217 (13.5) 203.7 (3.1) 219.7 (10.8)
EX94 158 158.1 (0.1) 187.3 (7.3) 158.1 (0.1) 190.6 (4.3) 173.6 (8.8) 204 (11.0) 185.5 (8.9) 209.7 (10.7)
EX104 202 202.1 (0.2) 211.4 (8.9) 203.3 (0.2) 217.7 (7.9) 218.4 (6.4) 245.3 (17.3) 224.2 (5.6) 240.9 (19.0)

Table A.1. Makespan results of different simulation experiments with 2 AGVs across all the benchmark instances.
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3 AGVs
Instance VNS AS-US DS-US AS-CAS DS-CAS AS-BLS DS-BLS AS-CS DS-CS
EX11 96 96.2 (0.1) 118.6 (3.9) 108.2 (0.0) 127.4 (26.4) 103.7 (12.7) 124.8 (8.6) 121.5 (8.4) 123.6 (9.3)
EX21 99 99.2 (0.1) 113.2 (6.3) 119.7 (0.0) 115.4 (5.3) 124.2 (7.6) 119.9 (10.9) 120 (6.0) 120.0 (13.3)
EX31 105 105.2 (0.1) 138 (8.3) 110.4 (0.1) 133.2 (9.3) 111.5 (8.2) 133.2 (7.8) 121.4 (7.1) 136.0 (10.3)
EX41 115 115.7 (0.2) 129.6 (6.8) 131.0 (3.0) 134.1 (3.2) 133.6 (11.4) 135.6 (10.5) 142.9 (9.9) 143.3 (8.9)
EX51 87 87.3 (0.1) 109.9 (8.8) 96.2 (0.1) 105.2 (7.9) 104.5 (15.1) 118.5 (18.5) 106.1 (9.1) 116.8 (12.8)
EX61 116 116.1 (0.1) 128.1 (6.2) 124.3 (0.1) 137.2 (6.8) 155.8 (36) 139.4 (18.8) 148.5 (18.4) 142.7 (12.5)
EX71 116 116.5 (0.2) 134.2 (10.6) 123.2 (1.4) 134.7 (13.2) 138.9 (15.4) 136.4 (16.1) 137.8 (14.9) 138.9 (12.3)
EX81 167 167.3 (0.1) 175.8 (8.0) 220.7 (2.8) 182.6 (6.1) 174.3 (7.0) 148.4 (9.1) 200.3 (18.1) 167.1 (11.8)
EX91 115 115.4 (0.1) 134.6 (8.9) 144.9 (0.2) 136.9 (6.9) 129.8 (10.6) 140.4 (9.6) 143.6 (24.9) 151.0 (18.6)
EX101 147 147.7 (0.1) 160.0 (8.0) 176.6 (2.6) 161.8 (6.3) 159.9 (9.8) 165.8 (7.1) 159.8 (4.2) 165.5 (8.7)
