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Abstract

Most studies assessing animal decision-making under risk rely on probabilities that are
typically larger than 10%. To study Decision-Making in uncertain conditions, we explore a
novel experimental and modelling approach that aims at measuring the extent to which rats
are sensitive - and how they respond - to outcomes that are both rare (probabilities smaller
than 1%) and extreme in their consequences (deviations larger than 10 times the standard
error). In a four-armed bandit task, stochastic gains (sugar pellets) and losses (time-out
punishments) are such that extremely large - but rare - outcomes materialize or not
depending on the chosen options. All rats feature both limited diversification, mixing two
options out of four, and sensitivity to rare and extreme outcomes despite their infrequent
occurrence, by combining options with avoidance of extreme losses (Black Swans) and
exposure to extreme gains (Jackpots). Notably, this sensitivity turns out to be one-sided for the
main phenotype in our sample: it features a quasi-complete avoidance of Black Swans, so as
to escape extreme losses almost completely, which contrasts with an exposure to Jackpots
that is partial only. The flip side of observed choices is that they entail smaller gains and
larger losses in the frequent domain compared to alternatives. We have introduced
sensitivity to Black Swans and Jackpots in a new class of augmented Reinforcement Learning
models and we have estimated their parameters using observed choices and outcomes for
each rat. Adding such specific sensitivity results in a good fit of the selected model - and
simulated behaviors that are close - to behavioral observations, whereas a standard Q-
Learning model without sensitivity is rejected for almost all rats. This model reproducing the
main phenotype suggests that frequent outcomes are treated separately from rare and
extreme ones through different weights in Decision-Making.
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eLife assessment

This study represents an important contribution to the study of decision-making
under risk, bringing an interdisciplinary approach spanning economic theory,
behavioral neuroscience, and computational modeling to test how choice preference
is influenced by rare and extreme events. The authors present evidence that rats are
indeed sensitive to these rare and extreme events despite their infrequent
occurrence, driven primarily by an almost complete avoidance of "Black Swans" - rare
and extreme losses. The evidence for specific sensitivity to rare and extreme events
however remains incomplete, owing in part to the difficulty of isolating the effect of
these events beyond that arising from risk preferences more generally in both task
design and in the computational modeling of the choice behavior. Given the
approach here brings a relatively novel perspective, with a more detailed treatment
of these confounds this paper will be of broad interest to those seeking to
understand animal behavior through the lens of economic choice.

https://doi.org/10.7554/eLife.98487.1.sa2

Introduction

Although exploration and exploitation are key drivers of observed behavior when humans and
other animals interact repeatedly with their environment (see e.g. [26     ] for an overview), not
much is arguably known about how they are affected by outcomes that are both very rare and
very consequential, that is, Rare and Extreme Events (REE thereafter). While risk is a central
dimension in the related and enormous literature that contributes to social sciences and
neurosciences, as it should, most studies on Decision-Making rely on lotteries for which the
frequencies of outcomes are typically larger than 10% (e.g. [9     ], [10     ], [37     ], [49     ]; see also
[19     ] for exceptions when choices are, however, not repeated). This is admittedly a major
limitation in view of the fact that many living species experience events that are not only much
rarer but that also entail potentially very large -, negative as well as positive impacts. The
subsequent evolutionary consequences for - and possibly the extinction of large groups or species
constitute an important example (see e.g. [18     ]). On the brighter side, human evolution has been
punctuated by the design and spread of artefacts, a few of which have allowed big leaps forward
on the way to material comfort (see e.g. [27     ]).

To the extent that both their consequences and their frequencies are highly uncertain, because
historical data either lacks or is scarce, such REE are challenging for Decision-Making. Too little is
known about whether animal species, including humans, are sensitive to - and how they cope with
- such extremely infrequent and consequential events when making choices. In this study, we
focus on rats, which have been formerly used to assess Decision-Making processes in various
behavioral tasks (e.g. [6     ], [1     ], [45     ], [47     ], [23     ], [30     ], [43     ], [20     ], [54     ]; see also
[22     ] on the relevance of animal models for human Decision-Making), but mostly because they
allow further neurobiological manipulations in future studies. We have designed a novel
experiment in which rats interact repeatedly with their laboratory environment through a 4-
armed bandit task. In this task, they face REE that occur with a frequency smaller than 1% and,
equally importantly, that are associated with extreme outcomes in terms of both gains and losses -
deviations that are larger than 10 times the standard error. Following the design of the Iowa
Gambling Task for human participants (see [4     ]), related tasks for rodents typically assume that
the less frequent events have probability values that are about or larger than 10% (see e.g. [1     ],
[34     ] and [53     ]).

https://doi.org/10.7554/eLife.98487.1
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In addition to dealing with low-probability and high-consequence events, the key feature of our
experimental design is that it allows to test whether, in such a context, sensitivity to REE favors
choosing frequently exposures to uncertainty that limit the consequences of extremely “negative”
risks - or losses - while leaving open the possibilities to benefit from “positive” and large risks - or
gains (called “Anti-fragile” exposures in [48     ]). Symmetrically, therefore, an option that rules out
extreme gains but may trigger very large losses (labeled Black Swans) is labeled Fragile in our
design, and it would be chosen frequently or exclusively when sensitivity to REE is rather low or
nonexistent. More precisely, complete exposure to Jackpots and complete avoidance of Black
Swans both define the Anti-fragile option, while the reverse configuration is representative of the
Fragile one (i.e. complete avoidance of Jackpots and complete exposure to Black Swans, rather
oddly). We also consider Robust and Vulnerable options: the former, which may seem to
correspond to resilience, rules out exposure to any REE while the latter exposes to both REE,
positive and negative. As such, our approach is of interest in an evolutionary perspective, which
would ask how often the Anti-fragile option is indeed selected by animals and humans, and
whether there are natural foundations for Anti-fragile choices that possibly relate to fitness and
are embodied in the brain.

Importantly, our experimental paradigm distinguishes three domains as follows: “normal events”
(NE), which occur with approximately 90% probability, “rare events” (RE) happening with about
10% probability, and REE which occur with a probability smaller than 1%. Each option is defined
by a relationship between the magnitudes of rewards and the frequencies at which they occur. In,
say, the gain domain, while one of the two options dominates the other for NE, this dominance
weakens when RE are added to to picture and is eventually reversed if REE occur. To put it simply,
the option that is dominated for NE and RE but turns out to dominate when REE occur is such that
the less frequent the reward, the more consequential it is in terms of larger values: we therefore
label this option convex. It follows that convex options expose to Jackpots and, by the same token,
avoids Blacks Swans while, symmetrically, concave options avoids Jackpots and expose to Black
Swans. Therefore, the Anti-fragile option is convex because it combines accelerating and possibly
large gains (labeled Jackpots thereafter), together with decelerating and limited losses, when
probabilities decrease - that is, when the number of trials needed to observe such gain
occurrences increase. Here, to repeat, convexity does not refer to the shape of utility or other
value functions, but refers to the fact that the magnitude of gains/losses, is
accelerating/decelerating against decreasing probability (i.e. increasing number of trials). In sum,
our experimental design is based on the assumptions that: 1) with perfect information about the
probability distributions of all exposures, value-maximizing participants whose preferences are
represented by any non-decreasing value function, would choose concave gains in the domain
restricted to NE, due to first-order stochastic dominance. In other words, in the NE domain, it is
more interesting to choose the concave options; 2) they would continue to do so in the RE domain
for any non-decreasing and concave value function, due to second-order Stochastic Dominance; 3)
however, in the full domain with REE, value-maximizing subjects endowed with any non-
decreasing and concave value function are predicted to choose convex gains, because of a reversal
in second-order Stochastic Dominance. In other words, exposure to Jackpots and avoidance of
Black Swans is by design costly and disadvantageous when REE do not materialize.

Because of our specific interest in REE on both positive (rewards) and negative (losses) values, our
framing integrates gains (sugar pellets) and losses (time-out punishment preventing the rats to
earn pellets). One attractive feature of our design is that it delivers two direct and fairly natural
measures that help interpreting behavioral data. First, Total Sensitivity to REE measures the extent
to which rats take into account REE by combining convex options with avoidance of extreme
lossees (Black Swans) and exposure to extreme gains (Jackpots). Formally, Total Sensitivity adds up
the fractions of convex choices in terms of both gains and losses. Second, One-sided Sensitivity to
REE captures choices that preferably, and asymmetrically, favor either the seeking of large gains
(Jackpot Seeking) or the avoidance of large losses (Black Swan Avoidance). That is, One-sided
Sensitivity is defined as the difference between the fraction of convex choices in gains and that in

https://doi.org/10.7554/eLife.98487.1
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losses. While the Anti-fragile option has by design maximal Total Sensitivity and the Fragile option
has zero Total Sensitivity, they both exhibit zero One-Sided Sensitivity. In contrast, the other
alternatives, i.e. the Robust and Vulnerable options, have both middle Total Sensitivity but differ in
that they respectively exhibit REE avoidance (negative One-Sided Sensitivity) and REE seeking
(positive One-Sided Sensitivity). Of course, rats have the possibility to combine all four options
over the course of the experiments.

Using our setup on a sample of 20 rats, with about 6000 stimuli per rat over 41 sessions, we
document two sets of behavioral results. First, all rats diversify their choices but in a limited
fashion across the possible set of options, primarily 2 out of the 4 available. Most rats (19 out of 20)
exhibit moderate to high levels of Total Sensitivity. This means that most rats choose to diversify
their choices across options that often combine some exposure to extreme gains and some
avoidance of extreme losses. More strikingly, most rats (13 out of 20) tend to exhibit quasi-complete
Black Swan avoidance mixed with partial Jackpot seeking: they have high Total Sensitivity to REE
and favor avoiding almost certainly Black Swans even though this entails less frequent exposure
to Jackpots (negative One-Sided Sensitivity to REE), by mixing mostly the Anti-fragile and Robust
options. We interpret such a behavior as evidence of the differential treatment of rare and extreme
gains and losses. Consistent with such an interpretation, we also find that Total Sensitivity and
Black Swan avoidance averaged over all sessions are reinforced after rare and extreme losses are
effectively experienced in the trials.

We next examine the behavioral observations though the lens of Reinforcement Learning models,
which are theoretical benchmarks in the exploration-exploitation literature (see e.g. [46     ]). More
specifically, the modelling contribution of this study is to introduce sensitivity to Black Swans and
Jackpots in a new class of augmented Q-Learning models and we estimate their parameters using
observed choices and outcomes for each rat. Interestingly, the model selected through information
criteria has a distinctive feature: it separates NE/RE from REE in the decision to pick one option
rather than any of the other. In other words, the selected model says that most rats behave as if
they attach different weights to normal/rare outcomes and to rare and extreme outcomes,
especially losses, in Decision-Making.

Results

Measures of sensitivities to REE in a four-armed bandit task
Figure 1      summarizes the main features of our experimental setting. In panel (a) is depicted a
schematic representation of the Skinner box, in which all rats performed all 41 experimental
sessions . Each session consisted of about 120 trials. Each rat had the possibility at all times to poke
into 4 holes, each corresponding to a different sequence of gains and losses, drawn at random for
each rat from a fixed distribution across sessions. Gains were sugar pellets while losses were time-
out punishments (time period during which nose-poke remained inactive, thus entailing an
opportunity cost in terms of pellets not consumed) measured in seconds (see the Material and
Methods sections on Experimental Model and Subject Details, Experimental Method Details). In
the following we use “options” for possible choices and “choices” for observed choices. The key
feature of the four possible options associated to each available hole was that they were
combinations of convex (that is, accelerating) and/or concave (that is, decelerating) gains and
losses with decreasing frequencies of occurrence, in panel (b) of Figure 1      (see the Material and
Methods section on Modelling and Statistical Analysis for the Jensen gap as a quantitative measure
of convexity). While, as shown in the first and last columns, values for losses and gains differed for
convex and concave options, the associated probabilities were assumed to be identical. They were
set, as seen in the middle column, to {p1 = 0.25 − ε/3, p2 = 0.2 − ε/3, p3 = 0.05 − ε/3, ε} for both
concave and convex gains. Parameter ε is the (very small) ex-ante probability of the largest
outcome that we label the Jackpot for the 80-pellet gain, and the Black Swan for the 240-second
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loss. Both outcomes are denoted Rare and Extreme Events (REE in short) (as a convenient shortcut,
therefore, the Black Swan is thought of as a rare and extreme loss, to differentiate it from a rare
and extreme gain).

