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Stick slip vibrations in drilling: modeling, estimation, avoidance
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Abstract: This writeup presents a field-validated torsional model for the drill string dynamics and different algorithms for
estimating the friction factors along the drill string and bottom hole rotational velocity. These friction terms characterize
the interaction between the drill pipe and the wellbore walls (Coulomb source terms) within the curving wellbore.
This information is essential to designing the next generation of stick-slip mitigation controllers, developing real-time
wellbore monitoring tools, and enabling effective toolface control for directional drilling.
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INTRODUCTION

Extraction of resources at depths greater than a few hundred meters in the earth’s subsurface (oil, gas, minerals,
and thermal energy) necessitates the drilling of long slender boreholes (from the surface to the subsurface target) that
may induce deviated well paths with extensive horizontal sections (Sveinbjornsson and Thorhallsson, 2014; Wei et al.,
2022). Advanced drilling control strategies are essential for designing such complex wells, as undesirable vibrations
can occur during transient off-bottom phases. Notably, torsional oscillations, which cause damage and reduce the rate
of penetration, must be mitigated. This phenomenon, known as stick-slip, results from significant friction between the
drill string and the borehole (Aarsnes et al., 2018). To prevent such oscillations, advanced control approaches have been
developed, incorporating the underlying distributed dynamics into controller design (Auriol et al., 2022a). These control
strategies have demonstrated faster convergence to a reference trajectory compared to state-of-the-art controllers while
preventing stick-slip oscillations. They are based on the field-validated model presented in (Aarsnes and Shor, 2018) that
accurately describes the evolution of angular velocity and torque (ω(t,x),τ(t,x)) along the drilling device using coupled
hyperbolic Partial Differential Equations (PDEs). However, implementing such control laws requires knowledge of the
distributed state along the drill string. In the field, available measurements are mainly surface data, such as surface RPM
or motor torque. Additionally, these methods require all system parameters, particularly subsurface physical properties,
to be known (Auriol et al., 2019, 2021).

In this abstract, we present the high-fidelity model introduced by Aarsnes and Shor (2018) to describe torsional os-
cillations in the drilling device. We then show how this model can be used to design appropriate near real-time state
observers. In particular, we present an adaptive observer (adjusted from (Aarsnes et al., 2019)) and an innovative dual
architecture of physics-informed transformer-based neural networks (Vaswani et al., 2017). Indeed, recent advances have
shown that deep neural networks can be used to learn distributed dynamics from measurements (Lu et al., 2021). Finally,
we briefly show how these estimations can be used to control the downhole behavior of the drill string while avoiding
undesired oscillations.

TORSIONAL DYNAMICS OF THE DRILL STRING

This section introduces a hyperbolic PDEs model incorporating distributed friction terms to describe the torsional mo-
tion of drill string dynamics. The proposed high-fidelity model, detailed in (Aarsnes and Shor, 2018), has been validated
against field data. Its computational simplicity makes it suitable for control and estimation applications. We assume that
the torsional motion of the drill string is the dominating dynamic behavior (i.e., there is no distributed axial dynamics).
Moreover, the effects of along-string cuttings distribution on the friction is assumed to be homogeneous and the transition
from static to dynamic Coulomb friction is a jump, i.e., the Stribeck curve is assumed negligible. Finally, the bit is also
assumed to be off-bottom, meaning there is no bit-rock interaction, which occurs during transient phases when the bit is
not in contact with the rock, such as when adding a new pipe section to the drilling system or when removing the drill
string from the borehole to address a failure. For (t,x) ∈ [0,T ]× [0,L] (where T > 0 is the chosen time window and L > 0
is the length of the drilling device), we denote ω(t,x) the angular velocity and τ(t,x) the torque at any point of the drill
string. The states satisfy the following equations

∂τ(t,x)
∂ t

+ JG
∂ω(t,x)

∂x
= 0, Jρ

∂ω(t,x)
∂ t

+
∂τ(t,x)

∂x
= S (t,x), (1)

where J is the polar moment for inertia, G is the shear modulus, and ρ is the mass density, averaged for a drill string
section and supposedly known. The source terms S is due to frictional contact with the borehole. It verifies

