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Abstract
We present a general methodology for structuring textual data, rep-

resented as syntax trees enriched with semantic information, guided by a
meta-model G defined as an attribute grammar. The method involves an
evolution process where both the instance and its grammar evolve, with
instance transformations guided by rewriting rules and a similarity mea-
sure. Each new instance generates a corresponding grammar, culminating
in a target grammar GT that satisfies G.

This methodology is applied to build a database populated from tex-
tual data. The process generates both a database schema and its instance,
independent of specific database models. We demonstrate the approach
using clinical medical cases, where trees represent database instances and
grammars act as database schemas. Key contributions include the pro-
posal of a general attribute grammar G, a formalization of grammar evo-
lution, and a proof-of-concept implementation for database structuring.

1 Introduction
In this work we are interested in structuring textual data, represented as a
rooted forest (i.e., syntax trees combined into a single structure with a common
root), through a method based on the idea that texts follow an initial grammar,
G0. These trees can be unified into a single structure with a common root.
The grammar G0 serves as a schema for the initial text. Structuring involves
transforming this instance to satisfy the constraints of a new schema defined
by a target grammar, GT . A meta-model, G, guides the process by outlining
the desired structure, with transformations applied to achieve it. This process
unfolds as a sequence of steps that evolve both the instance and the grammar
from G0 to GT . The method, which is based on structural transformation, can
be enhanced by enriching the syntax trees with pre-processed knowledge, such
as detected named entities, or by incorporating semantic constraints in G.
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Our process involves the generation of both the database schema and its
corresponding instance. Rather than targeting a specific database model, we
adopt a general abstraction that captures common concepts and relationships
found in database design, independent of the implementation.

Recent years have seen an explosion in the production of unstructured data,
particularly textual data. On the one hand, this plethora of text data provides
valuable information for research and decision-making. Processing this data
is important for extracting insights, identifying trends, automating tasks and
making informed decisions. This poses a substantial challenge for AI and data
analytics: uncovering insights in unstructured data requires complex analytics
and advanced technical skills. Structured data, on the other hand, with its
well-defined schema and relationships, enables efficient analysis and database
storage. It makes it easier to check constraints and allows reuse by different
users.

When it comes to considering how to organize information that originally
comes from a text, a critical consideration is the choice of an appropriate
data model. Currently, the primary options typically range between relational
databases, which excel in maintaining data consistency and integrity despite
challenges related to schema evolution, and NoSQL models such as key-value
stores, document stores, or graph databases, which are favored for their flexibil-
ity and scalability. However, complicating matters further, certain applications
require interfacing with multiple data models simultaneously. In such scenarios,
a meta data model is regarded as a viable solution to facilitate interchange and
integration across different models. This meta model enables seamless transla-
tion between disparate data structures, thereby enhancing interoperability and
system functionality.

Our method deals with the structuring of textual data to populate a database.
We developed our approach using clinical medical cases as the application do-
main. Starting from textual descriptions, we generate a generic hierarchical
structure representing a database schema and its instance. This instance con-
sists of key text fragments suitable for database storage. Our approach is hy-
brid: it relies on syntax to transform the initial tree by pruning or aggregating
sub-trees, but begins with an enriched tree containing semantic information
extracted during pre-processing, taking into account the application domain.
These transformations are thus indirectly guided by this enrichment step. Thus,
in our approach, trees represent the database instance, and a grammar capable
of generating such trees serves as the database schema.

In this context, the main contributions of this paper are:

• The proposal of an original way of looking at the structuring of textual data.

• The proposal of an attribute grammar G that represents a generic database
structure. A grammar respecting G is seen as a database schema which can
be then translated to any data model such as relational or graph models.

• The formalization of textual data structuring through the evolution process
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of a grammar G0 (associated to the syntactic trees of the sentences) to a
target grammar GT which respects the meta-grammar G.

• The formalization of an evolution process through transformations on the
trees (instances) guided by tree rewriting rules and a similarity measure.

• A proof-of-concept implementation that uses clinical cases as input and G as
a generic database structure.

Paper Organization. Section 2 overviews our approach. In Section 3 we
position our work with respect to some related work. Section 4 gives some
background concepts. Section 5 presents the details of our structuring method,
including the definition of our meta-grammar G (Section 5.1). Section 6 care-
fully analyses a proof of concept and Section 7 offers some final comments.

2 Overview
The ultimate goal of our approach is to organize textual information by ex-
tracting a database instance from the text, as demonstrated in Figure 1. This
structuring method involves altering the level of abstraction, allowing for the
generalization of information when feasible.

An intravenous urography shows bilateral

ureteropyelocal dilatation . [13, filepdf-6-4-cas]

Exam
name: urography
anatomy: intravenous

SOSY
name: bilateral uretero-

pyelocal dilatation
reveal

Figure 1: An example of a graph database instance generated by structuring a
text describing a clinical case.

Our approach is grounded from a grammatical perspective: each sentence in
the text is associated with its syntactic tree, and we consider the initial grammar
G0 as the one that accepts these syntactic trees. Figure 3a presents an example
of a syntactic tree.

Our proposal consists in an iterative process which is visually summarized
in Figure 2. We work progressively by transforming the data instance (trees)
and the data schema (a grammar). Our goal is to obtain an instance respecting
a target grammar GT , which in turn respects the meta-grammar G.

In Figure 2, the vertical axis represents the extraction of a grammar from
an instance Ii in the form of a rooted forest of enriched syntactic trees, while
the horizontal axis represents the progression of the process from step i to step
i + 1 based on transformations on the instance. These transformations follow
the following reasoning:
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Textual → I0 → I1 → . . . It Instances (trees)
Data ↓ ↓ ↓

G0 G1 . . . GT Grammars
↘ ↓ ↙

Verification w.r.t. G

Figure 2: Iterative process for automatic structuring

1. Initialisation. The process starts with the transformation of sentences into
syntactic trees, which gives rise to an instance denoted by I0.

2. Enrichment. The second step is to enrich the trees of the I0 instance by
incorporating information previously extracted from the text analysis. This
may involve inserting named entities, relationship or other relevant semantic
information into the trees.

3. Successive Evolutions:

(a) Evolution of the instance. To evolve from instance Ii to instance
Ii+1, the branches of the tree are grouped or transformed based on
similarity measures. This may involve reorganising the structure of the
sub-trees to improve their consistency or to better align them with the
desired representation.

(b) Evolution of the grammar. The evolution of Gi towards Gi+1 is
triggered by checking whether the grammar Gi conforms to the meta-
grammar G. At step i, if Gi does not conform to G, the process continues
by transforming the tree structures of Ii, giving rise to the instance Ii+1,
which generates a new grammar Gi+1. The process ends when we find
a grammar GT which satisfies G.

Example 1. Figure 3 illustrates an example of transformation on a tree in-
stance. In Figure 3a, the syntactic tree corresponding to the sentence “The heart
rate was 100 bpm” is shown. Figure 3b displays the same tree enriched with
the named entities ENTSOSY , ENTV ALUE and ENTUNIT , identified during
a pre-processing step. Figures 3c et 3d present trees where unnecessary terms
and nodes have been removed. For instance, in Figure 3c, only the branches
corresponding to terms relevant to the database are retained (e.g., the branch
corresponding to the article “The” in Figure 3a is deleted). In Figure 3d, nodes
indicating grammatical functions such as V P , NN , NP , CD, etc., are deemed
irrelevant for the database context and are therefore removed. The objective here
is to maintain the overall structure with the minimum number of nodes while
preserving those that convey the necessary semantic information for database
reasoning.

Each iteration introduces modifications to the tree instance, guided by tree
rewriting rules and a similarity measure that helps define equivalence classes.
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(a) Syntactic tree
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(c) Simplified tree
S

NP

DT
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ENTSOSY

NN
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VBD
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(b) Enriched tree

S

ENTSOSY

heart rate

VP

ENTV ALUE

100

ENTUNIT

bpm

(d) Reduced tree

Figure 3: Example of entity incorporation in a syntax tree and simplifications

The rewriting rules aims to prune sub-trees or reorganize them differently. Sec-
tion 5.5 discusses this aspect in details.

With reference to the vertical axis of Figure 2, at each step i, a grammar
Gi is derived from instance Ii through the computation of a quotient tree. The
idea behind this process is illustrated in Figure 4 (see Section 5.3 for formal
definitions).