The next largest values (that is, 12 pellets and 15 seconds, vs 5 pellets and 36 seconds) are labeled a
Rare Event (RE), since their total probability is around 10% and the associated values are
moderate compared to REE. Note that for concave gains and convex losses the RE and REE values
coincide. This is to contrast with the Jackpot and Black Swan that occur only if convex gains and
concave losses are chosen, respectively. With total probability about 90%, therefore, the remaining
set of lowest values in the first two rows (highlighted in blue in panel (b) of Figure 1     ) for
concave and convex options are labeled Normal Events (NE), and these are the typical events most
considered in the literature. Combining gains and losses that are either convex or concave then
delivers 4 options.

The 4 options that correspond to the 4 holes in the Skinner box are pictured in panel (c) of Figure
1     , with the following meaning. On the horizontal x-axis are reported (in decreasing order
moving away from the origin) the ex-ante probabilities that are unknown to the subject, which
only observes the outcome that is measured on the vertical y-axis (In contrast with [10     ], we do
not give rats any cue about the events’ frequencies during the training sessions, which are set by
us as experimenters. This makes our setting ecologically closer to experience-based designs.). For
convenience, gains appear in the upper-right quadrant while losses appear in the lower-left one.
For example, the option named Anti-fragile (after [48     ]) at the top of panel (c) is composed of
convex gains and convex losses: the right part depicts the points in the (x, y) axis are {p1, 1}, {p2, 3},
{p3, 12}, {ε, 80}, corresponding to the fourth column in panel (b); the left part corresponds to the
points {ε, −15}, {p3, −15}, {p2, −12}, {p3, −6}, where “negative” values are interpreted as losses in
seconds. Looking at the green curves that summarize the Anti-fragile option, then, one visualizes
convexity directly from the properties that gains accelerate moving right from the origin, while
losses decelerate moving left from the origin, with decreasing probability. Alternatively,
decreasing probability can be thought of as increasing numbers of trials that are needed to
experience the associated gain or loss. As a consequence, the Anti-fragile option potentially
exposes to the Jackpot but avoids exposure to the Black Swan (While in panel (c) convex (concave)
gains and losses are identified by color, in green (red), a geometric description might be useful as
well. For example the property that a monotone, upward or downward, convex (concave) curve
lies below (above) its chords joining any pair of points can be used to identify green (red) curves.).

Symmetrically, the Fragile option in the lower part of panel (c) in Figure 1      has both gains and
losses that are concave (in red). Gains are {p1, 2}, {p2, 4}, {p3, 5}, {ε, 5}, which means that gains
plateau at 5 pellets, compared with 80 for the Jackpot attached to convex gains in the Anti-fragile
option. In the loss domain, the Fragile option delivers {ε, −240}, {p3, −36}, {p2, −9}, {p3, −3}: it
exposes to the Black Swan with an awfully long delay of 240 seconds. For the Fragile option, then,
gains decelerate while losses accelerate, with decreasing probability, so that it potentially exposes
to the Black Swan but avoids exposure to the Jackpot. Finally, the ways the Robust and Vulnerable
options combine convex/concave gains and losses may be viewed as symmetric: the Robust choice
protects from the Black Swan but at the same time misses the opportunity to get the jackpot, while
the Vulnerable option potentially delivers both REE since both gains and losses accelerate with
decreasing probability (or increasing number of trials).

In sum, the four options in panel (c) of Figure 1      are therefore combinations of the
convex/concave gains/losses in panel (b): the Anti-fragile option at the top is convex both in gains
and in losses, while the Robust option (left) is convex only in the loss domain. On the other hand,
the Vulnerable exposure (right) has convex gains only, while the Fragile option (bottom) is concave
both in gains and in losses. This implies that the Jackpot of 80 pellets may materialize only when
either the Anti-fragile or the Vulnerable exposure are picked, while the Black Swan of 240 seconds
may be experienced only by rats choosing either the Fragile or the Vulnerable exposures. In the

https://doi.org/10.7554/eLife.98487.1
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Figure 1

Experimental design - panel (a), schematic representation of the rat behavioral operant chamber equipped with four holes,
each associated with a specific exposure to gains and losses (Anti-fragile, Robust, Vulnerable and Fragile); panel (b), values
and frequencies for convex (green)/concave (red) gains/losses, with the largest probabilities highlighted in blue for Normal
Events (20 to 25%, NE domain), Rare Events in yellow (5%, RE domain) and Rare and Extreme Events in pink (ε-probability
smaller than 1%, REE domain); panel (c), representation and label of the four possible options, with increasing gains/losses
(up/down) against decreasing probabilities (right/left): “Robust” has convex losses (avoidance of negative REE called Black
Swan) and concave gains (avoidance of positive REE called Jackpot), “Anti-fragile” has convex losses and gains (Black Swan
avoidance and Jackpot seeking), “Fragile” has concave losses and gains (Black Swan seeking and Jackpot avoidance) and
“Vulnerable” has concave losses (Black Swan seeking) and convex gains (Jackpot seeking); panel (d), representation of two
measures of Sensitivity to REE, i.e. “Total Sensitivity” (y-axis) and “One-sided Sensitivity” (x-axis) and examples, where green
dot represents sensitivities associated with an hypothetical near-Anti-fragile profile (close to full Jackpot seeking and
complete Black Swan avoidance), red dot represents sensitivities associated with an hypothetical near-Fragile profile (close to
full Black Swan seeking and Jackpot avoidance), and blue dot represents sensitivities associated with an hypothetical choice
mixing mostly Anti-fragile and Robust (near complete Black Swan avoidance and partial Jackpot seeking) - see the Material
and Methods section on Modelling and Statistical Analysis for details

https://doi.org/10.7554/eLife.98487.1
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Material and Methods section on Modelling and Statistical Analysis, it is shown that convex
gains/losses dominate concave gains/losses in the sense of Stochastic Dominance, provided that the
probability of REE ε is larger than about 0.3%. In our design, the values for ε we assumed to meet
this condition but still are below 1%, which admittedly ensures that REE are indeed rare. In
addition, we provide in the Material and Methods section on Modelling and Statistical Analysis, a
characterization of the convexity properties of all options, in terms of Jensen gaps that we relate to
statistical moments in closed-form.

Panel (d) in Figure 1      is the central graphic tool for presenting the main behavioral data from
our experiments. Because, as emphasized so far, convexity of available options is a key dimension
in our design about decision-making under REE, our first task is to track how often rats have
chosen convex rather than concave options in gains/losses, over the course of the 41 sessions that
each of our 20 rats has run. Second, we also aim at assessing whether rats have possibly picked
convex options more or less often in the loss domain than in the gain domain, which would depict
an asymmetric sensitivity to REE. Both dimensions easily combine in panel (d). On the vertical y-
axis we report the sum of the frequencies of choosing both convex gains (that is, Anti-fragile or
Vulnerable) and convex losses (that is, Anti-fragile or Robust), while on the horizontal x-axis is
depicted the difference, defined as the frequency of picking convex options in the gain domain
minus the frequency of choosing convex options in the loss domain. The resulting rotated square
in panel (d) of Figure 1      is then a convenient way to report each rat’s choices over one or several
sessions, along both dimensions and can be used to identify different types of behavior. More
details about how to formally construct such a rotated square are given in Material and Methods,
subsection Modelling and Statistical Analysis.

To see why panel (d) is useful, let us first focus on its 4 edges, which represent extreme cases in the
sense that they correspond to specialized choices: if an hypothetical rat’s behavior is summarized
by a point located at exactly the Anti-fragile edge, it means that this rat has exclusively chosen the
Anti-fragile option at each nose poke during all 41 sessions. As a consequence, the vertical y
coordinate reaches its maximum value (2 if frequencies are added up) while the horizontal x
coordinate is zero since both convex gains and convex losses are - symmetrically - chosen all the
time. Following the same logic, the Fragile edge has coordinate {0, 0} since it involves choosing
concave gains and losses all the time, i.e. never choosing convex options. The Robust option, in
contrast, is depicted by {−1, 1} since it implies picking exclusively convex losses but concave gains,
in an asymmetrical fashion. The reverse asymmetry characterizes the Vulnerable edge at {1, 1},
with convex gains and concave losses chosen at all times. Now when a rat’s behavior happens to
be represented by a point that is not located at any of the 4 edges, such a location indicates that
that rat diversifies (that is, mixes) across options. For example, the green point in panel (d) is close
to the Anti-fragile edge and located on the vertical line linking it to the Fragile edge, which might
happen if a rat would pick the former with, say, frequency about 95% of the time and the latter
about 5% of the time. The red point would be attained by reversing those proportions. Of course
many other combinations of the 4 options is possible. For example, the blue point depicts an
hypothetical rat that would diversify across the Anti-fragile and Robust options almost equally, at
the expense of the two remaining options that have negligible frequencies. Th next section will
show that diversifying primarily across two options is indeed the main pattern featured in our
behavioral data.

A feature of our experimental design and its implications need to be emphasized in more details at
this point. First, the set of NE has total probability of about 2(p1+p2) ≈ 0.9 since ε is a small number.
RE are rare but not extreme is the sense that their total probability 2p3 ≈ 0.1 is moderately small
while their consequences are moderately large. REE, in contrast, are more extreme outcomes,
since they imply waiting 240 seconds (the Black Swan) and gaining 80 pellets (the Jackpot), with a
much smaller likelihood. In practical terms, the frequency of each REE is ex-ante around 1% for all
rats. Despite their small probability, REE have some importance in the following sense. As shown
in Material and Methods, subsection Modelling and Statistical Analysis, the values for both
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frequencies and outcomes ensure that concave options dominate, in the sense of first-order
stochastic dominance, convex options over NE, as well as in the sense of second-order stochastic
dominance over the union of NE and RE. In other words, if the extreme gains and losses do not
materialize, concave gains (losses) dominate convex gains (losses). However, this does not
necessarily hold when REE are added: provided that ε ≥ 0.302% (which we assume hold ex-ante),
convex gains (losses) dominate concave gains (losses) in the sense of second-order stochastic
dominance. This implies, in particular, that over the full domain that is the union of NE, RE and
REE, expected gains for convex options are larger than expected gains for concave options.
Likewise, expected time-out punishments for convex options are smaller than expected gains for
concave options over the full range including NE, RE and REE.

The reason that we impose such a dominance reversal is as follows. In theory, a rat choosing
concave options at all times can be thought of as having absolutely no sensitivity to REE: it acts as
if those events never occur and always go for first or second-order stochastic dominance (over NE
and RE) as Decision-Making criteria. And those criteria unequivocally point to the Fragile option as
the best choice. This gives our first measure along the y-axis of panel (d), Total Sensitivity to Rare
and Extreme Events, that again simply sums up the proportion of convex exposures that are
chosen for each rat over the 40 sessions. A rat picking the Fragile option at all times has zero Total
Sensitivity, since it behaves as if the Black Swan or the Jackpots never occur. At the other extreme,
a rat picking exclusively the Anti-fragile option signals maximal Total Sensitivity, since it always
stays exposed to the Jackpot while always avoiding the Black Swan. Moderate Total Sensitivity
arises, then, if a rat diversifies its choices, for instance primarily across either Anti-fragile and
Fragile, or Robust and Vulnerable. Note that such pairs obviously achieve identical outcomes in
terms of pellets and time-out punishments when chosen with equal frequencies.

Because gains and losses are deliberately integrated in our design, we also need to distinguish
whether rats tend to choose convex exposures symmetrically over the gain and loss domains. This
is the purpose of the measure along the x-axis in panel (d). Suppose that we focus for now on the
upper half of the square, which implies that Total Sensitivity to REE is larger than one. We then say
that a particular rat exhibits Black Swan Avoidance when it picks convex exposures in the loss
domain more often than in the gain domain. Symmetrically, Jackpot Seeking is the label we use to
depict a situation when convex choices are more often made in the gain domain. Note that these
statements, rather qualitative at this stage, will be quantified below. Given its Total Sensitivity
larger than one, a rat’s behavior exhibits Black Swan Avoidance (Jackpot Seeking) whenever it is
represented by a point that is located on the upper right (left) quarter of the square in panel (d).
Symmetrically, for Total Sensitivity smaller than unity, one concludes to Jackpot Avoidance (Black
Swan Seeking) whenever the rat is represented by a point that is located on the lower right (left)
quarter of the square In other words, the numbers read on the y-axis measure One-Sided
Sensitivity to Rare and Extreme Events: when negative (positive) it indicates REE Avoidance (REE
Seeking). Fully tooled-up with both measures, we report in the following sections our main results.

