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A B S T R A C T

A one-dimensional model is developed and studied to explore the flame acceleration runaway mechanism
for deflagration-to-detonation transition in thin tubes. This mechanism relies solely on the thermal feedback
between the compression waves ahead of the flame and the temperature-sensitive laminar velocity of the flame.
Within this model, the primary driver of the flame acceleration and compressive heating enhancement is the
gas flow caused by the increased flame surface area. Results from the numerical integration of the reactive
Navier–Stokes equations for perfect gases with a single-step chemical-kinetics model are compared with the
solutions obtained when considering the flame as a steady-state discontinuity. The numerical results illustrate
the flame acceleration runaway in finite time caused by a double feedback loop established in this model.
The evolution of the flame acceleration towards a finite-time singularity eventually leads to the formation of
a shock wave within the flame structure, triggering the onset of a detonation.

Novelty and significance statement
This paper presents numerical results obtained using an approach recently proposed to study the effect of

flame acceleration on the one-dimensional internal structure of the flame. Unlike previous studies on flame
acceleration leading to DDT based on one-dimensional models in which the flame acceleration due to the
increase of its surface area is modeled by accelerating chemical kinetics, the present approach consists in the
introduction of a backflow of burned gases pushing the flame tip from behind as a piston. The numerical
analysis performed in this work allows considering finite reaction rates in this model obtaining results that
compare favorably with those obtained when the flame is considered as a discontinuity. The results of this
numerical study support previous analytical studies on the flame acceleration runaway mechanism for DDT
and illustrate the acceleration process of a flame propagating over a gas flow with a markedly subsonic velocity
which leads to the onset of a detonation.
1. Introduction

The Deflagration-to-Detonation (DDT) transition, in which a sub-
sonic flame controlled by diffusion processes abruptly turns into a su-
personic reactive wave, represents a critical safety issue in industry [1].
Since its discovery by Mallard and Le Chatelier [2] and Berthelot
and Vieille [3], and the pioneering and enlightening experimental
campaigns of Urtiew et al. [4], numerous efforts have been devoted to
the investigation of this phenomenon and continues to be so, as attested
by recent reviews [1,5,6]. Despite the large amount of research, the
fundamental mechanism of DDT has not yet been agreed upon. Various
forms of DDT have been observed in experiments suggesting different
mechanisms (see [7,8] and references therein), but the existence of a
universal mechanism remains to discussion.

∗ Corresponding author.
E-mail address: raulhern@ing.uc3m.es (R. Hernández-Sánchez).

A first attempt at proposing a universal mechanism was made
by Shelkin [9] related to the development of a turbulent flow due to the
non-slip condition on the tube walls along which the flame propagates.
According to the Shelkin mechanism, turbulence is essential for the
flame acceleration which leads to DDT. The theoretical study of the
detonation onset in a reactive mixture under the influence of a large re-
activity gradient carried out by Zel’dovich et al. [10] was subsequently
followed to propose the Shock Wave Amplification through Coherent
Energy Release (SWACER) as a mechanism of DDT [11]. A flame
acceleration runaway mechanism due to the thermal feedback coupling
between the velocity of the flame front and compressible phenomena
that could lead to DDT was studied later by Deshaies and Joulin [12].
The Darrieus–Landau (DL) hydrodynamic instability [13,14], which
causes an amplification of the perturbations of a planar flame to be
https://doi.org/10.1016/j.combustflame.2024.113775
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further amplified due to the density jump through the flame, has also
been proposed as a mechanism of flame acceleration [15,16]. However,
recent studies of the DL instability for realistic values of expansion
through the flame show that the acceleration induced by this instability
in narrow tubes is too short and too weak to initiate a detonation [17,
18]. A different mechanism for DDT based on friction-induced adiabatic
compression was proposed by Brailovsky and Sivashinsky [19]. This
mechanism, termed hydraulic resistance, has been extensively stud-
ied through one-dimensional models [19–21]. The relative impact of
flame folding and hydraulic resistance may explain why the detonation
onset sometimes occurs inside the tube and sometimes near the tube
walls [22]. The present work focuses on the range of tube diameters
for which flame folding is the primary mechanism and detonation is
formed near the tube axis.

Recent experiments [23–30] and multidimensional direct numerical
simulations [24,28,31] have contributed to a more comprehensive
understanding of DDT. These studies show consistently a somewhat
similar DDT process: (i) a laminar flame propagates subsonically along
a tube with a radius on the order of millimeters or a few centimeters,
(ii) the flame velocity in a laboratory fixed reference frame increases
up to a velocity of the order of the unperturbed sound speed during a
flame acceleration phase paired with an increase in flame surface area,
(iii) a detonation is originated at a localized point within or close to the
internal flame structure. The onset of the detonation is thus a localized
phenomenon, and the weak wrinkling of the flame surface at instant of
explosion supports the idea that turbulence plays only a supplementary
role in flame acceleration, but is not essential [32,33].

The theoretical precursor study of a flame acceleration runaway
mechanism for DDT [12] has since been revisited using the square-wave
kinetics model [34]. The critical condition for DDT proposed by this
analysis, applicable to laminar flames, is based on the non-existence
of steady solutions above a critical flame surface area. Deshaies and
Joulin [12] derived the steady solutions of a flame-shock ensemble
using the weak shock approximation and high thermal sensitivity of the
laminar flame speed introducing a flame folding parameter to account
for the flame surface wrinkling responsible for flame acceleration. They
showed that the thermal feedback of the lead shock wave on the lam-
inar flame velocity introduces criticality conditions that could be the
basis for the abrupt transition to a detonation. One-dimensional (1D)
numerical simulations [29,34–38] have illustrated this DDT mechanism
by means of the 𝛴 model in which the reaction rate is accelerated by a
factor 𝛴2 to model the flame acceleration due to the increase of flame
surface area.

A 1D model of self-accelerating flame [39–41] has been recently
proposed and examined. Using this model, the criticality conditions for
the flame acceleration runaway mechanism correspond to experimental
and numerical observations [39] and are reached under realistic reac-
tion rates. Within this model, described in detail in [39], the flame
folding parameter is replaced by a flame elongation parameter. An
additional feedback mechanism is introduced through the piston effect
of a backflow of burned gas towards the tip of the finger flame which
lowers the intensity of the shock wave required to reach criticality.

The self-similar solutions of the flame-shock ensemble have been
analyzed in [39]. The self-similar description neglects the dynamics
of the compression waves between the flame and the leading shock,
assuming the flow in between remains uniform. In the vicinity of the
critical point, where the flame acceleration diverges, the uniform flow
approximation cannot be accurate due to the rapid flame acceleration.
Nonetheless, this model is also suitable for investigating the unsteady
compression waves that lead similarly to a finite-time singularity within
the experimentally and numerically observed conditions for DDT [40].