(a) Instance tree I (b) Quotient tree Q

→
→
→ +

(c) Grammar G

Figure 4: Example of quotient tree

The instance tree in Figure 4 is summarized into a quotient tree based on
equivalence classes, highlighting the main patterns in the tree. This quotient
tree (Figure 4b) shows that the tree in Figure 4a has green nodes with blue and
red children. Once the quotient tree is created, extracting the corresponding
grammar becomes straightforward, as shown in Figure 4c. In this example,
each production rule in grammar G associates a node’s color with the color of
its children. For instance, a red node generates black and blue nodes, but in
Figure 4a, some red nodes lack their blue child, indicating missing information.
Our approach accounts for such cases, enabling the extraction of grammars
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like G in Figure 4c. Additionally, our grammars are expressed as extended
context-free grammars, using symbols like + to indicate repetition, as seen in
the production rule for the green node.

The target grammar GT is the one that respects the meta-grammar G. The
purpose of G is to offer a general description of the main database abstractions,
independent of the specific database model. G defines four key concepts that
guide the generalizations and transformations applied to trees:

Attribute A name associated with a data value.

Group A named set of attributes.

Relation A relationship between distinct groups.

Collection A set of equivalent groups and relations.

In Figure 5, these concepts are illustrated within a tree instance. The figure
also displays the grammar extracted from this tree.

COLL1

REL1

GROUP1

ENT1

v1

ENT2

v2

GROUP2

ENT3

v3

λ→ COLL1

COLL1 → REL+
1

REL1 → GROUP1 GROUP2

GROUP1 → ENT1 ENT2

GROUP2 → ENT3

Figure 5: An example of a tree instance after our iterative process, where in-
ternal nodes represent concepts from G, along with its corresponding grammar
GT .

3 Related Work
Text structuring can be considered through top-down and bottom-up perspec-
tives [1]. In the top-down approach, a schema is provided, and the problem
is seen as a query on the text to extract or identify relevant information. In
[16, 25, 32, 30, 9] we find examples of traditional approaches, while recent trends
are shifting towards machine learning (ML) and large language models (LLMs)
for the extraction of entities and relationships [20, 17, 10]. ML methods often
depend on large annotated corpora for training, which can be both expensive
and time-consuming. While they perform well, they may lack the flexibility to
handle novel or unexpected data types that deviate from the established schema.

Bottom-up approaches are typically referred to as open information extrac-
tion (OpenIE). They are used, for example, in ontology learning and involve the
extraction of terms, entities, and relationships from text, followed by their classi-
fication and grouping, often based on similarity or syntactic rules [22, 2]. These
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methods operate without predefined schemas, offering greater flexibility across
diverse domains. Early techniques, such as those described in [26, 12], employed
syntactic patterns to extract 〈subject,predicate, object〉 triples, linking them to
knowledge bases. Recent advancements also shifted towards ML techniques
[31, 11], particularly leveraging neural networks to enhance extraction accuracy
[29, 19, 37, 38, 27]. Even with these developments, ontology learning remains
a complex challenge [4] that often requires human supervision, although LLMs
tend to avoid it. Current OpenIE models still struggle to extract meaningful
relationships and lack a standardized output format [23].

As mentioned in Section 1 our approach is hybrid, combining syntax tree
transformation with semantic enrichment of the tree beforehand. Hybrid meth-
ods have demonstrated potential for improved efficiency. For instance, [35] intro-
duces Semi-Open Information Extraction (SOIE) to discover domain-independent
facts, and [34] proposes a tool to merge a bottom-up graph from unstructured
text with a top-down graph from structured data.

As data volume and variety grow, information system administrators must
find effective solutions for storing, managing, and integrating data from multiple
sources while addressing user needs. The concept of using a common meta-
model that can be mapped to different database models is increasingly being
proposed as a solution [3, 24]. In [3], the authors propose schema extraction for
structured and semi-structured data coming in different formats, with the aim
of presenting datasets uniformly to help users understand and make choices.
They use an intermediate structure based on concepts (sub-records, records,
collections) similar to those in our generic schema (entities, groups, relations,
collections). For this reason, we consider it the work most closely related to
ours. Unlike our method, which transforms syntax trees (text) to generate new
instances, their approach does not handle unstructured data. Instead, they map
(semi-)structured data from various sources to a graph format, detecting nodes
that correspond to the key concepts they define. By interpreting these nodes,
data from different sources can be better understood and integrated. Their focus
is on helping users understand the data; once nodes have been classified based
on some user input, they are given semantic meaning, often using an ontology.
This last step is beyond the scope of our work, as our grammar is not designed
for non-specialist users.

In [24], the authors propose a framework that, starting from a conceptual
model designed according to a meta-model, uses transformation rules to deter-
mine the most appropriate NoSQL model for implementation. Similar to our
approach, both data and schema are transformed. However, unlike our method,
their goal is to adapt a general model to a specific NoSQL or relational model.
It would be worth exploring these ideas as a post-processing to our approach:
from our target grammar GT and its associated instance IT , find the most
appropriate database model (e.g. many relationships might suggest a graph
model).

To take our method a step further and also produce a user-friendly final
schema, we might consider how to 1. assign semantic names to our structures
for better clarity (as in [3]) and 2. explore (as in [24]) which database model
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best suits our schema. But this is out of the scope of this paper.

4 Background
This section reviews ordered trees and formal grammars, highlights the role of
trees in representing linguistic structures, and considers tree rewriting rules for
transformation and editing.

Definition 1 (Ordered tree). A tree T = (D, l) consists of a domain D and
a labelling function l. The domain D is a subset of (N)∗ ( i.e. a set of
integer sequences of the form x.y.z). The labelling function l : D → Σ ∪ {λ}
maps elements of D to labels from a set Σ or a special symbol λ. The domain
D satisfies the following properties: 1. D is closed under prefixes, i.e. for
u, u′ ∈ (N)∗ if u is a prefix of u′ and u′ ∈ D, then u ∈ D, and 2. For all u ∈ N∗

and j ∈ N if u.j ∈ D then for all i ∈ N such that 0 ≤ i < j we have u.i ∈ D.
Each element of D is called position. For a node n at position p, |p| defines

the length of the sequence, also called the depth of n. The root of a tree is at
position ε and is labeled with the special symbol λ, i.e. l(ε) = λ. An empty tree
is therefore defined by T = ({ε}, 〈ε 7→ λ〉). We write v ≺ u if u = v.i for some
i ∈ N where the node at position v is the parent of the node at u, and u is the
child of v. We write v ≺∗ u if ∃v′ such that u = v.v′, meaning that v is a prefix
of u. A node n at position u is a descendant of a node m at position v if and
only if v is a direct prefix of u (denoted v � u) or indirect (denoted v �∗ u),
conversely m is an ancestor of n. A leaf is a node at a position u such that
u.0 /∈ D, i.e. a node with no children. We note T the set of all trees.

Definition 2 (Sub-tree). Given a tree T = (D, l), a sub-tree of T at position
u ∈ D is denoted by T |u = (D′, l′) and has the following properties: 1. D′ ⊆ D
such that ∀v ∈ D′ u �∗ v and 2. l′ = 〈v 7→ l(v) | v ∈ D′〉. Moreover, if t = T |u
is a sub-tree, we denote by t′ = P t

i the ith tree-ancestor of t when t′ = T |v,
u = vw and |w| = i. We note ST the set of all sub-trees.

Example 2. Let T = (D, l) be a tree with D = {ε, 0, 1, 1.0, 1.1}. The node
labels are defined as follows: l(ε) = root, l(0) = child1 (the left child of the root);
l(1) = child2 (the right child of the root), and for the children of node at position
1, we have l(1.0) = grandchildren1 and l(1.1) = grandchildren. T |1 = (D′, l′)
is a sub-tree of T . Note that T |1 is not a tree because D′ = {1, 1.0, 1.1} does not
respect the conditions of Definition 1. Here, PT |1

1 coincides with T .

Definition 3. A context-free grammar (CFG) G = (N,T,R, S) is a quadruplet
where N is a finite set of non-terminal symbols; T is a finite set of terminal
symbols; R is a finite set of production rules, and S ∈ N is the initial symbol. A
production rule is defined by the form X → α, where X ∈ N and α is a string
of terminal and non-terminal symbols. As syntactic sugar, a condensed CFG,
allows production rules of the form X → α+, where α+ is a regular expression
that repeats the string α one or more times. This is equivalent to the rules
X → α and X → α X.
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A parse tree, also known as a derivation tree or syntax tree, describes how
the starting symbol of a grammar G derives a word in the language. When a
non-terminal U is associated with a production rule U → X Y Z, the derivation
tree will contain an internal node labelled U with three children, X, Y and Z,
arranged from left to right.Each internal node represents a non-terminal symbol
of the G grammar, while the leaves represent the terminal symbols of G. The
links between the nodes illustrate how the symbols are derived from each other.
The derivation tree is built recursively, following the production rules of the
grammar. It starts with a root node corresponding to the initial symbol of
the grammar, and at each level of the tree the nodes are replaced by symbols
according to the production rules.

