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A B S T R A C T

Semi-supervised image segmentation has attracted great attention recently. The key
is how to leverage unlabeled images in the training process. Most methods main-
tain consistent predictions of the unlabeled images under variations (e.g., adding
noise/perturbations, or creating alternative versions) in the image and/or model level.
In most image-level variation, medical images often have prior structure information,
which has not been well explored. In this paper, we propose novel dual structure-aware
image filterings (DSAIF) as the image-level variations for semi-supervised medical im-
age segmentation. Motivated by connected filtering that simplifies image via filtering in
structure-aware tree-based image representation, we resort to the dual contrast invariant
Max-tree and Min-tree representation. Specifically, we propose a novel connected fil-
tering that removes topologically equivalent nodes (i.e. connected components) having
no siblings in the Max/Min-tree. This results in two filtered images preserving topolog-
ically critical structure. Applying the proposed DSAIF to mutually supervised networks
decreases the consensus of their erroneous predictions on unlabeled images. This helps
to alleviate the confirmation bias issue of overfitting to noisy pseudo labels of unlabeled
images, and thus effectively improves the segmentation performance. Extensive ex-
perimental results on three benchmark datasets demonstrate that the proposed method
significantly/consistently outperforms some state-of-the-art methods. Source code is
publicly available at https://github.com/GuGuLL123/DSAIF-SEMI.

© 2024 Elsevier B. V. All rights reserved.

1. Introduction

Accurate medical image segmentation plays an important
role in computer-aided diagnosis (CAD) systems. Traditional
supervised segmentation methods have achieved impressive re-
sults using a large amount of labeled data. Yet, the manual

∗Corresponding author
e-mail: yuliang_gu@whu.edu.cn (Yuliang Gu),

zhichaosun@whu.edu.cn (Zhichao Sun), tian.chen@whu.edu.cn (Tian
Chen), xinxiao@whu.edu.cn (Xin Xiao), yepeng.liu@whu.edu.cn
(Yepeng Liu), yongchao.xu@whu.edu.cn (Yongchao Xu ),
laurent.najman@esiee.fr (Laurent Najman)

segmentation is laborious and time-consuming. Recently, semi-
supervised segmentation methods have gained significant atten-
tion by utilizing easily accessible unlabeled images to improve
the accuracy of segmentation models.

The mainstream semi-supervised segmentation methods are
based on consistency regularization (Zhao et al., 2023; Wang
et al., 2023b; Yang et al., 2023; Basak and Yin, 2023; Lei et al.,
2022; Jin et al., 2022; Xiang et al., 2022; Basak et al., 2022;
Lyu et al., 2022; Su et al., 2024; Adiga et al., 2024), which
aims to produce consistent results under variations at image-
level or/and model-level. In particular, many approaches aim to
generate variations under image-level (Yu et al., 2019; Xu et al.,
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2021; You et al., 2022a,b; Bai et al., 2023). A popular strategy
for image variations utilizes the weak-to-strong paradigm (Fan
et al., 2022; Liu et al., 2022b; Yang et al., 2023), where pre-
dictions generated from weakly-augmented versions are used
to supervise the strongly-augmented versions. Augmented ver-
sions are usually generated by simple random augmentation
(e.g., Gaussian noise (Huang et al., 2022)), adversarial perturba-
tion (Peiris et al., 2021; Wang et al., 2023a), and CutMix tech-
niques (Chen et al., 2021; Yang et al., 2023). The model-level
variations mainly adopt the Mean Teacher framework (Tar-
vainen and Valpola, 2017) or Co-training strategy (Qiao et al.,
2018; Chen et al., 2021). In the Mean Teacher framework, the
teacher network is usually obtained from the student network
via Exponential Moving Average (EMA). The co-training strat-
egy involves training two independent networks or decoders
with different initializations and using each model’s outputs to
supervise the other’s training in a mutual fashion.

Recently, the consistency regularization methods using
pseudo labels for supervision have achieved impressive per-
formance for semi-supervised segmentation (Chen et al., 2021;
Yang et al., 2023; Basak and Yin, 2023; Lyu et al., 2022; Liu
et al., 2022a). For instance, CPS (Chen et al., 2021) generates
different pseudo labels by two networks with different initial-
izations and applies mutual supervision between them. These
methods have achieved impressive performance in natural im-
ages, thanks to effective strong image augmentation (e.g., Cut-
Mix (Yun et al., 2019)) as image-level variations for avoiding
the model overfit to incorrect pseudo-labels (Chen et al., 2021;
Yang et al., 2023; Liu et al., 2022b). However, these exist-
ing image-level variations do not use the structural information,
which is important for medical images. Moreover, the distribu-
tion variance in medical images is not as significant as in nat-
ural images, which makes the semi-supervised medical image
segmentation more prone to overfit noisy pseudo-labels, due to
confirmation bias (Arazo et al., 2020).

