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A B S T R A C T

Background: High density microelectrode arrays (HD-MEAs) are now widely used for both in-vitro and in-vivo
recordings, as they allow spikes from hundreds of neurons to be recorded simultaneously. Since extracellular
recordings do not allow visualization of the recorded neurons, algorithms are needed to estimate their physical
positions, especially to track their movements when the are drifting away from recording devices.
New Method: The objective of this study was to evaluate the performance of multiple algorithms for neuron
localization solely from extracellular traces (MEA recordings), either artificial or obtained from mouse retina.
The algorithms compared included center-of-mass, monopolar, and grid-based algorithms. The first method
is a barycenter calculation. The second algorithm infers the position of the cell using triangulation with the
assumption that the neuron behaves as a monopole. Finally, grid-based methods rely on comparing the recorded
spike with a projection of spikes of hypothetical neurons with different positions.
Results: The Grid-Based algorithm yielded the most satisfactory outcomes. The center-of-mass exhibited a
minimal computational cost, yet its average localization was suboptimal. Monopolar algorithms gave cell
localizations with an average error of less than 10 μm, but they had considerable variability and a high
computational cost. For the grid-based method, the variability was smaller, with satisfactory performance
and low computational cost.
Comparison with Existing Method(s): The accuracy of the different localization methods benchmarked in
this article had not been properly tested with ground-truth recordings before.
Conclusion: The objective of this article is to provide guidance to researchers on the selection of optimal
methods for localizing neurons based on MEA recordings.
1. Introduction

Spike sorting is the algorithmic process of recovering the individual
activity of neurons from extracellular recordings (see Einevoll et al.,
2012 for reviews). With the tremendous increase in the density of
electrodes and the advent of high density microelectrode arrays (HD-
MEAs), one can hope to recover the activities of hundreds, if not
thousands, of neurons with a single spike resolution. In consequence,
the subject of spike sorting has become a topic of considerable inter-
est (Lefebvre et al., 2016; Yger et al., 2018; Pachitariu et al., 2023;
Buccino et al., 2022). However, it is important to emphasize that
extracellular recordings are performed blindly: the identity and location
of the cells within the vicinity of the electrodes are unknown.

The fact that the nature and position of cells are missing poses
numerous problems in ensuring the validity and robustness of spike
sorting pipelines. To understand why, it is worth noting that most, if
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not all, modern algorithms extract the isolated activities of neurons
from extracellular recordings in a standardized manner. After an initial
detection of peaks in the extracellular traces, the differentiation of the
extracellular waveforms emitted by the individual neurons is usually
performed by a clustering algorithm. For this purpose, the dimension-
ality of the waveforms (centered around the detected peaks) is reduced
to a so-called ‘‘feature space’’. All dimensionality reduction techniques
that have been used to perform this projection (Lefebvre et al., 2016)
have in common that they project the waveforms into an abstract
feature space, and their projections must be learned on a subset of the
data before application. Once the extracellular waveforms have been
found, all spikes are classically detected via a greedy template-matching
procedure (Pachitariu et al., 2023; Yger et al., 2018; Lee et al., 2020),
resolving the spatio-temporal overlaps or so-called ‘‘collisions’’ (Garcia
et al., 2022).
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Recently, however, the question of bypassing such a feature ex-
traction step has been raised, especially in the context of in-vivo
on-stationary recordings, to address the problems of drifting tis-
ue (Steinmetz et al., 2021). Indeed, spike sorting is a blind-source
eparation problem, where one need to disambiguate the sources (the
eurons) based on the extracellular traces. However, in vivo, cells are
ikely to slowly drift away from their initial positions because of the
ressure release in the tissue after the insertion of the probe. The exact
ature of these drifts is unpredictable: they can have arbitrary time
onstants, either be abrupt and discontinuous or slow and continuous.
he only certainty is that drifts distort the spatiotemporal signatures of

ndividual spikes, recorded extracellularly, and thus the ‘‘feature space’’
forementioned.

To track these moving neurons, it would be important to have a
roper estimation of their movement and position in order to dis-
mbiguate them efficiently. The possibility of quickly obtaining an
stimate of the position of cells from the shapes of their extracellular

waveforms would potentially facilitate spike sorting procedures and
implify the handling of physical drifts. Although the putative local-
zation of neurons has often been rather naively estimated by several

spike sorting algorithms using a simple center-of-mass (CoM) algorithm
depending on their electrical signatures, more sophisticated algorithms,
taking into account some biophysical properties of the cells, have been
proposed to infer such positions (Hurwitz et al., 2022; Pachitariu et al.,
2023; Buccino et al., 2018).