Definition 4 (Parse Tree). Given a grammar G = (N,T,R, S), a parse (or
derivation) tree of G is a tree which satisfies the following properties:

1. The root is designated by the start symbol S, i.e. l(ε) = S ;

2. Each leaf f is denoted by a terminal symbol, i.e. l(f) ∈ T ;

3. Each internal node x is denoted by a non-terminal symbol, i.e. l(x) ∈ N ;

4. If U is a non-terminal used as a label of an internal node x and X1, . . . , Xn

are the labels of the children of n from left to right, then there exists a
production rule U → X1 . . . Xn in R. The labels X1, . . . , Xn represent a
sequence of terminal and non-terminal symbols.

Example 3. Let G = ({P}, {0, 1}, R, P ) where R is the set of production rules
{P → 0 | 1 | P 0 | P 1}. The grammar produces binary numbers. For instance,
the parse tree for 0011 is

(root)
P P P P

0 0 1 1

An attribute grammar extends a CFG by adding semantic information,
stored in attributes tied to the grammar’s terminal and non-terminal symbols.
Attribute values are computed through rules linked to the grammar’s produc-
tions. For each non-terminal in a CFG G, there are two sets of attributes:
1. synthesized attributes, which pass information from the leaves to the root of
a derivation tree and 2. inherited attributes, which pass information from the
root to the leaves. Each production is paired with semantic rules that define
how to calculate the output attribute – synthesized attributes of the left-hand
non-terminal and inherited attributes of the right-hand non-terminals – based
on the input attributes. The following definition formalizes this concept.

Definition 5 (Attribute Grammar). An attribute grammar [18] is a CFG
G = (N,T,R, S) with a set of semantic rules Φr added to each production
rule r ∈ R. Each symbol X ∈ (N ∪ T ) is associated to a finite set of attributes
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A(X) consisting of two disjoint subsets of attributes: (i) A↑(X) for synthesized
attributes where ∀X ∈ T, A↑(X) = ∅, and (ii) A↓(X) for inherited attributes
where, for the initial symbol S, A↓(S) = ∅

Each attribute a ∈ A(X) has a (potentially infinite) set of possible values Va

from which a value is selected for each occurrence of X in the derivation tree.
The production rule r has the form X0 → X1, . . . , Xn where n ≥ 1, X0 ∈ N
and Xi ∈ (N ∪ T ) for 1 ≤ i ≤ n. A semantic rule ϕ ∈ Φr associated with r is
a function such that a = ϕ(b1, . . . , bk) for each output attribute a of r where bi
(1 ≤ k) are input attributes of r. This rule computes the value of an attribute
of Xj from the attributes of the symbols X0, . . . , Xn. If a is an attribute of X0,
it is a synthesized attribute. If a is an attribute of Xj (1 ≤ j ≤ n), it is an
inherited attribute.

Example 4. Let G′ be an attribute grammar built from G of Example 3 by
associating a synthesized attribute val with the non-terminal P and providing
rules to compute the value of val relative to the value of the previously computed
attribute val′ associated with the right side of the production rule.

Pval → 0 [val← 0]

Pval → 1 [val← 1]

Pval → Pval′ 0 [val← 2 ∗ val′]
Pval → Pval′ 1 [val← 2 ∗ val′ + 1]

In the production rules, the attributes are indicated as subscripts and the
semantic rules are presented in square brackets to the right of the production
rule. The grammar G′ associates the decimal value with a binary number. The
parse tree for 0011

(root)
P (val = 0) P (val = 0) P (val = 1) P (val = 3)

0 0 1 1

shows, for each level, the computed value of the attribute val.

S-attribute grammars are attribute grammars containing only synthesized
attributes, making them simpler and easier to verify through bottom-up prop-
agation.

Definition 6 (Meta-grammar). A meta-grammar G = (N,T,R, S) is an S-
attribute grammar where N is the set of meta-non-terminals, T is the set of
meta-terminals, R is the set of production rules, and S ∈ N is the start symbol.
G specifies the syntax for production rules of condensed CFGs. Words in the
language recognized by G are lists of production rules for condensed CFGs.

A synthesized attribute γ is used to verify that each derivation produces a
valid condensed CFG. If Sγ = >, the derivation is valid; if Sγ = ⊥, it is invalid.

Semantic rules in production rules r ∈ R fall into two types:

• a← α, where a is an attribute and α is a formula on attributes in r;

• γ ← β, where β is a logical formula on attributes in r.

For clarity, we will omit the part γ ← and rules of the form a ← a in this
paper.
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Syntax trees (as the on in Figure 3a) are often used to represent texts, serv-
ing as derivation trees for the grammar of the natural language. In linguistics,
they depict the syntactic structure of a sentence, highlighting the hierarchi-
cal relationships between words or word groups and their roles within parts of
speech (PoS) such as nouns (NN), verbs (VBD), adjectives (ADJ), and deter-
miners (DT). The leaves of the tree represent the lexical units (words), while
the intermediate nodes correspond to abstract structures like verb phrases (VP)
or noun phrases (NP).

Tree rewriting, or term rewriting, involves transforming trees into other trees
using specific rewriting rules. In our context, these rules allow the formaliza-
tion of tree transformations, with the goal of organizing information in a more
structured manner while disregarding unnecessary elements. In the following
we recall the basis of tree rewriting.

Definition 7 (Hedge). A hedge is a possibly empty sequence of trees, represented
as h = [t0, . . . , tn], with |h| indicating the number of trees (i.e. |h| = n + 1).
A substitution, denoted σ, is a bijective mapping from a set of variables V to
a set of hedges and from a set of labels to a set of sub-trees, homomorphically
extended to trees.

Definition 8 (Rewriting rule). A rewriting rule on a tree specifies how a tree
t can be rewritten as t′ at a given position u. It consists of a left-hand side
(LHS), representing a pattern, and a right-hand side (RHS), representing the
transformation, written as LHS → RHS. The pattern is a subtree formed from
the set Σ∪V ∪{λ}, where Σ is the set of labels of t, V is a set of variables, and
λ is the root symbol. A morphism maps variables from LHS to RHS, enabling
the transformation.

The rule applies by substituting σ, a subtree of t at position u, into the
LHS pattern. This creates a correspondence between elements of the LHS and
a subtree of t. The application of the rule is denoted as t 7→[u,LHS→RHS,σ] t

′,
where t|u = σ(LHS) and t′|u = σ(RHS).

A rewriting rule may also include application conditions that specify when the
rule can be applied, such as constraints on node or edge attributes or topological
requirements.

Example 5. Let {X,Y,A,B,C,D} ⊆ Σ be a set of labels (non-terminals) in
trees. Consider the rewriting rule rule(u.i) with the constraint |σ(x)| = i :

U

x A
→ U

x

Here, U is the node at position u in the target tree, and x ∈ V is a variable.
The rule applies to a tree T if there is a sub-tree t = T |u with a substitution σ
such that σ(x) = [t|0, . . . , t|i−1] and l(u.i) = A. Applying the rule deletes the
sub-tree labeled A from T . Figure 6 show the application of rule(0.2) with u = 0
and i = 2 where σ(x) = [C,B].
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Figure 6: Example of the application of rule(0.2) on a tree

5 Automatic Structuring
Algorithm 1 summarizes our process for structuring textual data. Textual data
is represented by trees, from which grammars are extracted to serve as a gen-
eral representation. The structure that emerges from this iterative process is
a grammar that plays the role of a database schema, together with its corre-
sponding parse tree, which corresponds to a database instance. The resulting
grammar can be mapped to various database models.

As input, Algorithm 1 receives: 1. an instance I0 corresponding to a forest of
syntax trees generated from text sources, which have been merged into a single
tree with a common root; 2. the meta-grammar G and 3. a set of entities E.