This study aims to explore the impact of the backflow of burned
gases introduced by the Clavin and Tofaili [39] model on the unsteady
internal structure of a 1D flame through numerical integration. This
paper first provides a methodology for calculating critical conditions

comparable with numerical simulations. Numerical results obtained

2 
for the Clavin and Tofaili [39] model using a finite reaction rate
are presented hereafter. A 1D unsteady flow of perfect gas has been
simulated with the boundary conditions imposed by the piston effect of
the backflow of burned gases model through the numerical integration
of the macroscopic conservation laws for compressible flows including
reactive phenomena. The simulation results illustrate the violent and
abrupt flame acceleration along with the shrinking of the internal
structure of the flame once the predicted critical flame elongation
parameter is surpassed.

2. One-dimensional flame at the tip of an finger flame

2.1. Backflow of burned gases

As in the 1D model of Clavin and Tofaili [39], the expansion of the
combustion products produced near the channel walls in the flame skirt
is modeled as a mass production term per unit of volume 2𝜌b𝑈b∕𝑅 along
he flame length 𝐿, following the approach of Clanet and Searby [42].
eglecting compressible and unsteady in the region delimited by the
losed end, where the gas is at rest, and the flame tip, the conservation
f mass leads to a backflow of burned gas that impinges the flame tip
rom behind with velocity

b = 𝑆𝑈b. (1)

Here, the elongation parameter 𝑆 is proportional to the ratio of the
flame length 𝐿 to the tube radius 𝑅. For instance, for a simplified
description of a flame envelope given by the surface of a cylinder,
as that of [42], the elongation parameter would be expressed as 𝑆 =
2𝐿∕𝑅. However, the exact relationship between the flame length and
the elongation parameter defining the gas flow is out of the scope of
this work. The subsequent analysis is limited to assess the evolution of
flame acceleration when the elongation parameter defined in Eq. (1) is
increased. The backflow of gases drives the flame acceleration in the 1D
model (see Fig. 1) for finger flames, 𝑅∕𝐿 ≪ 1. A qualitatively similar
flow field is observed through Particle Image Velocimetry (PIV) in an
insightful experimental analysis [43] as well as in two-dimensional
numerical simulations [44].

Both the 𝜎 and 𝑆 parameters from the analysis of Deshaies and
Joulin [12] and Clavin and Tofaili [39] model, respectively, provide
a quantitative measure of the ratio of flame surface to normal section
in the direction of propagation which controls the flame propagation
velocity 𝑢𝑓 = 𝜎𝑈𝑏 = (𝑆 + 1)𝑈𝑏. The latter formulation of Clavin and

ofaili [39] might be interpreted as a reformulation of the Deshaies
nd Joulin [12] model. While multidimensional effects are averaged
ver the tube cross section in the 𝜎 model, the 𝑆 model is limited
o elongated flames and analyzes the flame tip internal structure.
he multidimensional character of the flame is introduced in the 𝑆
odel by the backflow of burned gases originating from the flame skirt
ushing forward the flame tip. Therefore, numerical studies based on
he analysis of Deshaies and Joulin [12] for one-dimensional models
erformed so far, such as [34,36], consider the multidimensional effects
f an increased flame surface area by increasing the reaction rate. Based
n the Clavin and Tofaili [39] model, a different approach is proposed
n this work to study the internal structure of the flame tip during the
ubsonic flame acceleration runaway predicted originally by Deshaies
nd Joulin [12].

.2. Governing equations

The dynamics of unsteady propagation of a 1D deflagration are
escribed by the Navier–Stokes equations supplemented with the con-
ervation laws of mass, energy and chemical species. The governing
quations for the conservation of mass
𝜕𝜌

+
𝜕 (𝜌𝑢)

= 0, (2)

𝜕𝑡 𝜕𝑟
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Fig. 1. (a) Sketch of the finger flame model of Clavin and Tofaili [39]. The streamlines are represented by light black dashed lines with arrows, while the flame surface is depicted
by the thick red line, with the flame skirt highlighted in light blue. (b) One-dimensional model at the tip of the flame with the absolute flow velocities represented by dashed
black arrows and the flame velocities with respect to the flow by blue arrows.
s
t

momentum

𝜕(𝜌𝑢)
𝜕𝑡

+
𝜕
(

𝜌𝑢2
)

𝜕𝑟
+ 1

𝛾𝑀2
bo

𝜕𝑝
𝜕𝑟

= Pr 𝜕
2𝑢
𝜕𝑟2

, (3)

total energy

𝜕(𝜌𝐸)
𝜕𝑡

+
𝜕 (𝜌𝑢𝐸)

𝜕𝑟
+

𝛾 − 1
𝛾

𝜕 (𝑝𝑢)
𝜕𝑟

= 𝜕2𝑇
𝜕𝑟2

+𝑀2
bo Pr(𝛾 − 1) 𝜕

𝜕𝑟

(

𝑢 𝜕𝑢
𝜕𝑟

)

+ 𝜌𝑞𝜔 (4)

and reactant mass fraction
𝜕(𝜌𝑌 )
𝜕𝑡

+
𝜕 (𝜌𝑌 𝑢)

𝜕𝑟
= 1

Le
𝜕2𝑌
𝜕𝑟2

− 𝜌𝜔 (5)

re written here the dimensionless spatial coordinate system of the
ube 𝑟 = 𝑟′∕𝑙′fo and dimensionless time coordinates 𝑡 = 𝑡′∕𝑡′fo where
′
fo = 𝐷′

Tbo∕𝑈
′
bo is the characteristic length scale of the flame thick-

ess, 𝐷′
Tbo denotes the thermal diffusivity of the burned gases, 𝑈 ′

bo is
elocity of a flame with respect to the burned gases propagating in
mixture initially at unperturbed temperature 𝑇 ′

o and 𝑡′fo = 𝑙′fo∕𝑈
′
bo

epresents the corresponding transit time. The physical quantities of
ensity 𝜌 = 𝜌′∕𝜌′bo, flow velocity 𝑢 = 𝑢′∕𝑈 ′

bo, pressure 𝑝 = 𝑝′∕𝑝′o,
emperature 𝑇 = 𝑇 ′∕𝑇 ′

bo, total energy 𝐸 = 𝐸′∕(𝑐′p𝑇
′
bo) and heat of

eaction 𝑞 = 𝑞′m𝑌
′
o∕(𝑐

′
p𝑇

′
bo) are made dimensionless with the state of the

urned gas behind a flame propagating from the open end of a tube,
.e. 𝑇 ′

bo = 𝑇 ′
o + 𝑞′m𝑌

′
o∕𝑐

′
p, and the reactant mass fraction is normalized

ith its initial value 𝑌 = 𝑌 ′∕𝑌 ′
o . The nondimensional Prandtl Pr =

′∕(𝜌′b𝐷
′
Tb) and Lewis Le = 𝐷′

T∕𝐷
′ numbers appear naturally in the

imensionless equations to quantify the relative contribution of the
ifferent molecular diffusion effects. The thermophysical properties of
pecific heat capacity at constant pressure 𝑐′p and constant volume 𝑐′v
nd thermal conductivity are considered to remain constant, leading
o the relation 𝜌′𝐷′