Main phenotype features quasi-complete Black
Swan Avoidance but partial Jackpot Seeking
In this section, we present the behavioral data coming from the 41 sessions that we have been
running for each of the 20 rats - see the Material and Methods section on Experimental Method
Details for more details. We organize the data in the following way, so as to underline two features
of the choices made by the sample of rats. In each panel of Figure 2      is depicted the (rotated)
square that we have already presented in panel (d) of Figure 1     , the edges of which represent the
four exposures if chosen exclusively at all times. In the square, each point represents a rat. A quick
glance at Figure 2      already shows that virtually no such point is located exactly at any of the 4
edges. Quite to the contrary, since it turns out that all rats diversify their choices across a set of
options, which is reminiscent of observed behaviors such as, for example, bet-hedging in animals
and financial portfolio strategies used by humans (see [5     ], [36     ], [39     ], [44     ]).
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Figure 2

Total Sensitivity to REE (y-axis) against One-sided Sensitivity to REE (x-axis; i.e. REE seeking towards the right and avoiding
towards the left) - see Material and Methods section on Modelling and Statistical Analysis - panel (a) black-colored points
depict 41 sessions run by 20 rats all together; panel (b) in each square representing a rat, colored points depict 41 sessions
for each of the 20 rats; the color code indicates the 2 main categories of profiles observed (blue: the most sensitive to REE
and black swan avoiders; green: sensitive to REE but neither biased towards seeking nor avoidance (close to midline on the
graph); 2 outliers were identified and color-coded in red and pink; panel (c) color-coded points depict averages over the 41
sessions for each of the 20 rats such points. Most points lie on the right half of the square, that is, on the REE Avoidance side.
In addition, within the right half most points are located in the upper quarter, that is, above the Robust-Vulnerable vertex,
suggesting moderate to high Total Sensitivity as well as Black Swan Avoidance. In the Material and Methods section on
Experimental Method Details, we discuss the contribution of the training sessions to such patterns. These two patterns are
better seen if we focus on each individual rat.

https://doi.org/10.7554/eLife.98487.1
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How rats diversify their choices can be represented in three steps, focusing first on all choices
made by all 20 rats over the 41 sessions, depicted by black points in panel (a) of Figure 2     . More
precisely, each black dot represents a rat’s session, with a total of about 800 We now look
separately at individual behavior for each of the 20 rats across the 41 sessions, in panel (b) of
Figure 2     . Each rat is represented by a square and, within each square, a point represents one of
the 41 sessions for that particular rat. For convenience, the vertices of all squares are labelled by
letters: “A” obviously stands for the Anti-fragile exposure, while “R”, “V” and “F” stand respectively
for the Robust, Vulnerable and Fragile options. All rats exhibit moderate to high Total Sensitivity,
with the exception of rat 17 depicted in red in panel (b) of Figure 2     . Among this vastly dominant
group, one can identify two sub-groups, color-coded in blue and green, and a second outlier.
Starting with the latter, rat 19 (in purple) is the sole rat that exhibits both the highest Total
Sensitivity and REE (Jackpot) Seeking, by mixing mostly Anti-fragile (quite often) and Vulnerable
(less often) options.

Except for rats 17 and 19, the remaining 18 rats can be gathered in two sub-groups. The largest one
gathers the rats colored in blue: rats 1 to 6, 10, 12 to 14, 16, 18 and 20 diversify their choices
primarily across the Robust and Anti-Fragile options, with various frequencies. This means that
the dominant phenotype, observed over 13 rats depicted in blue, exhibits both moderate to high Total
Sensitivity together with Black Swan Avoidance: rats within this group try more often to avoid the
Black Swan than to be exposed to the Jackpot. A smaller sub-group composed of the rats depicted
in green, however, diversify their choices rather across the Fragile and Anti-Fragile options: those
5 rats depicted in green exhibit also Total Sensitivity but feature neither Black Swan Avoidance nor
Jackpot Seeking: those rats have zero One-Sided Sensitivity or, in other terms, make choices that
feature symmetry towards in terms of neither avoiding nor seeking REE.

Third, the two groups of blue and green rats are conveniently represented in panel (c) of Figure
2     . Each point is associated to a particular rat and it represents the average of its choices over the
4A sessions, as measured through our two metrics. As for Total Sensitivity, one notices that all rats
but 4 have an average sensitivity larger than half its maximal value: 3 rats having a Total
Sensitivity slightly below 1 and a single rat with a value around 0.5. The latter (rat 17 in red) is the
closest to a Fragile behavior, with a significant deviation from it, though. Overall, therefore, most
rats (that is, 19 out of 20) are rather sensitive to the presence of REE. In addition, panel (c)
confirms the striking feature that most rats exhibit Black Swan Avoidance (i.e. negative One-Sided
Sensitivity). Rats 17 and 19 (in red and purple respectively) are outliers for opposite reasons. The
latter is the unique rat with low Total Sensitivity while the former is the rat with the largest Total
Sensitivity and with pronounced Jackpot Seeking behavior. Among the remaining group composed
of 18 rats, all with moderate to high Total Sensitivity, the average behaviors in panel (c) allow one
to identify the two sub-groups that we have previously stressed: the 5 rats depicted in green have
zero One-Sided Sensitivity (neither Black Swan Avoidance nor Jackpot Seeking) while the 13 blue
rats exhibit pronounced Black Swan Avoidance. Exact values can be found in the Supplementary
Material section on Behavioral measures for each rat.

An interesting characteristic appears from direct inspection of panel (c) in Figure 2     : the sample
of 16 rats with the largest Total Sensitivity features a positive relationship between Total and One-
Sided Sensitivities. In other words, among those rats that have both moderate to high Total
Sensitivity and Black Swan Avoidance, rats that are more sensitive overall to convexity tend to also
exhibit lower Black Swan Avoidance (that is, less negative One-Sided Sensitivity). It is as if large
Total Sensitivity comes with a mixture of exposures that tend to favor convexity in the gain
domain relative to the loss domain. In a sense, rat 19 in purple can be seen as a limiting example
of that behavior: it combines the Anti-fragile and Vulnerable options so as to approach near-
maximal Total Sensitivity and Jackpot Seeking as opposed to Black Swan Avoidance.

https://doi.org/10.7554/eLife.98487.1
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This property is confirmed if we compute the correlation between average Total Sensitivity and
average One-Sided Sensitivity. For example, for the whole sample of 20 rats, this correlation is
close to (and not statistically different from) zero, while it has a value of about 0.57 over the 41
sessions within the group of 16 rats with Total Sensitivity larger than one. In other words, if we
drop the 4 rats with the smallest Total Sensitivity from the sample (those rats represented by
points below the Robust-Vulnerable vertex in panel (c) in Figure 2     ), we are left with 16 rats for
which larger Total Sensitivity is associated with lower One-Sided Sensitivity/less Black Swan
Avoidance, that is, more symmetry and even Jackpot Seeking for rat 19. Moreover, if we divide the
41 sessions of the 16-rat group over time, the correlation between Total and One-Sided Sensitivity
increases from about 0.17 on average in the first 10 sessions, to 0.56 in the next 10 sessions, to 0.71
in the next 10 sessions, and finally to 0.64 in the final set of 10 sessions. Therefore, the pattern we
alluded to appears early in the sessions and is consistent over time.

In Figure 3     , we additionally report behavioral measures of Black Swan Avoidance and of
Jackpot Seeking, defined as the shares of nosepokes that respectively lead to exposure to Jackpots
and non-exposure to - i.e. avoidance of - Black Swans (how those behavioral measures relate to
Total and One-Sided Sensitivities is described in details in the Material and Methods section on
Modelling and Statistical Analysis). What the median values of Black Swan Avoidance and of
Jackpot Seeking that appear in Figure 3      reveal is that the blue and green phenotypes differ
sharply in one respect: half of the rats depicted in blue achieve nearly complete Black Swan
Avoidance since more than about 90% of their nosepokes lead to avoid being exposed to Black
Swans, compared to more than about 40% for half of the green rats as well as for the red rat and
pink rat. In contrast, blue and green rats do not differ in terms of median Jackpot Seeking. This is
confirmed by paired Wilcoxon tests: Black Swan Avoidance and Jackpot Seeking are significantly
different for blue rats (p = .0002) but not for green rats (p = .6250). The two rats classified as
outliers (red and pink) differ from both blue and green rats in terms of Jackpot Seeking. The red
rat seeks quasi-complete exposure to Jackpots whereas the pink rat seeks quasi-complete
avoidance of Jackpots. Exact values can be found in the Supplementary Material section on
Behavioral measure for each rat.

Black Swans do reinforce sensitivities to REE while Jackpots do not
Having documented that most rats (19 out of 20) exhibit medium to high Total Sensitivity and
medium to high Black Swan Avoidance, we now address the issue of how rats respond to the actual
occurrence of REE within a session. More precisely, we aim at comparing the average behavior of
each rat before and after the occurrence of Black Swans and Jackpots. In Figure 4     , we report
how REE affect Total and One-Sided Sensitivities, within a window formed by the average over 10
nose pokes before and the average over 10 nose pokes after. For both panels (a) and (b), each point
represents a particular rat and the colors group all rats as in panels (b)-(c) of Figure 2     . In panel
(a) of Figure 4      we report the impact of Jackpots while in panel (b) is depicted the effect of Black
Swans, for Total Sensitivity on the left and One-Sided on the right. Dotted 45-degree lines represent
the no-effect benchmark.

Visual inspection of both panels suggests that while Jackpots tend not to affect both sensitivities
much, Black Swans do and tend to increase Total Sensitivity and to decrease One-sided Sensitivity:
most dots do tend to be located above (below) the 45-degree line in the lower left (right) panel. In
other words, rare and extreme losses/Black Swans tend to reinforce Total Sensitivity, contrary to
extreme gains/Jackpots. This reinforcement effect due to experiencing negative REE is consistent
with our main result that most rats are sensitive and chose to avoid extreme losses, that is, exhibit
medium to high Total Sensitivity and Black Swan Avoidance. In addition, panel (b) also reveals that
rare and extreme losses tend to make Black Swan Avoidance stronger: most dots tend to be located
below the 45-degree line, while in the lower right panel. Again, this is consistent with the
observation that extreme losses are somewhat given more weights than extreme gains by most
rats, which implies that Black Swan Avoidance is reinforced when a extreme loss is experienced.
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Figure 3

Median behavioral measures of Black Swan Avoidance and Jackpot Seeking by phenotype, defined as median shares of
nosepokes exposed to REE (in percentage) for blue and green phenotypes; phenotypes are indicated in column with a
corresponding colored symbol at the center - left panel depicts the percentage of nosepokes exposed to Black Swans in black
and not exposed to Black Swans in light gray - Black Swan Avoidance increases with the share of non exposure to Black
Swans; right panel depicts the percentage of nosepokes exposed to Jackpots in black and not exposed to Jackpots in light
gray - Jackpot Seeking increases with the share of exposure to Jackpots; blue and green phenotype comparisons are carried
out by Wilcoxon Rank Sum tests (⋆ means p < 0.05 and ⋆⋆ means p < 0.01)
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Figure 4

Responses of Total Sensitivity to REE and of One-sided Sensitivity to REE, averaged over the 41 final sessions, following
Jackpots in panel (a) and Black Swans in panel (b), for each of the 20 rats. Each dot indicates one rat and dots are color coded
to indicate the profile of the animal, as in Figure 2. Black dotted lines materialize no change in sensitivities after exposure to
the REE compared to before. Black solid lines represent spline estimates - see Material and Methods section on Modelling
and Statistical Analysis
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This is confirmed by statistical tests, including one using bootstrap, as shown in the Material and
Methods section on Modelling and Statistical Analysis (see in particular the discussion of Table
3     ). In sum, a within-session analysis of the effects of experiencing a REE shows that the
occurrence of Black Swans tends, in the short-run, to significantly reinforce both Total Sensitivity
and Black Swan Avoidance, while the occurrence of Jackpots tend to leave Total and One-Sided
Sensitivity unaltered.

Q-Learning models require specific REE
decision weights to mimic rats’ behavior
We have introduced sensitivity to Black Swans and Jackpots in a new class of augmented
Reinforcement Learning models and we have estimated their parameters using observed choices
and outcomes for each rat. The selected model ended up with a distinctive feature: it separates
normal from rare and extreme outcomes through different weights in the Decision-Making
process. Adding such specific sensitivity results in a good fit of the selected model and simulated
behaviors that are close - to behavioral observations, whereas a standard Q-learning model
without sensitivity to REE is rejected for almost all rats.

To each of the four available options, indexed below by “o” (from 1 to 4, referring to Antifragile,
Fragile, Robust, Vulnerable) in equations (1)     , we attach at each moment in trial/time t a gain
sub-value Qg(o) and a loss sub-value Ql(o) that are updated as follows:

where the convention that updated values are indexed by t + 1 means right after observing the
gain  or loss  corresponding to the choice made at t. Parameters αg and αl are usually labeled
learning rates, indicating the speed at which reward prediction error gets updated into the latest
values. Limiting cases occur when setting the learning rate either to zero - its smallest possible
value - which means no subvalue updating, or to one - its largest possible value - which means that
the subvalue tracks the obtained reward itself. While equations (1)      applies for the updating of
the chosen option, a similar updating rule applies for the three other options that are not chosen
at that moment, by assuming that this happens as if the reward was zero, with different
parameters. That is, for options that are not chosen, the updating rules for subvalues are simply

 and , where the forgetting rates  and  are assumed to be
bounded between zero and one.

