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Abstract

We present a formalization of several fundamental notions and results

from Quantum Information theory, including density matrices and pro-

jective measurements, along with the proof that the local hidden-variable

hypothesis advocated by Einstein to model quantum mechanics cannot

hold. The proof of the latter result is based on the so-called CHSH in-

equality, and it is the violation of this inequality that was experimentally

evidenced by Aspect who earned the Nobel Prize in 2022 for his work. We

prove various results related to the violation of the CHSH inequality, such

as Tsirelson’s bound which permits to obtain the maximum violation of

this inequality in a quantum setting.

1 Introduction

The main goal of a proof assistant is to allow its user to produce a certified
mathematical proof, i.e., a proof that is irrefutable. The reason it can be nec-
essary to certify a proof is that almost all proofs found in articles or textbooks
do not spell out every reasoning step – this would make the entire proof un-
readable –, and there can be errors in these gaps that go undetected for a long
time, especially in complicated proofs. This phenomenon has been particularly
manifest in Quantum Information theory, a domain in which erroneous proofs
have had significant impacts:

• A major result in computability theory was published in [26], which states
that (classical) recursively enumerable languages are exactly the languages
that can be decided by a classical polynomial-time verifier interacting with
several quantum provers sharing an entangled state.The original proof
relied on a result from [41] that turned out to be wrong. The computability
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proof was fixed by getting rid of the dependency on the result from [41],
and it is currently still unknown whether the latter is true or not.

• It was recently discovered [4] that there is an error in the proof of a result
called the generalized quantum Stein’s lemma [11] which makes it unclear
whether several other results related to the reversibility of quantum en-
tanglement and general quantum resources that are based on this lemma
(such as, e.g., [12, 10, 9] that together have over 700 citations) are correct
or not.

The case can thus be made that being able to certify results in quantum com-
putation and information is an important task, probably more so because of the
many counter-intuitive results that have been derived in the field.

In this paper we present the formalization in Isabelle/HOL of several results
related to the CHSH inequality [15]. This is one of the Bell inequalities, which
are related to two of the postulates of quantum mechanics: i) the measurement
postulate which describes the probabilistic outcomes of measuring a quantum
system and the way this system changes due to measurements; and ii) the
composite state postulate, which entails the existence of entangled particles,
i.e., distinct particles that remain correlated regardless of the distance between
them. We formalize the CHSH inequality and the proof of its violation in a
quantum setting along with three related results:

• When the quantum system that is measured is not entangled, the CHSH
inequality cannot be violated.

• When the measuring devises are not appropriately chosen (when the re-
lated observables commute), the CHSH inequality cannot be violated.

• The maximum violation of the inequality in a quantum setting is 2 ·
√
2,

a result known as Tsirelson’s upper-bound [14].

• Tsirelson’s upper-bound is tight and can be reached by an appropriate
selection of quantum states and measurement devices.

On the EPR paradox and Bell inequalities

The fact that a physical system can be in a superposition of states and that,
instead of revealing a pre-existing value, a measurement “brings the outcome
into being” ([31]) was the cause of many controversies between the pioneers
of quantum mechanics. Famously, Einstein did not believe in the intrinsically
statistical nature of quantum mechanics. According to him, quantum mechanics
was an incomplete theory, and the postulates on probabilistic measure outcomes
actually reflected statistical outcomes of a deterministic underlying theory (see
[16, 35] for detailed considerations on these controversies). The EPR paradox
[21] was designed to evidence the incompleteness of quantum mechanics. It
involves two distinct particles that are entangled – a physical phenomenon that
intuitively connects both particles – and which are sent in opposite directions.
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If one of the particles is measured, then the outcome of the measurement of
the other particle will be known with certainty. This phenomenon is known as
nonlocality, and it may give the impression that information traveled from the
first to the second particle instantaneously, which would contradict the theory
of relativity1. Einstein called this phenomenon “spooky action at a distance”.
A suggested solution to this phenomenon is that the measurement outcomes are
actually properties that existed before the measurement was performed, and
that deterministic underlying theories for quantum mechanics should thus be
developed. Efforts to develop such theories are called hidden-variable programs.
The theories that also take into account the fact that information cannot travel
instantaneously, thus also requiring that distant events are independent, are
called local hidden-variable theories.

The fact that there can be no local hidden-variable underlying theory for
quantum mechanics was proved by Bell [3] who derived inequalities (the Bell
inequalities), that hold in a probabilistic setting, and showed that they are
violated by measurements in quantum mechanics. Since his seminal work, other
Bell inequalities that hold in a probabilistic setting but are violated in the
quantum setting have been derived, among which the CHSH inequality, named
after Clauser, Horne, Shimony and Holt [15]. This is the inequality that was
experimentally violated by Aspect [1], who, along with Clauser and Zeilinger,
was awarded the Nobel Prize in Physics for his his work on entangled particles.

Related work

There are several recent or ongoing lines of research on the use of formal tools
for the analysis of quantum algorithms and protocols, such as the formal verifi-
cation framework for quantum programs Qbricks [13], an extension of attack
trees with probabilities [27], or the development of dedicated quantum Hoare
logics [40, 29]. Approaches that are closer to ours involve the formalization of
quantum notions and algorithms in proof assistants including Coq [5, 34] and
Isabelle [7]. The formalization work described in [7] provides an example of
the importance of certifying results in Quantum Information. As noted in their
paper, they uncovered an error in a highly cited article that had been published
in a high-level physics journal as they attempted to formalize the corresponding
result. In this paper we extend the effort started in [7] in two ways. First, our
formalization is based on so-called density operators rather than pure quantum
states representing states in a Hilbert space of an arbitrary dimension. Density
operators are a more convenient way of representing quantum systems that are
in a mixed state, i.e., in one of several pure quantum states with associated
probabilities that sum to 1. They also permit to obtain more general and nat-
ural statements on quantum mechanics. Second, although notions related to
measurements are formalized in [7], these are specific and in particular, only
involve measurements in the standard basis. We present the full formalization
of projective measurements and observables in this paper. To the best of our

1Since then, it has been proven that this phenomenon is in no contradiction with the theory
of relativity and does not imply faster-than-light communication.
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knowledge, no such formalization is available in any proof assistant. The main
formalization of notions around the CHSH inequality is available in the Archive
of Formal Proofs [20], it relies on our formalization of projective measurements
available in [18].

Organization of the paper

The paper is organized as follows. Section 2 contains an overview of Isabelle/HOL,
along with some notations and results about measure theory that are available
in the distribution of Isabelle and are used for the formalization of the local
hidden-variable hypothesis. The section also introduces concepts from linear
algebra along with their notations in a quantum setting. Section 3 is devoted
to the presentation of the postulates of quantum mechanics, and we present the
CHSH inequality and the formalization of the related results in Section 4. We
mention future research directions in Section 5.

2 Preliminaries

We review the formalization of probability theory in Isabelle, as well as notions
from linear algebra that will be used in the formalization of quantum mechanics.
Our formalization of this latter topic is mainly based on [36, 32]. As we will only
formalize quantum notions in finite dimension, we present the standard general
definitions and illustrate them in the finite dimensional case. For the sake of
readability, we chose to omit trivial hypotheses in the statements of the lemmas
given below. For example, we did not add in statements of lemmas involving
matrices that the formalized results hold for matrices with a nonzero number
of lines and columns.