In this article, we will try to quantify the pros and cons of the latest
echniques used by modern sorters, and the extent to which the posi-
ions of the cells can be reliably inferred from the extracellular traces.
he accuracy of these localization techniques has not yet been properly
ested with ground-truth recordings and therefore, it is difficult to
now the extent to which such ‘‘estimated’’ positions could be used to

correctly estimate true physical properties of the cells, such as drift.
We will thus compare how accurate such localization methods could
be, either with synthetic or with ground-truth recordings obtained from
in-vitro recordings in the mouse retina.

2. Materials and methods

2.1. Notations

Throughout the article, vector variables are represented by the
notation. We use 𝑤⃗𝑖(𝑡) ∈ R𝑁×𝑀 to represent the spatiotemporal

waveforms emitted by the neuron 𝑖 at time 𝑡, where 𝑁 is the total
number of channels and 𝑀 is the number of time samples (by default,
we cut out the 2 ms signal at a sampling rate of 32 k Hz, which makes
𝑀 = 64). We will use the notation 𝑤⃗𝐹

𝑖 (𝑡) to refer to a one dimensional
representation (of size R𝑁 ⋅𝑀 ) of the waveforms where all channels are
concatenated. We further use the term Ground-Truth (GT) to refer to
fully controlled variables in our synthetic recordings.

2.2. Synthetic recordings

Using the MEArec Python package (Buccino and Einevoll, 2020),
250 multicompartment biophysical neuron models were created based
on experimental data from layer 5 of the rat cortex. In summary,
the intracellular activity of these neurons was simulated using NEU-
RON (Hines and Carnevale, 1997) including trans-membrane currents.
Neurons are located on top of a square high density microelectrode
array (HD-MEA), arranged as a grid of 16 times 16 channels, each
spaced by 30 μm. From the simulated extracellular currents, extracel-
lular action potentials were simulated using the LFPy package (Lindén
et al., 2014), and 10-minute recordings were generated at a sampling
rate of 32 kHz. The firing rate of excitatory neurons was set at 5 Hz with
a standard deviation of 1 Hz, and the firing rate of inhibitory neurons
was set at 15 Hz with a standard deviation of 3 Hz. Both cell types had
 refractory period of 2 ms. Neuronal firing was simulated in a Poisson
 a

2 
process. The noise level was set at a value of 10 μV. The obtained
recordings were processed with a Butterworth bandpass filter of order
3 between 300 and 6000 Hz, and each channel is divided by its own
oise level, so that the variance on a given channel is approximately

1. To assess the possibilities offered by various localization methods
with respect to the drift correction algorithm applied in-vivo, we also
generated data in Fig. 5 using a Neuropixel-like layout of 128 chan-
els (Steinmetz et al., 2021). 250 cells were added near the electrode,
enerated exactly as in the case described above.

2.3. Experimental recordings

The experiments were carried out according to institutional animal
care standards. For the ground-truth recordings, electrophysiological
recordings were obtained from ex-vivo isolated retinas of rd1 mice (4/5
weeks old). The retinal tissue was placed in AMES medium (Sigma-
Aldrich, St Louis, MO; A1420) bubbled with 95% O2 and 5% CO2 at
room temperature, on a MEA (252 10 μm electrodes spaced 30 μm
apart; Multichannel Systems, Reutlingen, Germany) with the layer
f ganglion cells facing the electrodes. Borosilicate glass electrodes
BF100-50, Sutter Instruments) were filled with AMES with a final
mpedance of 6–9 MΩ. Cells were imaged using a custom-built inverted
IC microscope (Olympus BX 71) equipped with a high-sensitivity
CD camera (Hamamatsu ORCA -03G) and recorded using an Axon
ulticlamp 700B patch clamp amplifier set in current zero mode. In

the data shown in Fig. 4A, 5 neurons were recorded on 4 intact retinas.
Recording durations of 5 min were analyzed, and the datasets are
already available online (Spampinato et al., 2018).