EX12 84 84.7 (0.1) 101.2 (8.5) 93.3 (0.0) 106.2 (9.1) 91.6 (3.5) 118.8 (19.8) 99.2 (5.9) 115.3 (7.2)
EX22 81 81.9 (0.1) 98.2 (8.0) 103.6 (0.2) 114.4 (10.3) 90.9 (10.4) 102.0 (8.6) 111.5 (9.5) 115.3 (13.2)
EX32 84 84.9 (0.0) 110.8 (7.9) 89.5 (0.2) 112.3 (5.6) 96.3 (10.3) 116.0 (9.2) 91.8 (0.1) 116.7 (6.7)
EX42 93 93.5 (0.1) 118.9 (10.2) 100.5 (0.1) 120.4 (8.4) 107.2 (14.3) 119.0 (12.6) 105.2 (8.0) 125.0 (10.9)
EX52 72 72.8 (0.1) 92.5 (7.2) 84.7 (2.1) 94.0 (7.1) 79.9 (1.3) 104.4 (10.5) 86.0 (3.5) 100.1 (9.2)
EX62 102 102.7 (0.1) 112.0 (6.0) 115.8 (6.1) 116.9 (6.9) 106.1 (6.1) 117.8 (7.6) 128.9 (6.4) 123.8 (9.0)
EX72 83 83.6 (0.2) 106.4 (13.2) 99.4 (0.1) 102.4 (10.8) 98.0 (0.6) 107.7 (11.6) 109.2 (2.7) 110.6 (13.1)
EX82 155 155.8 (0.1) 165.7 (6.2) 160.4 (4.2) 165.6 (6.7) 161.6 (6.6) 158.2 (6.4) 198.1 (7.4) 168.7 (8.3)
EX92 104 104.8 (0.1) 118.2 (7.0) 105.8 (0.1) 121.1 (7.5) 117.0 (8.1) 122.9 (6.8) 115.6 (2.4) 131.8 (9.4)
EX102 135 135.2 (0.1) 135.8 (9.3) 139.9 (0.0) 140.5 (8.8) 137.8 (2.6) 138.8 (7.1) 146.9 (7.4) 144.4 (10.3)
EX13 90 90.2 (0.1) 113.2 (13.6) 96.4 (3.5) 118.5 (13.0) 95.3 (5.0) 111.9 (9.3) 114.8 (8.3) 119.5 (10.3)
EX23 86 86.3 (0.1) 101.3 (9.5) 89.6 (0.0) 108.3 (10.7) 94.1 (6.3) 111.5 (12.0) 93.1 (9.0) 112.8 (12.0)
EX33 88 88.6 (0.1) 122.3 (8.3) 94.2 (0.0) 118.0 (6.0) 94.5 (8.2) 129.8 (9.5) 103.7 (6.2) 122.0 (10.5)
EX43 92 92.6 (0.1) 112.7 (8.1) 115.2 (0.9) 119.8 (8.5) 104.5 (1.6) 121.4 (11.6) 108.1 (0.1) 121.7 (9.9)
EX53 77 77.0 (0.1) 100.7 (8.0) 98.1 (0.1) 102.2 (10.1) 80.8 (5.2) 109.9 (7.8) 107.4 (7.7) 107.3 (12.2)