2.1 Isabelle/HOL

Our formalization was carried out in the interactive theorem prover Isabelle/HOL.
This tool can be downloaded at https://isabelle.in.tum.de/, along with tu-
torials and documentations; additional material on Isabelle can be found in [33].
This prover is based on the typed λ-calculus. Terms are built using types that
can be:

• simple types, denoted with the Greek letters α, β, . . .

• types obtained from type constructors, represented in postfix notation
(e.g. the type α set which denotes the type of sets containing elements
of type α), or in infix notation (e.g., the type α → β which denotes the
type of total functions from α to β).

Functions are curried, and function application is written without parentheses.
Anonymous functions are represented with the lambda notation: the function
x 7→ t is denoted by λx. t. We will use mathematical notations for standard
terms; for example, the set of reals will be denoted by R and the set of booleans
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by B. The application of function f to argument x may be written f x, f(x) or
fx for readability.

This work relies on Isabelle’s mechanism of locales [2]. Intuitively, a locale
represents a proof context consisting of parameters and assumptions. Locales
are simple to define and combine into hierarchies. In our opinion, using locales
permits to formalize notions in a natural way thanks to their features, and there
is a lot of evidence that their usage permits to formalize complex mathematics
in Isabelle/HOL’s simple type theory, see, e.g., [8].

2.2 Probability theory in Isabelle/HOL

A large part of the formalization of measure and probability theory in Isabelle
was carried out in [25] and is included in Isabelle’s distribution. We briefly recap
some of the notions that will be used throughout the paper and the way they
are formalized in Isabelle. We assume the reader has knowledge of fundamental
concepts of measure and probability theory; any missing notions can be found in
[17] for example. Probability spaces are particular measure spaces. A measure
space over a set Ω consists of a function µ that associates a nonnegative number
or +∞ to some subsets of Ω. The subsets of Ω that can be measured are
closed under complement and countable unions and make up a σ-algebra. In
Isabelle the measure type with elements of type α is denoted by α measure.
A function between two measurable spaces is measurable if the preimage of
every measurable set is measurable. In Isabelle, sets of measurable functions
are defined as follow:

measurable :: α measure→ β measure→ (α→ β) set
measurableM N µ =

{

f : ΩM → ΩN
∣

∣ ∀A ∈ AN . f−1(A) ∩ ΩM ∈ AM

}

Measurable functions that map the elements of a measurable space into real
numbers, such as random variables which are defined below, are measurable on
Borel sets:

abbreviation borel-measurableM ≡ measurableM borel

Probability measures are measure spaces on which the measure of Ω is finite
and equal to 1. In Isabelle, they are defined in a locale:

locale prob-space = finite-measure + assumes µM(ΩM) = 1

A random variable on a probability space M is a measurable function with
domain ΩM. The average value of a random variable f is called its expectation,

it is denoted by2 EM[f ], and defined by EM[f ]
def

=
∫

ΩM
fdµM.

In what follows, we will consider properties that hold almost surely (or almost
everywhere), i.e., are such that the elements for which they do not hold reside
within a set of measure 0:

lemma AE-iff :
shows (AEM x. P x)⇔ (∃N ∈ AM. µM(N) = 0 ∧ {x | ¬P x} ⊆ N)

2The superscript is omitted when there is no confusion.
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We will formalize results involving local hidden-variable hypotheses under the
more general assumption that properties hold almost everywhere, rather than
on the entire probability space under consideration.

2.3 Linear algebra formalizations

We recap the core notions from linear algebra that will be used in this work.
Some of these notions had already been formalized in [30, 6], building over the
work in [38]. A detailed treatment on linear algebra can be found, e.g., in [22].

On Hilbert spaces. A Hilbert space H is a complete vector space over the
field of complex numbers, equipped with an inner product 〈·|·〉 : H×H → C, i.e.,
a function such that for all ϕ, ψ ∈ H, 〈ϕ|ψ〉 = 〈ψ|ϕ〉, 〈ϕ|ϕ〉 ≥ 0 and 〈ϕ|ϕ〉 = 0
if and only if ϕ = 0. The norm induced by the inner product is defined by

‖ϕ‖ def

=
√

〈ϕ|ϕ〉, and ϕ is normalized if ‖ϕ‖ = 1. We assume all Hilbert spaces
under consideration are finite dimensional. The elements of a Hilbert space of
dimension n are represented as column vectors, and the inner product of ϕ and

ψ is 〈ϕ|ψ〉 def

=
∑n

i=1 ϕiψi. The definitions and core properties related to inner
products and induced norms are formalized in Isabelle in [30].

It is standard in quantum mechanics to represent the elements of H using
the Dirac notation |·〉, so that vector u is denoted by |u〉. The elements in
H are sometimes called ket-vectors. In what follows, we will use the standard
mathematical terminology for vectors to define the preliminary notions, and we
will use the ket notation in the quantum setting.

Example 1 Given a two-dimensional Hilbert space H, of which the vectors
(

1
0

)

and

(

0
1

)

form a basis, it is standard to denote these vectors as follows:

|0〉 def

=

(

1
0

)

and |1〉 def

=

(

0
1

)

.

The set {|0〉 , |1〉} is called the standard basis of H.
Two other common ket-vectors are |+〉 def

= 1√
2
· (|0〉+ |1〉) and |−〉 def

= 1√
2
·

(|0〉 − |1〉). Note that |0〉, |1〉, |+〉 and |−〉 are all normalized.

An operator is a linear map on a Hilbert space, and we will identify operators
with their matrix representations. The set of matrices with n rows and m

columns is represented in Isabelle by carrier-mat n m, and the type of complex
matrices is represented in Isabelle by complex mat. We denote by Cn×m the
set of complex matrices with n rows and m columns and by 0n,m the matrix
in Cn×m containing only zeroes. When there is no ambiguity, we may write 0

instead of 0n,m. We denote by I the identity operator; we may also write In to
specify that the considered Hilbert space is of dimension n. The trace of a square
matrix is the sum of its diagonal elements: if A ∈ Cn×n then Tr (A) =

∑n
i=1 Ai,i.

In the quantum mechanical setting, it will often be necessary to work with
general sums of matrices over finite sets, but such an operation cannot be defined
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on the entire set of matrices, since their dimensions may differ. In order to
still handle such sums and apply the useful lemmas that have been already
formalized in a general setting, we used the types-to-sets tool [28] that permits
to transform type-based statements which hold on an entire type universe to
their set-based counterparts. This tool is particularly useful to apply lemmata
in contexts where the assumptions only hold on a strict subset of the considered
universe. For example, generalized summation over sets is defined for types
that represent abelian semigroups with a neutral element. Such an algebraic
structure is straightforward to define on any set of matrices that all have the
same dimensions. In our formalization, we use a locale to only consider the set
of matrices in which the number of rows and columns is fixed:

locale fixed-carrier-mat = fixes fc-mats dimR dimC

assumes fc-mats = carrier-mat dimR dimC

All matrices in fc-mats thus admit dimR rows and dimC columns. After proving
that fc-mats along with the standard addition on matrices and the matrices
with dimR rows and dimC columns consisting only of zeroes is an abelian semi-
group with a neutral element, we can define a generalized summation of matrices
on this locale:

sum-mat :: (α→ β mat)→ α set → β mat

sum-mat A I = sum-with (+) 0 A I

The types-to-sets transfer tool then permits with no effort to transfer theorems
that hold on abelian semigroups, and especially those involving sums, to this
locale. As all the matrices we consider in what follows are nontrivial complex
square matrices, we extend the previous locale to work in this context:

locale cpx-sq-mat = fixed-carrier-mat (fc-mats :: complex mat set)+
assumes dimR = dimC and dimR > 0

We will consider the notion of bra-vectors, denoted by 〈u|. Formally, the bra-
vector 〈u| is the linear map that maps the vector |v〉 to the complex number
〈u|v〉. In the finite-dimensional setting, we have 〈u| = (u1, . . . , un) when

|u〉 =







u1
...
un






.