T = 𝜌′bo𝐷
′
Tbo that defines the thermal diffusivity. An

quation of state for perfect gases is applied 𝑝′ =
(

𝑐′p − 𝑐′v
)

𝜌′𝑇 ′, which
n the chosen units is written as 𝑝 = 𝜌𝑇 while the speed of sound is
2 = 𝑇 ∕𝑀2

bo, where 𝑀bo ≡ 𝑈bo∕𝑎bo is the flame Mach number relative
o the burned gases. The total energy, which accounts for the internal
hermal energy 𝑒′ = 𝑐′v𝑇

′ and the macroscopic kinetic energy 𝑢′2∕2, is
ritten as 𝐸 = 𝑇 ∕𝛾+𝑀2

bo(𝛾−1)𝑢
2∕2, where 𝛾 = 𝑐′p∕𝑐

′
𝑣 = 1.4 represents the

𝜔

eat capacity ratio. A single-step reaction model R ←←←←←←←←←←←←←←←←←→ P is employed

3 
whose chemical-kinetics reaction rate obeys an Arrhenius law

𝜔 = 𝜔′

1∕𝑡′fo
=

𝛽𝜗+1o

2𝜗!Le𝜗
𝜌𝜗𝑌 𝜗 exp

[

𝐸a
kB𝑇bo

(

1 − 1
𝑇

)

]

, (6)

where 𝜗 and 𝐸a are the order and the activation energy of the re-
action model, and kB is the Boltzmann constant relating the thermal
energy of a gas with the thermodynamic temperature. For clarity, the
Zeldovich number, 𝛽o, that provides a quantitative measure of the
reaction rate sensitivity to temperature and is defined as the product
of dimensionless activation energy and heat of reaction

𝛽o ≡
𝐸a

kB𝑇bo

𝑞m
𝑐p𝑇bo

, (7)

has been introduced.

3. Double-discontinuity model

The propagation of a flame through a reactive mixture induces a
movement of the surrounding gas. This motion is caused by the differ-
ence in flow velocity on both sides of the flame, which is generated
to satisfy mass conservation taking into account the lower density of
the burned gases with respect to the fresh mixture. When a flame is
initiated at the closed end of a tube, the induced flow by the expansion
of the burned gases leads to the formation of a shock wave ahead of
the flame. The distance between the flame and the shock wave grows
linearly with time at a rate given by the difference between the absolute
flame propagating velocity 𝑢f ≡ d𝑟f∕d𝑡 and that of the shock wave 𝑢s ≡
d𝑟s∕d𝑡. Under ordinary conditions, a flame propagates with a markedly
ubsonic velocity 𝑢f∕𝑎o ≪ 1 while a shock wave propagates faster
han the sound speed 𝑢s∕𝑎o > 1 resulting in large velocity difference
𝑢f∕𝑢s ≪ 1. Therefore, at the length scale given by the size of the shock-
flame complex both the shock wave and the flame can be considered
as discontinuities soon after ignition.

Across the shock wave, the gas temperature increases from the
initial temperature 𝑇o to the temperature at the Neumann state 𝑇N.
Likewise, the gas flow, considered still ahead of the shock wave, moves
with a velocity 𝑢N behind the shock wave in the propagation direction
of the supersonic discontinuity. The values of the temperature ratio and
the flow velocity can be obtained through integration of the conserva-
tion equations of mass, momentum and total energy Eqs. (2)–(4) in the
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moving reference frame of the shock wave. These relationships are the
well-known Rankine–Hugoniot jump conditions

𝑇N
𝑇o

=

[

2𝛾𝑀2
o − (𝛾 − 1)

] [

(𝛾 − 1)𝑀2
o + 2

]

(𝛾 + 1)2𝑀2
o

(8)

𝑢N
𝑎o

= 2
𝛾 + 1

(

𝑀o −
1
𝑀o

)

(9)

which provide the temperature jump and flow velocity to sound speed
ratio in terms of the shock wave Mach number 𝑀o ≡ 𝑢s∕𝑎o.

Within the internal structure of a steady flame, mass conservation
Eq. (2) requires mass flux to remain constant

𝜌u𝑈u = 𝜌b𝑈b, (10)

and the absolute flame propagating velocity 𝑢f can be decomposed into
the flow velocity 𝑢 and the velocity of the flame relative to the flow 𝑈

𝑢f = 𝑢u + 𝑈u = 𝑢b + 𝑈b, (11)

where the subscripts u and b denotate respectively the flow ahead and
behind the flame.

The thermal propagation of the flame which governs the flame
velocity relative to the flow results in a markedly subsonic flame 𝑀b =
𝑈b∕𝑎b ≪ 1. Thus, since pressure variations in the quasi-steady regime
are proportional to the square of the Mach number 𝛥𝑝 ∼ 𝑀2

b (see
q. (3)), the flame can be considered to be isobaric

= 𝜌u𝑇u = 𝜌b𝑇b. (12)

ntegration of the energy conservation Eq. (4) along the isobaric flame
tructure leads to the classical expression for the adiabatic flame tem-
erature

b = 𝑇u + 𝑞. (13)

ccording to the asymptotic analysis of thermal flame propagation
n the limit of large activation energy 𝛽o → ∞ by Zeldovich and
rank-Kamenetskii [45], the laminar flame velocity relative to the flow
f gases is strongly sensitive to temperature. As discussed in [7,39],
he dependence of the laminar flame velocity 𝑈L on the burned gas
emperature 𝑇b for the reaction rate described by Eq. (6) in the large
ctivation energy asymptotic limit yields

b = 𝑈L(𝑇b) = 𝑇 𝜗+1
b exp

[

𝐸a
2kB𝑇bo

(

1 − 1
𝑇b

)]

(14)

.1. Self-similar solutions

Considering the initial phase of flame acceleration when flame
elocity grows on a time scale much larger than the acoustic time, the
low between the flame and the shock wave can be accurately assumed
o be uniform. Acoustic waves propagating back and forth between the
lame and the shock uniformize the state variables of the flow. In this
cenario, the temperature and the flow velocity of the unburned gas
head of the flame are given by the Neumann state just behind the
hock wave,

u = 𝑇N and 𝑢u = 𝑢N. (15)

oreover, since both waves are considered as discontinuities, the only
ength scale left in the problem is the distance between the waves.

hen both waves propagate with constant velocity, the distance that
eparates them is a linear function of time. Therefore, the problem actu-
lly lacks spatial scales and a solution dependent on the dimensionless
elf-similar variable 𝑥∕𝑡 can be found.