2.4. Localization of the cells

In order to estimate the putative positions of the somas, several
ypes of methods are considered in this study.

2.4.1. Center of mass algorithms
The first algorithm, most commonly used in the literature, is a

straightforward estimate via a center-of-mass estimation. More pre-
cisely, assuming that a neuron 𝑖 has its waveform 𝑤⃗𝑖(𝑡) defined on
everal channels 𝑎 ∈ {1,… , 𝑛channels}, we can compute, for example, the
eak-to-peak values pt p𝑖(𝑎) on each channel. Since each channel has
 physical position 𝑝𝑎 = (𝑥𝑎, 𝑦𝑎) in 2D space, we can obtain, for each
euron 𝑖, its barycenter or its so-called center-of-mass 𝐶 𝑜𝑀(𝑖), such as:

𝐶 𝑜𝑀(𝑖) =
∑

𝑎 pt p𝑖(𝑎)𝑝(𝑎)
∑

𝑎 pt p𝑖(𝑎)
(1)

Note that the choice of the peak-to-peak feature is arbitrary, and
one could use other features instead. For example, one could think of
the ‖ − ‖2 norm over each channel or the values 𝑤⃗𝑖(𝑡𝑎) where 𝑡𝑎 is the
time of the absolute minimum of the template. These two features are
used as ‘‘energy’’ and ‘‘peak voltage’’ in the article.

2.4.2. Monopolar approximations
The second method used in the article is called the monopole ap-

proximation. As in Varol et al. (2021a), the idea is to consider the cell as
a monopole and to infer its position by triangulation given the template
amplitudes recorded on all channels. More precisely, assuming that the
cell behaves as a monopole, we can exploit the fact that each spike is
detectable on several channels 𝑎 simultaneously: i.e., if the position of
cell 𝑖 is 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), we have several observations of the form:

pt p𝑖(𝑎) = 𝑘𝑖
√

(𝑥𝑎 − 𝑥𝑖)2 + (𝑦𝑎 − 𝑦𝑖)2 + (𝑧𝑎 − 𝑧𝑖)2
(2)

with the term 𝑘𝑖 including the magnitude of the current and prop-
gation properties of the tissue (see Buccino et al., 2018). Therefore,
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to obtain the position of the neuron, one can try to find (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑘𝑖) in
order to minimize the following cost function 𝛷(𝑥, 𝑦, 𝑧, 𝑘).
𝛷(𝑥, 𝑦, 𝑧, 𝑘) =

∑

𝑎
(pt p𝑖(𝑎) − 𝑘

√

(𝑥𝑎 − 𝑥𝑖)2 + (𝑦𝑎 − 𝑦𝑖)2 + (𝑧𝑎 − 𝑧𝑖)2
)2 (3)

The position of the neuron estimated via a Monopolar approxima-
tion is thus

𝑀 𝑜𝑛(𝑖) = argmin
𝑥,𝑦,𝑧,𝑘

𝛷(𝑥, 𝑦, 𝑧, 𝑘) (4)

To minimize the cost function, the scipy.optimize toolbox (Virtanen
et al., 2020) was used, with the BFGS (Broyden–Fletcher–Goldfarb–
hanno) algorithm. Again, the choice of peak-to-peak values as a
eature could be questioned. In this work, similar to the case of the

center-of-mass, we will also study the refined cases of ‘‘energy’’ or
‘peak voltage’’, for which different features are used to infer the source.

2.4.3. Grid-based convolutions
The third localization method used in this article is called Grid

convolution. This is a slight extension of the method developed in
Pachitariu et al. (2023) and explained in Garcia et al. (2023), in
rder to also
stimate a putative depth of the neurons. The idea behind this localiza-
ion method is to create an exhaustive catalog of artificial templates
𝑛⃗∈1,…,𝑘(𝑡) at known positions 𝑝𝑛 = (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) and to estimate the

position of a given spike 𝑤⃗𝑖(𝑡) projected on this basis. If the spatial
resolution of this grid is finer than that of the recording channels, one
might expect the resolution of the localization estimates to improve.

The scalar products 𝛽𝑖,𝑛 = 𝑤⃗𝐹
𝑖 (𝑡)𝑓

𝐹
𝑛 (𝑡) of the spike are computed

with all templates on the basis, and then, keeping only those that are
positive, the position 𝐺 𝑟𝑖𝑑(𝑖) of the spike is estimated as a weighted
sum of the positions, with weights equal to the scalar product between
the spike and these templates.