By a slight abuse of notation, we will identify the application of 〈u| to |v〉
with the inner product 〈u|v〉. Given two vectors |u〉 and |v〉, we define their
outer product, denoted by |u〉〈v|, as the linear map such that, for all |v′〉 ∈ H,
(|u〉〈v|) |v′〉 = |u〉 · 〈v|v′〉 = 〈v|v′〉 · |u〉. In the finite-dimensional setting, this
outer product is represented by the matrix M , where Mi,j = ui · vj . The outer
product |v〉〈v| is called the rank one projector on v.
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Example 2 Following Example 1, we have the following expressions for the
outer products |−〉〈1| and |−〉〈−|:

|−〉〈1| =
1√
2
·
(

0 1
0 −1

)

and |−〉〈−| =
1

2
·
(

1 −1
−1 1

)

.

Outer products and inner products are related by the equation (|u〉〈v|)·(|w〉〈x|) =
〈v|w〉 · (|u〉〈x|) (Lemma outer-prod-mult-outer-prod in [30]). Using this
equation, we have

(|−〉〈1|) · (|−〉〈−|) = 〈1|−〉 · (|−〉〈−|) = − 1√
2
· (|−〉〈−|) = − 1

2
√
2
·
(

1 −1
−1 1

)

.

On spectral decomposition. We introduce the notions of projectors, and
Hermitian and unitary operators. These are essential in the definition of quan-
tum mechanics postulates. If A is an operator on H, then the operator B such
that for all ϕ, ψ ∈ H 〈ϕ|Aψ〉 = 〈Bϕ|ψ〉 is called the adjoint of A, and denoted
by A†. For all matrices A and B, we have (A ·B)† = B† ·A†. Note that we also
have (|u〉)† = 〈u|. If A = A† then we say that A is self-adjoint or Hermitian,
and if A · A† = A† · A = I, then we say that A is unitary. An operator A is
a projector if A2 = A, and A is an orthogonal projection if A† = A. We say
that A is positive if, for all ϕ ∈ H, we have 〈ϕ|Aϕ〉 ≥ 0. We say that ϕ is
an eigenvector of operator A is there exists a ∈ C such that A · ϕ = a · ϕ. In
this case, we say that a is an eigenvalue of A. The set of eigenvalues of A is
called the spectrum of A and denoted by spct(A). When A is Hermitian, all its
eigenvalues are necessarily real and it is possible to associate every eigenvalue
a ∈ spct(A) with a projector Πa such that

Πa ·Πa′

= 0 if a 6= a′,
∑

a∈spct(A)

Πa = I and A =
∑

a∈spct(A)

a ·Πa.

These properties are at the core of the quantum measurement postulate intro-
duced below. They are obtained in our formalization by introducing a predicate
stating that a matrix can be decomposed as a product involving a unitary matrix
and a diagonal one containing only real elements:

real-diag-decomp :: complex mat→ complex mat→ complex mat→ B

real-diag-decomp A B U ≡ A = U ·B · U † ∧ unitary U ∧ diagonal-mat B∧
∀i < dim-row B. Bi,i ∈ R

The following lemma states that hermitian matrices always admit such a de-
composition:

lemma hermitian-real-diag-decomp :
assumes hermitian A

obtains B U where real-diag-decomp A B U

The proof of this lemma is based on the Schur decomposition, which was formal-
ized in [39] and refined in [30]. The decomposition above admits the following
key properties:
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• The spectrum of A consists of the set of elements on the diagonal of B
(Lemma unitary-diag-spectrum-eq).

• The columns of U are pairwise orthogonal (Lemma unitary-col-inner-

prod).

• If Ui denotes the i
th column of U then we have

A =

n
∑

i=1

Bi,i · |Ui〉〈Ui| (Lemma sum-decomp-cols).

Tensor products. We present the formalization of tensor products that will
be used in this paper. From an abstract point of view, a tensor product is
a bilinear map, but the formalization we consider is based on the Kronecker
product and was developed independently in [30] and [6]. It is standard to use
the symbol ⊗ to denote tensor products. We stick to this convention: the tensor
product of two vector spaces U and V is denoted by U⊗V ; the tensor product of
vectors u ∈ U and v ∈ V is denoted by u⊗ v and the tensor product of matrices
A and B is denoted by A ⊗ B. In the quantum setting, when convenient, we
may write |uv〉 instead of |u〉 ⊗ |v〉 and similarly, we may write 〈uv| instead of
〈u| ⊗ 〈v|.

Example 3 We have the following:

|0〉 ⊗ |0〉 = |00〉 = (1 0 0 0)T,
|0〉 ⊗ |1〉 = |01〉 = (0 1 0 0)T,
|1〉 ⊗ |0〉 = |10〉 = (0 0 1 0)T,
|1〉 ⊗ |1〉 = |11〉 = (0 0 0 1)T.

In particular if {|0〉 , |1〉} is a basis for H, then {|00〉 , |01〉 , |10〉 , |11〉} is a basis
for H⊗H.

The L2 operator norm. There are several equivalent definitions of the L2
operator norm of a matrix A, our formalization is based on the following defi-

nition: ‖A‖op def

= sup {‖A · v‖2 | ‖v‖2 = 1}. When this notion was formalized,
we ran into an issue because when v is a complex vector, ‖v‖2 is a complex
number in Isabelle. This makes definitions and proofs difficult to work with,
for example, the supremum of a set of complex numbers is not defined. We
found that the simplest way to overcome this issue was to slightly modify the
definition by replacing ‖v‖2 by its real part Re ‖v‖2, in order to constrain the
type of the considered set to be real.

In the finite dimensional case, the L2 operator norm of a matrix A can be
determined by the singular values ofA, i.e., the square roots of the eigenvalues of
A† ·A. If σ∗(A) denotes the maximum singular value of A, then ‖A‖op = σ∗(A)
(Lemma L2-op-nrm-max-sgval-eq).
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3 The postulates of quantum mechanics

We introduce the postulates of quantum mechanics following [32] and detail the
way the related notions are formalized in Isabelle, as well as some of the choices
in the formalization process.

3.1 Single and composite states

The state postulate. The state postulate is the following:

Associated with an isolated physical system is a Hilbert space, which
is referred to as the state space. The state of the system itself is
completely described by its density operator, i.e., a positive, semi-
definite Hermitian operator with trace 1 that acts on the underlying
Hilbert space of the physical system.