The system of Eqs. (8)–(15) provides the nonlinear relationship
etween the flame velocity 𝑢f and the elongation parameter 𝑆 that
haracterizes the self-similar solution for given set of thermochemical
roperties of the reactive mixture including the reaction heat 𝑞, the
imensionless activation energy 𝛽, the reaction order 𝜗 and the burning

lame Mach number relative to the burned gases 𝑀bo. This relationship

4 
an be obtained numerically, without more approximations, using the
hock wave Mach number 𝑀o as a parameter and pairing up the
orresponding flame velocity 𝑢f and elongation parameter 𝑆.

Examples of the relationships between flame velocity and the elon-
ation parameter for different parametric values of the thermochemical
roperties are depicted in Fig. 2. Characteristic values for reactive
ixtures that exhibit DDT when a flame propagates along a tube free

f obstacles, such as hydrogen-oxygen and ethylene-oxygen (see [25]),
ave been considered here. A reference set of parameters 𝜗 = 2,

𝑞 = 0.875, 𝑀bo = 2 × 10−2 and 𝛽o = 10 is considered unless other-
ise indicated and every parameter is increased or reduced within its

ange of typical values. Although quantitative differences are observed
epending on the model parameters, all curves show a qualitatively
imilar behavior. The existence of a critical elongation value above
hich no steady solution exists is common to all of them. As in the

heoretical analysis of Deshaies and Joulin [12], two solution branches
hat collapse on the turning point can be identified. Regardless of
he value of the thermochemical parameters, the ratio between the
ritical flame velocity at the turning point and the unperturbed sound
peed remains on the order of order unity. As noted in [39], where
n alternative approach based on the tangency of two curves obtained
sing the approximation 2𝛾𝑀2

o∕(𝛾 − 1) ≪ 1 was followed, the critical
lame velocities yielded by this model are of the order of the initial
ound speed, as has been reported in experimental studies (see Fig. 8
n [25]). The critical elongation, given by the elongation at the turning
oint, follows an inverse relation with the reaction order (Fig. 2(a)),
he burning velocity of the flame (Fig. 2(c)), and the activation energy
Fig. 2(d)), while it decreases with the reaction heat (Fig. 2(b)). In
ig. 2(c), it can be observed the strong dependence of the critical
lame elongation parameter on the burning velocity of the flame, which
ight explain why this runaway flame acceleration mechanism is not

bserved in less reactive mixtures characterized by slower burning
elocities.

.2. Accelerating flame in an isentropic flow

The self-similar solutions, which assume a uniform flow between the
lame and the leading shock wave, cannot accurately describe the flow
volution in the vicinity of the turning point, where a fast flame ac-
eleration is predicted as it approaches the finite-time singularity [40].
s the characteristic time of flame acceleration approaches the acoustic

ime, the flow between the shock wave and the flame can no longer be
onsidered uniform, i.e. 𝑢u ≠ 𝑢N and 𝑇u ≠ 𝑇N. The compression waves
mitted from the flame modify the conditions ahead of the flame with
espect to the conditions behind the shock wave.

By limiting the scope of the study to situations for which the
nsteady compression waves do not reach the shock wave and do not
enerate an intermediate shock wave, the flow between the shock wave
nd the flame can be considered isentropic. Therefore, the relationship
etween the temperature ahead of the flame 𝑇u and behind the shock
N is determined by the upstream Riemann invariant 𝐽− = 𝑢N − 2∕(𝛾 −
) 𝑎N = 𝑢u − 2∕(𝛾 − 1) 𝑎u and it is expressed as

𝑇u
𝑇N

=
[

1 +
𝛾 − 1
2

𝑢N
𝑎N

(

𝑢u
𝑢N

− 1
)]2

. (16)

The nonlinear relationship between the flame velocity and the
elongation parameter for a given set of thermochemical properties of
the reactive mixture 𝛾, 𝑞, 𝛽, 𝜗 and 𝑀bo, and a far shock wave with a
given intensity 𝑀o when an isentropic compression wave is allowed
to develop within the shock-flame complex is determined by the sys-
tem of Eqs. (8)–(14) and (16). This relationship can be determined
numerically without added approximations utilizing the ratio of the
flow velocity ahead of the flame to the flow velocity behind the shock
wave 𝑢u∕𝑢N as a parameter and matching the elongation parameter that
corresponds to each absolute flame velocity.
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Fig. 2. Nonlinear relationships between the absolute flame propagating velocity to sound speed ratio 𝑢f∕𝑎o and the flame elongation parameter 𝑆 in the self-similar solutions of
the double discontinuity model. Thermochemical parameters take numerical values of 𝜗 = 2, 𝑞 = 7∕8 = 0.875, 𝑀bo = 2 × 10−2 and 𝛽o = 10 unless otherwise indicated in the figure
legend.
2
𝑀
m
I
o
o
f
f
f
e
t
f
t
w
g
a

f
t
w
f
t

𝑢

(

Fig. 3. Nonlinear relationships between the absolute flame propagating velocity to
sound speed ratio 𝑢f∕𝑎o and the flame elongation parameter 𝑆 when the development
of isentropic compression waves is considered within the double discontinuity model
for the set thermochemical properties 𝑞 = 0.875, 𝛽o = 10, 𝜗 = 2 and 𝑀bo = 2 × 10−2 and
different values of the shock wave Mach number 𝑀o = 1.2, 1.6, 2.0, 2.4, 2.8 and 3.2 (blue
o red lines). The empty circles highlight the relationship when the flow is uniform,
u = 𝑢N, for the given shock wave Mach number, i.e. the solution that lies on the
elf-similar curve (black line). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

The curves representing the relationship between the absolute flame
elocity and the elongation parameter are presented in Fig. 3 for a
pecific reactive mixture with 𝑞 = 0.875, 𝛽 = 10, 𝜗 = 2 and 𝑀 =
o bo a

5 
× 10−2 considering different values of the far shock wave intensity
o. As for the self-similar solutions, it is observed that there is a
aximum value of flame elongation above which there is no solution.

t can be noted that the critical absolute flame velocity is independent
f the leading shock intensity. Consequently, when the flame velocity
f the corresponding self-similar solution is below the new critical
lame velocity a turning point appears separating the two branches of
lame velocity solutions for a given flame elongation. Conversely, for
aster flame velocities, only the upper branch persists, and the curve
xhibits no turning point. It is also noteworthy that in cases where
he self-similar solution is located in the lower branch, the critical
lame elongation is consistently larger than the critical elongation of
he self-similar solutions. Nevertheless, the more intense the far shock
ave, the smaller the critical flame elongation. These results are in
ood qualitative agreement with the analytical description under the
pproximation 𝑢f∕𝑎o ≪ 1 [40].