S (t,x) =−ktρJω(t,x)−F (t,x), (2)
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Figure 1: Schematic indicating the distributed
drill string lying in deviated bore-hole.
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Figure 2: Friction source term S(ω,x). The red
curve indicates the dynamic torque as a function
of angular velocity.

where the damping constant kt is the viscous shear stress and F is a differential inclusion that corresponds to the Coulomb
friction between the drill string and the borehole, also known as the side force:{

F (t,x) = sign(ω(t,x))Fk(x), |ω(t,x)|> ωc,

F (t,x) ∈ ±ro(x)µsFN(x), |ω(t,x)|⩽ ωc,
(3)

where the function F (ω) = − ∂τ(t,x)
∂x ∈ ±ro(x)µsFN(x) is the differential inclusion. The functions Fk(x)

.
= ro(x)µkFN(x)

(resp. Fs(x)
.
= ro(x)µsFN(x)) corresponds to the dynamic (resp. static) Coulomb torque. The expression of the normal

force acting between the drill string and the borehole wall FN(x) depends on the well geometry (Sheppard et al., 1987).
While the outer drill string radius ro(x) is known, the static and kinetic friction coefficients (µs,µk) and the angular
velocity threshold ωc are not. At the surface level, the top drive is actuated by an electrical motor that imparts torque to
the drill string. The evolution of the angular velocity at the surface level and the downhole torque follows

d
dt

ω(t,0) =
1

IT D
(τm(t)− τ(t,0)), τ(t,L) = 0 (4)

where IT D corresponds to the top-drive inertia and τm to the motor torque. We denote ω0(t) = ω(t,0) the top-drive
angular velocity. The motor torque corresponds to the control input and may be expressed as a PI feedback (Åström
and Murray, 2010): i.e. τm = kp(ωSP −ωt,0) + k

∫ t
0(ωSP(ξ )−ωt,0(ξ ))dξ , where ωSP is a desired reference set-point,

kp is a proportional gain and k an integral gain. It can also be defined through more advanced control strategies (as
shown in (Aarsnes et al., 2018; Auriol et al., 2022a)). However, such advanced mitigation laws require knowledge of
the entire distributed angular state. In the field, we typically have access only to the top-drive angular velocity and
the motor torque (ω(t,0),τm(t)) measured with a frequency of 1Hz. Therefore, it is necessary to reconstruct the en-
tire state from these measurements, as proposed in (Aarsnes et al., 2019). Reconstructing the state may also require
knowledge of unknown physical parameters, such as static and kinetic friction coefficients. In the following, we denote
Y = (P,{(ω(t,0),τm(t))i∈[1,N]}) ∈ Y = RNp ×R2×N an input data containing a set of Np known physical parameters
(depth of bit L, collar and pipes mechanical properties) concatenated in the vector P and N sequential pairs of surface
measurements.

STATE ESTIMATION

The design of the next generation of stick-slip mitigation controllers requires reliable estimations of the state and
friction parameters. More precisely, our objective is twofold: Estimate the physical parameters (µs,µk) and the distributed
state (ω(t,x),τ(t,x)) from the surface data. In this section, we present different methods (adjusted from Auriol et al.
(2022b)) to estimate all (or part) of the friction parameters.

First approach: Adaptive observer

The first approach we propose is adapted from the adaptive state observer introduced in (Aarsnes et al., 2019). This
observer integrates measurements from physical sensors, particularly the top-drive angular velocity ω0, with the proposed
system dynamics model. It provides reliable estimates of the torque and RPM states as well as the side forces friction
parameters when the bit is off-bottom (Aarsnes et al., 2019). Here, we summarize the main ideas of this observer. Denote
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with the ·̂ superscript the estimated states and e(t) = ω̂0(t)−ω0(t) the measured estimation error of the top-drive angular
velocity. The observer equations given in (Aarsnes et al., 2019) correspond to a copy of the original dynamics expressed in
the Riemann coordinates, to which are added output correction terms. The Riemann invariants are the states corresponding
to a transformation of the system which has a diagonalized transport matrix. We define them as α = ω + 1

J
√

Gρ
τ and

β = ω − 1
J
√

Gρ
τ . The observer equations read as follows

˙̂ω0 = a0

(
β̂p(t,0)− ω̂0

)
+

1
IT D

τm − p0e(t), (5)