EX63 102 102.8 (0.1) 116.0 (6.8) 110.3 (0.1) 121.1 (11.4) 108.7 (6.3) 119.1 (6.5) 117.5 (5.2) 125.6 (10.6)
EX73 91 91.1 (0.1) 118.2 (10.3) 107.4 (0.1) 113.2 (7.0) 104.3 (5.9) 121.9 (7.1) 117.3 (9.2) 132.4 (11.4)
EX83 155 155.4 (0.1) 162.3 (10) 182.4 (0.0) 167.7 (10.5) 172.4 (7.8) 130.0 (10.8) 182.5 (0.1) 176.6 (9.4)
EX93 102 102.6 (0.1) 122.9 (3.6) 116.4 (2.5) 134.9 (8.1) 126.4 (0.8) 127.2 (9.1) 128.0 (9.8) 132.8 (6.6)
EX103 136 136.1 (0.1) 139.5 (8.8) 146.1 (0.0) 153.1 (10.1) 153.1 (0.1) 143.9 (12.6) 161.0 (11.1) 155.4 (11.7)
EX14 110 110.1 (0.3) 148.5 (8.0) 121.6 (0.1) 142.5 (11.9) 118.6 (6.6) 141.0 (9.9) 131.5 (11.2) 144.1 (9.7)
EX24 119 119.6 (0.3) 153.3 (6.9) 125.6 (0.2) 136.9 (9.3) 122.7 (2.8) 142.5 (11.5) 136.2 (10.6) 139.4 (7.0)
EX34 132 132.5 (0.4) 164.1 (9.8) 131.7 (0.1) 158.3 (10.7) 134.6 (5.3) 154.4 (13.1) 143.1 (11.3) 162.2 (8.4)
EX44 136 136.8 (0.3) 163.1 (10.3) 157.0 (0.1) 151.8 (8.6) 151.1 (5.2) 160.0 (9.8) 162.0 (4.6) 154.4 (12.6)
EX54 104 104.4 (0.1) 141.2 (9.6) 104.2 (0.1) 129.1 (9.8) 114.8 (5.8) 134.3 (9.0) 115.3 (5.7) 139.4 (9.6)
EX64 137 137.3 (0.8) 176.7 (13.4) 156.1 (0.1) 154.4 (6.7) 143.6 (8.9) 156 (8.6) 156.1 (0.0) 156.8 (9.3)
EX74 150 150.3 (0.3) 173.5 (10.5) 148.1 (0.2) 167.9 (11.7) 163.3 (1.8) 172.3 (14.3) 172.6 (5.3) 166.4 (11.2)
EX84 177 117.4 (0.1) 181.1 (8.0) 194.7 (0.0) 182.8 (8.6) 182.6 (5.1) 180.2 (5.7) 208.2 (12.6) 188.9 (11.6)
EX94 131 131.6 (0.4) 164.2 (7.0) 138.1 (5.8) 150.4 (6.5) 144.2 (3.9) 150.1 (5.2) 145.3 (6.0) 161.2 (8.8)
EX104 167 167.7 (0.6) 189.2 (7.1) 177.2 (0.1) 193.3 (11.9) 175.4 (6.0) 192.4 (5.7) 187.7 (8.4) 195.4 (14.5)