Neglecting the prefactor in front of the exponential term in Eq. (14)
or a large activation energy, as well as considering small variations of
he burned gas temperature 𝑇b − 1 ≪ 1, large elongation 𝑆 ≫ 1 and
eak far shock wave 𝑀o − 1 ≪ 1, the nonlinear relationship between

lame velocity and elongation given by Eqs. (8)–(14) and (16) simplifies
o

f ≈ 𝑆 exp

[

�̃�
𝛾 − 1
𝑎o

𝑢f + �̃�
(

𝛾 − 1
2𝑎o

𝑢f

)2
]

, (17)

where the thermal sensitivity parameter �̃� ≡ 𝑇u∕𝑈b d𝑈b∕d𝑇u = 𝐸a∕
2𝑘B𝑇bo

)

𝑇o∕𝑇bo proposed in [40] has been introduced. Under the
forementioned approximations, an expression for the critical flame
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Fig. 4. Density 𝜌, flow velocity 𝑢, pressure 𝑝, and temperature 𝑇 self-similar profiles obtained with the dynamical model after a time lapse of 𝑡 = 10 from initialization for different
alues of burned gas backflow 𝑢b = 0, 5, 10, 15, 20, 25 and 30 (black to red). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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t
t
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propagation velocity in terms of the thermochemical properties of the
mixture is then obtained as
𝑢∗f
𝑎o

= 1
𝛾 − 1

[

(

1 + 2
�̃�

)1∕2
− 1

]

(18)

hich is represented in Fig. 3 by the dotted horizontal line. An ex-
ansion of this expression in powers of �̃� to the first order for a large
ctivation energy �̃� ≫ 1 results in the expression 𝑢∗f ∕𝑎o =

[

(𝛾 − 1)�̃�
]−1

rom the analysis in [40].

. Dynamical model and internal flame structure

In order to investigate the relevance of the curves obtained with
he double discontinuity model as well as the behavior of a finger
lame beyond the turning point, numerical simulations have been per-
ormed on a dynamical model which can reproduce the internal flame
tructure. The model is governed by the conservation laws Eqs. (2)–(5)
ith a finite reaction rate Eq. (6) and the backflow of burned gases
ehind the flame given by Eq. (1). Thermochemical parameters of the
eactive mixture employed in the numerical simulations are specified
s Pr = 0.7, Le = 1, 𝑞 = 0.875, 𝑀bo = 2 × 10−2, 𝛽o = 10 and 𝜗 = 2. A
emi-infinite domain is considered subject to the moving wall boundary
onditions [46] on the tube closed end
𝜕𝑇
𝜕𝑥

(0, 𝑡) = 𝜕𝑌
𝜕𝑥

(0, 𝑡) = 0, 𝑢(0, 𝑡) = 𝑢b, (19)

and the far-field conditions at the open end of the tube

𝑇 (∞, 𝑡) + 𝑞 = 𝑌 (∞, 𝑡) = 𝑝(∞, 𝑡) = 𝜌(∞, 𝑡)𝑇 (∞, 𝑡) = 𝑢(∞, 𝑡) + 1 = 1. (20)
6 
4.1. Steady flame propagation

The nonlinear relationship obtained for the self-similar solution for
a quasi-steady regime has been first investigated through a parametric
study for a fixed backflow of burned gases in the range 𝑢b = 0−30. The
umerical computation is initialized with the external solution of the
arge activation energy asymptotic analysis [45] consisting of a preheat
egion and a reactive layer. In the preheat region, the reactive mixture
s heated up by conduction and mixed with the reaction products due
o molecular diffusion. While the reactive layer is reduced in this limit
o a discontinuity where the release of reaction heat reaction produces

slope jump in the state variables. The initial conditions within the
reheat zone of the flame are

𝑇 (𝑥, 0) = 𝑇b − 𝑞
[

1 − exp
(

− 𝑥
𝑙f

)]

(21)

𝑌 (𝑥, 0) = exp
(

−𝑥Le
𝑙f

)

(22)

𝜌(𝑥, 0) =
𝜌b𝑇b
𝑇 (𝑥, 0)

(23)

𝑢(𝑥, 0) = 𝑢b +
[

1 −
𝜌b

𝜌(𝑥, 0)

]

𝑈b (24)

where the flame thickness scales inversely with the mass flow rate
through the flame 𝑙f = 1∕

(

𝜌b𝑈b
)

.
Fig. 4 shows density, flow velocity, pressure and temperature pro-

files in the self-similar independent variable at 𝑡 = 10 from the start of
the simulation. The profiles for seven different values of the backflow
of burned gases corresponding to different self-similar solutions are
represented. The flame and shock wave appear, in these profiles, as

discontinuities due to disparity between their length scale and the
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Fig. 5. Flame propagating velocity to sound speed ratio 𝑢f∕𝑎o as a function of the flame
elongation parameter 𝑆. Colored full points: numerical results of the dynamical model
for different constant values of burned gases backflow 𝑢b = 0, 5, 10, 15, 20, 25 and 30
(black to red). Black line: curve obtained with the double discontinuity model. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

size of the region of uniform flow separating them. While the shock
wave corresponds to the discontinuity on the right side of the profile
characterized by the intense pressure increase, the flame is shown by
the discontinuity at the left side of the profile with an indistinguishable
pressure jump and a marked temperature jump. In the absence of
burned gas backflow (i.e. 𝑢b = 0), the leading shock wave is weak
and hardly alters the fresh gas conditions. However, as the backflow
of burned gases increases, the impact of the shock wave on the un-
burned reactive mixture gets more significant. It must also be noted
that the self-similar coordinate 𝑟∕𝑡 at which the discontinuities are
located represents the dimensionless velocity of propagation of the
discontinuity.