We define a named entity as a tuple E = (entityName, startToken, endToken)
where entityName is the name or type of the named entity, startToken is the
index of the token that marks the beginning of the entity, and endToken is the
index of the token that marks the end of the entity. Ltokens(E) corresponds
to the sequence of tokens forming part of the entity, defined as Ltokens(E) =
[startToken, . . . , endToken]. Named entities represent real-world objects and
are instances of a class, with ”Paris” as an example of a ”City” entity. Algo-
rithm 1 outputs a target grammar G valid with respect to G.

The iterative process can be summarized as follows. It begins with an en-
richment step (line 1) where entities and relationships are added as internal
nodes to the syntax trees, followed by the removal of redundancies to simplify
the structure. Next, the grammar is extracted (line 2) and checked against a
pre-established meta-grammar (line 3). If the resulting grammar is not valid,
tree transformations are applied. This involves computing equivalence classes
for non-terminals (line 4) and then unifying and structuring equivalent sub-trees
according to the meta-grammar G (line 5). Then, a new grammar is extracted
from the new instance (line 6) and the while loop proceeds with verification.

In the following sections, we outline each step of our approach. First, we
define the meta-grammar G, followed by an explanation of each step of Algo-
rithm 1.

5.1 Meta-Grammar: generic database schema definition
The purpose of the meta-grammar is to define the core concepts of a database
model, in a generic manner (Section 2). These concepts – attribute (or entities),
group, relation, and collection – must now be expressed by trees to enable their
identification within the tree structure representing our data instance I.
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Algorithm 1: AlgoStructMain(I0 , G, E)
1 I ← EnrichSimplify(I0, E)
2 G← ExtractGrammar(I)
3 while G not valid wrt G do
4 ComputeEqClasses(I)
5 I ← Rewrite(I)
6 G← ExtractGrammar(I)

7 end
8 return G

Table 1 presents our meta-grammar G, an attribute grammar that defines
valid data structures. Meta-non-terminals are indicated by angle brackets 〈·〉,
while the semantic rules are shown on the right side of the table within square
brackets [·].

The first production meta-rule of G (1) indicates that the target grammar
G is defined by an initial rule, followed by a possibly empty list of rules. The
initial rule generated by G (meta-rule 2) contains the symbol λ (initial non-
terminal of G) on its left-hand side. Its right-hand side is defined by the meta-
rules 3-8 which specify the construction of a series of G non-terminals. These
non-terminals are: ENT, GROUP, REL and COLL, representing, respectively,
entities, groups of entities, relations between groups and collections of groups or
relations. To distinguish each structure specific to a G grammar, we associate
a name attribute with each non-terminal. The attributes of G are synthesized
and represent lists of names (name) used as identifiers:

• eL (or eL′): list of entity names;

• gL (or gL′) : list of group names;

• rL (or rL′) : list of relation names;

• cgL (or cgL′) : list of group collection names;

• crL (or crL′) : list of relation collection names.

They are initialized in a bottom-up fashion. Syntax rules are used to check
that a name is unique. For example, if the meta rules 19-20 are applied, the
list eL gets entity names that are unique. This is also the case for all other
lists: the uniqueness of the name of a new non-terminal is guaranteed by the
semantic rules. It is also important to note that these semantic rules ensure that
any non-terminal appearing to the right of a production rule in the G grammar
must have a rule defining it. For example, if the meta rule 1 is applied, all
elements in the list gL′ must be present in gL.
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ε ::= 〈rooteL′,gL′,cgL′,rL′,crL′〉 eol 〈ruleListeL,gL,cgL,rL,crL〉 [eL′ ⊆ eL; gL′ ⊆ gL; cgL′ ⊆ cgL; rL′ ⊆ rL; crL′ ⊆ crL] (1)
〈rooteL,gL,cgL,rL,crL〉 ::= λ→ 〈rootListeL,gL,cgL,rL,crL〉 (2)

〈rootListeL,gL,cgL,rL,crL〉 ::= ε [eL← ∅; gL← ∅; cgL← ∅; rL← ∅; crL← ∅] (3)
| ENTname 〈rootListeL′,gL,cgL,rL,crL〉 [name /∈ eL′; eL← {name} ∪ eL′] (4)
| GROUPname 〈rootListeL,gL′,cgL,rL,crL〉 [name /∈ gL′; gL← {name} ∪ gL′] (5)
| RELname 〈rootListeL,gL,cgL,rL′,crL〉 [name /∈ rL′; rL← {name} ∪ rL′] (6)
| COLLname 〈rootListeL,gL,cgL′,rL,crL〉 [name /∈ cgL′; cgL← {name} ∪ cgL′] (7)
| COLLname 〈rootListeL,gL,cgL,rL,crL′〉 [name /∈ crL′; crL← {name} ∪ crL′] (8)

〈ruleListeL,gL,cgL,rL,crL〉 ::= ε [eL← ∅; gL← ∅; cgL← ∅; rL← ∅; crL← ∅] (9)
| 〈entityname〉 eol 〈ruleListeL′,gL,cgL,rL,crL〉 [name /∈ eL′; eL← {name} ∪ eL′] (10)
| 〈groupname,eL′〉 eol 〈ruleListeL,gL′,cgL,rL,crL〉 [name /∈ gL′ ∧ eL′ ⊆ eL; gL← {name} ∪ gL′] (11)
| 〈relationname,gL′〉 eol 〈ruleListeL,gL,cgL,rL′,crL〉 [name /∈ rL′ ∧ gL′ ⊆ gL; rL← {name} ∪ rL′] (12)
| 〈collGrpname,grpName〉 eol 〈ruleListeL,gL,cgL′,rL,crL〉 [name /∈ cgL′ ∧ grpName ∈ gL; cgL← {name} ∪ cgL′] (13)
| 〈collRelname,relName〉 eol 〈ruleListeL,gL,cgL,rL,crL′〉 [name /∈ crL′ ∧ relName ∈ rL; crL← {name} ∪ crL′] (14)

〈groupname,eL〉 ::= GROUPname → 〈entListeL〉 (15)

〈collGrpname,grpName〉 ::= COLLname → GROUP+
grpName (16)

〈relationname,gL〉 ::= RELname → GROUPname1 GROUPname2 [name1 6= name2; gL← {name1, name2}] (17)

〈collRelname,relName〉 ::= COLLname → REL+
relName (18)

〈entListeL〉 ::= ENTname [eL← {name}] (19)
| ENTname 〈entListeL′〉 [name /∈ eL′; eL← {name} ∪ eL′] (20)

〈entityname〉 ::= ENTname → 〈data〉 (21)

Table 1: Meta-grammar G using BNF format
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Example 6. Consider the grammar G from figure 5 and the derivation of G
that leads to the rule λ→ COLL1. By applying meta-rule 2, we derive the rule
λ→ 〈rootList〉, where the right-hand side contains a meta-non-terminal. Next,
applying meta-rule 8 results in the intermediate rule λ → COLL1 〈rootList〉,
and finally, meta-rule 3 produce λ → COLL1. The set of production rules
for the grammar G is defined by meta-rules 9-14, where each rule introduces a
non-terminal for G.

Figure 7 presents a partial derivation of G from the meta-grammar G. At-
tributes are displayed in blue, excluding γ and empty-set attributes for clarity.
Note that the semantic rules of G impose constraints to ensure that every non-
terminal in the target grammar G is properly defined, a requirement for con-
structing a valid grammar. In this context, Figure 7 shows, on the the left-hand
side of the root, that crL′ = {1}, signifying that COLL1 is referenced in the root
rule. On the right-hand side, 〈ruleList〉 holds crL = {1}. Since crL′ ⊆ crL,
this confirms that every non-terminal appearing in the root rule of G has a
corresponding defined production rule, ensuring a valid derivation.

ε

〈root〉
crL = {1}

λ →〈rootList〉
crL′ = {1}

COLL1 〈rootList〉

ε

eol 〈ruleList〉
crL = {1}, gL = {1, 2}
rL = {1}, eL = {1, 2, 3}

〈collRel〉
name = 1

relName = 1

COLL1 → REL+
1

eol …

Figure 7: Extract of a derivation of G

5.2 Tree Enrichment and Simplifications
The enrichment step involves simplifying the syntax trees and adding semantic
information, mainly formalised by tree rewriting rules. This section gives an
overview of these operations.

5.2.1 Simplifying Conjunction Sub-Trees

Syntactic trees are generated using parsers, typically trained on treebanks. How-
ever, due to linguistic variations, syntactic annotations across treebanks are not
standardized. In both French and English, coordinating conjunctions can be
represented using either recursive or flat structures. In this paper, we utilize
the English and French parsers provided by CoreNLP, where the English parser
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tends to favor a flatter structure, placing coordinated elements at the same
hierarchical level. Since sub-trees for coordinating conjunctions are suitable
candidates for collection structures (mentioned in Section 5.1), we rewrite the
conjunctions sub-trees to this flatter representation to better align with our
meta-model.