∂ α̂

∂ t
(t,x)+ ct

∂ α̂

∂x
(t,x) = Ŝ (t,x)− pα(t,x)e(t),

∂ β̂

∂ t
(t,x)− ct

∂ β̂

∂x
(t,x) = Ŝ (t,x)− pβ (t,x)e(t), (6)

where ct =
√

G
ρ

. The source term in each section is computed from the estimated states and friction factors Ŝ (t,x) =

kt(α̂(t,x)+ β̂ (t,x))+ 1
Jρ

F̂ (t,x) where F̂ has an expression identical to (3), the different variables being replaced by their

estimates. The different boundary conditions are now expressed as α̂(t,0) = 2ω̂0(t)− β̂ (t,0)−P0e(t), β̂ (t,L) = α̂(t,L),
and the estimates of the friction factor are updated according to

˙̂µs(t) =

{
−lse(t), |minx ω̂(t,x)|⩽ ωc,

0, |minx ω̂(t,x)|> ωc,
˙̂µk(t) =

{
0, |minx ω̂(t,x)|⩽ ωc,

lke(t), |minx ω̂(t,x)|> ωc,
(7)

Finally, we use a saturation to improve the robustness of the approach: µ̂s = max(µ̂s, µ̂k). The different constants and
observer gains a0, pα , pβ , p0, p1,P0,P1, ls, lk can be found in (Aarsnes et al., 2019). As shown in (Aarsnes et al., 2019),
the convergence is guaranteed in the absence of friction term. Moreover, the proposed procedure is robust to uncertainties
and delays and provides correct estimations of µk and µs when tested in simulations and against field data. However, it
requires the knowledge of ωc, and there is no proof of convergence for the adaptive part.

Second approach: transformer-based dual architecture network

We now present a learning methodology based on a dual architecture, originally introduced in Redaud et al. (2024).
A first transformer-based neural network (using Y as input) estimates the physical parameters (µs,µk). We opted for
transformers (Vaswani et al., 2017) instead of recurrent neural networks to enhance speed and reduce the computational
cost of training. The estimated physical parameters (µs,µk) and the input Y are then fed into a second transformer-
based neural network, which aims to provide the distributed state (ω(t,x),τ(t,x)). Following (Raissi et al., 2019; Sun
et al., 2021), we incorporate physical laws into the training loss functions to improve the performance of the estimation
algorithms. The output of the first network is required to compute loss functions. Both networks are trained simultaneously
using an extensive simulated training dataset. The proposed network is schematically illustrated in Figure 5.

Estimation of physical parameters

The first neural network aims at estimating the physical parameters M = (µk,µs) ∈ R2. It is a transformer (Vaswani
et al., 2017) characterized by trainable parameters θ , and denoted Tθ (.). It aggregates the sequence of inputs Y ∈ RNp+2Nt

and gives as an output M̂ ∈ R2. We obtain θ by minimizing the L2− loss function LL2(θ) =
1

Nb
∑

Nb
i=1 ∥M−Tθ (Y )∥2

2.

Estimation of the distributed state

Inspired by (Lu et al., 2021), we tackle the second objective using a two-branch architecture. Denote X = [0,L] as the
spatial domain and T = [0,T ] as the temporal domain where the state is defined. We aim to select the most appropriate
state representation concerning physical constraints using sets of discrete inputs Y . Therefore, we approximate

S : Y −→ C ∞(T ×X ,R2)
Y 7→ SY,Θ(·, ·)

,

where C ∞ is the set of infinitely differentiable functions from T ×X to R2 (the regularity could be leveraged). This
defines a class of parametric functions SY,Θ, which we use for approximating the real states (ω(t,x),τ(t,x)). The cor-
responding approximations is denoted as (ω̂(t,x), τ̂(t,x)). In our design, the first branch of the proposed architecture
relies on a transformer encoder to aggregate the input sequences Y augmented with M̂. This produces an abstract repre-
sentation of the system when combined with an abstract representation of the requested coordinates. Inspired by Fourier
Neural Operators (Li et al., 2021), this abstract representation is then used to output the intensity, frequency, and phase of
the Fourier decomposition representing the distributed state X(t,x) .