In the finite-dimensional setting, such an operator is represented by a density
matrix, and it is not uncommon to use both terms interchangeably. This notion
has already been formalized in [29]:

density-operator :: complex mat→ B

density-operator ρ ≡ positive ρ ∧ Tr (ρ) = 1

It is based on the fact that every positive matrix is necessarily Hermitian. When
the Hilbert space is of dimension two, the physical system is called a qubit.

Example 4 The rank one projectors on the first and second basis state of a
Hilbert space with dimension two are respectively

ρ0
def

= |0〉〈0| =
(

1 0
0 0

)

and ρ1
def

= |1〉〈1| =
(

0 0
0 1

)

;

these are both density matrices. Given α, β ∈ R such that 0 ≤ α, β and α+β =
1, α · ρ0 +β · ρ1 is a also density matrix. For example, 1

2 · ρ0 + 1
2 · ρ1 = 1

2 · I2 is a
density matrix. Such density matrices represent states that are built by mixing
different states with coefficients that can be viewed as probabilities, they are
called mixed states.

Example 5 Given a Hilbert space H of dimension 2 and vector |ϕ〉 = α · |0〉+
β · |1〉 ∈ H where α, β ∈ C and |α|2 + |β|2 = 1, the projector |ϕ〉〈ϕ| is a density
matrix. It is important to note that in general, such density matrices admit off-
diagonal elements and are therefore different from the mixtures of basis states
defined in Example 4: when this is the case, the considered density matrix
represents a physical system in a superposition state.

In the general case, density matrices are exactly the matrices that are of the
form

∑

j λj · |ψj〉〈ψj |, where the λjs are nonnegative numbers that sum to 1 and
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each ψj has norm 1:

lemma density-operator-iff-mixed-state :
assumes ρ ∈ fc-mats

shows (density-operator ρ)←→
(∃p ψ n. (∀i < n. 0 ≤ λi) ∧ (∀i < n. ‖ψi‖ = 1) ∧ (

∑

i<n λi = 1) ∧
ρ =

∑

i<n λi · |ψi〉〈ψi|)

Remark. Note that distinct ensembles can be associated with the same density
matrix. For example, the ensembles
{(

1

2
, |0〉〈0|

)

,

(

1

2
, |1〉〈1|

)}

and

{(

1

2
, |+〉〈+|

)

,

(

1

2
, |−〉〈−|

)}

are both associated with the density matrix 1
2 · I2. As all the quantum op-

erations are defined on density matrices, this entails that these ensembles are
indistinguishable.

Most introductory textbooks on Quantum Information theory provide a ver-
sion of the state postulate that is based on so-called state vectors |ψ〉. The latter
represent pure states, for which the corresponding density matrix is |ψ〉〈ψ|:

pure-density-operator :: complex mat→ B

pure-density-operator ρ ≡ ∃ψ. ρ = |ψ〉〈ψ|

The density matrices that represent pure states are characterized as follows:

lemma :
assumes ρ ∈ fc-mats and density-operator ρ

shows pure-density-charact :
(pure-density-operator ρ)←→ (Tr (ρ · ρ) = 1)
and pure-density-charact’ :
(pure-density-operator ρ)←→ (ρ · ρ = ρ)

One density operator that is used in the formalization of the measurement
postulate is the density matrix that represents the so-called maximally mixed
state. It is the (unique) density matrix that is proportional to the identity
matrix, and it is formalized as follows in Isabelle:

max-mix-density :: N→ complex mat

max-mix-density n = 1
n
· In

This is indeed a density matrix, and it admits the maximum von Neumann
entropy, meaning that its spectrum admits the maximum Shannon entropy. In
other words, this density matrix represents a physical system generating the
maximum amount of information.

11



The composite state postulate. The composite state postulate is the fol-
lowing:

The state space of a composite physical system is the tensor prod-
uct of the state spaces of the component physical systems. If the
system consists of n individual systems and system i is in the state
represented by ρi for i ∈ [1, n], then the joint state of the composite
system is in the state represented by ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

Consider two physical systems A and B, to which are associated the Hilbert
spaces HA and HB , and which are represented by the density matrices ρA and
ρB. Then the composite state postulate asserts that the state space of the
composite system consisting of A and B is HA⊗HB, and that the state of this
system is represented by ρA⊗ρB. All quantum systems to which are associated
the Hilbert space HA ⊗HB are said to be in a bipartite state. Not all of these
systems admit density matrices that can be written as convex combinations
of tensor products of the form ρ ⊗ ρ′, hence the notions of separability and
entanglement :

Definition 6 A state represented by a density matrix ρ is separable if ρ can be
written as

ρ =
n
∑

i=1

λi · ρiA ⊗ ρiB, where for i ∈ [1, n], 0 ≤ λi ≤ 1, and
n
∑

i=1

λi = 1.

Otherwise, the state is entangled. ♦

Intuitively, if a system is in a separable state, then each of its components can
be considered independently from the other one, and this is not the case if the
system is in an entangled state. Separable states are characterized by predicate
separable-density in our formalization.

Example 7 Let |Ψs〉 def

= |+〉 ⊗ |+〉, then3 ρs def

= |Ψs〉〈Ψs| = (|+〉〈+|)⊗ (|+〉〈+|)
is a density matrix that represents a 2-qubit system in a separable state.

Example 8 The so-called Bell states, listed below along with their density
matrices are all entangled states:

|Φ+〉 def

= 1√
2
(|00〉+ |11〉) and ρΦ+

def

= |Φ+〉〈Φ+|
|Φ−〉 def

= 1√
2
(|00〉 − |11〉) and ρΦ−

def

= |Φ−〉〈Φ−|
|Ψ+〉 def

= 1√
2
(|01〉+ |10〉) and ρΨ+

def

= |Ψ+〉〈Ψ+|
|Ψ−〉 def

= 1√
2
(|01〉 − |10〉) and ρΨ−

def

= |Ψ−〉〈Ψ−|

The fact that the components of a physical system cannot be considered inde-
pendently from the other ones is counterintuitive, and led to the formulation of
the famous EPR paradox that was presented in the Introduction.

3Lemma outer-prod-tensor-comm.
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3.2 System evolution and measurement

The evolution postulate. The evolution postulate is the following:

The evolution of a closed system is described by a unitary transfor-
mation: the density matrix ρ representing the state of the system at
time t is related to the density matrix ρ′ representing the state of the

system at time t′ by the equation ρ′ = U · ρ · U †, where U
def

= U(t, t′)
is a unitary operator.

Intuitively, a closed system is one that has no interaction with an external
environment. In Quantum Information theory, the unitary operators that are
considered are constant over time, and can thus be represented by matrices with
complex entries.

Example 9 The Hadamard operator is an operator that acts on a single qubit,
it is represented by the matrix

H
def

=
1√
2
·
(

1 1
1 −1

)

.

We have H · |0〉 = 1√
2

(

1
1

)

= |+〉, hence if ρ0 = |0〉〈0| then

H · ρ0 ·H† = H · |0〉〈0| ·H† = (H · |0〉) · (H · |0〉)† = |+〉〈+| .
The identity matrix is clearly a unitary operator, hence so is H ⊗ I (Lemma
tensor-mat-unitary). This is an operator that acts on two qubits, and trans-
forms the first qubit according to the Hadamard operator while leaving the
second one unchanged.