5.2.2 Enriching Trees

To incorporate an entity in a syntax tree T means to create an ENT -labeled sub-
tree, specifying the entity type (e.g., Person, Country, Disease) and containing
leaves for the entity’s tokens.

Definition 9 (Ordered entity subtree). Let T = (D, l) be a syntax tree, E =
(entityName, startToken, endToken) be an entity and Ltokens(E) be the list of
indices of E’s tokens. An ordered entity sub-tree is a tuple ET = (entityName,
Ltree(T,E)) where Ltree(T,E) is the sequence of positions of the tokens of E in
the tree T such that Ltree(T,E) = [u.b, . . . , u.e] = [treePos(T,
startToken), . . . , treePos(T, endToken)] with u being the position common
to all the tokens of E and treePos : T × N → D being a function which asso-
ciates for each index of a token its position in the tree. |E| is the size of the
entity (or number of tokens) such that : |E| = |Ltokens(E)| = |Ltree(T,E)| =
(endToken− startToken) + 1.

Entities correspond to the concept of attributes (Section 2) in our generic
database model, defined by the meta-grammar G. We maintain the classical
notion of attributes; therefore, nested entities are considered invalid under G. To
comply, nesting is represented as a relationship between the encompassing entity
and the contained entities, forming a tree with two children. This transformation
is performed by the application of the tree rewriting rule unnest_ent depicted
in Figure 8a.

U

x0 ENT

z0 ENT0

y0

z1 . . . ENTn

yn

zn+1

x1 −→

U

x0 ER

ENT
z0 y0 z1 . . . yn zn+1

EC

ENT0

y0

. . . ENTn

yn

x1

(a) unnest_ent(T, u.i) where |σ(x0)| = i

U
x y1

y2

z −→
U

x y2 z

(b) reduce(T, u.i, Slabels) where
|σ(x)| = i and |σ(y1)| = 1 with
|σ(y2)| = 1 if Slabel = ∅ ; t(u.i) /∈
Slabels if Slabel 6= ∅

Figure 8: Basic operations

5.2.3 Simplifications

The trees are simplified in two steps:
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1. Sub-trees without entities are deleted. They are identified by checking the
parents of all leaves in T . If they aren’t labelled with an entity name, they
are removed (e.g., sub-trees T |0.0 and T |1.0 in Figure 3b).

2. Nodes not labelled as entities and with only one child are deleted (e.g., nodes
at position 0, 1.0.0 and 1.0.1 in Figure 3c). This is done using the rewriting
rule reduce from Figure 8b.

Figure 3d shows an enriched tree after simplifications.

5.3 Grammar Extraction
In lines 2 and 6 of Algorithm 1, we extract the grammar G from a given in-
stance I and then verify its correctness against the meta-grammar G (line 3).
The grammar G is derived by calculating the quotient tree S, a hierarchical
representation of I, used to obtain G.

We recall that a partition of a set X is a division of its elements into non-
empty, disjoint subsets. An equivalence relation on a set defines a partition,
and every partition corresponds to an equivalence relation. A set family F is a
partition of a set X if and only if all the following conditions are satisfied: (i)
∅ 6∈ F ; (ii)

⋃
A∈F A = X and (iii) ∀A,B ∈ F (A 6= B) ⇒ (A ∩ B = ∅). The

sets of F are called blocks. In graph theory, a quotient graph Q of a graph G is
a graph whose vertices are blocks of a partition of the vertices of G and where
a block A is adjacent to a block B if at least one vertex of A is adjacent to a
vertex of B with respect to the set of edges of G. To construct the grammar
from a tree, we introduce the definition of quotient tree, which corresponds to a
quotient graph with no cycles and no vertices with multiple parents.

To extract the grammars Gi we use the equivalence relation Rl between the
labels of a tree T , defined by (∀x, y ∈ D) x Rl y ⇐⇒ l(x) = l(y). Intuitively,
we obtain as equivalence classes a set of positions for each label present in the T
tree. For example, in Figure 9a, Cλ = {ε} and CX = {0, 1} are the equivalence
classes for the labels λ and X respectively.

To construct a quotient tree, we follow two steps:
• Compute the hierarchy of equivalence classes. We define the function Succ,
which, for a given class C, returns the set of equivalence classes containing at
least one element that is a child of an element in C.

Definition 10 (Function Succ). Let T = (D, l) be a tree and R an equivalence
relation. Let D/R = {C0, . . . , Cn} be the set of equivalence classes of T . Define
the function Succ as Succ(C) = {C ′ | ∃u ∈ C, v ∈ C ′ such that u ≺ v}

Example 7. Let T = (D, l) be the tree Figure 9a. The first step in constructing
the quotient tree QT is to retrieve the equivalence classes of D given by the
relation Rl. We then obtain the following classes: Cλ = {ε}, CX = {0, 1},
CY = {2}, Ca = {00, 20}, Cb = {01, 10}, Cc = {11}. The construction of
QT involves recovering the hierarchy of equivalent sets. The algorithm starts
with the class Cλ and recursively traverses its successors. For each class, we
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have the following successors: Succ(Cλ) = {CX , CY }, Succ(CX) = {Ca, Cb, Cc},
Succ(CY ) = {Ca}, Succ(Ca) = ∅, Succ(Cb) = ∅, Succ(Cc) = ∅. �

λ

X

a b

X

b c

Y

a

(a) Instance tree T

λ

X+

a b c

Y

a

(b) Quotient tree QT

Figure 9: Example of quotient tree computation

• Assign each equivalence class a position in the ordered tree. The function
QDom computes the domain of the quotient tree using the Succ function. QDom
assigns each successor class of C a relative position, u.p, where u is the position
of class C. In other words,

QDom(C, u) = {(Cj , u.p) | Cj ∈ Succ(C) and 0 ≤ j ≤ n− 1} (22)

where n is the number of elements in Succ(C). It is worth noting that it is
possible for an equivalence class to appear as the successor of more than one
class. In Example 7, Ca is a successor of both CY and CX , resulting in different
positions for Ca.

To construct the quotient tree QT = (QD, Ql) from a tree T , we start
by assigning the equivalence class Cλ to the root of QT , i.e., QD ← {ε} and
Ql ← 〈ε 7→ λ〉. We also initialize a set classes with pairs in the format (equiv-
alence class, position in QT ), denoted (CL, u). While classes is not empty, the
algorithm iterates, selecting a pair (CL, u), updating classes with its successors
computed using the QDom function, and updating the domain QD with the new
position u. The algorithm checks if the equivalence class CL includes multiple
positions with the same parent. Indeed, to construct a condensed CFG, sibling
nodes with the same non-terminal in a parse tree are compactly represented
in the quotient tree with the + symbol. This involves checking for repeated
non-terminals with the same parent and merging their derivations, allowing for
trees with incomplete information, as shown in the following example.

Example 8. Let us consider the result obtained in Example 7. Function QDom
is used to associate positions to equivalent classes. We start with QDom(Cλ, ε) =
{(CX , 0), (CY , 1)} and after successive applications of QDom (see expression (22))
we obtain:

QDom(CX , 0) = {(Ca, 00), (Cb, 01), (Cc, 02)}
QDom(CY , 1) = {(Ca, 10)}

QDom(Ca, 00) = ∅ QDom(Ca, 10) = ∅
QDom(Cb, 01) = ∅ QDom(Cc, 02) = ∅

Figure 9b illustrates the obtained quotient tree. The node corresponding to
class Ca is duplicated in QT , because it is linked to two positions: 00 and 10. The
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node corresponding to class CX in QT is marked with ‘+’, indicating that X can
be repeated as a child of λ. This conclusion comes from Example 7: CX = {0, 1}
contains two positions with the parent at ε. In the construction of QT , after
a first iteration, classes = {(CX , 0), (CY , 1)}. For the pair (CX , 0), we have
successors = {(Ca, 00), (Cb, 01), (Cc, 02)}. The class CX is not a singleton and
its positions have the same parent.

A tree T may represent an incomplete derivation of the condensed CFG GT

obtained from a quotient tree QT . For instance, if a production rule of GT is
X → a b c, the tree T of Figure 9a is accepted as a valid derivation only if c
or a are considered as missing values, which reflect omissions or errors in the
syntactic analysis of natural language texts. Incomplete information has been
a challenge for database research (see, e.g, [15, 21, 8, 7]). The transformation
of a quotient tree into a grammar is formally defined below.