𝐺 𝑟𝑖𝑑(𝑖) =
∑

𝑛 𝛽𝑖,𝑛𝑝𝑛
∑

𝑛 𝛽𝑖,𝑛
(5)

To create the fake templates, the typical waveform 𝐻(𝑡) of a spike
on a single channel is estimated, and then duplicated on all nearby
hannels, with weight factor 𝑔 depending on the distance 𝑑 between

the position of the artificial templates 𝑝𝑛 and the channel locations 𝑝𝑎.
herefore, writing 𝑑𝑎,𝑛 = ‖𝑝𝑛 − 𝑝𝑎‖, we have the following.

𝑛⃗(𝑎, 𝑡) = 𝐻(𝑡)𝑔(𝑑𝑎,𝑛) (6)

The exact nature of the weight factor 𝑔 is arbitrary. For example, in
Kilosort (Pachitariu et al., 2023), the authors used a weight decay that
ollows a decaying exponential profile such that 𝑔(𝑑𝑎,𝑛) = 𝑒−𝑑

2
𝑎,𝑛∕𝜎 . A

aveat here is that the distances are only calculated in the 2d space
𝑥, 𝑦), but the depth can be approximated by varying the spread of
𝑠𝑖𝑔 𝑚𝑎. In the following, this solution will be referred to as the Grid
method with the mode ‘‘gaussian_2d’’. One other option would be to
consider a simple decaying exponential such as 𝑔(𝑑𝑎,𝑛) = 𝑒−𝑑𝑎,𝑛∕𝜅 (Segev
et al., 2004), and compute the distances in the full 3d space. In the
article this solution will be called Grid with the mode ‘‘exponential_3d’’,
and in all the following, we fix 𝜅 = 2.5 μm. By extending the grid
into 3 dimensions, we can get a putative estimate of the depth of the
neurons. The ones that are far apart will have a larger footprint on the
MEA, compared to the ones close to the recording sites. To reduce the
scattering of the scalar products when there are too many templates
in the basis, we perform the estimation in Eq. (5) only on the top 5%
f the positive scalar products. Details of both implementations can be
ound in Buccino et al. (2020).

2.4.4. Control method
Finally, as a control measure, we also used the position of the

channel where the minimum voltage is obtained, either for an averaged
emplate, or for individual spikes. This method will be referred to
s the ‘‘Peak Channel’’, and has the advantage of not requiring any
omputations.
3 
2.5. Estimation of the positions on a single-spike basis

In the article, we estimated the variability of the positions when
estimated on a single-spike basis. However, in a real-life situation, the
pike sorting algorithms would not have access to the exact spike times,
nd the detection threshold will add an extra layer of noise as a slight
itter in the temporal or spatial domain. To take that into account,
or each ground-truth spike time, we look in a small spatio-temporal
eighborhood for the largest peak that might have been detected by any
eak detection algorithm. The estimated positions are thus estimated on
his slightly jittered time.

3. Results

In this work, we wanted to assess the extent to which we could
extract the putative positions of neurons from their extracellular traces.
To do this, we used MEArec (Buccino and Einevoll, 2020) to generate a
10-minute artificial recording with 250 randomly placed neurons (see
Methods and Fig. 1A). The cell firing rate was fixed at 5 Hz for excita-
tory cells and 15 Hz for inhibitory cells, and the extracellular traces (for
a subset of recording channels) can be seen in Fig. 1B. To characterize
the activity of a given neuron 𝑖, spike sorting algorithms usually try to
identify the so-called ‘‘templates’’ 𝑤⃗𝑖(𝑡), that is, spatiotemporal motifs
elicited when the neuron 𝑖 fires an action potential on all its nearby
recording channels. This is shown in Fig. 1C, for a selected neuron 𝑖
in the center of the HD-MEA. Only channels within a given radius 𝜌
of 100 μm around the position of the cell are shown, which carry all
the information. As can be seen, the template 𝑤⃗𝑖(𝑡) is smooth, as it
is an average of many spikes shown in Fig. 1D. We then looked at
the precision of different localization methods, both at the averaged
template level (see Fig. 1E) and at the single-spike level (which is more
oisy and possibly corrupted by other spikes, see Fig. 1F). In fact, to

infer the position of a given neuron, one might be tempted to work
only at the template level. But, to track the potential drift or movement
of a specific neuron over time, it may be necessary to infer its position
ased on a single spike. For all methods, the localization variance, when
stimated on a single-spike basis, is high.