The novel feature of our augmented Q-Learning model, besides integrating gains and losses, is that
specific weights are attached to options that may produce REE. More specifically, we model the
value of each option o as:

In equation (2)     , the value of each option Vo is the sum of two terms. The first is the decision
weight attached that sums up the gain and loss subvalues, each weighted by parameters λg and λl
that may reflect a differential effect. Importantly, in the class of nested models that we estimated,
REE may or may not be incorporated in the gain and loss subvalues, that should be thought of as
averages - though not arithmetic but of an exponential moving type in view of equations (1)      -
see page 32 in [46     ]. The second and key term in equation (2)      specifically captures the decision
weight attached to REE, and it can itself be decomposed into the decision weights on Jackpots and
on Black Swans. More precisely, the indicator function 1JP (o) equals one if the option exposes to
Jackpots (namely when the chosen option is either A or V) and zero otherwise. Similarly, 1BS(o)
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equals one if the option exposes to Black Swans (namely options F and V) and zero otherwise.
Therefore, γg and γl reflect the (possibly different) weights attached to Jackpots and Black Swans
in the decision to choose one particular option rather than any other available.

Finally, the associated so-called action probabilities are given, for each option, by the Softmax
function (a.k.a. the multinomial Logit model) , each a number between zero and
one. In the estimation procedure detailed below, the parameters of interest are γg and γl in the
sense that the benchmark model sets them to zero. Our candidate models are then compared
against such a benchmark in two ways: one sets of models incorporates REE into sub-values while
the second does not, and γg and γl are estimated for both. We hope it has become clear by now that
the interest of the latter set of models is of interest because it indicates, if selected, that REE are
integrated into the Decision-Making process in a separate way and not through averages, that is,
not through the sub-values. In sum, the class of augmented Q-Learning models with gains and
losses has at most 8 parameters: two learning rates, two forgetting rates, two decision weights for
sub-values and two decision weights for REE.

We have used information criteria to determine the selected model for each rat over all its choices,
as summarized in Table 1      by phenotype. Selected models indicate that 17 rats out of 20
integrate REE, at least using specific decision weights, in their Decision Making process, while only
the remaining three do not. Most animals (8 blue rats, 4 green rats, as well as pink and red rats)
integrate REE only though their specific decision weights (with or without specific forgetting
parameters). Three blue rats integrate REE both with specific decision weights and in Q-sub-
values. In contrast, the learning and forgetting parameters do not help to discriminate models.

Figure 5      reports the predicted (bottom left) and simulated sensitivities (bottom right), which
can be compared to actual sensitivities (top, which replicates the right panel in Figure 2     ). The
predicted sensitivities, generated using the estimated parameters of the selected model given the
actual rewards obtained during the 41 sessions, are accurate descriptions of the observed
sensitivities computed from the actual choices. Simulated sensitivities are obtained by running the
selected model over artificially generated 41 sessions, using its median parameter values for blue
and green rats (and individual parameter values for the pink and red rats). These simulations
show first that the selected Q-Learning model generate behavioral data that are stable for the blue
rats as well as for the red and pink ones. Second, simulated green rats tend to separate into two
stable groups, still along the vertical line.

Finally, estimated parameter values appear in Figure 6     , color-coded in the same way as in
previous figures. The details about nested models and how the selected one is obtained are
presented in the section of the Materials and Methods on Augmented Q-Learning Model
Estimation and Simulation. The main result in Figure 6      relates to a major difference between
the behaviors of blue and green rats, as seen through the lens of our augmented Q-Learning
model: blue rats have a significant specific sensitivity to Black Swans that is translated into a very
negative decision weights attached to options that expose to them (p = 0.0102). In other words, blue
rats have a negative γl, which means that they tend to avoid the options with Blacks Swans (F and
V) most of the time. Along that dimension, they differ significantly from green rats, which mostly
mix options F and A.

Discussion
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Table 1

Selected augmented Q-Learning models by phenotype

Figure 5

Total Sensitivity to REE (y-axis) against One-sided Sensitivity to REE (x-axis) averages for each rat over the 41 sessions; top
panel replicates the right panel in Figure 2     : observed sensitivities; bottom left panel: predicted sensitivities derived from
selected models; bottom right panel: simulated sensitivities computed from runs of selected models over artificial 41
sessions
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Figure 6

Parameters of the selected Q-Learning model, estimated for each rat over the 41 sessions - left panel: decision weights for
averages of gains and losses and for REE; right panel: learning and forgetting rates for gains and losses; while individual
parameter for pink and red rats are represented as dots, parameters for blue and green rats are represented by box plots
with 10th and 90th percentiles, interquartile ranges and median; between phenotype comparisons carried out by Wilcoxon
Rank Sum tests (⋆ means p < 0.05) - see Material and Methods subsection Augmented Q-Learning Model Estimation and
Simulation for details
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Quasi-complete Black Swan Avoidance vs partial
Jackpot Seeking as evidence that extreme gains
and extreme losses are treated differently
To sum up the behavioral results: we have shown, first, that all rats in our sample exhibit some
Total Sensitivity - in fact, medium to large Total Sensitivity for most rats - to REE. And, second, that
the main phenotype features nearly complete Black Swan Avoidance coupled with partial Jackpot
Seeking. We interpret these results as intimately related to a fundamental asymmetry between
negative and positive REE. In our design, rats have to endure larger frequent delays to avoid Black
Swans and to forgo larger frequent gains for a Jackpot to occur. However, rats can avoid with
certainty the Black Swans when doing so, making convex menus over losses relatively more
attractive, but cannot guarantee that a Jackpot will occur, making convex options over gains
relatively less attractive. The actual occurrence of the latter will depend on the particular draw
obtained in each of the repeated sessions. As an illustrative example, suppose one uses a Poisson
approximation of the probability that the REE materializes given that 150 choices are made within
a session, which falls within the range of the number of nose-pokes that rats have performed. If
one further supposes that the ex-ante probability of REE is 1%, then the probability to observe
exactly one REE in that session is about 78%, which leaves some room for the REE to not occur.
Our design thus captures an asymmetry that arguably distinguishes positive from negative REE in
general: while it may be possible to completely avoid the latter, the former is never expected to
occur for sure even if the appropriate choices are repeated. In fact, the rarer the Jackpot, the
larger the number of trials needed to experience at least one, requiring marked perseverance in
Jackpot Seeking.

In the specific context of our experimental task, this asymmetry implies that although complete
Black Swan Avoidance means avoiding Black Swans with certainty, complete Jackpot Seeking does
not ensure that Jackpots will necessarily occur. In sharp contrast, the values corresponding to the
frequent domain - i.e. the union of NE and RE - will be observed often given their ex-ante
probabilities larger than 10%. In other words, while inference about how often REE - and Jackpots
for that matter - occur is not reliable, accurate inference about how the frequent gains materialize
seems much more within reach given the many choices made in the conditioning and final
sessions.

This feature of the experimental design has important consequences for the choices that rats
make. To the extent that they explore different options, rats are subjected to a flood of stimuli that
point at concave options as the optimal choice: the Fragile option, in particular, generate larger
gains but smaller losses in the frequent domain and in fact it stochastically dominates all the
others if REE do not materialize. To put it differently, for each session, the Fragile option is
dominated by the Anti-fragile one if both the Black Swan and the Jackpot occur. However, because
complete Black Swan Avoidance practically insures against the occurrence of Black Swans, it
seems like an attractive combination even if this implies violating Stochastic Dominance in the
frequent domain: Stochastic Dominance over the full domain is attained with certainty. In
contrast, complete Jackpot Seeking is less attractive since it does not ensure that a Jackpot will
occur: the cost of getting smaller gains most of the time means that partial Jackpot Seeking makes
sense as a good compromise since it implies that Stochastic Dominance in the frequent domain is
less often violated, in a context where Stochastic Dominance over the full domain cannot be
attained with certainty.

In sum, bearing the cost of getting smaller gains frequently is acceptable only if the compensating
benefit in the form of a Jackpot materializes when many choices are made. Similarly, bearing the
cost of getting larger losses frequently is acceptable only if the compensating benefit in the form of
an avoided Black Swan is ensured. While the latter condition is certainly met if Black Swan
Avoidance is complete, the former condition is not even if Jackpot Seeking is complete. Results
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suggest that rats depicted in blue have learned this property, since they combine mostly the Robust
and Anti-fragile options to obtain quasi-complete Black Swan Avoidance together with partial
Jackpot Seeking. In contrast, the rats depicted in green seem not to have learned this property, as
they mix Anti-fragile and Fragile options, thus remaining exposed to Black Swans.

In theory, since frequent outcomes occur often when choices are repeated many times, Stochastic
Dominance in the frequent domain should be detected and learned rather quickly by animals.
However, the experimental literature shows that animals need a large number of repeated
sessions to learn Stochastic Dominance (e.g. [55     ], [3     ]). We think our results suggest a potential
explanation : animals may need a significant amount of sampling to infer that REE are excluded.
In addition, one may wonder at this stage whether our results can be expressed in terms of loss -
and possibly ambiguity - aversion. Although most other studies have not focused on REE, to the
best of our knowledge, neuroeconomic tasks using positive and negative outcomes have generally
shown that loss aversion occurs (see e.g. [17     ], [13     ], [57     ]). This bias towards negative/losses
in the valuation of outcomes has been previously shown and is in line with Prospect Theory
([21     ]), although models following this approach fit better rat’s behavior in tasks only involving
positive rewards and in which loss is not a punishment, but rather a lack of positive reward
([10     ],[3     ]). It could also include some emotional/anxiety-related component ([56     ]), possibly
involving the basolateral amygdala as shown in rats ([50     ]). Ambiguity aversion in animals, on
the other hand, seems to have been less explored (see [40     ] for non-human primates). Our
results tentatively suggest that rats might conform to ambiguity reduction regarding REE, when
combining Black Swan Avoidance that is quasi-complete and Jackpot Seeking that is only partial:
while the Jackpot’s sampling frequency of occurrence is in each session bounded below by zero
and above by ε at best, the Black Swan’s sampling frequency approaches zero when Black Swan
Avoidance is nearly complete.

The quasi-complete Black Swan Avoidance together with partial Jackpot seeking, that we report
for the main phenotype represented by rats depicted in blue, provides further evidence that
extreme gains and losses receive differential treatment in the Decision-Making process. However,
we show that the classical Q-Learning models which account for a potentially different treatment
of gains and losses do not fit our behavioural data. Interestingly enough, observed behaviors are
in contrast neatly captured in the selected Q-Learning models that are augmented with specific
sensitivities to REE, and precisely through a marked avoidance to Black Swans which sets the main
phenotype represented by rats depicted in blue apart from rats depicted in green.

The augmented Q-Learning models
suggest a specific cerebral pathway for REE
Both the good fit and the accurate simulations of the augmented Q-Learning model for the main
behavioral phenotype suggest a novel neurobiological conjecture. Viewed from the lens of the
model, 11 rats (out of the 13 that form the blue group, as detailed in the Material and Methods
section) exclude REE for the Q sub-values while expressing a specific sensitivity to Black Swans
through a negative parameter γl. This means that when evaluating available options, “blue” rats
do not incorporate Black Swans into the average of losses but rather attribute them a specific
decision weight, with the effect that options exposing to Black Swans become less attractive. For
humans, extreme stimuli have been shown to be more psychologically salient in perception and
memory than moderate stimuli in [25     ]. Our experimental and modelling results suggest that
something similar could happen for rats. This insight from modelling opens up the possibility that
rare and extreme outcomes, especially rare and extreme losses, could be encoded differently in
the brain, compared to frequent and smaller rewards that are classically considered to be encoded
by the DA neurons ([9     ], [42     ], [57     ], [51     ]), the striatum ([7     ], [11     ]), and cortical areas
such as cingulate and orbitofrontal cortex ([41     ], [14     ])
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Further studies are necessary to identify how REE could be encoded and where. If we consider
that taking REE into account would require to integrating long-term outcomes and not only short
term considerations as studied by [52     ], we might hypothesize that the regions of interest could
be the anterior insula and amygdala. The latter being well known for its involvement in emotional
processes, it is wise to consider it could be involved in REE-related events, which are highly salient
and emotionally charged, and affect Decision-Making with a differential treatment of negative
outcomes ([7     ], [50     ]). From a statistical viewpoint, it makes sense not to add up “outliers” into
the first moment - the mean - of the observed distribution, because doing so could result in an
unstable sample average. In a related way, good Decision-Making might depend on giving special
treatment to REE over frequent rewards - as well as differential treatment of Black Swans vs
Jackpots - and if such practice is evolutionary advantageous in uncertain environments (see e.g.
[8     ]), this opens up the possibility that this would be reflected in the brain, possibly in different
species. To the best of our knowledge, such an hypothesis that builts upon experimental and
modelling results such as the ones we report here has not been put to the test in neurosciences, as
it should in view of the arguments developed above for humans and other animals. This aspect
could in principle be addressed within a computational validity framework, as advocated in
[38     ].