Definition 11 (Construction of a grammar from a quotient tree). The con-
densed CFG GT , obtained from the quotient tree QT = (QD, Ql) of T , is defined
by the quadruplet (N,T, P, λ) where: (i) the set of non-terminals N , possibly
decorated by +, is the set of labels Ql(u) for any position u ∈ QD which is not
a leaf; (ii) the set of terminals T , is the set of labels Ql(u) for any position
u ∈ QD which is a leaf; (iii) the set P of production rules contains, for any po-
sition u ∈ QD which is not a leaf, rules of the form Ql(u)→ Ql(u.0), . . . Ql(u.i)
and (iv) λ is the starting symbol.

Example 9. From QT in Example 8, Figure 9b, we obtain the grammar GT

with the following rules:

λ→ X+ Y X → a b c Y → a

5.4 Computing Equivalence Classes
Algorithm 1, on line 4, modifies instance I by identifying equivalence classes
of sub-trees (non-terminals of the target grammar). At this stage, trees have
been enriched, simplified, or rewritten. In the initial iteration, the tree contains
named entity information, as shown in Figure 3d.

In our context, identifying equivalent sub-trees is essential for aggregating
information. The textual representation of a real-world object can take different
forms, reflected in different entity sub-trees. Besides, natural language often
omits or implies information. For example, the parse trees of “The patient
takes 500 mg of Paracetamol” and “The patient takes Paracetamol every day”
are different, but both represent a treatment.

Determining sub-tree equivalence requires more than comparing entity la-
bels, because natural language is ambiguous, and the same entity tree may
represent different objects. Context must also be taken into account. We use
the concept of regular equivalence from [33], where two vertices in a graph are
equivalent if their neighbourhoods are equivalent. For example, two people can
be considered equivalent (e.g. both representing a patient) if they are connected
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to equivalent vertices, such as a disease or a treatment, even if those vertices
are different.

To define the equivalence relation, we introduce a similarity measure between
sub-trees. A similarity measure is a symmetric function f : ST × ST → [0, 1]
with f(x, x) = 1 for all x ∈ ST. Various measures f like Jaccard, Levenshtein,
Jaro, or tree edit distance [36] can be used. The contextual similarity between
two enriched sub-trees x = T |u and y = T |v, denoted simf (x, y), is computed
as a weighted average of the recursive similarities provided by the function f for
each tree-ancestor. The weights decrease as the distance from the tree-ancestor
increases. The formula for simf (x, y) is given by the following equation, where
depthmin is the minimum depth of the sub-trees x and y (i.e. depthmin =
min{|u|, |v|}), and P x

i (or P y
i ) is the i-th tree-ancestor of x (or y).

simf (x, y) =

∑depthmin

i=0
1

i+1 · f(P
x
i , P

y
i )∑depthmin

j=0
1

j+1

(23)

Axiom 1. The function simf is a weighted average of f . Therefore, simf is
symmetric, bounded by the interval [0, 1] and for all x ∈ ST, simf (x, x) = 1.

S

… CONJ

NP1

X1

ENT_VALUE

500

ENT_UNIT

mg

ENT_DRUG

Paracetamol

NP2

X2

ENT_VALUE

200

ENT_UNIT

mg

ENT_FREQ

every day

…

Figure 10: Extract of an enriched tree

Example 10. Let T be the tree of Figure 10. To define f , we use the Jaccard
index (J(X,Y ) = |X ∩Y |/|X ∪Y |) on the entity names present in the sub-tree.
Although f(X1,X2) = 1, their contexts — one related to a drug (paracetamol)
and the other to a frequency (every day) — suggest a similarity of less than
1. The function simf (equation 23) accounts for this difference. We find
f(NP1,NP2) = 0.75 and continue recursively to the root, where the sub-trees are
identical with a similarity of 1. This results in :

simf (X1,X2) =

X︷ ︸︸ ︷
1× 1+

NP︷ ︸︸ ︷
0.5× 0.75+

CONJ︷ ︸︸ ︷
0.33× 1+

S︷ ︸︸ ︷
0.25× 1

1 + 0.5 + 0.33 + 0.25
' 0.94

The example shows that although the two sub-trees are similar, they are
not equivalent because they do not refer to the same objects. Our similarity

20



measure defines when two sub-trees are similar, based on a threshold set for
each dataset.

Definition 12 (Sub-tree similarity). Given an enriched tree T , let st1 = T |u
and st2 = T |v be two sub-trees. Let τ ∈ [0, 1] be a threshold. We say that st1
and st2 are τ -similar, denoted st1 ∼τ st2, if and only if simf (st1, st2) ≥ τ .

Proposition 1. τ -similarity is a reflexive and symmetric similarity relation.

Definition 13 (Sub-tree equivalence). Let T be an enriched tree. Given a τ -
similarity relation (Definition 12), we define an equivalence relation between the
sub-trees x = T |u and y = T |v (denoted x ≡τ y) by the following equation :

(∀x, y ∈ ST) x ≡τ y ⇐⇒ x ∼τ y ∨ (∃z ∈ ST) x ≡τ z ∧ y ≡τ z (24)

Proposition 2. The τ -equivalence is an equivalence relation, that is, reflexive,
symmetric and transitive.

Definition 14 (Equivalence classes). Let [x]τ denote the τ -equivalence class of
x, where y ∈ [x]τ if and only if y ≡τ x. For a tree T = (D, l), D/≡τ

= {[x]τ |
x ∈ D} represents the quotient set (or partition) of D by ≡τ , i.e., it is the set
of all τ -equivalence classes of D.

Partitioning a set based on distance can be done using single-link hierarchi-
cal clustering with the similarity measure simf . According to [5], single-link
hierarchical clustering aligns with partitioning by an equivalence relation. This
method constructs a hierarchy by initially treating each element as a sepa-
rate class and merging the closest classes step by step based on similarity. A
single-link hierarchy evaluates the similarity between classes as the maximum
similarity (or minimum dissimilarity) between pairs of elements in the classes. A
classification at similarity threshold τ merges classes if their similarity exceeds
τ . For example, at τ = 0.3, we have two classes: {a, b} and {c, d, e}. When the
threshold increases, e.g. τ = 0.5, three classes emerge: {a}, {b}, and {c, d, e}.
Further raising the threshold to τ = 0.7 results in four classes: {a}, {b}, {c, d},
and {e}.

5.5 Rewriting Trees
The aim of the structuring step on line 5 of Algorithm 1 is to rewrite the instance
tree to conform to a valid schema based on the G meta-grammar. Nodes repre-
senting groups, relations, or collections are identified, and equivalent sub-trees
are rewritten to align with their respective categories. This iterative process
checks schema validity after each modification. The rewriting approach may
vary depending on the objectives. In this paper, the purpose of the rewriting
function is to unify sub-trees by eliminating structural variations, maximizing
their frequency, and minimizing the number of grammar production rules.

In Algorithm 1, the evolution from instance Ii to Ii+1 follows a transfor-
mation process, where sub-trees are grouped or modified based on a similarity
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measure. The tree rewriting function on line 5 takes as input an instance Ii,
i.e, a single tree representing a rooted forest of instance trees. Called within the
while loop (line 3), this function iteratively transforms the instance into a con-
densed tree that represents the grammar. Each iteration focuses on invalid parts
of Ii, and when no further transformations are possible, the resulting grammar
GT is valid under G (end condition of the while loop). In practice, to ensure
termination, a maximum cycle limit K is set, which may leave some tree parts
unresolved.

The whole process is governed by four parameters: f (similarity function),
τ (similarity threshold), minSup (minimum element frequency), and K (maxi-
mum cycles).

Our rewriting function consists of five main transformation operations, tracked
by a variable indicating whether a transformation has occurred. If the tree is
modified, further operations are skipped, and the cycle restarts to update equiv-
alence classes. The five operations, executed in logical sequence, are: detect-
ing groups, unifying them, grouping into collections, identifying relationships
between groups, and relationships between collections. Operations proceed se-
quentially; if no changes occur in the earlier steps at iteration i, the subsequent
operations are applied until a modification occurs, advancing to Ii+1. If none of
the five operations modify the tree, more drastic transformations are applied.
These final steps work bottom-up, removing intermediate levels above uncate-
gorized entities (operation reduce(bottom)). Once all nodes are categorized, the
function deletes any remaining upper levels that aren’t classified as an entity,
group, relation, or collection (operation reduce(top)).