Example 10 The Controlled-not operator is an operator that acts on two
qubits; intuitively, it performs a not operation on the second qubit exactly
when the first one is |1〉. It is represented by the matrix

cnot
def

=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









.

Operators can of course be composed. For example, B
def

= cnot · (H⊗ I) is an
operator that acts on two qubits. We have:

B · |00〉 = cnot · (H⊗ I) · (|0〉 ⊗ |0〉)

= cnot ·
((

1√
2
· (|0〉+ |1〉)

)

⊗ |0〉
)

=
1√
2
· cnot · (|00〉+ |10〉)

=
1√
2
· (|00〉+ |11〉)

13



Thus, by letting ρ0
def

= |0〉〈0|, we have B · ρ0 ·B† = ρΦ+ : operator B transforms
ρ0 into one of the Bell states from Example 8.

Remark. Because all unitary transformations are reversible, the evolution pos-
tulate entails constraints that do not occur in the classical setting when using
Quantum Information techniques to perform tasks or solve problems.

The measurement postulate. We present the so-called projective measure-
ment postulate. This formulation is the one that was used by von Neumann
in his axiomatic treatment of quantum mechanics, it is based on projection-
valued measures (PVMs). Note that there exists a more general measurement
postulate, based on positive operator-valued measures (POVMs). We chose to
formalize the projective measurement postulate because it is sufficient to obtain
the required results on the CHSH inequality and Tsirelson’s upper-bound, and
there is no loss of generality since Naimark’s Dilation Theorem guarantees that
any POVM can be obtained from a PVM on a larger state space [23].

A projective measurement is described by an observable –any physical
quantity that can be measured–, which is represented by a Hermitian
operator M on the state space of the observed system. The measure-
ment outcomes for an observable are the eigenvalues of the associated
Hermitian operator. Given the spectral decomposition

M =
∑

a∈spct(M)

a ·Πa,

where Πa is the (orthogonal) projector onto the eigenspace ofM with
eigenvalue a, the probability of obtaining outcome a when measuring
the system represented by the density operator ρ is Tr (Πa · ρ), and
the state of the system after the measurement is represented by

ρ′
def
=

Πa · ρ · Πa

Tr (Πa · ρ) .

It is standard to identify observables with their representatives as Hermitian
operators, we will follow this convention in the remainder of the paper.

Projective measurements can be formalized in several ways, and we chose to
stick with a formalization that is as close as possible to the one used in [29] for the
quantum programs they consider, for the sake of future reusability. We consider
a measure outcome as a couple (λ,Πλ), where λ represents the output of the
measure and Πλ is the associated projector, and we introduce a predicate that
characterizes projective measurements. The first parameter of this predicate
represents the number of possible measure outcomes and the second parameter
is the collection of measure outcomes. We require that the values of the measure
outcomes are pairwise distinct, that the associated projectors have the correct
dimensions and are orthogonal projectors, that sum to the identity. For the
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sake of readability, if Mi = (λ,Πλ) is a measure outcome, then we denote λ by
Mv

i and Πλ by Mp
i .

type-synonym measure-outcome = R× complex mat

proj-measurement :: N→ (N→ measure-outcome)→ B

proj-measurement n M ⇔ inj-on (λi. Mv
i ) [0, n− 1] ∧

∀j < n. (Mp
j ∈ fc-mats∧ projector Mp

j ) ∧
∀i, j < n. (i 6= j ⇒M

p
i ·Mp

j = 0) ∧
∑n−1

j=0 M
p
j = I

The projective measurement predicate states that, the probability of obtaining
result λ when measuring the density operator ρ is Tr

(

ρΠλ
)

. Although ρ and
Πλ are complex matrices, these traces are real positive numbers that sum to 1.

meas-outcome-prob :: complex mat→ (N→ measure-outcome)→
N→ C

meas-outcome-prob ρ M i = Tr (ρ ·Mp
i )

lemma meas-outcome-prob-real :
assumes ρ ∈ fc-mats and density-operator ρ

and proj-measurement n M and i < n

shows meas-outcome-prob ρ M i ∈ R

lemma meas-outcome-prob-pos :
assumes ρ ∈ fc-mats and density-operator ρ

and proj-measurement n M and i < n

shows meas-outcome-prob ρ M i ≥ 0

lemma meas-outcome-prob-sum :
assumes ρ ∈ fc-mats and density-operator ρ

and proj-measurement n M

shows
∑n−1

j=1 (meas-outcome-prob ρ M j) = 1

When the outcome of the projective measurement of ρ is λ, ρ collapses into
ΠλρΠλ

Tr(ρΠλ)
. When formalizing this collapse in Isabelle, some care must be taken to

handle the case of results that occur with probability zero. Although such cases
are never meant to be considered when analyzing the result of a measurement, it
is still necessary to provide a reasonable definition of the state ρ collapses into.
We have chosen to make ρ collapse into the maximally mixed state in this case,
so that after a measurement, a density matrix always collapses into a density
matrix (Lemma density-collapse-operator).

density-collapse :: complex mat→ complex mat→ complex mat

density-collapse ρ Π = if Tr (ρ · Π) = 0
then max-mix-density (dim-row ρ)

else Π·ρ·Π
Tr(ρ·Π)
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Example 11 Consider A
def

=

(

1 0
0 −1

)

. This is an observable with eigenvalues

±1, its decomposition according to its projectors is A = |0〉〈0| − |1〉〈1|.
• The measurement by A of the state represented by the density matrix
|0〉〈0| produces the outcome 1 with probability

Tr ((|0〉〈0|) · (|0〉〈0|)) = Tr (|0〉〈0|) = 1,

and the state after the measurement is represented by

(|0〉〈0|) · (|0〉〈0|) · (|0〉〈0|) = |0〉〈0| .

• The measurement by A of the state represented by the density matrix
|+〉〈+| produces outcome 1 with probability

Tr ((|0〉〈0|) · (|+〉〈+|)) = 1

2
· Tr

(

(|0〉〈0|) ·
(

|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|
))

=
1

2
· Tr (|0〉〈0|+ |0〉〈1|)

=
1

2
· (Tr (|0〉〈0|) + Tr (|0〉〈1|))

=
1

2
,

and the state after the measurement is represented by

ρ′ = 2 · (|0〉〈0|) · (|+〉〈+|) · (|0〉〈0|)

= 2 · 1
2
· (|0〉〈0|) ·

(

|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|
)

· (|0〉〈0|)
= (|0〉〈0|+ |0〉〈1|) · (|0〉〈0|)
= |0〉〈0| .

Similarly, the measurement produces the outcome −1 with probability 1
2

and the state after the measurement is represented by |1〉〈1|.

Remark. Observable A from Example 11 represents measurements of a single
qubit in the standard basis, a notion that was already defined in [7]. Our setting
permits to represent measurements in arbitrary bases, as evidenced, e.g., by the

observable A′ def

= (|+〉〈+|)− (|−〉〈−|).