= (ω(t,x),τ(t,x)) along the drill string. The second
branch constructs the spatiotemporal grid mesh (t,x) ∈ T ×X , where the estimation is evaluated.

Physic-informed neural networks

Following (Sun et al., 2021; Wang et al., 2021), we define the composite loss L (Θ) = LD (Θ) +LPDE(Θ) +
LBC(Θ). The term LD is the usual error term when training a neural network on a dataset. It corresponds to the
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state estimation residual in the squared L2−norm. The term LPDE ensures that (1) is satisfied. Finally, the last term
LBC guarantees that the solution meets the boundary condition. More precisely, we have

LD (Θ) =
1

Nx

1
Nt

1
Nb

Nb

∑
i=1

Nx

∑
j=1

Nt

∑
k=1

∥X(tk,x j)−SY,Θ(tk,x j)∥2
2,

LPDE(Θ) =
1

Nx

1
Nt

1
Nb

Nb

∑
i=1

Nx

∑
j=1

Nt

∑
k=1

∥O( fY,Θ(tk,x j))∥2
2, LBC(Θ) =

1
Nt

1
Nb

Nb

∑
i=1

Nt

∑
k=1

∥B(SY,Θ(tk))∥2
2 + |τ̂(tk,L)|2,

with B(SY,Θ(t))= ∂ω̂

∂ t (t,0)−
1

IT D
(τm(t)− τ̂(t,0)) and O(SY,Θ(t,x))=

(
∂ τ̂

∂ t (t,x)+ JG ∂ω̂

∂x (t,x)
∂ τ̂

∂x (t,x)+ Jρ
∂ω̂

∂ t (t,x)−S (ω̂,x)

)
. This machine-

learning approach is reliable and easy to implement. It consists of a fast algorithm (once properly trained) that provides
good estimations of the friction parameters and the state. The data and physics-driven losses add a priori knowledge of
the underlying dynamics (1)-(4) during training. However, the proposed approach requires thousands of training points
and may lack generalizability as it depends on the model and the initial condition of the system.

CONTROLLER DESIGN

During the drilling process, the operator usually wants to control the downhole behavior of the drill string and optimize
the Rate Of Penetration (ROP) while avoiding undesired oscillations. More precisely, the main control objective is to
regulate the downhole angular velocity at the start-up of a drilling operation (e.g., after a connection) to avoid entering
a stick-slip limit cycle. Most of the controllers applied in industrial applications correspond to high-gain PI control
laws, such as the SoftSpeed and SoftTorque approaches. These approaches are easy to implement and analyze since
the gains are tuned to obtain a certain reduction in the proximal reflection coefficient over a limited frequency range.
However, they may present several fundamental limitations, such as possible poor inherent robustness margins (which
can be overcome using impedance matching controllers such as ZTorque (Dwars, 2015)) or the generation of significant
oscillations when changing the set-points. Advanced control methods have been proposed in (Auriol et al., 2022a), leading
to better performance but requiring real-time estimation. Below, we summarize the main ideas behind the approaches
proposed in (Auriol et al., 2022a) and detail their corresponding requirements, limitations, and performance. In these
control strategies, the effect of the friction terms is seen as a distributed source term d(t) that needs to be compensated.

1. ZTorque and feed-forward controller. A feedforward controller that can be seamlessly integrated with standard
industry ZTorque impedance matching feedback controllers without affecting the closed-loop behavior has been
proposed in (Aarsnes et al., 2018). This control law adheres to the 3DOF controller architecture (Åström and
Murray, 2010), as it has three components: a feedback term, a feedforward term (leveraging the model’s differ-
ential flatness), and a disturbance cancellation term. This approach is a state-of-the-art controller and requires the
knowledge of top-drive torque and estimation of the disturbance term. The feedforward component and disturbance
compensation term reduce residual oscillations but may induce overshoots and long convergence times.

2. Multiplicity Induced Dominancy Controller. This approach involves analyzing the transfer function between
the downhole velocity and the actuator. This transfer function represents a time-delay system for which we can
design a control law that ensures the placement of the dominant root in the complex plane, thereby guaranteeing
the stability of the closed-loop system. This approach requires the estimation of downhole velocity and disturbance
terms. It is robust with respect to parameter uncertainties and exhibits slight overshoot and oscillations with a low
computational effort. However, it may be sensitive to noise.