In the following, we compare three different approaches to infer
he positions of the neurons from their extracellular traces (see Meth-
ds). To cover all cases found in the literature, we made some minor
odifications to the center-of-mass and Monopolar methods to get a

roader overview of the possibilities and to explore their performance
s a function of the feature chosen. In fact, both methods can be
ased on different features (peak-to-peak, ‖ − ‖2 norm or the peak
oltage, i.e., the time of the absolute extrema of the template; see
ethods). For the Grid Convolution method, we assessed the accuracy

f two estimators noted ‘‘gaussian_2d’’ and ‘‘exponential_3d’’. Finally,
e compared these different methods to the ‘‘Peak Channel’’, which

onsiders the electrode where the highest peak was recorded as the
osition of the neuron.

First, we looked at averaged template levels, which are more com-
monly used. We expect that smoothed averaged waveforms would lead
to accurate and precise estimation of cell positions. As can be seen in
Fig. 2A, all methods make smaller errors for larger templates (high
signal-to-noise ratio). Similarly, as we can see in Fig. 2B, there is a
tendency for all methods to make larger errors when the cells are
far from the center of the HD-MEA. This is because for cells at the
edges, the templates are partly outside of the field of view, and thus
positions are incorrectly estimated. In addition, note that CoM-based
methods, by definition, cannot recover a position outside the HD-MEAs.
The Monopolar approximation and the Grid convolution methods both
appear to outperform all CoM-based methods, with average errors of,
respectively, ≈ 7 μm and ≈ 9 μm. Except for the CoM-based peak
voltage estimator, all the methods presented here allow for a better
localization of the neuron than approximating its position with the
Peak Channel. These errors are summarized in Fig. 2C. It is important
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Fig. 1. Illustration of the generation of artificial recordings. A The layout of a 256-channel HD-MEA with 30 μm spacing between each electrode is displayed, and the black dots
correspond to the positions of (some of) the artificial neurons. The red dot highlight the particular case of the neuron whose waveforms are shown in panels C, D. B 100 ms
of extracellular recordings, shown only for a few channels. C The template of the neuron highlighted in red in panel A (averaged over many spikes). D 100 waveforms taken
from single spikes of the same neuron (as in C), superimposed. E Localization, with several localization algorithms (see Methods), performed on the averaged template. Red dot
illustrates the real position of the generated template. F Same as E, but when localizing individual spikes.
to stress that despite similarities in the overall curves in Fig. 2, the
localization methods are not necessarily making the errors on the same
neurons (data not shown).While some cells (with a small signal-to-noise
ratio and/or located distant from the center) present challenges for all
methods, the discrepancies across localization methods are relatively
distributed for the other cells.

If we look at the precision of these measures but on individual spikes
rather than on averaged templates, the overall picture is different.
The same trends can be seen in Figs. 2D and E, where all methods
show sensitivity to template amplitude and distance from the center
of the HD-MEA. In Fig. 2F and G, we have plotted the average of
the median absolute deviations (mads) of errors across all single-spike
realizations. While we can see that the Monopolar approximation has
a relatively small mean error, its mads are larger than some CoM-
based methods, and more importantly, the variance of these mads is
also large. From these observations (see Fig. 2H), we conclude that
CoM-based methods yield significant error and substantial variability,
while the Monopolar approximation is more accurate (on average) but
has a large variance. The Peak Channel method demonstrates minimal
variability but significant error. The Grid convolution methods show
better results, with lower errors than pure CoM-based errors and lower
variances compared to Monopolar-based methods.