Example 12 Consider the density matrices ρs and ρΦ+ from Examples 7 and
8 respectively, and matrix A from Example 11. The matrices

Al
def

= A⊗ I2 = (|0〉〈0| ⊗ I2)− (|1〉〈1| ⊗ I2) and Ar
def

= I2 ⊗A
are both observables (Lemma tensor-mat-hermitian), which can be viewed
as local measurements of the first (for Al) and second qubit (for Ar) of a system.
We have the following:

16



• A measurement of ρs by Al yields outcome 1 with probability 1
2 , and the

resulting state is (|0〉〈0|) ⊗ (|+〉〈+|). A measurement of this state by Ar

yields outcome 1 with probability 1
2 and outcome −1 with probability 1

2 .
A measurement of ρs by Al yields outcome −1 with probability 1

2 , and a
measurement of the resulting state by Ar yields outcomes 1 and −1, both
with probability 1

2 .

• A measurement of ρΦ+ by Al yields outcome 1 with probability 1
2 , and

the resulting state is (|0〉〈0|) ⊗ (|0〉〈0|). A measurement of this state by
Ar yields outcome 1 with probability 1. Similarly, a measurement of ρΦ+

by Al yields outcome −1 with probability 1
2 , and a measurement of the

resulting state by Ar yields outcome −1 with probability 1.

The fact that, once the outcome of the measurement of the first qubit of a
(pure) Bell state is known, the outcome of the measurement of the second qubit
is also known with certainty is the basis of the EPR paradox [21], and appears
to suggest that there was an instantaneous transmission of information from the
first qubit to the second one, although they may be physically separated.

We briefly describe the construction of a projective measurement for a given
observable (make-pm in our formalization). The construction relies on the fact
that observables are represented by Hermitian matrices, and that a Hermitian
matrix A can be decomposed as A = U · B · U †, where B is a diagonal matrix
and U is unitary. A construction of B and U based on the Schur decomposition
theorem is available in Isabelle; this theorem was developed in [39] and extended
in [29]. The projective measurement for A is constructed using the fact that
the spectrum of A consists of the diagonal elements of B, and because U is
unitary, its column vectors are necessarily normalized and pairwise orthogonal.
When A is an observable, make-pm A is indeed a projective measurement and
the original matrix can be recovered by summing the projectors scaled by the
corresponding eigenvalues:

lemma make-pm-proj-measurement :
assumes A ∈ fc-mats and hermitian A

and make-pm A = (n,M)
shows proj-measurement n M

lemma make-pm-sum :
assumes A ∈ fc-mats and hermitian A

and make-pm A = (n,M)

shows
∑n−1

i=0 M
v
i ·Mp

i = A

Assume it is possible to prepare several systems in the same state, i.e.,
represented by the same density matrix, and that projective measurements are
performed on all the systems. The average value of the measurement outcomes
is called the expectation value of the system:

expect-value :: complex mat→ N× (N→ measure-outcome)→ C

expect-value ρ n M =
∑n−1

i=0 (meas-outcome-prob ρ M i) ·Mv
i
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Given an observable A, the expectation value of a system represented by the
density matrix ρ for A is denoted by 〈A〉ρ. This value can be computed in a
straightforward way:

lemma expect-value-hermitian :
assumes ρ ∈ fc-mats and A ∈ fc-mats and hermitian A

and make-pm A = (n,M)
shows expect-value ρ n M = Tr (A · ρ)

Consider a projective measurement (m,M) corresponding to an observable
A on a Hilbert space H, and a projective measurement (n,N) corresponding to
an observable B on a Hilbert space H′. It is possible to relate the projective
measurement corresponding to A ⊗ B on the Hilbert space H ⊗ H′ with the
couple (m · n, Q̃), where the elements of Q̃ are of the form (Mv

i ·Nv
j ,M

p
i ⊗Np

j )
for i < m and j < n. Note that this couple is not necessarily a projective
measurement, because the injectivity of the outcomes is not guaranteed. Still,
it induces a probability distribution on the couple of measure outcomes when
measuring a system in state ρ by setting the probability of obtaining outcome

(Mv
i , N

v
j ) to be pρ(M

v
i , N

v
j )

def

= Tr
(

(Mp
i ⊗Np

j ) · ρ
)

. These probabilities, also
referred to as correlations, are positive and sum up to 1. The average value of the
corresponding outcome product when measuring a system in state ρ is derived
as follows (Lemma tensor-mat-make-pm-mult-trace in our formalization):

∑

i<m,j<n

Mv
i ·Nv

j · pρ(Mv
i , N

v
j ) =

∑

i<m,j<n

Mv
i ·Nv

j · Tr
(

(Mp
i ⊗Np

j ) · ρ
)

= Tr





(

∑

i<m

Mv
i ·Mp

i

)

⊗





∑

j<n

Nv
j ·Np

j



 · ρ





= Tr ((A⊗B)ρ)

= 〈A⊗B〉ρ.

4 The CHSH inequality

We provide a high-level overview of the CHSH experiment. Consider a game
involving two players, Alice and Bob, who can communicate before each round
of the game to devise a strategy but are not allowed to communicate with
one another once the round starts. At each round of the game, a third party
randomly draws two requests x, y ∈ {0, 1}, sends request x to Alice and y to
Bob. Note that Alice does not know the value of input y, and Bob does not
know the value of input x. Alice outputs an answer a ∈ {−1, 1}, and Bob
an answer b ∈ {−1, 1}; these answers are used to compute their score at each
round. The score is defined by the following rule: the players score 1 point
when x = y = 0 and they provide distinct outputs, or when at least one of x, y
is 1 and they provide the same output. Otherwise, they score −1 point. At the
end of the experiment, the sequence of outcomes can be used to estimate the
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probabilities px,y(ax, by) that Alice’s measure outcome is ax ∈ {−1, 1} and that
Bob’s is by ∈ {−1, 1} when Alice was given input x and Bob was given input y.
In turn, these probabilities permit to compute the maximum number of points
that Alice and Bob can score on average, depending on their inputs. If Sx,y
denotes this score for inputs x and y, then we have the following equalities:

• When (x, y) 6= (0, 0):

Sx,y = px,y(−1,−1) + px,y(1, 1)− px,y(1,−1)− px,y(−1, 1)
=

∑

ax,by∈{−1,1}
ax · by · px,y(ax, by)

= Ex,y[ax · by].

• When x = 0 and y = 0:

S0,0 = p0,0(1,−1) + p0,0(−1, 1)− p0,0(−1,−1)− p0,0(1, 1)

= −E0,0[a0, b0].

Let C def

= E0,1[a0 · b1]−E0,0[a0, b0]+E1,0[a1 · b0]+E1,1[a1 · b1]. Using the fact that
x and y are drawn uniformly at random, the average score of Alice and Bob is
therefore 1

4 · C. It can be shown that when the players can only act locally using
classical resources, regardless of the strategy devised by Alice and Bob which
can be deterministic or probabilistic, it holds that C ≤ 2. See [35] for details.

However, Alice and Bob can devise new strategies to play the CHSH game
when they have access to quantum resources. In this setting, Alice and Bob can
perform measurements of two observables – A0 and A1 for Alice, B0 and B1 for
Bob –, all with eigenvalues ±1, and at each round they both possess part of a
quantum system in a given bipartite state. One such strategy is the following.
When sent inputs x and y, Alice and Bob respectively select observables Ax and
By and simultaneously4 measure these observables on the part of the system
they receive. They output the (classical) result of their measurement, and their
average score is computed similarly to the classical case. This score admits the
same upper-bound in the classical setting and under the local hidden variable
hypothesis as formulated by Einstein, but it is violated in the quantum setting,
as experimentally verified by Aspect.