3. Recursive dynamics interconnection framework. This procedure is well-suited for multi-sectional drilling de-
vices. For each section, we find the virtual input that stabilizes the section and guarantees that the output converges
towards the virtual input of the next subsystem. The virtual input of the last subsystem (downhole ODE) is cho-
sen to guarantee the tracking of the reference signal. It requires a reliable estimation of the disturbance term and
predictions of the states. As it consists of a direct compensation of the disturbance term, it can guarantee a fast con-
vergence without residual oscillations at the cost of an instantaneous high-control effort. All in all, it is a complex
control algorithm with an extensive computational cost.

EXPERIMENTAL SETTING

In this section, we illustrate the performance of the proposed transformer-based observer and of the ZTorque and
feedforward controller with simulations.

Generation of dataset and Training parameters

To train and validate our estimation algorithm, we generate a wide dataset following the numerical scheme presented
in (Aarsnes and Shor, 2018). To obtain representative data, we use the real well geometry (J1), illustrated in Figure 1.
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Figure 3: Estimation of (µk,µs) using (Auriol et al.,
2022b) (left) and the transformer approach (right).

Figure 4: Example of a prediction for a sample of the
validation set after training.

We generated 1000 sequences of 100s of 20Hz surface measurements (motor torque and surface angular velocity), for
L ∈ [2500,4000]m, µs ∈ [0.2,0.8], µk ∈ [0.06,0.72]. The reference trajectory is constant (60 RPM with slope). The
implemented control input is ZTorque with a feed-forward component. The dataset is split 80%− 20% as training and
validation datasets. To obtain the parameters (θ ,Θ) minimizing the losses LL2(θ),L (Θ), we use AdamW (Loshchilov
and Hutter, 2017) with an initial learning rate of 10−3. The training is done on 100 epochs, with a batch size Nb = 16. We
use automatic differentiation techniques (Baydin et al., 2015) to compute the derivatives.

Simulation results

Both networks are trained simultaneously on a comprehensive dataset of simulated data based on the proposed well
geometry. The trained neural networks’ performance is then evaluated using a separate validation dataset, as detailed in
(Auriol et al., 2022b). We compare these results with the estimations obtained from the convolutional neural network-
based approach presented in (Auriol et al., 2022b). The friction coefficients were estimated on the validation dataset
with an average relative error of δ (µk) = 2.3% (resp. δ (µs) = 3.3%) and a standard deviation of 5.2e−3(resp. 1.8e−2)
after 2500 steps. As illustrated in Figure 3, our proposed method outperformed the existing estimation methods presented
in (Auriol et al., 2022b), as the standard deviation is reduced, and the average estimated value is closer to the true value.

We also obtained promising results for the state estimation with an average absolute error of 2.3 on 200 validation
examples. We have plotted in Figure 4 the obtained estimation for τ and ω and compared them with their real values.
We used color plots to picture these 2D data (red corresponding to higher values, the horizontal axis being time, and
the vertical axis being the curvilinear abscissa). As expected, the solutions predicted by the proposed networks are
consistent with the physics. Finally, we illustrate in Figure 6 how this observer can be combined with the ZTorque
feedback controller with a flatness trajectory planning feed-forward component to stabilize the system around different
set-points. In the considered scenario, the lowest part of the drilling device (collar and BHA) is almost horizontal, and the
stationary drill string is initially kept in place by the Coulomb friction until enough torque is built up to overcome it. The
different physical parameters can be found in Auriol et al. (2022a).

CONCLUSIONS

We presented a field-validated torsional model for drill string dynamics. We then introduced two algorithms to estimate
the friction factors along the drill string, providing an estimate of the bottom hole rotational velocity. These observers
were then used to design the next generation of stick-slip mitigation controllers. Future improvements include reducing the
numerical complexity of the different control strategies and a better online adaptive estimation of the disturbance term.
The current architecture for the machine learning observer includes hyperparameters that can be optimized to enhance
performance, e.g., by balancing the empirical loss of model predictions, model complexity, and physical loss.
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Figure 5: Detailed view of the neural network architec-
ture.
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