Fig. 5 depicts the absolute velocity of the steady flame 𝑢f = d𝑟f∕d𝑡
against the elongation parameter 𝑆 = 𝑢b∕𝑈b for the different values of
the backflow of burned gases 𝑢b. The nonlinear relationship obtained
using the double-discontinuity model for the same set of thermochem-
ical parameters has been included in the figure for comparison. Good
agreement is observed between the results from the parametric study
(full points) and the curve obtained through the double-discontinuity
model. Only small discrepancies can be noticed for fast flames that
can be attributed to the departure from the assumption of isobaric
flame with increasing burning velocities. Furthermore, it is verified the
absence of steady solutions of the model that exceed a critical flame
elongation.

4.2. Quasi-steady elongating flame

The dynamics of the flame skirt involves the behavior of a flame
propagating within a boundary layer characterized by a complex inter-
play of compressible fluid dynamics and flame quenching due to heat
losses, strained flow, and wall-interaction chemical kinetics. In order
to improve the understanding of the velocity runaway phenomenon at
the tip of the flame, this aspect has been excluded from the current
investigation. As a first approach to modeling the evolution of the flame
surface, a linear temporal evolution has been considered to explore the
dynamics of the one-dimensional problem around the turning point
of the quasi-steady solutions. Experimental results, such as those re-
ported by Krivosheyev et al. [47] and Liberman et al. [24], support
the adequacy of the linear approximation, given the observed linear
increase in velocity immediately following the exponential regime de-
scribed by Clanet and Searby [42] and Akkerman et al. [44]. Indeed,
a possible explanation for the transition from the initial exponential
acceleration to a more linear-like acceleration is offered in [48], where

it is attributed to the eventual onset of gas compression effects.

7 
Fig. 6. Flame propagation with a flame elongation 𝑆 that follows the law given
by Eq. (25) with 𝑆0 = 10.41. (a) Flame propagating velocity to sound speed ratio 𝑢f∕𝑎o
as a function of the flame elongation parameter 𝑆. Solid line: double discontinuity
solution with an unsteady compression wave corresponding to a burned gas flow of
𝑢b = 20. Dotted blue line: flame propagating velocity to sound speed ratio obtained
by numerical integration of Eqs. (2)–(5) with a linearly increasing flame elongation
parameter over time. The full points from black to blue correspond to the time steps
shown in Fig. 6(b). (b,c) Temperature and reaction rate profiles in the flame-attached
coordinate system for a slowly elongating flame initialized with the internal flame
structure of the self-similar solution for an initial backflow of burned gases of 𝑢b = 20.
The profiles evolve from 𝑡 = 0 (black) to 𝑡 = 2.9 (blue) in time steps of 𝛥𝑡 = 0.29 and they
are represented in the flame-attached coordinate system 𝑥 = 𝑟 − 𝑟f (𝑡) with 𝑟f (𝑡) defined
as the position of the reactant mass fraction isovalue 𝑌 = 0.02. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

The flame elongation is assumed to be a linearly increasing function

of time on a timescale 𝑡′S much larger than the transit time of the flame
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Fig. 7. Time evolution of the flame velocity relative to the burned gases flow with
respect to the local sound speed. The flame velocity runaway occurs for a reactive
wave that remains significantly subsonic 𝑈b∕𝑎b ≈ 10−1 < 1. The full points indicate the
instant corresponding to the profiles steps shown in Fig. 6(b). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

𝑆(𝑡) = 𝑆0(1 + 𝜖𝑡), (25)

where 𝜖 = 𝑡′fo∕𝑡
′
S = 5 × 10−2 is the small, but finite, parameter

characterizing the ratio of transit time to characteristic evolution time
and 𝑆0 is the initial flame elongation parameter at 𝑡 = 0.

The dynamical model with a time-dependent backflow of burned
gases prescribed by Eq. (1) and the flame elongation evolution given
by Eq. (25), have been numerically simulated. The unsteady evolution
of the internal flame structure with an evolving thickness hinders the
determination of a well-defined flame speed with respect to the burned
gases. To address this issue, the velocity of the flame controlling the
backflow of burned gases is computed using Eq. (14) for the equivalent
burned gas temperature of the fresh mixture located at the isovalue
1 − 𝑌 = 10−4.

The numerical integration is initialized using the flame structure
obtained from the numerical integration of the steady flame propaga-
tion with a fixed value of the backflow of burned gases. An example of
the numerical results obtained for an initial backflow of burned gases
of 𝑢b = 20 which corresponds to an initial elongation of 𝑆0 = 10.41
s presented in Figs. 6 and 7. The flame velocity as a function of the
longation parameter is compared in Fig. 6(a) with the relationship
btained for the double discontinuity model and the evolution of
he temperature profile is plotted in Fig. 6(b) in the flame-attached
oordinate system, with the origin located at the reactant mass fraction
sovalue of 𝑌 = 0.02.

The numerical results indicate that the flame accelerates progres-
ively due to both the piston-like effect of the backflow and the tem-
erature sensitivity of the flame burning speed. Initially, the slow
ncrement on the elongation parameter 𝑆 acts increasing the backflow
f burned gases, resulting in a faster flame propagation due to the faster
low velocity, i.e., the flame is advected by a faster gas flow. Simulta-
eously, the increment in the backflow generates a compression wave
hat heats up the fresh mixture, thereby accelerating the flame burning
elocity relative to the flow.further the flame. As illustrated in Fig. 6(a),
nce the turning point of the solutions of the double-discontinuity
odel is surpassed, the flame undergoes a limitless acceleration which

orresponds with the finite time singularity analyzed by Clavin [40].
Figs. 6(b) and 6(c) depict the internal structure of the flame dur-

ng its unsteady evolution, where temporally equispaced temperature
rofiles are plotted alongside the reaction rate distribution at the same
nstant in the flame-attached coordinate system. Despite being imper-

eptible in the temperature profiles, the temperature increase due to o

8 
compressive heating progressively accelerates the flame up to a velocity
runaway, owing to the strong temperature sensitivity. The temperature
increase has a more pronounced effect on the thickness of the flame,
which abruptly shrinks at the velocity runaway, posing a significant
challenge for numerical integration methods based on a discretization
of the spatial domain.

It is important to note that within the present model, the flame
velocity relative to the burned gases is markedly subsonic 𝑈∗

b ∕𝑎
∗
b ≪ 1

t the velocity runaway. Fig. 7 illustrates the evolution of the flame
elocity relative to the burned gases for the specific example of nu-
erical integration presented in this section. Even at the runaway, the

lame velocity relative to the burned gases remains ten times slower
han the local sound speed. Hence, the velocity runaway takes place
ell before the marginal solution for reactive waves characterized by

he Chapman–Jouguet (CJ) condition is reached.