Table A.2. Makespan results of different simulation experiments with 3 AGVs across all the benchmark instances.

Prepared using sagej.cls



Kader SANOGO et al. 23

4 AGVs
Instance VNS AS-US DS-US AS-CAS DS-CAS AS-BLS DS-BLS AS-CS DS-CS
EX11 88 88.2 (0.2) 113.0 (6.7) 92.2 (0.9) 120.2 (16.7) 104.7 (4.6) 130.4 (13.0) 102.7 (8.3) 123.2 (9.1)
EX21 92 92.6 (0.2) 108.0 (6.8) 128.1 (4.5) 116.7 (4.9) 110.7 (13.0) 115.2 (10) 121.8 (10.9) 123.9 (12.1)
EX31 95 95.6 (0.1) 121.4 (9.4) 108.1 (4.9) 125.4 (19.2) 112.7 (1.2) 134.0 (13.2) 122.5 (8.6) 143.6 (10.5)
EX41 100 100.2 (0.2) 116.9 (8.8) 119.6 (0.1) 119.1 (10.1) 124.2 (10.6) 128.6 (23.6) 131.5 (9.8) 140.8 (27)
EX51 75 75.8 (0.2) 102.4 (10.5) 75.5 (0.0) 106.3 (13.6) 84.4 (11.3) 107.5 (7.7) 99.3 (11.4) 107.6 (7.5)
EX61 114 114.5 (0.2) 129.1 (4.8) 140.7 (0.2) 127.0 (8.9) 122.1 (9.9) 126.5 (7.6) 147.0 (18.1) 134.9 (10.6)
EX71 99 99.1 (0.2) 104.4 (8.0) 129.0 (0.1) 116.3 (14.0) 119.8 (2.5) 118.4 (11.7) 142.9 (13.9) 122.5 (10.8)
EX81 167 167.4 (0.2) 172.9 (9.2) 178.9 (0.0) 175.2 (8.1) 190.0 (8.9) 149.6 (13.5) 204.7 (26.3) 168.6 (9.0)
EX91 112 112.6 (0.2) 122.6 (7.9) 137.3 (0.1) 128.5 (9.7) 130.5 (8.6) 136.6 (16.0) 153.9 (13.1) 147.3 (15.0)
EX101 142 142.1 (0.2) 142.8 (6.6) 159.5 (3.6) 145.2 (7.6) 163.3 (6.2) 144.3 (11.1) 181.4 (25.4) 161.9 (10.3)
EX12 84 84.8 (0.2) 102.1 (6.4) 90.4 (0.1) 115.9 (8.0) 97.5 (12.3) 103.0 (10.2) 98.4 (4.6) 117.0 (7.7)
EX22 81 81.6 (0.2) 95.4 (6.4) 82.4 (0.1) 108.4 (9.4) 91.5 (5.1) 103.7 (6.8) 87.5 (1.3) 110.3 (11.5)
EX32 84 84.9 (0.1) 105.9 (5.9) 100.5 (0.1) 116.9 (7.5) 98.7 (1.1) 117.3 (9.6) 109.5 (7.3) 121.8 (16.9)
EX42 79 79.5 (0.2) 108.5 (5.8) 82.0 (0.0) 119.7 (12.1) 89.8 (2.8) 110.8 (7.1) 92.8 (2.8) 124.5 (12.1)
EX52 72 72.3 (0.2) 89.7 (8.2) 87.8 (0.1) 96.8 (11.3) 85.1 (5.3) 96.1 (13.1) 94.9 (9.8) 90.0 (11.4)
EX62 102 103.0 (0.1) 105.7 (5.9) 115.3 (0.5) 114.7 (7.9) 116.7 (1.5) 102.1 (4.9) 125.7 (4.1) 118.4 (10.1)
EX72 80 80.1 (0.2) 101.5 (9.7) 101.5 (0.1) 106.6 (11.3) 98.7 (6.1) 103.1 (8.0) 104.1 (2.4) 104.7 (12.4)
EX82 155 156.0 (0.2) 165.1 (7.0) 156.8 (0.0) 165.3 (10.4) 163.2 (4.1) 159.5 (7.2) 163.0 (8.6) 158.1 (7.3)
EX92 102 102.3 (0.2) 112.5 (8.7) 129.5 (0.1) 134.5 (17.2) 119.4 (5.2) 113.4 (7.4) 148.0 (13.1) 136.9 (8.0)