Relevance for humans
Whether humans would find Black Swan Avoidance and Jackpot Seeking attractive and how they
would combine them in a related experimental setup is a question that comes naturally to mind in
view of the results reported in this paper. Our novel experimental design can in fact be adapted to
human participants, so as to test in a similar fashion whether they adopt behavior that tend to
avoid harmful - and seek beneficial - REE. This makes the present results obtained with rats also
relevant for pressing questions that link the past and future of humanity. Usually gathered under
the concept of the Anthropocene, there is mounting evidence that climate and other
environmental changes mainly driven by human activities originate extreme events (see e.g.
[12     ]), raising the possibility of rare ones that could lead to partial or full extinction for many
species. Even though sizable uncertainty remains about the magnitudes involved, the associated
empirical evidence puts the human species in a specific situation that raises difficult but pressing
questions. Why has the human species not succeeded in the past in avoiding courses of action that
could potentially lead to such harmful REE, and to what extent will humans be able to cope with
them in the near future, should they happen? In other words, are humans engaged in a path that
diverges from Black Swan Avoidance instead of approaching it?

While intuitive, the notion that some adaptive and survival value derives from animal behaviors
that help avoid destructive REE, or at the very least help cope with them should they happen, still
lacks compelling evidence (see, however, [8     ]). If correct, such a conjecture would raise a
paradox, given the specific contribution of humans in creating environments that are more prone
to harmful REE: do humans possess a special trait that somehow prevented them to insure against
such REE, despite the evolutionary advantage possibly attached to avoiding them? Put differently,
to the extent that destructive REE are less exogenous to humans, due to their unique set of
technological capabilities, than they are to other species, could there exist an epigenetic rule that is
specifically human and that is conducive to behaviors that are unable to rule out extremely
harmful events? If that is the case, could such an epigenetic rule manifest itself in such a way that
the capacity of humans to cope with such REE, if they have become unavoidable, is hampered? For
example, is it the case that detecting somewhat predictable cues for REE, such as convexity in our
setting, is out of reach (see [2     ])?

In this study, we report results obtained from behavioral experiments conducted on rats that do
not go, fortunately, in the direction of a positive response to the above set of questions. More
precisely, the heterogeneity in individual behavior that we observe in rats, when confronted with
alternative options in an uncertain context, suggests that some animals may individually lack the
ability to insure themselves against a rare but consequential loss, even if they have the possibility
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to do so. In that sense, the human species, if afflicted by the same incapacity, is not alone in the
animal kingdom. Of course, the bright side of the coin is that most rats consistently chose options
that avoid almost completely exposure to a harmful REE and even provide partial exposure to
beneficial REE in the form of a large gain. As a matter of fact, this group is the most numerous in
our sample of rats that have run the experiments. A speculative hypothesis then comes to mind:
that some human individuals, if not all, may also settle on behaviors that avoid harmful - and
possibly seek beneficial - REE. More generally, if the sensitivity and reaction to REE differ among
individuals in some species, this raises the important question of how such heterogeneity affects -
and interacts with - population dynamics and social institutions, most importantly collective
Decision-Making.

Material and Methods

Experimental Model and Subject Details

Animal Subjects

Adult Lister Hooded males (n = 20, 200 g at arrival, Charles River) were housed in groups of two in
Plexiglas cages and maintained on an inverted 12 h light/dark cycle (light onset at 7 pm) with
water available ad libitum, in a temperature - and humidity - controlled environment. Food was
slightly restricted ( 80% of daily intake). Animal care and use conformed to the French regulation
(Decree 2010-118) and were approved by local ethic committee and the French Ministry of
Agriculture under #03129.01.

Experimental Method Details

Apparatus

All behavioral experiments took place during the animals’ dark phase in standard five-hole
operant boxes (MedAssociates) located in ventilated sound-attenuating cubicles. One side of each
box was equipped with a central house light, a tone generator and a food magazine, outfitted an
infrared beam for detecting nose poke inputs. Sucrose pellets (20 mg; Bio-Concept Scientific) were
delivered from an external food pellet dispenser. An array of five response holes was located on
the opposite curved wall, each equipped with stimulus lights and infrared beams for detecting
input (nose poke). The center hole was continuously closed throughout the experiments (Fig.
1a     ). Data were acquired on a PC running MedPC-IV.

Design of Behavioral Sequences

Four menus were elaborated by mixing convex and concave exposures for both the gains (sugar
pellets) and the losses (time-out punishment) described on Figure 1      (panel (b)). For the gains,
animals could obtain 1 , 3 (NE domain, blue), 12 (RE domain, yellow) or 80 (REE domain; pink)
sugar pellets in the convex exposure or 2, 4, 5 or 5 pellets in the concave exposure. For the losses ,
convex exposure may impose 6, 12 , 15 or 15 sec of time-out punishment while it was 3, 9 (NE
domain; blue), 36 (RE domain, yellow) or 240 sec (REE; pink) for the concave exposure.

The four behavioral options depicted in Figure 1     , panel (c), are therefore combinations of the
above convex and concave exposures: the “Anti-fragile” exposure at the top middle is convex in
both gains and losses, while the “Robust” option (left) is only convex for the losses. On the other
hand, the “Vulnerable” exposure (right) is convex only for the gains, while the “Fragile” option
(bottom middle) is concave for both gains and losses. This implies that the extreme - but rare - gain
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of 80 pellets (i.e. Jackpot) may be delivered only when either the Anti-fragile or the Vulnerable
options are picked, while the extreme and rare time-out punishment of 240 sec (i.e. Black Swan)
may be only experienced if choosing either the Fragile or the Vulnerable options.

The first three events of each behavioral options belong to the frequent domain as their frequency
of occurrence, respectively 0.5, 0.4 or 0.1, is significantly larger than zero. During behavioral
testing, animals equivalently experienced the gain and loss domains. On the other hand, extreme
outcomes, i.e. Jackpot or Black Swan, have a much smaller likelihood of occurring since they may
appear only at particular point during the behavioral sequences (see below). This means that they
could happen if a rat has chosen an exposure that is either convex in the gain domain or concave
in the loss domain at a given time. This implies that the frequency of rare and extreme events is
less than half of one percent for all rats. Despite their low probability, extreme events have some
importance because of their value. Our calibration of both frequencies and outcomes ensures that
concave exposures dominate convex exposures: if the extreme gain (Jackpot) does not materialize,
the expected payoff in sugar pellets is larger for concave exposures than convex exposures (i.e. ex-
post first order stochastic dominance, over the frequent domain). Similarly, the expected time-out
punishment is lower for concave exposures compared to convex ones, if the Black Swan does not
happen. However, ex-post first-order stochastic dominance is reversed in the presence of extreme
events, in which case convex exposures become more interesting in terms of payoff than concave
ones. The reason we imposed such a dominance reversal was as follows. If rats always choose
concave exposures, then they show no sensitivity to rare and extreme events, since they act as if
those events never occur and always go for first-order stochastic dominance. This gives us our first
measure, Total Sensitivity to REE, that simply sums up the proportion of convex exposures that are
chosen for each rat over the 41 sessions. Because we deliberately integrate gains and losses in our
design, we need to distinguish whether rats tend to choose convex exposures symmetrically over
the gain and loss domains. We say that a particular rat exhibits Black Swan avoidance when it
picks convex exposures in the loss domain more often than in the gain domain. Likewise, Jackpot
Seeking occurs when convex choices are more frequent in the gain domain.

To avoid potential learning of the event occurrence during behavioral training and testing, ten
different sequences of events, with respect of the first-order stochastic dominance as well as the
balance between gain and loss domain exposures, were generated and randomly used for
behavioral training and testing (Supplemental Figure S3). Furthermore, to increase the rarity and
the unpredictable nature of extreme events, the sequences of events used during behavioral
training and testing were declined into seven various sequences, in which Jackpot and Black Swan
are either unavailable, solely or both available at a given time point of the sequence of events
(Supplemental Table S1     ): when available, extreme events could be obtained at the 10th or the
60th activation within a given sequence, but could not occur at the same time. For example, in a
behavioral sequence where the Jackpot should be available at the 10th position, any poke in the
Anti-fragile and Vulnerable holes following nine responses made in one of these menus
(regardless of the positive or negative outcomes) would trigger the delivery of the Jackpot. Of note,
depending on the sequence used, animals could experience both extreme events in a single
session.

Behavioral Training and Testing

Training was divided into five distinct phases before the final test: acquisition of the food
collecting responses, acquisition of nose poking in the holes, training with four holes, attribution
of menus to hole and training on the menus (Figure 7     ). Each session started with the
illumination of the house light.
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Figure 7

Time-line of experiments
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1. Acquisition of the food collecting responses: Animals were trained to collect sucrose pellets
in the food magazine during three 30-min daily sessions (100 pellets max) under fixed ratio
1 schedule of reinforcement (FR1): one nose-poke into the food magazine triggered the
delivery of one sucrose pellet. During this initial phase, nose-poke in any hole had no
programmed consequences.

2. Acquisition of nose-poking in the holes: Here, animals had only access to one hole (the
three others being occluded) during the 20-min sessions. One nose-poke in the available
hole triggered the illumination of the hole-light and the delivery of one sucrose pellet in the
food magazine. Perseverative nose-pokes (those performed before food collection) had no
consequences. Following food collection in the food tray, animals were allowed to poke
again in the opened hole. During each session, a maximum of 100 pellets were delivered.
All animals were trained twice on each hole.

3. Training with four holes: Following the eight training sessions, animals were allowed to
poke in the four different holes during twenty daily sessions of 20-min. Nose poke in any
hole triggered the illumination of the associated light and the delivery of one sugar pellet
in the food magazine. Both perseverative activations and pokes in other holes had no
consequences. After food collection in the magazine, animals were allowed to nose poke
again in any hole. The first ten training sessions were limited to 100 sugar pellets. During
the following ten sessions, animals were able to collect up to 200 pellets per session.

4. Attribution of menus to hole: We determined the spatial preference for each rat by
establishing the percentage of activation of each hole during the last ten sessions. To favor
the emergence of Anti-fragile choices, menus’ attribution was made as follow:

Anti-fragile exposure was associated to the preferred hole
Robust exposure was associated to the 2nd preferred hole
Vulnerable exposure was associated to the 3rd preferred hole
Fragile exposure was associated to the least preferred hole

5. Training on the exposures: Here, animals were first trained on the gain domain, i.e. no
time-out punishment, for each menu/hole. They were subjected to two 20-min sessions,
with unlimited number of pellets, during which only one hole was available (eight training
sessions in total). For Anti-fragile and Vulnerable options, we used the two sequence-types
where the jackpot was available at the 10th and 60th activations (Supplemental Table
S1     ) to ensure that all individuals could experience both an early and delayed jackpot
during training. Animals were then allowed to explore all gain options (four opened holes)
during 9 20-min sessions, for which different behavioral sequence-types were used. Before
training on the loss domain of the different menus, animals were first exposed to a mild
and constant 3-sec time-out punishment. Here, animals had access to all options, but half of
the activations lead to a 3-sec time-out punishment, notified by a 3-sec tone and the
extinction of the house light. During this period, pokes in the different holes or the food
magazine had no programmed consequences. After the 3-sec time-out punishment, the
house light was turned on and the animals could again pokes in the different holes.
Following nine 20-min training sessions, the loss domain of each menus was progressively
introduced. As described above, each time-out punishment was notified by a 3-sec tone and
the extinction of the house light for the whole duration of the punishment, which
termination was signaled by house light illumination. Animals were first exposed to
concave exposures, having only access to vulnerable and fragile holes during four 20-min
sessions. They were then exposed to convex losses (only Anti-fragile and Robust holes
available) for another four 20-min sessions. Thus, at the end of the training, all animals
experienced both extreme events at least four times.
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6. Final tests: For the final tests, animals were free to explore all menus throughout the forty
20-min sessions. Animals experienced four times the ten different sequences, randomly
distributed across sessions. Population (n = 20) was subdivided into two groups that
experienced different, but equivalent, sequence-type distribution (Supplemental Figure
S2)).