In order to understand how some of these methods are affected by
their parameters, we decided to investigate their robustness with re-
spect to key parameters that could affect them. In Fig. 3 (first column),
we looked at the influence of the time window around the peaks used
to compute the methods. For CoM or Grid-Based methods (Fig. 3A, C),
this time window has almost no effect on the averaged errors. For the
Monopolar methods, (Fig. 3B), as expected, the larger the window, the
larger the error, as we start to include more noise than the signal of
interest. This method seems to have an optimal accuracy of around
4 
0.5 ms, and degrades for lower and higher values. Similarly, in Fig. 3
(second column), we examined the influence of the radius 𝜌 around the
main peak. The larger the radius, the more channels (or templates in the
case of the Grid method) are used to estimate the positions. Selecting
more channels means collecting noise, and thus degrading the quality of
the estimation, except for the Grid-Based methods. The optimal radius
for the other methods was found to be approximately 50 μm. In Fig. 3
(third column) and for a particular case (𝜌 = 50 μm, 𝜏 = 1ms) we looked
at errors as a function of the axes (𝑥, 𝑦 and 𝑧). To measure how such
an estimate can be used to predict depth, we calculated the correlation
coefficient between the real coordinates (𝑥, 𝑦, and 𝑧) and the estimated
coordinates. As we can see from Fig. 3 the correlation coefficient in
the 𝑧 -axis is much worse than in the 2D space, probably due to lack
of information. In addition, the final column illustrates these values as
functions of the averaged errors performed (expressed as a percentage),
and we can appreciate that both the Monopolar and the Grid-based
methods are able to accurately predict the values in the 𝑧-axis. Not only
are the relative relationships kept, but also to some extent the values
themselves.

As artificial recordings do not fully reflect the complexity of physi-
ological recordings, we measured the accuracy of each algorithm using
ground-truth recordings from ex-vivo retinas. Using intracellular record-
ings performed simultaneously with HD-MEA recordings, we obtained
the real positions of 5 cells, as well as the timing of their spikes. This
allowed us to calculate the averaged template for each cell and predict
its localization with the different algorithms. Since we can localize the
tip of the glass pipet (see Fig. 4A), we know approximately the position
of the neuron (at least in the ((𝑥, 𝑦) plane) and we also know the
timing of its spikes, so we can obtain the perfect extracellular signature
from the HD-MEA recordings (see Methods, see Fig. 4B). Applying
our localization methods to extracellular templates and/or individual
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Fig. 2. Localization errors as a function of the methods. A Error in the estimated positions of the averaged templates as a function of the signal-to-noise ratio (snr), for several
nference methods (see Methods) B Same as A, but ordered by the distance of the cells from the center of the array. C Mean error (over the 250 ground-truth templates) between
he positions of the ground-truth templates and those estimated from the averaged templates. Error bars show the standard deviations on the templates. D Same as in A, but the

error is calculated as the mean, over neurons, of the errors calculated on single-spike realizations as a function of the snr. E Same as in D, but the error is computed as the mean,
over neurons, of the errors computed on single-spike realizations, as function of the distance to the center. F Median absolute deviation of the error, over neurons, for errors
computed on single-spike realizations as function of the snr. G The same as in F, but as a function of the distance to the center. H Median errors and Median absolute Deviations
over all neurons and their individual spikes. The gray bars represent the variability along the median error (i.e., the degree of accuracy of the mean errors) or along the median
absolute deviations (i.e., the extent of variation in the errors).
Fig. 3. Influence of the parameters on the localization methods. A Impact of the parameters for Center of Mass based methods. From left to right: 1. Median of all errors, over
all templates, as a function of the time window around the spikes used to estimate the peak-to-peak feature. The shaded areas represent the median absolute deviations over all
templates. 2. Same, but as a function of the local radius 𝜌, in microns, used to restrict the area around the peak (see Methods). 3. Correlation coefficients between the real x, y
and z coordinates and the found ones. 4. Error (in %) realized in the x, y and z dimensions. B Same as A but for Monopolar based methods. C Same as A but for Grid-based
methods.
spikes, we can obtain putative estimates of the positions (see Fig. 4C).
We can see that the localization errors are very similar on average
etween neurons when performed at the template level (see Fig. 4D).
5 
For all cells, we can notice that Monopolar and grid-based methods tend
to behave similarly, whereas the Peak Channel method strongly differs.
An issue arises from the inability to effectively know the source from