EX102 132 132.6 (0.2) 133.7 (11.7) 133.5 (0.1) 146.7 (10) 147.7 (4.5) 137.9 (12.1) 153.8 (3.4) 147.7 (9.0)
EX13 84 84.3 (0.2) 106.6 (7.1) 98.9 (0.0) 117.9 (8.2) 100.1 (4.3) 112.7 (9.5) 110.7 (9.6) 129.1 (15.2)
EX23 84 84.7 (0.2) 97.2 (5.7) 97.9 (0.1) 110.6 (10.8) 92.7 (5.8) 97.2 (8.4) 103.7 (3.4) 109.7 (9.0)
EX33 84 84.9 (0.1) 108.0 (6.2) 84.9 (0.0) 119.7 (15.7) 96.8 (2.8) 112.1 (7.0) 103.4 (1.3) 131.6 (9.5)
EX43 84 86.7 (0.2) 114.5 (8.8) 109.6 (0.0) 129.8 (8.2) 104.2 (1.2) 120.8 (10.8) 129.2 (1.2) 127.3 (10.5)
EX53 73 73.8 (0.2) 95.6 (9.1) 75.6 (0.0) 104.8 (9.4) 87.1 (3.5) 96.4 (6.8) 89 (3.2) 109.5 (12.0)
EX63 102 102.7 (0.2) 110.3 (6.1) 143.1 (2.6) 120.3 (6.8) 138.3 (8.4) 119.3 (10.3) 146.8 (8.4) 127.6 (10.7)
EX73 80 80.2 (0.2) 106.5 (7.3) 82.9 (0.1) 112 (6.6) 97.1 (0.9) 111.7 (6.7) 98.5 (1.6) 115.3 (10.1)
EX83 155 155.6 (0.2) 157.3 (7.0) 159.5 (0.0) 160.2 (11.2) 158.3 (5.0) 162.0 (11.2) 173.1 (4.0) 164.6 (15.4)
EX93 102 102.5 (0.2) 112.7 (6.5) 148.3 (0.0) 141.7 (14.4) 118.4 (2.1) 116.5 (7.1) 152.5 (10.3) 141.8 (14.1)
EX103 135 135.8 (0.2) 139.8 (9.5) 150.0 (0.1) 158.4 (10.7) 145.6 (1.2) 144 (10.6) 168.8 (6.4) 163.4 (11.2)
EX14 100 100.4 (0.2) 137.1 (11.5) 117.7 (0.1) 147.6 (22.1) 123.0 (8.9) 139.3 (9.4) 134.5 (11.5) 144.6 (16.2)
EX24 102 101.9 (0.2) 140.5 (8.5) 109.7 (0.1) 132.9 (11.0) 129.9 (6.8) 129.7 (10.9) 129.5 (14.8) 139.8 (9.9)
EX34 107 106.9 (0.2) 145.5 (6.7) 121.0 (0.1) 143.8 (22.6) 134.4 (10) 152.4 (19.7) 159.0 (12.6) 150.0 (14.5)
EX44 114 114.9 (0.2) 147.8 (10) 127.6 (0.0) 133.7 (9.7) 137.3 (16.4) 143.6 (10.2) 139.2 (17.6) 164.6 (26.5)
EX54 89 89.3 (0.2) 126.8 (9.4) 99.6 (0.1) 118.4 (5.9) 118.2 (12.8) 116.5 (10.8) 122.6 (6.6) 125.5 (10.6)
EX64 119 119.1 (0.2) 155.9 (10.8) 138.9 (5.0) 145.3 (5.0) 159.7 (1.6) 147.4 (7.5) 148.3 (14.7) 157.7 (16.1)
EX74 120 119.9 (0.2) 149.6 (10.6) 129.1 (0.1) 139.9 (10.7) 141.8 (9.7) 138.0 (10) 165.8 (12.4) 141.3 (7.9)
EX84 177 177.3 (0.2) 181.3 (9.9) 204.5 (0.1) 179.1 (10.1) 186.2 (14.5) 172.7 (15.8) 210.5 (3.5) 176.4 (13.4)
EX94 116 116.4 (0.2) 151.7 (7.9) 135.0 (0.1) 154.5 (8.4) 123.9 (16.6) 150.8 (8.8) 141.2 (14.0) 161.9 (13.4)
EX104 152 152.5 (0.2) 173.0 (7.0) 158.0 (4.7) 181.5 (21.6) 174.9 (16.9) 175.5 (14.4) 186.5 (0.1) 186.2 (11.7)