.3. Onset of the detonation

The temperature and reactant mass concentration profiles within
nternal structure of the flame during the acceleration runaway leading
o the onset of the detonation are depicted in Figs. 8(b) and 8(c), where
he evolution of the flame is illustrated. As the simulation progressed
rom 𝑡 = 2.985 to 𝑡 = 2.990, the flame continues to accelerate and its
nternal structure becomes increasingly thin. However, between 𝑡 =
.990 and 𝑡 = 2.991, a sudden transition in the propagating regime
s observed. The flame preheat region, where the fresh mixture is
radually heated by conduction, disappears and the physical variables
volve rapidly within a few grid points from the upstream state to
state of higher temperature and pressure in chemical equilibrium.

his sharp transition can be interpreted as a discontinuity in which
he mixture undergoes simultaneously compression and burning, as in
detonation in the limit of infinitely fast chemical reaction.

It is worth mentioning that during the numerical integration, only
he results obtained every 𝛥𝑡 = 0.001 are stored and included in these
igures. However, the CFL stability condition imposes a much finer
ime resolution, reaching values as small as 𝛥𝑡 = 1 × 10−6 during the
imulation. Therefore, the profiles shown for 𝑡 = 2.991 are not direct
esults of integrating the conservation equations at 𝑡 = 2.990, but rather
large number of computational steps have taken place in between.

The transition from diffusion-controlled propagation of the flame
o detonation might be explained as follows. During the acceleration
unaway, as the flame experiences strong acceleration and its inter-
al structure shrinks, the velocity gradient within the internal flame
tructure steepens, causing viscous dissipation mechanisms that are
egligible at ordinary flame velocities to become significant. These
iscous dissipation mechanisms eventually result in the formation of
strong shock wave within the internal structure of the flame, which

apidly increases the temperature and further accelerates the reaction
ate. The reactants get consumed in a vanishingly thin reactive layer,
ausing the position of the isovalue 𝑌 = 10−4, where the temperature is
easured to calculate the backflow of burned gases, to be swept out by

he reactive supersonic wave. Due to the supersonic nature of the wave,
he heat released within the reactive layer cannot propagate ahead,
ausing the temperature at the isovalue to be determined exclusively
y the upstream conditions, which become isolated from what happens
ehind the supersonic wave. As a result, the temperature at the isovalue
oes not increase further due to the effect of the compression wave,
ut is instead propagated into regions of fresher reactive mixture,
eading to a slowdown in the backflow of burned gases. However, once
he reactive supersonic wave is established it continues to propagate
ithout the piston-like effect of the burned gas backflow.

The evolution of the velocity of the front with respect to the sound
peed is plotted in Fig. 8(a), with the time instants corresponding to
he profiles in Figs. 8(b) and 8(c) indicated by colored full points.
he onset of the detonation coincides with the maximum velocity

f the front. It is worth to remember that the data included in the
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Fig. 8. Onset of the detonation. (a) Flame propagating velocity to initial sound speed
atio as a function of the flame elongation parameter 𝑆. The colored circles in both
igures correspond to the time steps for the profiles in Figs. 8(b) and 8(c). The
orizontal dashed line corresponds to the propagation velocity of a CJ detonation with
espect to the initial sound speed considering the flow induced by the expansion ahead
f the wave as given by Eq. (26). (b,c) Temperature and reactant mass concentration
rofiles in the flame-attached coordinate system during the onset of the detonation.
he profiles shown evolve from 𝑡 = 2.985 to 𝑡 = 2.995 in time steps of 𝛥𝑡 = 0.001
ith the onset of the detonation taking place between 𝑡 = 2.990 (blue) and 𝑡 = 2.991

red), and they are represented in the flame-attached coordinate system 𝑥 = 𝑟 − 𝑟f (𝑡)
ith 𝑟f (𝑡) defined as the position of the product mass fraction isovalue 𝑌 = 0.98. (For

nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

igures does not include every time step of the simulation but just the
tored solutions. Consequently, the peak velocity of the flame at the
9 
oment of shock formation may actually be significantly higher than
he maximum shown in the figure.

The maximum flame velocity included in these results corresponds
o the first sample stored following the regime transition. Upon the
ransition, the flame velocity experiences a slowdown for two reasons.
n the one hand, once the front becomes supersonic it advances faster

han the compression waves emitted by the flame and then it overtakes
he compression waves causing the velocity of the flow ahead of it to
ecrease, reducing the absolute flame velocity due to the advection of
he flow. On the other hand, for the same reason, the temperature of the
low ahead of the supersonic wave decreases, resulting in a reduction
f the stable propagation velocity of the supersonic reactive wave.

Once the supersonic wave reaches the head of the compression
ave, temperature and flow velocity ahead of it become uniform, lead-

ng to a constant propagation velocity. This constant absolute speed is
ctually equal to the CJ detonation regime, augmented by the velocity
f the flow ahead of the wave induced by the leading shock. In the
otation followed in this article, this velocity is given by the expression

𝑢fCJ
𝑎o

=
CJ
𝑎o

+
𝑢N
𝑎o

=

√

𝛾 + 1
2

𝑞
1 − 𝑞

+
𝑇N
1 − 𝑞

+

√

𝛾 + 1
2

𝑞
1 − 𝑞

+
𝑢N
𝑎o

(26)

hose numerical application is represented by the dotted horizontal
ine in Fig. 8(a) showing great agreement.

. Conclusions

In this study, we have analyzed numerically the impact of a back-
low of burned gases on a laminar flame by means of a one-dimensional
odel. In the context of a flame propagating along a thin tube from
closed end this backflow is caused by the expansion of combustion

roducts close to the tube walls. The backflow is the key element that
eads to a flame acceleration runaway, which is a plausible mechanism
or DDT. The key feature of this mechanism is a double feedback loop
hat involves the thermal sensitivity of the flame speed, compressive
eating in the flow induced ahead of the flame, and the emergence of
he backflow of burned gases in semi-confined geometries that increases
he velocity of the gas flow upon which the flame advances. Therefore,
he induced flow ahead of the flame increases likewise.

Initially, this study focuses on investigating the solutions for a
hock-flame ensemble, when the flame is assumed to be in steady-state.
s in flames propagating from a closed end tube, this configuration

s known to generate compression waves ahead of the flame that
ventually collapse to form a shock wave moving away from the flame.
onsidering the flame as a steady reactive isobaric discontinuous wave,
nd the shock wave as a supersonic inert discontinuous wave, the
xternal flow in between has a self-similar solution. The curve of steady
olutions as a function of the flame elongation exhibits a turning point
hat indicates the existence of critical conditions. Above the critical
longation value at which the turning point is found, there is no steady
olution, which suggests a possible propagation regime transition.