The reminder of this section provides an overview of the five key operations
employed in the rewriting function (line 5 of Algorithm 1).
• The findGroups operation identifies frequent groupings of entities in the tree
by partitioning the sub-trees above the entity sub-trees. It filters out these par-
titions with support below minSupport, resulting in a set, denoted equivalent_st,
containing sub-tree equivalence classes with sufficient support, as illustrated in
the following example. In general, the findGroups operation defines new sub-
trees TGROUP with roots labeled GROUPk, where GROUP is a non-terminal
symbol and k is an attribute identifying equivalent groupings. The selection
order of equivalence classes in equivalent_st is determined by the tree depths
within each class.

Example 11. Let T be the tree in Figure 11a where entity sub-trees are those
with roots labeled Ei. Let D/ ≡τ= {{0}, {1}, {00, 110}, {01}, {010, 111},
{11}, {1100}} and minSupport = 2. Consequently, we have equivalent_st =
{{00, 110}, {010, 111}}.

The nodes 010 and 111 are relabeled as GROUP0, while the nodes 00 and
110 are assigned the label GROUP1. Node 1100 is deleted to ensure only entities
remain as children of group-nodes, resulting in the updated tree T ′′ (Figure 11c).

.

• Unifying groups includes to operations: finding sub-groups and merging them.
The findSubGroups operation aims at minimizing distinct groups and maximizes
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Figure 11: Example of the findGroups operation

their frequencies. It ensures no group contains a more frequent subgroup. This
operation is also applied to sub-trees whose root does not yet have a label
corresponding to a non-terminal of the target grammar. If a more frequent sub-
tree sti can be constructed from a subset of the entity trees descending from
a given sub-tree st, st is replaced by a new unlabeled sub-tree. The children
of this new sub-tree are sti and the sub-trees in st that are not part of sti, as
illustrated in the following example.

. . .

GROUP

E1 E2

E3

. . .

GROUP

E1 E3

E2

. . .

GROUP

E2 E3

E1

Figure 12: Example of the findSubgroups operation

Example 12. Given the tree T in Figure 13a, let st represent the sub-tree for
the first group G1. To check if a subgroup is more frequent than G1, we test all
possible subsets of entities. With 3 entity sub-trees in st, we test groupings of
2. The results for these groupings are shown in Figure 12.

The goal of the mergeGroups operation is to increase group size by merging
sibling groups or adding sibling entity sub-trees. This operation only applies
to groups not already in a relation or collection. For each sub-tree st, two
sets are considered: SGROUP (children labeled GROUP ) and SENT (children
labeled ENT ). The operation explores all combinations between these sets,
starting with the largest. Transformations are applied only if they produce
more frequent sub-trees than the original. The following example illustrates
this process.

Example 13. Let T be the tree in Figure 13a. The root of sub-tree st is
at position u and is not yet labelled with a target grammar symbol. The op-
eration attempts to merge children of st. We have SG = {u0, u1, u2} and
SENT = {u3, u4}. The number of testable combinations depends on |SG/ ≡τ |
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{u0, u1, u3}

. . .

G

E6 E7 E8 E9 E10

G1

E1 E2 E3

G2

E4 E5

(c) Sub-tree st1 with the combination
{u2, u3, u4}

Figure 13: Example of the mergeGroups operation

(Definition 14), which is the number of elements in SG, excluding those in the
same equivalence class. Since u0 and u2 (both labeled G1) are in the same
equivalence class, the mergeGroups operation will attempt to build sub-trees by
grouping 4 (= |SG/ ≡τ |+ |SENT |) positions as siblings, then 3 positions, and so
on. All possible combinations are tested by creating a new tree with the new group
and calculating its support. With 3 positions the combinations to be tested are:
{{u0, u1, u3}, {u0, u1, u4}, {u0, u3, u4}, {u1, u2, u3}, {u1, u2, u4}, {u1, u3, u4},
{u2, u3, u4}}. Two of these combinations are shown in Figure 13.

• The operation findRelations creates relationships on unlabelled sub-trees in
two ways: 1. If the sub-tree has two children labelled GROUP , the sub-tree’s
root is labelled REL (Figure 14a). 2. If the sub-tree has one child labelled
GROUP and another labelled COLL, the sub-tree is restructured. It creates a
new sub-tree with root REL having two children: the child labelled GROUP
and another sub-tree derived from the COLL child. This transformation is
distributive for each child of COLL (Figure 14b).

. . .

G1

...
G2

...

⇒

. . .

REL

G1

...
G2

...
(a) Relationship between 2 groups

. . .

G1

...
COLL

G2

...
G2

...

⇒

. . .

REL

G1

...
G2

...

REL

G1

...
G2

...
(b) Relationships between 1 group and a collec-
tion

Figure 14: Example of the findRelationship operation

• The findCollections operation groups sibling sub-trees (either groups or rela-
tions) into a collection if they belong to the same equivalence class. Here we
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explain how group collections are formed. Relations are handled similarly. For
each unlabelled sub-tree st, the operation works in three steps (Figure 15): 1. It
creates a subtree labeled COLL with all GROUP subtrees from the same equiv-
alence class as its children; 2. It groups collections containing children from the
same equivalence class; 3. It adds child groups of st to the collection containing
equivalent groups.

. . .

G1

...
G2

...
G2

...
G3

...
COLL

G1

...
G1

...

=⇒
. . .

G3

...
COLL

G1

...
G1

...
G1

...

COLL

G2

...
G2

...

Figure 15: Example of the findCollections operation

6 Proof of concept
Since approaches in the literature are not directly comparable to ours, we eval-
uate our prototype based on how well it meets our objectives. We tested our
structuring method with a proof-of-concept use case using the CAS corpus [13],
which contains real and fictitious clinical cases describing patients’ medical his-
tories, symptoms, diagnoses, and treatments. We chose a small example for this
initial experiment – a corpus of 100 texts and 8098 manually annotated named
entities across 10 categories, with some entities potentially nested – to carefully
track each step of our method.

Evaluation Methodology. We track the instance’s evolution by compar-
ing each iteration of Algorithm 1. The rewriting function (line 5, Section 5.5)
alternates between specializing (making details explicit) and generalizing (ag-
gregating). Due to its behavior, only one operation is triggered per iteration,
which can delay annotating nodes as relation or collection, even when conditions
are met. To evaluate progress, we count valid structures at the end of the while
loop, even if they aren’t fully labelled yet.

The following aspects are guidelines for the analysis of the behavior of our
approach:

1. The impact of our approach on the reduction of production rules. A com-
prehensible grammar GT should be more concise than G0, which directly
represents the original instance. Reducing the number of production rules
reflects aggregation.

2. The average number of instances for core structures defined by G. Our
aggregations use groups, relations and collections as the core structures of
our schema, and we expect their instances to increase with each iteration.
For example, we track how often a non-terminal name such as GROUP9
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appears in the tree. Ideally, you would expect to see a significant number
of occurrences.

3. The hierarchy evolution. Our structures follow a defined hierarchy, with,
for instance, collections aggregating groups for greater generalization. Dur-
ing the iterations of Algorithm 1 we monitor the number of structures in
each category: groups, relations, and collections.

Experiments. Figure 16 illustrates the behavior of Algorithm 1 in reducing
the number of production rules (aspect 1). It shows the number of rules in gram-
mar Gi ( ) along with its trend line ( ), and the number of uncategorized
nodes ( ) with its trend line ( ). The lower part of the graph shows the
transformation applied at each step i ( ). Operations number correspond to
their order :

1. findSubgroups;

2. mergeGroups;

3. findCollectionsOfGroups;

4. findRelationships;

5. findCollectionsOfRelationships;

6. reduce(bottom);

7. reduce(top).

The algorithm effectively minimizes the grammar, reducing production rules
from 178 to 68, and uncategorized nodes from 155 to 34 after 50 iterations.

A detailed analysis of Figure 16 reveals moments where the number of pro-
duction rules remains relatively constant, such as in iterations 21 and 25. During
these phases, Algorithm 1 applies generalistion operations, leading to significant
changes in the number of rules. However, these operations do not produce valid
or frequent trees, requiring subsequent restructuring. This is where the pre-
viously mentioned back-and-forth behavior occurs. In steps 24, 30, and 31,
the number of production rules rises sharply as the procedure introduces more
specific structures to later recognize more generic ones, like collections.