Table A.3. Makespan results of different simulation experiments with 4 AGVs across all the benchmark instances.
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5 AGVs
Instance VNS AS-US DS-US AS-CAS DS-CAS AS-BLS DS-BLS AS-CS DS-CS
EX11 86 86.6 (0.2) 106 (7.1) 93.6 (0.1) 125.2 (9.4) 108.6 (20.6) 111.6 (6.4) 105.8 (9.9) 136.8 (11.4)
EX21 92 92.9 (0.2) 105.2 (6.1) 103.6 (0.1) 114.6 (9.0) 104.8 (7.7) 112.3 (10.3) 115.7 (7.8) 119.5 (11.6)
EX31 94 94.9 (0.2) 122.7 (12.3) 101.3 (0.1) 141.7 (22) 108.5 (13.5) 138.5 (15.4) 110.8 (13.3) 138.6 (12.3)
EX41 94 94.7 (0.2) 118.4 (10.6) 100.9 (0.1) 141.0 (17.7) 115.2 (5.8) 126.9 (15.1) 125.9 (11.8) 135.4 (11.3)
EX51 75 75.6 (0.3) 90.8 (7.8) 80.0 (0.0) 102.8 (8.1) 85.9 (2.4) 98.4 (12.5) 90.1 (4.4) 103.7 (7.1)
EX61 114 114.7 (0.2) 120.4 (7.5) 119.0 (0.1) 132.5 (10.3) 121.3 (9.6) 128.7 (22.3) 137.2 (8.0) 139.6 (7.5)
EX71 91 91.3 (0.2) 112.2 (7.5) 107.7 (1.1) 112.6 (6.4) 109 (8.0) 110.8 (9.5) 117.0 (9.8) 119.2 (8.2)
EX81 167 167.7 (0.2) 172.1 (8.4) 203.7 (0.0) 17.6 (10.3) 179.8 (8.4) 142.7 (10.4) 208.0 (14.2) 162.3 (8.6)
EX91 111 111.7 (0.2) 124.1 (8.7) 129.1 (4.1) 133.5 (11.7) 135.9 (8.0) 129.4 (19.6) 144.5 (18.9) 168.2 (24.2)
EX101 139 139.7 (0.2) 142.6 (7.5) 147.3 (0.1) 169.0 (20.3) 156.7 (15.6) 150.8 (16.9) 162.5 (17.1) 165.8 (18.9)
EX12 84 84.8 (0.2) 97.5 (9.7) 94.3 (0.1) 127.7 (12.3) 93.8 (6.3) 101.6 (11.9) 97.4 (12.0) 126.0 (13.0)
EX22 81 82.2 (0.2) 91.8 (6.5) 82.8 (0.0) 111.1 (9.0) 91.9 (4.8) 94.0 (6.0) 96.5 (4.0) 117.3 (9.6)
EX32 84 85.1 (0.1) 110.8 (8.9) 96.0 (0.0) 127.0 (12.8) 99.7 (0.8) 114.9 (13.3) 100.6 (2.7) 129.0 (18.3)
EX42 79 79.6 (0.2) 107.2 (9.6) 88.9 (0.1) 130.3 (11.1) 95.2 (0.2) 111.2 (8.0) 102.1 (1.9) 132.5 (14.0)
EX52 72 72.3 (0.2) 81.4 (8.1) 75.2 (0.0) 101.8 (9.3) 78.9 (5.1) 90.5 (10.3) 77.8 (0.4) 104.1 (11.5)
EX62 102 102.1 (0.2) 103.0 (5.3) 121.2 (0.1) 129.5 (9.9) 112.2 (8.0) 106.4 (5.9) 124.8 (4.9) 143.2 (15.8)
EX72 80 80.7 (0.2) 95.2 (9.9) 90.0 (0.1) 103.7 (9.8) 92.8 (1.6) 98.0 (9.8) 100.2 (4.1) 104.0 (7.5)
EX82 155 156.3 (0.2) 160.3 (7.9) 156.1 (0.0) 158.7 (12.1) 159.6 (4.7) 157.5 (8.0) 161.2 (7.1) 157.6 (8.6)
EX92 102 102.6 (0.2) 115.1 (10.5) 120.9 (0.1) 147.7 (19.0) 111.9 (7.9) 112.0 (5.1) 123.0 (8.5) 134.7 (6.1)