4.1 The local hidden-variable assumption and a counterex-
ample

Intuitively, a hidden-variable theory can be viewed as an attempt to restore
determinism to quantum mechanics, by introducing objects that, if observed,

4As mentioned in [32], it would be more precise to write in a causally disconnected manner,
meaning that no information can be transmitted between Alice and Bob. This is ensured in
practice by physically separating them, assuming that information cannot travel faster than
light.
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would make measurements deterministic. Local hidden-variable theories are
designed to further ensure quantum locality, i.e., prevent the distant effects of
a density collapse after a measurement, as these effects appear to be caused
by faster-than-light information transmission. More formally, according to the
local hidden-variable assumption on a bipartite quantum system, there exists
a probability space and independent random variables such that, when per-
forming simultaneous measurements on the system, the outcome probabilities
(the values of which are given by the measurement postulate) are expectations
in the underlying probability space. This hypothesis is often found in articles
and textbooks under the assumption that the probability space admits a den-
sity5 in the measure-theoretic sense, but it is defined in our formalization in a
more general case, where no assumption on the existence of a density is made,
and properties on the considered random variables are assumed to hold almost
everywhere rather than on the entire probability space.

We formalize the local hidden-variable hypothesis by considering random
variables that are positive almost everywhere (pos-rv below), and collections of
random variables that sum up to 1 almost everywhere (prv-sum below). Given
a bipartite state represented by the density matrix ρ and two observables A and
B representing the local measurements that are carried out, the local hidden-
variable hypothesis states that it is possible to associate to ρ,A,B a probability
space M and collections of random variables X and Y , where each Xa ∈ X

is associated with an eigenvalue a of A (and thus to a measurement outcome)
and similarly for each random variable Yb ∈ Y and the eigenvalues of B. These
random variables are related to the probabilities of obtaining the measurement
outcome (a, b) by the equation pρA,B(a, b) = Tr

(

Πa · Πb · ρ
)

= E[Xa · Yb].

pos-rv :: α measure→ (α→ R)→ B

pos-rvM X ≡ X ∈ borel-measurableM ∧ AEM x. X(x) ≥ 0

prv-sum :: α measure→ complex mat→ (C→ α→ R)→ B

prv-sumM A X ≡ AEM x.
∑

a∈spct(A)Xa(x) = 1

lhv :: α measure→ complex mat→
complex mat→ complex mat→
(C→ α→ R)→ (C→ α→ R)→ B

lhvM A B ρ X Y ≡ prob-spaceM ∧
prv-sumM A X ∧ prv-sumM B Y ∧
∀a ∈ spct(A). pos-rvM Xa ∧
∀b ∈ spct(B). pos-rvM Yb ∧
∀a ∈ spct(A). ∀b ∈ spct(B).
(

integrableM (Xa · Yb) ∧
E[Xa · Yb] = Tr

(

Πa ·Πb · ρ
)

)

In the CHSH game, after Alice and Bob have been provided requests x and
y and measured observables Ax and By on their part of the quantum system ρ

5Including in the original paper on the CHSH inequality [15].
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several times, the probabilities of their outcomes are given by

px,y(ax, by) = p
ρ
Ax,By

(ax, by) = E[Xax
· Yby ],

and the corresponding expectations used to compute the average score are

Ex,y[ax · by] =
∑

ax,by∈{−1,1}
ax · by · pρAx,By

(ax, by)

=
∑

ax,by∈{−1,1}
ax · by · E[Xax

· Yby ]

= E









∑

ax∈{−1,1}
ax ·Xax



 ·





∑

by∈{−1,1}
by · Yby







 .

Given a random variable X that represents an observable A, we define the
following random variable related to the expectation value of A:

qt-expect :: complex mat→ (C→ α→ R)→ α→ R

qt-expect A X =
(

λω.
∑

a∈spct(A) a ·Xa(ω)
)

Under the local hidden-variable hypothesis, expectation Ex,y[ax · by] is therefore
exactly E[(qt-expect Ax X) · (qt-expect By Y )]. We also have the following
equality relating the expectation of this product of random variables with the
expectation values for the corresponding observables:

lemma sum-qt-expect :
assumes lhvM A B ρ X Y

and hermitian A and hermitian B

shows E[(qt-expect A X) · (qt-expect B Y )] = Tr (A ·B · ρ)
In order to relate the average score of the CHSH game to quantum measure-

ments, we begin by defining a CHSH operator as follows6:

CHSH-op :: β mat→ β mat→ β mat→ β mat→ β mat

CHSH-op A0 A1 B0 B1 = A0 · B1 −A0 · B0 +A1 · B0 +A1 ·B1

The key properties the matrices A0, A1, B0 and B1 are meant to satisfy are
represented by predicate CHSH-cond-hermit: for i, j ∈ {0, 1}, Ai and Bj must
be Hermitian matrices of appropriate dimensions such that A2

i = B2
j = I, and

Ai · Bj = Bj · Ai. When the predicate CHSH-cond-hermit is satisfied, the
operator CHSH-op is a Hermitian matrix that thus represents an observable
(LemmaCHSH-op-hermitian). The expectation value of a system represented
by the density matrix ρ for this operator is given by CHSH-expect:

CHSH-expect :: β mat→ β mat→ β mat→ β mat→ β mat→ β

CHSH-expect A0 A1 B0 B1 ρ = Tr ((CHSH-op A0 A1 B0 B1) · ρ)
6Note that these notions are formalized in a general setting that makes no mention of

bipartite states or tensor products.
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Under the local hidden-variable hypothesis, the value C that can be achieved
by Alice and Bob both sharing parts of a quantum system represented by ρ is
therefore exactly CHSH-expect A0 A1 B0 B1 ρ.

When all joint measurements can be represented by local hidden variables,
the following upper-bound is derived on the expectation value of a system with
density matrix ρ for the CHSH operator (the fact that ρ is actually a density
matrix with trace 1 is not necessary to derive the upper-bound):

lemma CHSH-expect-lhv-leq :
assumes positive ρ

and CHSH-cond-hermit n A0 A1 B0 B1

and lhvM A0 B1 ρ U0 V1
and lhvM A0 B0 ρ U0 V0
and lhvM A1 B0 ρ U1 V0
and lhvM A1 B1 ρ U1 V1

shows |CHSH-expect A0 A1 B0 B1 ρ| ≤ 2

In other words, as in the classical setting, the upper-bound of C in the quantum
setting with the local hidden-variable hypothesis is 2.