M. Scopin et al. Journal of Neuroscience Methods 412 (2024) 110297 
Fig. 4. Accuracy of cell localization with ground-truth recordings. A Illustration of the HD-MEA layout, with the tip of the juxtacellular electrode (in red) patching two ganglion
cells (two rows). Green areas represent the closest channels shown in following panels. B The waveforms triggered by ground-truth neurons, averaged over their spikes (obtained
from juxtacellular recordings) C The estimated position of these two particular neurons, obtained with different localization methods (see Methods), compared to the putative
physical position in black (located with the tip of the electrode) D Distance to the tip obtained when estimating positions from the averaged templates, over 5 cells in 5 different
retinas, for all localization methods. E Variances over all positions given by localization methods as a function of the distance to the center of the MEA for the tip of the electrode.
G The same as in F but as a function of the signal-to-noise ratio of the patched ground-truth neuron.
which the action potential originates, specifically the initial segment of
the axon, which is not visible in this dataset. As a consequence, the only
discernible outcome is the relative agreement across the localization
methods. As shown in Fig. 4E, the variance between all the positions
found is low (≈ 2.5 μm) and appears to vary as a function of the signal-
to-noise ratio of the patched neuron (Fig. 4F). It should be noted that
the Peak Channel and CoM-based methods often lead to slight outliers
in localization (see Fig. 4D), it can thus be posited that Grid-based and
Monopolar methods exhibit consistent behavior, without the necessity
for further assumptions regarding the location of the actual source of
the action potential.

While we have shown in this article that the Monopolar approxi-
mation appears to be slightly more accurate for inferring position from
extracellular recordings, we have also shown that it comes at the cost
of higher variability on a single-spike basis. This is inconvenient, since
modern spike-sorting algorithms rely on the localization of individual
spikes to perform drift tracking. In particular, all recent methods that
try to perform a non-rigid registration of the activity profile of neurons
(see Buccino et al., 2022 for a review) assume that one can correctly
estimate the histogram, along one dimension, of the activity profile
as a function of the localization methods. As illustrated in Fig. 5, we
addressed this aspect using a Neuropixel-like probe layout (as detailed
in the Methods section) with the objective of restricting ourselves to
the 1D scenario, which represents the sole case currently addressed
by the registration methods (Pachitariu et al., 2023; Boussard et al.,
2021; Varol et al., 2021b). As can be seen in Fig. 5A, the distribution of
cells along the depth can give rise to different distributions of estimated
positions depending on the localization method (see Fig. 5B), using a
4 μm bin for the width of the histogram.

To measure how different the estimated distributions are from the
ground-truth, we compared, for various localization methods, a selec-
tion of metrics computed between the discrete histograms (obtained
with various bin sizes) and the ground-truth histogram. In Fig. 5C, we
can see that 1 minus the correlation coefficient between the estimated
and the real histograms (varying the bin width, and along the 𝑦-axis) is
6 
consistently lower for the Monopolar methods. This means that the his-
tograms of the positions estimated using Monopolar methods are more
similar to those obtained from the ground-truth spikes, which should
facilitate the work of the registration procedures. The same is true for
the Bhattacharyya distance (data not shown), often used as a distance
between 1D distributions. If we look at the effect of the bin sizes, i.e. the
resolution at which we are looking at the histograms to perform the
correlation, we can see in Fig. 5C that for all bin sizes (and either we
are looking in the 𝑦 or 𝑧-axis), the same trend is visible: largest distances
are obtained for CoM-based methods, the Grid is an in between, and the
Monopolar approximation is the best, with a slight preference for the
‘‘energy’’ or ‘‘peak voltage’’ implementations. It should be noted that
for very large spatial bins of histograms, the correlation is artificially
increasing due to the fact that everything begins to appear essentially
indistinguishable, resulting in similar-looking histograms.

However, estimating the activity profile of all spikes is costly
and this is why some methods that rely on Monopolar approxima-
tions (Boussard et al., 2021; Varol et al., 2021a) are very
time-consuming. As one can appreciate in Fig. 5D, the run time for
Monopolar estimations is three times slower than the other methods,
and this prevents, for large-scale and long recordings, a proper usage of
such metrics. This is why the Grid-based methods seem to represent an
optimal compromise in terms of performance and run times. This is con-
firmed in Fig. 5E showing 1 minus the correlation coefficient between
the estimated and real histograms (varying the width of the bin) along
the 𝑧-axis. As observed previously in Fig. 3, the Grid-based methods
are also able, to some extent, to infer the relative relationships along
the 𝑧-axis, thus offering some possibilities for downstream clustering
algorithms and/or spike sorting pipelines.