EX102 132 132.1 (0.3) 133.6 (7.3) 146.1 (0.1) 161.6 (12.3) 145.4 (6.5) 128.1 (5.2) 166.8 (7.8) 167.2 (15.0)
EX13 84 84.9 (0.2) 99.3 (8.9) 100.7 (0.1) 139.9 (8.4) 96.3 (7.0) 103.2 (9.4) 115.0 (8.1) 137.5 (9.3)
EX23 84 84.2 (0.3) 93.2 (5.5) 111.5 (0.1) 131.4 (14.6) 113.5 (3.6) 96.9 (5.7) 118.6 (11.5) 127.9 (16.1)
EX33 84 84.4 (0.2) 114.4 (10.5) 95.5 (0.0) 144.0 (15.2) 95.6 (5.0) 118.7 (6.9) 112.7 (7.3) 136.4 (11.3)
EX43 79 79.9 (0.2) 110.2 (8.8) 81.6 (0.2) 134.4 (13.5) 95.5 (3.2) 115.3 (9.7) 98.8 (1) 147.9 (13.6)
EX53 73 75.3 (0.2) 84.8 (8.4) 85.3 (0.1) 107.4 (13.2) 85.1 (5.6) 97.2 (11.3) 94.7 (4.3) 108.4 (15.7)
EX63 102 102.6 (0.3) 105.9 (6.3) 118.5 (0.1) 139.7 (12.9) 110.2 (5.3) 114.2 (7.3) 134.3 (8.7) 138.7 (12.8)
EX73 80 80.3 (0.3) 99.6 (7.2) 86.8 (0.1) 108.5 (9.0) 89.9 (8.7) 103.6 (7.3) 90.5 (8.2) 115.1 (9.2)
EX83 155 156.2 (0.2) 158.5 (8.2) 163.7 (0.1) 162.9 (13.6) 164.8 (8.6) 159.7 (10.5) 163.7 (9.8) 162.5 (12.2)
EX93 102 102.6 (0.2) 113.0 (6.7) 127.5 (0.1) 131.3 (7.1) 102.2 (0.1) 114.5 (8.5) 138.1 (23.6) 121.3 (10.6)
EX103 135 135.3 (0.2) 137.7 (7.4) 160.5 (0.1) 157.5 (14.0) 149.2 (7.9) 131.8 (8.7) 164.7 (4.8) 183.4 (15.8)
EX14 96 96.0 (0.2) 135.0 (7.9) 113.6 (0.1) 144.1 (15.5) 113.5 (12.4) 131.8 (11.9) 132.8 (9.3) 171.6 (27.9)
EX24 98 98.1 (0.2) 127.2 (9.0) 135.3 (0.1) 127.5 (9.9) 132.2 (7.7) 127.1 (10.2) 133.3 (7.7) 147.2 (19.9)
EX34 102 102.1 (0.2) 159.7 (13.0) 121.0 (2.4) 151.9 (17.8) 108.6 (7.2) 141.1 (15.9) 144.2 (15.8) 156.2 (15.0)
EX44 105 105.4 (0.2) 125.8 (9.9) 118.1 (0.0) 162.3 (18.7) 131.8 (8.4) 139.5 (13.6) 143.8 (17.0) 170.8 (13.3)
EX54 82 82.1 (0.2) 118.1 (10.5) 86.2 (0.1) 122.3 (12.8) 116.1 (6.2) 117.5 (14.9) 116.4 (12.0) 136.5 (25.7)
EX64 118 118.5 (0.2) 125.2 (8.0) 134.3 (0.1) 149.3 (13.0) 135.9 (12.1) 140.8 (9.7) 152.4 (19.3) 159.5 (12.9)
EX74 103 108.0 (0.2) 128.2 (10) 119.8 (0.1) 131.6 (11.0) 133.5 (8.2) 129.7 (11.8) 141.5 (7.1) 145.6 (25.2)
EX84 177 177.9 (0.2) 181.4 (10.2) 184.8 (0.0) 180.4 (13.2) 206.1 (15.2) 174.4 (15.2) 194.7 (1.2) 177.2 (14.1)
EX94 116 116.1 (0.2) 153.9 (7.8) 139.6 (5.4) 186.1 (25) 158.1 (0.2) 142.7 (13.5) 162.0 (16.2) 149.4 (12.0)
EX104 152 152.6 (0.2) 168.2 (9.4) 164.8 (0.0) 168.9 (7.5) 178.2 (12.4) 172.3 (18.9) 190.4 (16.7) 192.4 (21.5)