Figure 7      depicts a simplified time-line of the experimental procedure.

Figure S3 shows the chain of events in the ten sequences used for behavioral training and testing.
Numbers in the second column indicate which event would occur and the sign preceding it
whether it belongs to the gain (no sign) or loss (minus sign) domains. For example, the third event
in the first sequence (noted -2) triggers a time-out punishment of 9 or 12 sec, depending on
whether an animal performed his third nose poke in concave or convex menu, respectively. Note
that extreme events (which should be noted 4 or -4) do not appear in the sequences, as they would
automatically replace the 10th or 60th events of the sequence. See supplementary material for
detailed information on sequences of events.

Modelling and Statistical Analysis

Modelling Convex and Concave Exposures
Central to our experimental design is the notion of convex/concave exposure under radical
uncertainty, that is, when probabilities and consequences are unknown a priori to subjects. A well
known measure of convexity is the Jensen gap that is derived from Jensen’s inequality (see [28     ]
for a graphical exposition), which we now define and relate to statistical moments. In our context,
the relevant form of Jensen’s equality states, loosely speaking, that the expectation of a convex
function of a random variable is larger than the value of that function when evaluated at the
expectation of the random variable. Jensen’s gap is then defined as the difference between the
expectation of the function minus the value of the function at the expectation (hence positive by
construction). The inequality is reversed for a concave function and the (positive again) Jensen’s
gap is then defined as the difference between the value of the function at the expectation minus
the expectation of the function. In the gain domain, rats obtain 1, 3, 12 or 80 sugar pellets if the
convex exposure is chosen, or 2, 4, 5, 5 pellets if the concave exposure chosen. In the loss domain,
convex exposure imposes 6, 12, 15 or 15 seconds of time-out punishment, and 3, 9, 36, 240 seconds
for the concave exposure. Because the values in the loss domain are proportional to the values in
the gain domain, the former corresponding to 3 times the latter, we focus here on values for
pellets. The statistical properties of convex and concave losses follow accordingly. More formally,
sequences of gains are ordered by increasing values and are denoted  for the
convex exposure and  for concave gains. We assume identical probabilities

 for both concave and convex gains, where ε is the ex-ante probability of the rare
and extreme event (REE for short). The third value (that is, 12 for convex gains and 5 for concave
gains) is labeled a rare event (RE), and the sets of the lowest two values (that is, 1 and 3 for convex
gains, 2 and 4 for concave gains) for both exposures are composed of normal events (NE).

Making use of the exponential transform, we define Jensen gaps for the convex and concave
exposures as, respectively,  which relate to statistical moments
as follows. The moment generating function for the convex and concave exposures are given by,
respectively: . The series expansion of the exponential function allows
us to derive:
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where  and  are the N -th statistical raw moments of the convex and concave exposures,
respectively. For example,  for any integer N ≥ 1. Jensen’s gaps for both exposures
are then given by  . Using again the series expansion of the
exponential of the first moment for each exposure, it follows that both positive Jensen gaps can be
written in terms of moments, as follows:

Note that the sums in equation (3)      nicely allow for a straightforward decomposition in terms on
all raw moments with order larger than two.

More specifically, we set probabilities to  identically for both concave
and convex gains. Treating the probability for the REE as a varying parameter, it can be shown
that Jensen’s gaps for convex and concave exposures are ordered, with the former larger than the
latter when ε ≤ 0.02. Over that range, it also holds true that both Jensen’s gaps are monotone
increasing function of ε. While this property also holds for the expectations and variances of both
exposures, it doesn’t for higher-order moments. For example, the skewness and kurtosis of the
convex exposure turn out to be hump-shaped functions of ε, with peaks corresponding to values of
ε smaller than one percent. This fact underlines that convexity measured by Jensen’s gap offers a
unifying approach to rank exposures, seen as lotteries, whereas statistical moments do not
necessarily do so. We conjecture that, more generally, all lotteries satisfying our assumptions
(including monotone probability distribution) can be ranked according to their convexity as
measured by the Jensen gap.

In Table 2     , we report the central moments and the log of Jensen gaps in the top five rows, for
both exposures when ε = 1/75 ≈ 1.3%, which corresponds to obtaining one REE out of 75 nose
pokes. For that particular parametrization, convex and concave exposures differ mostly in their
respective kurtosis and in their Jensen gaps. From row six and below, we report the decomposition
of Jensen gaps in terms of the raw moments. For example, in row six is given the ratio of (m2 −
(m1)2)/2 - that is, half the variance - to the corresponding Jensen gap for each exposure, in
percentage. Strikingly, while moments of order 2 to 8 explain about 90% of the concave exposure’s
Jensen gap, they contribute negligibly to that of the convex exposure. In fact, it turns out that
moments with order around 80 start contributing, although for a small share each, to the convex
exposure’s Jensen gap. In sum, while for the concave exposure a few low-order moments
concentrate the contributions to the Jensen gap, the contributions of raw moments to the convex
exposure’s Jensen gap spread across a larger number of very high order raw moments.

We derive next the ex-ante properties of the probability distributions associated with concave and
convex gains (for definitions of stochastic dominance and congruent utility classes, see for
example Fishburn and Vickson [15     ]; also note that first-order, resp. second-order, stochastic
dominance implies second-order, resp. third-order, stochastic dominance):

In the domain restricted to NE, concave gains first-order stochastically dominate convex
gains. In addition, concave gains then have a larger expected value than that of convex
gains, with equal variance, skewness and kurtosis for concave and convex exposures.
In the domain restricted to NE and RE, concave gains second-order stochastically dominate
convex gains. In addition, concave gains then have a larger expected value and smaller
variance, skewness and kurtosis than that of convex gains.
In the full domain including NE, RE and REE, convex gains second-order stochastically
dominate concave gains if and only if ε ≥ 0.302%. In addition, convex gains then have a
larger expected value, variance, skewness and kurtosis than that of concave gains if ε ≥
0.302%.
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Table 2

Statistical moments and decomposition of Jensen gaps for convex and concave exposures
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Table 3

Before/after differences for Total Sentivity to REE and for One-sided Sensitivity to REE, averaged over the 41 sessions, for each
of the 20 rats - see Figure 4     . We highlight negative mean differences in red and positive mean differences in yellow.
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The above assumptions on the experimental design are stated in terms of stochastic dominance
and moments of the probability distributions. They also have implications in relation to standard
approaches to decision-making. First, from an ex-ante perspective with perfect information about
the probability distributions of all exposures, value-maximizing subjects whose preferences are
represented by any non-decreasing value function would choose concave gains in the domain
restricted to NE. They would continue to do so in the domain restricted to NE and RE for any non-
decreasing and concave value function. However, in the full domain with REE, value-maximizing
subjects endowed with any non-decreasing and concave value function are predicted to choose
convex gains.

We denote  the value attributed to sequences of gains  with probabilities
 , for n ≤ 4. The above assumptions have the following implications in terms of value

maximization:

In the domain restricted to NE,  holds.
In the domain restricted to NE and RE,  holds.
In the unrestricted domain,  holds if and only if ε ≥ 0.302%.

Note that the reversal in second-order stochastic dominance (and value) in the full domain favors
convex gains when extreme events that are indeed very rare - with probabilities much smaller
that one percent - are added. In contrast, absent REE, adding only a RE is not enough to favor
convex gains, even though it allows subjects to possibly detect convexity/acceleration and
concavity/deceleration of gains and losses.

The above assumptions hold true under expected utility, that is when  with the
appropriate conditions on the utility function u (non-decreasing for first-order stochastic
dominance, non-decreasing and concave for second-order stochastic dominance; see [15     ]). To
better match experimental data, however, expected utility is increasingly supplemented by some
form of probability weighting w(pi). For instance, [10     ] use a two-parameter functional form due
to [35     ] and find that 30 rats out of 36 behave as if their probability weighting w(pi) is concave. In
that case, the above ex-ante properties hold mutatis mutandis, for example, under expected utility
with probability weighting, defined as . Alternatively, in the setting of rank-
dependent expected utility, we can make use of results 3 and 4 in [24     ] to show that the above ex-
ante properties still hold provided that the transformation of the cumulative distribution function
is any increasing-concave function. Note that since in our experimental design REEs are both
extremes (in the sense of being the largest values) and rare (that is, they have very low
probabilities), one expects similar results under probability weighting and rank-dependent
expected utility (or cumulative prospect theory for that matter). Although in theory assuming
simply a weighting function w(pi) that is inverse-s-shaped and “very” convex for large gains (see
for the associated parametric restrictions) could overturn the rankings of concave and convex
exposures stated above, results in [10     ] suggest that this is not to be expected for the
overwhelming majority of the rats that are subject to their experiments.

Choice Data Analysis
Given the four options modelled in the previous section, each of the 20 rats went through 41 final
sessions. Denote fA, fF , fR, and fV the relative frequencies (in terms of nose pokes) with which each
of the four options Antifragile, Fragile, Robust and Vulnerable, respectively, is chosen over a
particular session. In order to represent the rats’ choices, we construct the rotated square in panel
(d) of Figure 1      using a linear transformation of the 3-frequency vector, as follows:
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In equation (4)     , the first two rows deliver the two coordinates of interest that are the Total
Sentivity to REE (TSREE in short) and One-sided Sentivity to REE (OSREE), while the last row
requires that all frequencies sum to one. To derive TSREE and OSREE, it is useful to go through the
following steps. Since we are interested in the convexity property of each chosen option, we first
measure the frequencies of convex options in the gain domain by summing fA and fV . Similarly, fA
+ fR measures how frequent choices are convex in the loss domain. It follows that TSREE measures
total convexity if it equals 2fA + fV + fR, while OSREE equals fV −fR and measures asymmetric
convexity (that in the gain domain minus that in the loss domain). Hence the first two rows in
equation (4)     . Using that fA + fF + fR + fV = 1 - that is, the last row of equation (4)      - it follows
that TSREE equals the simpler expression 1 + fA − fF . Note that the 3 × 3 matrix in equation (4)     
is invertible, which implies that all three frequencies can be recovered from the left vector. In
addition, that matrix is not unique in the sense that the definitions of TSREE and OSREE that
appear above as its first two lines could be moved to any other rows, provided that the identity in
the third row and the constraint in the last row are adapted accordingly. This essentially means
that given both differences TSREE (= 1 + fA − fF ) and OSREE (= fV − fR), any of the four relative
frequencies provides enough information to derive the remaining three, using the constraint that
all four frequencies sum up to one. Finally, it follows that in the rotated square in panel (d) of
Figure 1     , the four vertices have the following coordinates: (0, 0) for Fragile, (0, 2) for Antifragile,
(−1, 1) for Robust, and (1, 1) for Vulnerable. TSREE and OSREE are depicted in Figure 2     .

TSREE and OSREE are also related to behavioral measures of the share of nosepokes that lead to
either exposure or non exposure to REE, as follows: we define Black Swan Avoidance as the share
of nosepokes that lead to avoidance of Black Swans - i.e. fA + fR and Jackpot Seeking as the share of
nosepokes that lead to be exposed to Jackpots - i.e. fA + fV . It follows that TSREE is by definition the
sum of those two shares, while OSREE is the difference between the former and the latter.
Formally, if we denote JPS and BSA the shares of nosepokes that lead to be exposed to Jackpots and
to avoid Black Swans, this implies that JPS= 0.5(TSREE+OSREE) and BSA= 0.5(TSREE−OSREE). In
other words, in the (not rotated) square that appears in panel (d) of Figure 1     , the four vertices
have the alternative coordinates: (0, 0) for Fragile, (1, 1) for Antifragile, (0, 1) for Robust, and (1, 0)
for Vulnerable, in the (JPS,BSA) coordinates. Obviously, both interpretations are equivalent up to a
change in coordinates which is a bijection. Note that in the rotated square in panel (d) of Figure
1     , lines with a 45-degree slope depict choices with constant BSA so that lines moving north-west
represent increasing BSA. Similarly, lines with a −45-degree slope depict choices with constant JPS
so that lines moving north-east represent increasing JPS. Median BSA and JP are depicted in Figure
3     .

In Figure 4      we report the short term behavioral responsiveness of rat to REE. Behavioral
responsiveness is measured by calculating for each rat before/after differences in TSREE and
OSREE. This amounts to calculate TSREE and OSREE over the 10 choices preceding a REE and over
the 10 choices following the occurrence of each REE. The window of 10 choices before and after is
dictated by the configuration of REE in our design. A REE can happen at 11th choice in a sequence
(see appendix ). Before/after TSREE and OSREE are averaged by rat over the 41 sessions in the gain
domain (Jackpot) and in the loss domain (Black Swan). Table 3      reports the values for the mean
before/after differences. In each panel of Figure 4     , each rat is depicted by a color-coded dot and
the dotted black line represents the 45-degree line. Color-coded dot on the 45-degree line indicate
no difference in TSREE or OSREE before and after a REE, i.e. no short term behavioral
responsiveness to REE. To visualisation purpose, we computed for each panel a smooth spline
regression that estimates a non parametric relationship between before and after TSREE and
OSREE. They are plotted as solid black lines in each panel.