A counterexample

A suitable choice for a density matrix and observables permits to deduce that
the local hidden-variable assumption cannot hold because the inequality from
Lemma CHSH-expect-lhv-leq is violated. A standard choice is presented
below. We consider the density operator ρΨ− = |Ψ−〉〈Ψ−|, where |Ψ−〉 =
1√
2
(|01〉 − |10〉) is one of the Bell states from Example 8, and we consider bi-

partite measurements of this entangled state. These measurements involve the
following observables:

Z
def

=

(

1 0
0 −1

)

X
def

=

(

0 1
1 0

)

XpZ
def

= − 1√
2
(X+ Z) ZmX

def

= 1√
2
(Z− X)

The top two are those used by Alice, the other two are used by Bob. The
corresponding separated measurements are represented by the following tensor
products in our formalism:

Z-I
def

= Z⊗ I X-I
def

= X⊗ I

I-XpZ
def

= I⊗ XpZ I-ZmX
def

= I⊗ ZmX

These observables satisfy the predicate CHSH-cond-hermit (Lemma limit-CHSH-

cond) and, together with density matrix ρΨ− , they permit to obtain the fol-
lowing equality:

lemma CHSH-expect-limit :

shows |CHSH-expect (Z ⊗ I) (X⊗ I) (I⊗ ZmX) (I⊗ XpZ) ρΨ− | = 2 ·
√
2
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The upper-bound from the local hidden-variable hypothesis was indeed violated
in the quantum setting by Aspect [1], who measured the polarizations of si-
multaneously emitted photons in his experiment. All questions about potential
flaws in Aspect’s experiment were definitively put to rest by subsequent, so-
called loophole-free experiments (see, e.g., [24, 37]), establishing once and for
all the impossibility for local hidden-variable theories to account for all predic-
tions from quantum mechanics.

4.2 Other upper-bounds

Lemma CHSH-expect-limit shows that local hidden-variable theories are not
a suitable framework for quantum mechanics. There are still some interest-
ing questions to answer: are there contexts in which the inequality of Lemma
CHSH-expect-lhv-leq holds, even without any local hidden-variable assump-
tion? And is it possible to know the maximum violation that can be reached in
a quantum setting? The answer to the latter question was provided by Tsirelson
in [14], in what follows we formalize this result along with two conditions under
which the CHSH inequality holds.

First, the density matrix ρΨ− that is used in LemmaCHSH-expect-limit is
entangled; it turns out that this is a necessary condition for the CHSH inequality
to be violated. Indeed, if Ai and Bj (for i, j ∈ {0, 1}) are Hermitian matrices
whose squares are identity matrices (predicate CHSH-cond-local) and ρ is a
separable density, then the CHSH inequality cannot be violated:

lemma CHSH-expect-separable-leq :
assumes CHSH-cond-local n m A0 A1 B0 B1

and separable-density ρ

shows |CHSH-expect (A0 ⊗ Im) (A1 ⊗ Im) (In ⊗B0) (In ⊗B1) ρΨ− | ≤ 2

In the general case, Tsirelson’s upper-bound is obtained by noting that it is
possible to bound the expectation value of a density matrix for an observable
by the L2 operator norm of the observable:

lemma expect-val-L2-op-nrm :
assumes density-operator ρ

shows |Tr (A · ρ)| ≤ ‖A‖2
An upper-bound for the L2 operator norm of the CHSH operator is derived
following [35]. Fix the observables A0, A1, B0 and B1 such that the condition

CHSH-cond-hermit n A0 A1 B0 B1 holds, and set S
def

= CHSH-op A0 A1 B0 B1.
Since S is a Hermitian matrix, we have ‖S‖2 =

√

‖S2‖2 (Lemma hermitian-

L2-op-nrm-sqrt). Now, S2 can be simplified as follows:

S2 = 4 · In − [A0, A1] · [B0, B1] (Lemma CHSH-op-square),

where [A,B]
def

= A·B−B ·A is called the commutator of A and B. The expression
above permits to derive another upper-bound when one pair of observables –
A0 and A1 or B0 and B1 – commutes. Indeed, in this case, one of [A0, A1]
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or [B0, B1] is the zero matrix and S2 = 4 · In. This leads to the following
lemma stating that the CHSH inequality cannot be violated when one pair of
observables commutes:

lemma CHSH-expect-commute-leq :
assumes CHSH-cond-hermit n A0 A1 B0 B1

and density-operator ρ

and ([A0, A1] = 0n,n) ∨ ([B0, B1] = 0n,n)
shows |CHSH-expect A0 A1 B0 B1 ρ| ≤ 2

When no pair of observables commutes, an upper-bound of ‖S2‖2 is derived as
follows:

‖S2‖2 ≤ 4 · ‖In‖2 + ‖[A0, A1] · [B0, B1]‖2 (L2-op-nrm-triangle)
≤ 4 + ‖[A0, A1]‖2 · ‖[B0, B1]‖2 (L2-op-nrm-mult-le)
≤ 4 + 4 · ‖A0‖2 · ‖A1‖2 · ‖B0‖2 · ‖B1‖2 (comm-L2-op-nrm-le)
= 8 (herm-sq-id-L2-op-nrm)

This permits to obtain Tsirelson’s general upper-bound:

lemma CHSH-expect-gen-leq :
assumes CHSH-cond-hermit n A0 A1 B0 B1

and density-operator ρ

shows |CHSH-expect A0 A1 B0 B1 ρ| ≤ 2 ·
√
2

Lemma CHSH-expect-limit shows that this bound is tight.

5 Conclusion

In this paper we have shown how fundamental notions of quantum information
and quantum computing can be formalized in Isabelle/HOL. The postulates of
quantum mechanics were formalized using the general notion of density matrices
which permit to represent mixed quantum states in a succinct way. Although
the measurement postulate was presented with projection-valued measures in-
stead of the more general positive operator-valued measures, this is with no
loss of generality and we are in the process of formalizing Naimark’s dilation
theorem that shows that any positive operator-valued measure can be viewed
as a projection-valued measure in a higher-dimensional Hilbert space. The for-
malization of results related to the CHSH inequality show that Isabelle/HOL
can be used to certify fundamental results from quantum information, and we
are exploring some of the consequences of the (non-)violation of this inequality.

Lemma CHSH-expect-commute-leq states that the CHSH inequality
cannot be violated when either Alice or Bob uses a pair of observables that
commute. Commuting observables play an important role in quantum physics,
where they represent quantities that can be measured simultaneously with an
arbitrary precision, and are thus closely related to Heisenberg’s uncertainty
principle. From a mathematical point of view, the measurement properties are
a consequence of the fact that commuting observables can be diagonalized in
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a common basis. We formalized the generalization of this result in [19]: any
nonempty set of pairwise commuting observables can be diagonalized in a com-
mon basis. This is a fundamental building block for the study of Complete Sets
of Commuting Observables, which can be used to construct a basis of a Hilbert
space made only of eigenvectors that are common to all observables.

Another line of research we are currently investigating is related to the maxi-
mum violation of the CHSH inequality. It can be proved that Tsirelson’s upper-
bound is reached exactly when the quantum state shared by Alice and Bob is
maximally entangled. The topic of certifying which states were used in an exper-
iment and what measurements were performed by estimating the probabilities of
measurement outcomes, without any assumption on the physical apparatus that
was used (device independence) is a major topic in quantum information. We
are currently working on the proof of maximal entanglement when Tsirelson’s
bond is reached. We will carry on by working on device-independent statements
that will permit, e.g., users of quantum cryptographic protocols to have a certi-
fication of the safety of a protocol even if they do not trust the physical devices
used in the experiment.
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