Table A.4. Makespan results of different simulation experiments with 5 AGVs across all the benchmark instances.
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B Job sets proposed by Bilge and Ulusoy

Job set 1
Job 1: M1(8); M2(16); M4(12)
Job 2: M1(20); M3(10); M2(18)
Job 3: M3(12); M4(8); M1(15)
Job 4: M4(14); M2(18)
Job 5: M3(10); M1(15)

Job set 2
Job 1: M1(10); M4(18)
Job 2: M2(10); M4(18)
Job 3: M1(10); M3(20)
Job 4: M2(10); M3(15); M4(12)
Job 5: MI(10); M2(15); M4(12)
Job 6: M1(10); M2(15); M3(12)

Job set 3
Job 1: M1(16); M3(15)
Job 2: M2(18); M4(15)
Job 3: M1(20); M2(10)
Job 4: M3(15); M4(10)
Job 5: M1(8); M2(10); M3(15); M4(17)
Job 6: M2(10); M3(15); M4(8); M1(15)

Job set 4
Job 1: M4(11); M1(10); M2(7)
Job 2: M3(12); M2(10); M4(8)
Job 3: M2(7); M3(10); M1(9); M3(8)
Job 4: M2(7); M4(8); M1(12); M2(6)
Job 5: M1(9); M2(7); M4(8); M2(10); M3(8)

Job set 5
Job 1: M1(6); M2(12); M4(9)
Job 2: M1(18); M3(6); M2(15)
Job 3: M3(9); M4(3); M1(12)
Job 4: M4(6); M2(15)
Job 5: M3(3); M1(9)

Job set 6
Job 1: M1(9); M2(11); M4(7)
Job 2: M1(19); M2(20); M4(13)
Job 3: M2(14); M3(20); M4(9)
Job 4: M2(14); M3(20); M4(9)
Job 5: M1(11); M3(16); M4(8)
Job 6: M1(10); M3(12); M4(10)

Job set 7
Job 1: M1(6); M4(6)
Job 2: M2(11); M4(9)
Job 3: M2(9); M4(7)
Job 4: M3(16); M4(7)
Job 5: M1(9); M3(18)
Job 6: M2(13); M3(19); M4(6)
Job 7: M1(10); M2(9); M3(13)
Job 8: M1(11); M2(9); M4(8)

Job set 8
Job 1: M2(12); M3(21); M4(11)
Job 2: M2(12); M3(21); M4(11)
Job 3: M2(12); M3(21); M4(11)
Job 4: M2(12); M3(21); M4(11)
Job 5: M1(10); M2(14); M3(18); M4(9)
Job 6: MI(10); M2(14); M3(18); M4(9)

Job set 9
Job 1: M3(9); M1(12); M2(9); M4(6)
Job 2: M3(16); M2(11); M4(9)
Job 3: M1(21); M2(18); M4(7)
Job 4: M2(20); M3(22); M4(11)
Job 5: M3(14); M1(16); M2(13); M4(9)

Job set 10
Job 1: M1(11); M3(19); M2(16); M4(13)
Job 2: M2(21); M3(16); M4(14)
Job 3: M3(8); M2(10); M1(14); M4(9)
Job 4: M2(13); M3(20); M4(10)
Job 5: M1(9); M3(16); M4(18)
Job 6: M2(19); M1(21); M3(11); M4(15)

C Original workshop layouts

Prepared using sagej.cls
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Figure C.1. Layout 1

L/U M1 M2 M3 M4
L/U 0 6 8 10 12
M1 12 0 6 8 10
M2 10 6 0 6 8
M3 8 8 6 0 6
M4 6 10 8 6 0

Table C.1. Travel times on layout 1

Figure C.2. Layout 2

L/U M1 M2 M3 M4
L/U 0 4 6 8 6
M1 6 0 2 4 2
M2 8 12 0 2 4
M3 6 10 12 0 2
M4 4 8 10 12 0

Table C.2. Travel times on layout 2

Figure C.3. Layout 3

L/U M1 M2 M3 M4
L/U 0 2 4 10 12
M1 12 0 2 8 10
M2 10 12 0 6 8
M3 4 6 8 0 2
M4 2 4 6 12 0

Table C.3. Travel times on layout 3

Figure C.4. Layout 4

L/U M1 M2 M3 M4
L/U 0 4 8 10 14
M1 18 0 4 6 10
M2 20 14 0 8 6
M3 12 8 6 0 6
M4 14 14 12 6 0

Table C.4. Travel times on layout 4
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