Figure 17 shows the behavior of Algorithm 1 regarding the number of in-
stances for each structure (aspect 2). The curve represents the number of
equivalence classes at each step, which decreases from 25 to 17. This suggests
that certain structures unify over time, with the transformations successfully
remodeling different groups that eventually fall into the same equivalence class.
The curves , , and show the average number of instances for each
group, relation, and collection, respectively. Despite the decrease in unlabeled
nodes, these numbers remain relatively stable. Initially, the average number
of instances is 34.2 for groups and 2.2 for relations. By the end, groups have
an average of 29.8 instances and relations 3. The drop in group instances is

26



50

100

150
G

ra
m

m
ar

si
ze

5 10 15 20 25 30 35 40 45 50
0

5

10

3 3 4 4
6 6

3

6 6

3
5 6

3

6 6

3

6

3

7

3

7

3

6

3

7

3

7

3 3
5 6 6

3

6

3

6 6 6

3

6

3

6 6

3

6

3

6

3

6

Iterations

O
ps

Figure 16: Evolution of the grammar during our approach.

due to their promotion to relations, increasing the average for relations. The
decrease in collection instances is explained by successive merging, resulting in
1.4 instances per collection after 50 iterations. Ideally, there should be 1 collec-
tion per group and per relation, meaning all collections have been successfully
merged.
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Figure 17: Mean number of instance for each structure

Figure 18 illustrates the behavior of Algorithm 1 regarding the number of
structures per category (aspect 3). Specifically, shows the number of groups,
curve the relations, and the collections. In instance I0 (iteration 1), 10
groups, 6 relations, and 0 collections are formed. By iteration 28, the procedure
creates 11 groups, 8 relations, and 15 collections, with the fewest production
rules. Iterations 29 and 30 merge collections after the tree’s top reduction in
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iteration 28(see Section 5.5). This reduces relations to 2, with a third added
at iteration 31, due to the reduction in groups from 15 to 10. Fewer groups
lead to fewer relations, but more instances per relation as equivalence classes
merge. A similar unification occurs at iteration 21. The procedure concludes
with 10 groups, 3 relations, and 12 collections (nearly one collection per group
and relation). After iteration 31, the number of groups and collections stabilizes,
indicating the structure effectively represents the data. Subsequent steps only
modify or refine the instance without altering the schema significantly.
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Figure 18: Number of each kind of structures

Reproducibility. The procedures are described in detail in [14]. The imple-
mentation is written in Python and utilizes CoreNLP for parsing. The source
code, required to reproduce the experiments, can be found on GitHub [6]. For
the corpus, [13] provides the data access modalities.

Evaluating the rewriting policy. The policy of Algorithm 1 for identifying
frequent elements converges to a satisfactory solution but is highly sensitive to
parameters like minSup or τ . For example, consider changing τ from 0.5 to
0.7 on a tree where a node has X- rooted and Y -rooted sub-trees as children,
both containing GROUP7 and Anatomy as their children. We might expect
the mergeGroups operation, mentioned in Section 5.5, to merge GROUP7 with
Anatomy. However, this merges fails. Adding Anatomy to GROUP7 places
the group too far from other instances, creating a set with insufficient support.
This happens because transformations are made individually, not collectively;
simultaneous modifications could have enabled the merge.

Evaluating the resulting grammar. The target grammar GT , obtained
from our experiments on the CAS corpus, is valid with respect to G and consists
of 26 production rules (12 collections, 3 relations, 10 groups, and 9 entities).
Analyzing the groups and their semantics reveals expected associations, such
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as: GROUP0 → ENTDose ENTFrequence ENTMode ENTSubstance ENTSosy

ENTTreatment indicating a treatment; GROUP1 → ENTExam ENTV alue; and
GROUP3 → ENTDose ENTExam ENTSosy

ENTSubstance indicating different formats for exam results.
The results are very promising: the obtained generic schema is coherent and

reliable. While differences with human analysis are noted and will be explored
in the following discussion, it’s important to understand that our method relies
primarily on the frequency of syntactic structures, with semantic information
mainly derived from the enrichment step. Consequently, although the results are
coherent and logical, they do not always fit perfectly with an intuitive database
model. Here are some examples.

1. GT includes the production rules: GROUP4 → ENTAnatomy, ENTExam,
ENTSosy and GROUP8 → ENTExam, ENTSosy. While domain knowl-
edge may suggest splitting them into two groups — one for exams (Exam,
Anatomy) and one for symptoms (Sosy, Anatomy) — connected by a re-
lation, the corpus shows these entities are often interdependent with few
external links. Grouping them together is therefore consistent, reducing
grammar complexity by avoiding extra groups and relations.

2. A prescription typically includes elements like Treatment, Substance, Dose,
Mode, and Frequency, related to a symptom (Sosy). In the corpus, treat-
ments are almost always tied to symptoms, naturally forming GROUP0

with both. While a database model might separate the symptom into its
own group to connect it to both exams and treatments, our approach
doesn’t account for such domain-specific structures. Instead, it com-
bines them (e.g., production rules for GROUP0, GROUP4 and GROUP8

above), reducing grammar size by avoiding extra relations. If the corpus
had more isolated instances of Sosy, our method might have created a
distinct Sosy group, leading to more relations.

3. GT provides various production rules to represent examination results,
such as GROUP3 → ENTDose ENTExamination ENTSosy ENTSubstance

and those for groups 1, 4 and 8 (mentioned above). Although this can
be criticized, each group reflects different types of examination: some are
only mentioned (group 4), some result in a value (group 1) and others
measure a dose (group 3). In particular, GROUP3 is ambiguous and may
also represent post-test treatments. As in the previous point, the presence
of Sosy could also be handled by a relation.

4. For our experiments, the resulting GT offers few production rules for re-
lations. In some cases we might question whether a relation should be
classified as a group or vice versa. Indeed, our approach may decide to
define a relation between groups representing entities with many missing
instances, rather than grouping these entities together. This highlights
that, in this case, while the semantics may be similar, the similarity of the
corresponding sub-trees is quite low.
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The resulting GT defines a general database structure, which can be used
to implement various database models. Our approach (and this paper) does
not cover the next step - selecting a specific database model based on GT .
This step should account for semantic and performance factors, as discussed in
Section 3. In our example, a database analyst could convert GT into a rela-
tional schema with 5 tables: Prescription[treatment, mode, substance, dose,
frequency, sosy] (describes the prescription of a substance or treatment for a
symptom); Examination[examId, exam, value] and Measure[examId, exam,
dose, substance] (represent two types of exams: basic one the those measur-
ing substance levels e.g., in blood); forAnat[examId, anatomy] (linking exams
to part of the body) and forSosy[examId, sosy] (linking exams to signs or
symptoms). No table links examinations/symptoms to treatments - they typ-
ically appear in different sentences and the system is limited to sentence-level
associations.

7 Concluding Remarks
Our approach aims to organize unstructured data into a flexible structure that
abstracts different database models. Currently, the resulting grammar GT can
be used as input for other methods that focus on semantic and performance as-
pects to propose a specific database model. The weakness of our method, noted
in Section 3, stems from the use of limited semantic information. To address
this, enhancements could include incorporating semantics through tree rewriting
strategies or within the meta-grammar G, taking into account business rules and
functional dependencies. Additionally, integrating functional dependency dis-
covery, as explored in [28], could further refine the structuring process through
semantic analysis Future work also includes extending the proof of concept,
improving performance, and exploring incremental structuring methods.

The strength of our approach lies in discovering a schema while structur-
ing the data, making it easier to create database instances from textual data.
Avoiding targeting one precise database model we incorporates a multi-model
philosophy. Our method stands apart from both traditional and machine learn-
ing information extraction methods by offering a hybrid strategy that provides
some flexibility across application domains without the need for training data.
Its transparent process allows users to track and validate each step, ensuring
confidence in both the system and the quality of the data.

Finally, our paper can be seen as an instantiation of a generic and inno-
vative approach to structuring textual data using tree rewriting and grammar
extractions guided by a meta-model defined by an attribute grammar G. In-
deed, the idea here is to structure textual data into a format that conforms to a
predefined framework, specified by a meta-model G, which can specify different
target structures. The textual data is represented as a rooted forest based on
an initial grammar, G0. The process involves transforming this initial structure
to meet the constraints of a new format defined by a target grammar, GT . The
meta-model G guides the process by outlining the desired structure, with trans-
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formations applied to achieve it. These transformations occur incrementally,
evolving both the data and the grammar from G0 to GT .
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