We then test the statistical significance of short term behavioral by conducting bootstrap paired-
sample mean tests on before/after coordinates (separately) for each type of REE. An observation in
the sample is the mean behavioral responsiveness in TSREE or OSREE for a given rat. Observations
therefore respect statistical independence. Bootstrap tests lead to the following p-values, under the
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null hypothesis that the mean difference is zero. Following Jackpots, p = 0.3470 for TSREE and p =
0.0522 for OSREE, which indicates that the null hypothesis is not rejected at 1%. Following Black
Swans, however, the null hypothesis is rejected at 1% since p = 0.0045 for TSREE and p = 0.0064 for
OSREE. In sum, the mean before/after difference following a REE in the loss domain is significant
for both Total and One-sided sensitivities, further confirming the Black Swan avoidance result that
we document in this paper.

We also report in Figure 8      how choices by rats after the 41 final sessions compare to choices
made in the training step 3, defined in the section on Behavioral Training and Testing. We do so by
computing TSREE and OSREE in step 3 sessions and pair coordinates resulting from training with
that resulting from the 40 experimental sessions reported in Figure 2     . The lines between two
color-coded dot connects for each rat its conditioning coordinates with its coordinates resulting
from its behavior in the 41 sessions. We report on the right side of the figure the total variation
distance between the distribution of nosepokes in the 4 holes in the training and the distribution
in the 41 experimental sessions. The interpretation of total variation distance in our setting is
simple: it measures, for each rat, the proportion of nosepokes that need to be changed in order to
equalize the behavior in the training and the behavior in the 41 final experimental sessions.
Median and mean total variation distance are 0.293 and 0.324 respectively, which implies that half
of the rats changed more than 30% of their choices in the final experimental sessions compared to
the training sessions.

Finally, in Figure S1      of the Supplementary Material, we report what we label “convexity
premiums”, which are counterfactual situations that we construct as follows. Given the rats’
choices over the 41 sessions, we recall all random sequences that have been used to generate gains
and losses for each rat. We next compute the outcome that would have been obtained, had the rat
chosen convex options in the gain domain (that is, Antifragile or Vulnerable) and in the loss
domain (that is, Antifragile or Robust) all the time. The right and left panels in Figure S1      depict
the normalized convexity premiums thus computed, for each rat represented in rows, with convex
exposures yielding more pellets and implying less waiting in terms of seconds.

Augmented Q-Learning Model Estimation and Simulation
Parameter optimization is carried out for each rat over the 41 sessions, using observed choices and
outcomes. We estimate by maximum likelihood two series of augmented Q-Learning models. The
first series integrates REE in Q subvalues whereas the second series does not. Each series consists
of a first baseline model without specific forgetting rates and decision weights attached to REE.
Two partial models integrate either specific forgetting parameters or decisions weights on the
presence of REE. The fourth model integrate both.

In total, we estimate eight nested models for each rat. Formally, we estimate four different models:
a baseline model (Model 1) without specific forgetting parameters ( , with k ∈ {g, l}) and with
zero decision weights of REE (γg = γl = 0). Model 2 introduces specific forgetting parameters ( ,
with k ∈ {g, l}) and Model 3 introduces decision weights of REE (γg and γl≠0). Model 4 introduces
both.

To ensure convergence and avoid local maxima, each parameter in baseline models was initialized
with two different points of its parameter space. This makes in total 42 = 16 combinations of initial
parameter values. Each of the 16 models is estimated using an automatized two-step procedure.
The fist step consists of an unconstrained downhill simplex method in [29     ], which does not
make use of first derivatives. Estimated parameters are then used as initial parameters in the
second step of the estimation procedure, a quasi-Newton method in [16     ]. Parameter estimates
from baseline models are then used as initial parameters for subsequent augmented models.
Estimation is carried out using the above two-step procedure to ensure that we convergence is
reached.
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Figure 8

Variation of choices observed in final experimental sessions compared to that observed in training sessions (step 3 in
Material and Methods section on Experimental Method Details); panel (a) shows variations of Total Sensitivity to REE (y-axis)
and of One-sided Sensitivity to REE (x-axis), that is, dark color-coded dots replicate averages over the 40 sessions for each of
the 20 rats - see panel (c) in Figure 2      - and are paired with averages over training sessions for the same rat, depicted with
light color-coded dots connected through lines with corresponding dark color-coded dots; panel (b) shows total variation
distance, that is, the proportion of total nose pokes in training sessions that need to be changed to replicate nosepokes in
final sessions

https://doi.org/10.7554/eLife.98487.1
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Once the eight models are estimated, we then compare them using both Akaike information
criterion (AIC) and Bayesien Information criterion (BIC), that penalizes the use of additional
parameters, so as to select which model configuration best fits observed behavior for each rat (see
Supplementary Material for detailed results per rat). We check whether the selected model
properly estimates sensitivities to REE by comparing estimated sensitivities to observed
sensitivities to REE. This is done by computing Total Sensitivity to REE and One-sided Sensitivity to
REE based on estimated choice frequencies from the extended Q-Learning model over the 41
sessions. Fitted sensitivities are reported bottom right panel in Figure 5     . Finally, we checked
that selected models were able to reproduce experimental data by running simulations for each
phenotype observed in the sample of animals (as in [32     ]). Simulations are conducted over the
artificially generated original 41 sessions, using individual parameter estimates for pink and red
rats, median parameter estimates for blue and green rats and estimated Q subvalues as prior Qs.
For each simulation, we then computed Total Sensitivity to REE and One-sided Sensitivity to REE.
Simulations are reported in bottom right panel of Figure 5     . See Supplementary Material for
more details on the estimation results and for an exploration in related outcome range-adaption
models.
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Supplementary Material

Sequences used in the experimental design
In Table S1      we report the different types of sequences used for behavioral training and testing,
which shows the position of the extreme events. For example, in the sequence-type 6, jackpot
could be obtained at the 10th position while the Black-swan would be triggered at the 60th
activation.
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Table S1

Position of REE in the sequence
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Table S2      shows the different behavioral sequence-types used for the forty testing sessions. As
indicated in the text, half of the population was subjected to the sequence-types described in the
left part of the ‘type column’, while the other half experienced the sequence-types described in the
right part of the ‘type column’. Table S3      shows the succession of events for each sequence.
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Table S2

Sequences and types

https://doi.org/10.7554/eLife.98487.1
https://doi.org/10.7554/eLife.98487.1


Mickaël Degoulet et al., 2024 eLife. https://doi.org/10.7554/eLife.98487.1 37 of 63Mickaël Degoulet et al., 2024 eLife. https://doi.org/10.7554/eLife.98487.1 37 of 63

Table S3

Succession of events for each sequence
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Behavioral measures for each rat
All behavioral measures for each rat that are used in the main text are gathered in Table S4     :
Total and One-sided Sensitivities to REE, Black Swan Avoidance and Jackpot Seeking (both in %).
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Table S4

Behavioral measures for each rat - Total and One-sided Sensitivities to REE - TSREE and OSREE
in short; Black Swan Avoidance and Jackpot Seeking in percentage - BSA and JPS in short
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Augmented Q-Learning model selection according to BIC
Table S5      presents BIC values for all rat models. In the first column, the rats’ phenotypes are
color-coded as in the text. Each uniquely selected model is identified by light blue color.
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Table S5

BIC values for all augmented Q-Learning models, with selected value highlighted
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Augmented Q-Learning model selection according to AIC
Table S6      presents AIC values for all rat models. In the first column, the rats’ phenotypes are
color-coded as in the text. Each uniquely selected model is identified by light blue color.
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Table S6

AIC values for all augmented Q-Learning models, with selected value highlighted
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Parameter estimates for selected Q-Learning models
Table S7      presents for each rat all estimated parameters arising from models selected using BIC
(see Table S5      for values of this criterion).
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Table S7

Parameter estimates by rat for all selected Q-Learning models
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Comparison of mean and median parameter estimates of
augmented Q-Learning models for blue and green phenotypes
Table S8      presents median and mean parameter values estimated from augmented Q-Learning
models for green and blue phenotypes, as well as the relevant statistical tests. Parameters
difference tests are carried out by Wilcoxon Rank Sum tests (column 4) and Mean Difference tests
(column 7). Significant results are highlighted.
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Table S8

Mean and median parameter estimates for blue and green
phenotypes, and difference tests with significant results highlighted
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An augmented Q-Learning model with outcome range-adaptation
As a robustness check, we introduce in our augmented Q-learning models the range principle due
to [33     ] - see also [31     ] - which captures the notion that subjective evaluation of rewards may
take into account their range through the Min-Max normalization presented below. That is, we
replace objective rewards by their subjective judgements s(.) as follows:

Subjective judgements were then substituted in equation (1)      for gains and losses and the
resulting Q-learning models were estimated using the procedure described in Material and
Methods, section Augmented Q-Learning Model Estimation and Simulation. More precisely,
subjective judgements for gains and losses are as follows: s(rg) = (rg − 1)/(80 − 1) for options that
give convex gains and s(rg) = (rg − 2)/(5 − 2) for options that give concave gains; similarly, s(rl) = (rl

+ 15)/(−6 + 15) when losses are convex losses and s(rl) = (rl + 240)/(−3 + 240) when losses are
concave. REE are then used (as Min and Max values) to normalize all rewards and they are
included in the Q-sub-values when they happen. This implies, by definition, that subjective
judgements equal zero when Black Swans materialize, and equal one when Jackpots occur.

When REE are introduced through the normalization of gains and losses described above, models
that consider nonzero decisions weights for REE are selected for 18 rats out of 20. Augmented Q-
learning models with outcome range-adaptation proved however to improve the quality of the
models for four rats only and we kept with our parsimonious models in the article. BIC and AIC
values by rat are presented in the Tables S9     -S10     , for all four models with REE included in the
Q-sub-values.
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Table S9

BIC values for all augmented Q-Learning model with
outcome range-adaptation, with selected value highlighted
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Table S10

AIC values for all augmented Q-Learning model with
outcome range-adaptation, with selected value highlighted
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Outcomes
What are the ex-post outcomes of all choices made by the different rats over the course of the 41
final sessions? In the first left columns of Table S11     , we report for each rat the number of nose
pokes, the number of REE of each type the rat has experienced. We also report, for the rewards in
pellets and the waiting times in seconds, the sum as well as the first four moments of the outcome
per nose poke. The overall pattern that emerges from Table S11      is that a typical rats in with
high Total Sensitivity group tends to have outcomes that differ from a typical rat with moderate
Total Sensitivity. For gains (i.e. sugar pellets), the former’s rewards have typically higher mean and
variance but smaller skewness and kurtosis that the later’s. This happens for instance, to an
extreme degree, when we compare rat 15 (the most Anti-fragile rat) and rat 17. On the loss side, by
symmetry the waiting time of the average high-sensitivity rat tends to have lower mean and
variance, but larger skewness and kurtosis. These facts are consistent with the fact that a typical
high-Total Sensitivity rat tend to pick a mix of exposures that is more convex both on the gain
domain and on the loss domain, compared to an average low-Total Sensitivity rat.
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Table S11

Ex-post total outcomes for each of the 20 rats over the final 41 sessions - summary statistics. Each
row represents one rat and the color codes indicate the profile of the animal, as in Figure 2     
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Convexity Premiums
Evidently the outcomes that we report in Table S11      depend on the convexity mix of options that
each rat has chosen, as captured by our notions of Total and One-Sided Sensitivity. To go beyond
Table S11      so as to capture the extent to which rats exploit convexity in their choices, it is
perhaps informative to look at the outcomes for each rat in the following way. Right and left
panels in Figure S1      refer to losses and rewards, respectively.