4. Discussion

In this article, we reviewed the strengths and weaknesses of the
three main methods used to estimate cell position from extracellular
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Fig. 5. Influence of the localization for drift correction algorithms. A A Neuropixel probe layout with cells generated uniformly in the vicinity of the electrodes. B Histogram of
the distributions of the positions of all individual spikes, when using different localization schemes, and with a spatial bin of 4 μm. The ground-truth histogram (gt) is shown on the
left as a reference. C 1 minus the correlation coefficient between the histograms obtained on the 𝑦-axis from the ground-truth positions and those estimated by several localization
algorithms for different bin sizes. The dash dotted line represents a control level for uniformly drawn position along the 𝑦-axis, and the shaded gray area the variability of the

easure. D Run times for the different localization methods. E Same as in C, but for several bin sizes used to compute the histograms in the 𝑧-axis.
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traces in HD-MEA recordings. We compared the accuracy of the center-
of-mass (CoM), Monopolar and Grid methods in localizing the precise
positions of neurons in either artificial microelectrode array (high
density MEA) recordings or real ground-truth recordings (n = 5). The
CoM method relies on a simple barycenter calculation using either
peak-to-peak (ptp), energy or peal voltage values as weights. When
sing ptp or energy, this method gave satisfactory results with a mean
ccuracy of ≈ 12 μm in the localization of the averaged templates
f neurons. Using the peak-voltage metric seemed to greatly increase
he error for artificial MEA recordings, but this was not the case for
round-truth recordings. We recommend using the CoM method for
ast estimation of templates or single-unit positions. For more precise
esults, an alternative is to use the Monopolar method, which has been
hown to achieve median localization errors of less than 10 μm for
oth templates and single units. However, this method demonstrated
reater variability in the localization of single units and is also more
omputationally demanding, which raises questions about its suitability
s an optimal tool for correcting drifts in recordings. The Grid method
as used in Kilosort 2, 2.5 and 3 Pachitariu et al., 2023) has a reasonable
omputational cost and offers relatively small errors in the localization

of templates and single units (around 10 μm). This method provided
etter localization than the CoM method and less variability than

the Monopolar method, standing as an in-between between the two
inference schemes.

Both the Monopolar and the Grid Convolution methods allow for a
-dimensional estimation of the unit positions. It can be observed that
he error in the 𝑧-axis is significantly higher than the error in the (𝑥, 𝑦)

axis. This was expected for the Monopolar method, as the estimation of
the distance in the 𝑧-axis is highly dependent on the estimation of the
spike amplitude and is highly under-constrained. Indeed, the waveform
recorded from a nearby neuron with a small spike amplitude would be
imilar to that recorded from a neuron at a greater distance but with a
7 
larger spike amplitude. Nevertheless, the estimation of both the spike
amplitude and the 𝑧-position could be useful, especially in the context
of the increasing prevalence of 3D probes (Grob et al., 2020; Lycke
t al., 2023; Wang et al., 2023; Suzuki et al., 2022).

Estimating the putative positions of neurons from extracellular foot-
rints can be useful in several use cases. For example, in neuronal
ultures and/or organoid in-vitro, it would be beneficial to estimate the
ocation of cells, in order to evaluate the putative synaptic pathways
etween them. Alternatively, being able to estimate the positions of the
eurons could be useful to correct for recording drifts in-vivo. As shown
n Buccino et al. (2022), drifts are now a major bottleneck for chronic

tracking of neurons over multiple days. So far, the best drift correction
algorithms are based on ideas borrowed from computer vision (with
non-rigid registration of the activity profiles Pachitariu et al., 2023;
Boussard et al., 2021), and thus on putative positions of the neurons.
Our findings demonstrate that, in order to estimate such activity pro-
iles, grid-based methods are more reliable, with a satisfactory run time,
nd thus should be preferred over CoM or Monopolar alternatives.

However, it should be noted that the position estimated by all three
methods is that of the axon initial segment (AIS), where the action
potential is emitted. The relative position of the AIS to the soma can
vary between different cell types and can even change with structural
plasticity (Kuba, 2012). In the case of cultured neurons, the position
of the AIS may show even more variability. Therefore, the position of
the soma cannot be accurately determined from the position of the AIS,
and despite some imaging studies suggesting that Monopolar methods
are more accurate (Ghazal et al., 2023), more ground-truth experiments
are needed to assess the extent by which cell bodies can be localized.
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