The turning point also indicates a fast flame acceleration. In the
icinity of this turning point, the flow separating the flame and the
hock wave cannot be assumed to be uniform. The difficulty of de-
cribing the unsteady flow between the shock wave and the flame
as been avoided by limiting the scope of this work to a hypothetical
ituation in which the compression wave emitted from the flame does
ot reach the precursor shock wave. The flow separating the flame
nd the shock wave can then be considered homentropic. By using
he isentropic compression relationship between the induced flow and
ts temperature, a qualitatively similar turning point for the shock-
lame ensemble model is obtained. In this case, the critical velocity of
he flame is universal (it depends exclusively on the reactive mixture
roperties), while its critical elongation decreases with the intensity of
he leading shock wave.
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The relevance of the solutions obtained considering the flame as
a reactive discontinuity is confronted with numerical simulations con-
sidering a finite reaction rate. For a constant flame elongation, which
results in a constant backflow of burned gases, the solutions obtained
using a finite reaction rate closely match the solution for a discon-
tinuous flame, proving the emergence of a turning point and the
significance of the self-similar solution. When the flame elongation is
slowly increased at the characteristic time-scale of the flame, different
behaviors are gradually observed. Initially, the relationship between
the finite-rate flame speed and flame elongation follows closely the
solution for a discontinuous flame. When approaching the turning
point, the flame can no longer be considered in steady state due to the
rapid acceleration and both solutions move away slightly. After passing
the turning point, a rapid flame acceleration is produced. This flame
acceleration runaway is coupled with a significant shrinkage of the
flame thickness. Finally, an abrupt change is observed in the structure
of the reactive front accompanied by the end of the acceleration phase
and followed by a relaxation towards the corresponding CJ detonation
regime. Both the acceleration of the flame and its shrinkage contribute
positively to a local enhancement of the viscous dissipation mechanism
causing the formation of a shock wave within the flame structure that
leads to the onset of a detonation.

The numerical results illustrate the flame acceleration runaway
phenomenon when the flame elongation surpasses the critical value
at the turning point of the steady solutions. However, strictly speak-
ing, the relevance of numerical simulations based on the integration
of the Navier–Stokes conservation equations during the onset of the
detonation is to be questioned. The formation of a shock wave involves
spatiotemporal scales corresponding to the mean free path and the elas-
tic collision frequency, for which the continuum and local equilibrium
approximations are no longer accurate. Thus, the numerical results
presented here cannot prove an accurate description of the instant of
detonation onset.

Within the framework of the Navier–Stokes equations, it can only
be concluded that the thermal feedback of the compression waves on
the flame speed leads to a finite-time singularity, which is likely to
result in the formation of a shock wave at the flame tip. If true, this
conjecture would mean that a flame propagating faster than the critical
velocity 𝑢f > 𝑢∗f is a sufficient condition for the onset of a detonation
in the DDT process and that the predetonation time should be close to
the time needed by the flame elongation to exceed the corresponding
critical value. It should also be noted that the laminar flame speed,
the speed at which the reactive front penetrates the moving reactive
mixture, remains well below the sound speed before passing the point
of no return, contrary to what has been reported in previous works
using different one-dimensional flame models.
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Table A.1
Resolution test 𝑢b = 20.

N 𝛥𝑟 𝑢f∕𝑎o
1 35 0.028571 1.242435
2 50 0.02 1.241702
3 70 0.014285 1.241523
4 100 0.01 1.240842
5 140 0.007142 1.240919
6 200 0.005 1.240771

Fig. A.9. Resolution test. Black circles represent the difference between the flame
propagation velocity 𝑢f obtained for decreasing spatial steps 𝛥𝑟 ∈ [0.028571, 0.005] and
the limiting value 𝑢0f ∕𝑎o obtained for 𝛥𝑟 → 0. The red dashed line is the fitting curve
𝑢f∕𝑎o − 𝑢0f ∕𝑎o = 𝑘𝛥𝑟𝑛 obtained for 𝑢0f ∕𝑎o = 1.240516, 𝑘 = 0.147339, and 𝑛 = 1.221137.

Appendix. Numerical details and resolution test

The dynamical model governed by Eqs. (2)–(5) is simulated numeri-
cally following a Strang splitting algorithm 𝒖𝑛+1 = 𝒟 (𝛥𝑡∕2)𝒞 (𝛥𝑡)𝒟 (𝛥𝑡∕2) (𝒖𝑛
where 𝒖𝑛 is the vector of conserved quantities 𝒖 = (𝜌, 𝜌𝑢, 𝜌𝐸, 𝜌𝑌 ) at
the time step 𝑛, 𝒟 is the diffusion–reaction operator and 𝒞 is the
convective operator. Application of the diffusion–reaction operator is
approximated by an implicit finite difference scheme in which diffu-
sive terms are substituted by central differences, time derivatives are
replaced by backward differences and the reactive and dissipative terms
are approximated explicitly. The convective operator is applied through
the high-resolution central solver for nonlinear conservation laws [49]
to integrate the convective terms of the equations.

The computational domain 0 < 𝑟 < ∞ is uniformly divided in
𝑁 computational points per characteristic length scale of the flame
thickness 𝑡fo resulting in a dimensionless spatial step of 𝛥𝑟 = 1∕𝑁 .
The thickness of the reactive layer being a term 

(

𝑙f∕𝛽o
)

according
to the asymptotic analysis of Zel’dovich et al. [10], a lower limit
𝑁 > 𝑁min = 1∕𝛽o must be imposed in order to consider the smallest
scale of the problem.

The precision of the numerical integration is governed by the spatial
discretization 𝛥𝑟. A resolution test is then required to ensure the
convergence of the numerical scheme. In this work, the convergence
test has been applied to the flame propagation velocity 𝑢f∕𝑎o in the
form

𝑢f∕𝑎o ≃ 𝑢0f ∕𝑎o + 𝑘𝛥𝑟𝑛 (A.1)

where 𝑢0f ∕𝑎o represents the predicted flame velocity in the limit of an
infinitesimally small spatial step 𝛥𝑟 → 0, 𝑘 is a constant of proportion-
ality, and 𝑛 is the degree of convergence.

An example of the resolution test for a backflow of burned gases
𝑢b = 20 considering an increasing number of computational points
per unit length 𝑁𝑗+1 ≈

√

2𝑁𝑗 rounded to the closest integer is shown
below. Table A.1 summarizes the result of the convergence test which
are represented in Fig. A.9. The three fitting parameters 𝑢0f ∕𝑎o, 𝑘 and
, from the relation are determined using the non-linear least squares
ethod. The predicted limiting value of the propagation velocity is
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𝑢0f ∕𝑎o = 1.240501 which differs by 0.02 % from the most resolved
imulation. The simulation that considers 200 computational points per
nit length provides thus good enough accuracy for the purposes of the
resent qualitative study.
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