In each panel, rats are color-coded as in Figure 2     , and they are represented horizontally by two
segments which are normalized in the following way. Consider for example (blue) rat 1 in the first
line. In the right panel about pellets, the point of the black segment most to the left represents the
outcome that would have happened, had the rat chosen a concave option in the gain domain (that
is, either Robust or Fragile), exclusively in all sessions. The point most to right corresponds, in
contrast, to the counterfactual outcome in which all nose pokes of the rat correspond to a convex
option (that is, either Vulnerable or Anti-Fragile). Superimposed on this background grey segment,
is a bold-colored segment (blue because rat 1 is blue) that ends with a circle indicating what the rat
has gained due to convexity in relative terms - what we call the convexity premium (see Appendix
for more details). Rat 1 has a normalized convexity premium that corresponds to roughly 80% of
what it would have got, in terms of sugar pellets, had it counterfactually chosen to mix only
Vulnerable and Fragile, instead of Robust and Anti-fragile as it did. Similarly, one sees from the
right panel of Figure S1      that the Anti-fragile rat 15 has a convexity premium that corresponds to
roughly 90% of what it would have got, in terms of sugar pellets, had he chosen to mix only
Vulnerable and Fragile. From panel (b) of Figure 2     , we know that rat 15 has also, more rarely,
picked the Robust and Fragile exposures and this is why its convexity premium in the gain domain
is less than maximal. At the other extreme, the rat 6 has a convexity premium near zero. Note that
two rats are outside the black segment in the gain domain, that is, have “negative” convexity
premiums, and they are indicated by dashed lines. Rat 17 has picked the Anti-fragile exposure a
few times but got only one extreme gain, while rat 14 is more sensitive and hence got more
extreme gains but still too few of them. Therefore, both rats got less sugar pellets than what they
would have gotten by mixing exposures that are concave in the gain domain (Robust and Fragile).
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Figure S1

Convexity Premiums for each of the 20 rats (row) - see Appendix for details. Each row represents a rat and the color code
indicates the profile of the animal, as in Figure Towards the right, the dot materializes how many pellets were obtained
relative to the number that would have been obtained if a convex menu had been chosen at each trial. Towards the left, the
coloured dot indicates the total seconds of penalty obtained relative to what would have been obtained if a concave menu
had been chosen at each trial.
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The left panel in Figure S1      about time-out punishments can be read in a similar way, with now
the point most to the left of the black segment corresponds to the largest loss in terms of waiting
times, while the end point to the right corresponds to the lowest amount of time wasted.
Therefore, the bold and colored segment indicates a negative premium: for instance, rat 2 on the
first line in the left panel of Figure S1      has been exposed to the largest time-out punishment: it
has a negative and large convexity premium because it mixed exposures with concave losses (that,
is Fragile and Vulnerable), too often. Symmetrically, some rats turn out to get convexity premiums
that are above 100% because they got too few black swans when they picked exposures that are
concave in the loss domain). Comparing the right and left panels in Figure S1     , one infers that
rats exploit convexity better in the loss domain than in the gain domain, that is, they more often
avoid Black Swans than they get Jackpots. This is of course consistent with our earlier observation
that most rats exhibit moderate to high Black Swan Avoidance.
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Reviewer #1 (Public Review):

Summary:

In this manuscript, the authors investigate the impact of rare and extreme events on rodents'
decision-making under risk, in gain and loss contexts. They describe the behavior of 20 rats
performing a four-armed bandit task, where probabilistic gains (sugar pellets) and losses
(time-out punishments) can - in some arms - incorporate extremely large - but rare -
outcomes. They report that most rats are sensitive to rare and extreme outcomes despite their
infrequent occurrence, and that this sensitivity is primarily driven by extreme loss events
which they try to avoid, rather than extreme gains that they seek to obtain.

They finally propose a modification of standard reinforcement-learning, which features a
specific sensitivity to rare and extreme outcomes and can account for the observed behavior.
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Strengths:

The manuscript really taps into a surprisingly neglected but very relevant aspect of decision-
making: the effect of rare and extreme events (REE). The authors have developed an
experimental setup that seemingly allows investigation of this aspect, which is not trivial
given the idiosyncratic properties of rare and extreme events.

The parameters of the experimental setup seem also to be well thought off: basically, in the
absence of REE, some options are objectively better than others (because, in expectation, they
overall deliver more food, or minimize time-out punishments), but this ordering reverses if
REE are taken into account. This allows for a clean test of the integration of REE in the
rodent's decision-making model.

The data is presented and analyzed in a very descriptive but exhaustive and transparent way,
down to the description of individual rodent's behavior.

Weaknesses:

While the description and analyses of the behavioral patterns are rigorously done under the
economic lens of risky decision-making, the authors' interpretation heavily relies on the
assumption that rodents have built the correct model of the task during the training.
Extensive details are provided about the training procedure, and the observed behavior at
the end of the training, but it remains virtually impossible to disambiguate choices due to
imperfect learning to choices made due to intrinsic preferences for risk or REE.

By nature, gains (food pellets) and losses (time-out punishments) are somewhat
incommensurable so the interpretation of the asymmetry due to outcome valence is also
subject to interpretation. There might be some additional subtleties due e.g. satiety that could
come from gaining REE (i.e. the delivery of 80 pellets from the Jackpot).

In its current form, the paper is quite hard to digest. This is naturally the case with
interdisciplinary work (here mixing economists and neurobiologists). But I am afraid that
with the current frame, the paper is going to miss its target, in terms of audience.

The proposed model seems somewhat disconnected from the behavioral patterns: while the
model suggests an effect of REE at the decision stage (i.e. with specific decision weights for
those rare events), this formalism seems at odds with the observation that REE (notably in the
loss domain) has an impact of subsequent behavior - (Black Swans tend to reinforce Total
Sensitivity to REE) which rather suggests an effect at the learning stage.

Discussion:

This study convincingly demonstrates that REEs are processed rather uniquely, which makes
sense given their evolutionary relevance. REE has indeed been somewhat neglected in
previous research, and this study therefore opens an interesting new front on the
fundamental aspects of decision under risk. The authors have devised an original theoretical
and empirical framework that will be useful for the community, and the combination of
economics analysis and rodent behavior constitutes a thought-provoking ground to think
about the nature of risk preferences. The interpretation and mechanistic account of these
aspects, as well as their generalizability outside the specific context of this study, remain to be
strengthened.
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Reviewer #2 (Public Review):

Summary:

This paper attempts to examine how rare, extreme events impact decision-making in rats.
The paper used an extensive behavioural study with rats to evaluate how the probability and
magnitude of outcomes impact preference. The paper, however, provides limited evidence
for the conclusions because the design did not allow for the isolation of the rare, extreme
events in choice. There are many confounding factors, including the outcome variance and
presence of less-rare, and less-extreme outcomes in the same conditions.

Strengths:

(1) The major strength of the paper is the significant volume of behavioural data with a
reasonable sample size of 20 rats.

(2) The paper attempts to examine losses with rats (a notoriously tricky problem with non-
human animals) by substituting time-outs as a proxy for losses. This allows for mixed
gambles that have both gain and loss possible outcomes.

(3) The paper integrates both a behavioural and a modelling approach to get at the factors
that drive decision-making.

(4) The paper takes seriously the question of what it means for an event to be rare, pushing to
less frequent outcomes than usually used with non-human animals.

Weaknesses:

(1) The primary issue with this work is that the primary experimental manipulation fails to
isolate the rare, extreme events in choice. As I understand the task, in all the conditions with
a rare extreme event (e.g., 80 pellets with probability epsilon), there is also a less-rare, less-
extreme event (e.g., 12 pellets with probability 5). In addition, the variance differs between
the two conditions. So, any impact attributable to the rare, extreme event could be due to the
less rare event or due difference in the variance. The design does not support the conclusions.
Finally, by deliberately confounding rarity and extremity, the design does not allow for
assessing the impact of either aspect.

(2) The RL-modelling work also fails to show a specific impact of the rare extreme event. As
best as I can understand Eq 2, the model provides a free parameter that adds a bonus to the
value of either the two options with high-variance gains (A and V in the paper) or to the two
options with high-variance losses (F and V in the paper). This parameter only depends on
whether this option could have possibly yielded the rare, extreme outcome (i.e., based on the
generative probability) and was not connected to its actual appearance. That makes it a free
parameter that just bumps up (or down) the probability of selecting a pair of options. In the
case of the "black swan" or high-variance loss conditions, this seems very much like a loss
aversion parameter, but an additive one instead of a multiplicative one.

(3) The paper presented the methods and results with lots of neologisms and fairly obscure
jargon (e.g., fragility, total REE sensitivity). That made it very hard to decipher exactly what
was done and what was found. For example, on p. 4, the use of concave and convex was very
hard to decipher; the text even has to repeat itself 3 times (i.e., "to repeat" and "in other
words") and is still not clear. It would be much clearer (and probably accurate) to say that the
options varied along the variance dimension, separately for gains and losses. Option A was
low-variance gains and losses. Option B was low-variance losses and high-variance gains.
Option C was high-variance losses and low-variance gains, and Option D was high-variance
losses and gains. That tells much more clearly what the animals experienced without the
reader having to master a set of new terminologies around fragility and robustness, which
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brings a set of theoretical assumptions unnecessarily into the description of the experimental
design. In terms of results, "Black Swan" avoidance is more simply known as risk aversion for
losses.

(4) Were the probabilities shuffled or truly random (seem to be fixed sequences, so neither)?
What were the experienced probabilities? Given the fixed sequences, these experienced ("ex-
post") probabilities, could differ tremendously from the scheduled ("ex ante") probabilities.
It's quite possible that an animal never experienced the rare, extreme event for a specific
option. It's even possible (if they only picked it on the 10th/60th choices by chance), that they
only ever experienced that rare extreme event. This cannot be known given the information
provided. The Supplemental info on p.55 only gives gross overall numbers but does not
indicate what the rats experienced for each choice/option-which is what matters here. A
simple table that indicates for each of the 4 options, how often they were selected, and how
often the animals experienced each of the 6-8 possible outcome would make it much clearer
how closely the experience matched the planned outcomes. In addition, by restricting the
rare outcome to either the 10th or 60th activations in a session, these are not random. Did the
animals learn this association?

(5) The choice data are only presented in an overprocessed fashion with a sum and a
difference (in both figures and tables). The basic datum (probability/frequency of selecting
each of the 4 options) is not provided directly, even if it can theoretically be inferred from the
sum and the difference. To understand what the rats actually do, we first need to see how
often they select each option, without these transformations.

(6) There is insufficient detail provided on the inferential statistical tests (e.g., no degrees of
freedom or effect sizes), and only limited information on exactly what tests were run and
how (bootstrapping, but little detail). Without code or data (only summary information is
provided in the supplement), this is difficult to evaluate. In addition, the studies seem not to
be pre-registered in any way, leaving many researchers with degrees of freedom. Were any
alternative analysis pipelines attempted? Similarly, there were many sub-groupings of the
animals, and then comparisons between them - were these post-hoc?

(7) On p. 17, there is an attempt to look at the impact of a rare, extreme event by plotting a
measure of preference for the 10 trials before/after the rare, extreme event. In the human
literature, the main impact of experiencing a rare, extreme event is what is known as the
wavy recency effect (See Plonsky et al. 2015 in Psych Review for example). What this means is
that there tends to be some immediate negative recency (e.g., avoiding a rare gain) followed
by positive recency (e.g., chasing the rare gain). Using a 10-trial window would thus obscure
any impact of this rare, extreme event. An analysis that looks at a time course trial-by-trial
could reveal any impact.

(8) As I understood the method (p. 31), the assignment of options to physical locations was not
random or counterbalanced, but deliberately biased to have one of the options in the
preferred location. This would seem to create a bias towards a particular option and a bias
away from the other options, which confounds the preference data in subsequent analyses.

(9) Are delays really losses? This is a big assumption. Magnitude and delay are different
aspects of experience, which are not necessarily commensurable and can be manipulated
independently. And, for the model, how were these delays transformed into outcomes for the
model? Eq 1 skips over that. Is there an assumption of linearity? In addition, I was not wholly
clear if the delays meant fewer trials in a session or if the delays merely extended the session
and meant longer delays until the next choice period.

(10) The paper does not sufficiently accurately represent the existing literature on human
risky decision-making (with and without rare events). Here are a few examples of
misrepresented and/or missing literature:
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-Most studies on decision-making do not only rely on p > 10% (as per p. 2). Maybe that is true
with animals, but not a fair statement generally. Some do, and some don't. There is
substantial literature looking at rarer events in both descriptions (most famously with
Kahneman & Tversky's work), but also in experience (which is alluded to in reference 19).
That reference is not only about the situation when choices are not repeated (e.g. the
sampling paradigm), but also partial feedback and full-feedback situations.

The literature on learning from rewarding experiences in humans is obliquely referenced but
not really incorporated. In short, there are two main findings - firstly people underweight
rare events in experience; second, people overweight extreme outcomes in experience (both
contrary to description). Some related papers are cited, but their content is not used or
incorporated into the logic of the manuscript.

One recent study systematically examined rarity and extremity in human risky decision-
making, which seems very relevant here: Mason et al. (2024). Rare and extreme outcomes in
risky choice. Psychonomic Bulletin & Review, 31, 1301-1308.

There is a fair bit of research on the human perception of the risk of rare events (including
from experience) and important events like climate. One notable paper is Newell et al (2015)
in Nature Climate Change.
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