In this paper, we propose novel dual structure-aware im-
age filterings (DSAIF), serving as the image-level variations
to cope with the confirmation bias in semi-supervised medi-
cal image segmentation. For that, we aim to obtain two fil-
tered images with diverse image appearances, while preserving
the critical topological structure of the original image. Specifi-
cally, we resort to the dual contrast-invariant Max-tree and Min-
tree (Salembier et al., 1998) representation, given by the inclu-
sion relationship between connected components of upper and
lower level sets, respectively. The topology of the tree structure
encodes the topology of the image structure. Such structure-
aware tree-based image representation is widely used to imple-
ment connected filterings (Salembier et al., 1998; Westenberg
et al., 2007; Wilkinson et al., 2008; Ouzounis and Wilkinson,
2007; Xu et al., 2015) that do not create new edges. We pro-
pose a novel type of connected filtering that preserves the topo-
logical structure of the image. Precisely, we remove all nodes
(i.e. connected components) having no siblings in the Max-tree
and Min-tree, resulting in two simplified trees preserving topo-
logically critical structure. The corresponding filters named up-
per/lower structure-aware image filtering (denoted as USAIF
and LSAIF) give rise to two different images having the same

topological structure as the original image.
To further cope with the confirmation bias issue on unlabeled

medical images, we also propose to apply monotonically in-
creasing contrast changes before performing the dual structure-
aware image filterings. Since the Max-tree and Min-tree are
invariant to such increasing changes, the resulting filtered im-
ages still preserve the topological image structure while having
large diversity in image appearances. By incorporating the pro-
posed DSAIF into mutually supervised networks, the consen-
sus on incorrect predictions for unlabeled images is decreased.
This helps to alleviate the confirmation bias issue, where mod-
els tend to overfit to noisy pseudo labels, thereby enhancing the
performance of segmentation. Applying such dual structure-
aware image filterings as the image-level variations decreases
the consensus of erroneous predictions for unlabeled images.
This helps to alleviate the confirmation bias issue of overfitting
to noisy pseudo labels of unlabeled images, thereby enhancing
the performance for semi-supervised medical image segmenta-
tion. We adopt the mutual supervision framework of CPS (Chen
et al., 2021) and MC-Net (Wu et al., 2021) as the baseline mod-
els. The proposed DSAIF significantly boosts the performance
of CPS and MC-Net baseline, and significantly/consistently
outperforms some state-of-the-art methods on three benchmark
datasets.

The main contribution of the paper is summarized as fol-
lows: 1) We propose novel dual structure-aware image filter-
ings (DSAIF) as the image-level variations for semi-supervised
medical image segmentation. DSAIF yields two images with
quite different appearances while having the same topologi-
cal structure as the original image. 2) We further leverage
the contrast-invariance property of Max/Min-tree representa-
tion involved in DSAIF. We apply monotonically increasing
contrast changes before performing DSAIF. This increases the
appearance diversity while preserving topological image struc-
ture. 3) The proposed method significantly/consistently out-
performs some state-of-the-art methods on three widely bench-
mark datasets. In particular, using only 20% of labeled images,
the proposed method achieves similar (∼99.5%) segmentation
performance with the use of full dataset.

The rest of this paper is organized as follows. We first re-
view some related works in Section 2, followed by the detail
of the proposed method in Section 3. We then present exten-
sive experimental results in Section 4. Finally, we conclude in
Section 5.

2. Related work

2.1. Semi-supervised Learning

Semi-supervised learning (SSL) aims to leverage limited an-
notated data and a large number of unlabeled data to improve
the performance. Existing semi-supervised learning methods
can be roughly grouped into two categories (Chen et al., 2022):
self-training and consistency regularization. Self-training meth-
ods (Grandvalet and Bengio, 2005) learn from unlabeled data
by assigning pseudo labels to unlabeled data and subsequently
integrating them with manually labeled data for further retrain-
ing. Consistency regularization methods (Laine and Aila, 2016;
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Fig. 1. The pipeline of the proposed DSAIF framework using mutual supervision of CPS Chen et al. (2021) as the model-level variations. We propose novel
dual structure-aware image filterings (DSAIF) based on Max/Min-tree representation as the image-level variations. We remove every node (marked in
red) without siblings in Max/Min-tree which is topologically equivalent to its ancestor node.

Tarvainen and Valpola, 2017) are mainly based on smoothness
assumption (Chen et al., 2022), which aims to produce consis-
tent results under small variations at image-level and/or model-
level. The simple random augmentation (Sajjadi et al., 2016)
and adversarial perturbation (Miyato et al., 2018) are repre-
sentative works of image-level perturbations for consistency
regularization. There are mainly three types of model-level
perturbations: 1) Directly adding stochastic perturbation (e.g.,
Gaussian noise (Rasmus et al., 2015) or dropout (Park et al.,
2018)) to the model weights; 2) Mean Teacher (Tarvainen and
Valpola, 2017) that ensembles model’s parameters produced
during training using exponential moving average (EMA) strat-
egy; 3) Generating model variations via different decoders (Wu
et al., 2022a) or networks (Qiao et al., 2018).

2.2. Semi-supervised Medical Semantic Segmentation
Semi-supervised learning is widely used in medical image

segmentation tasks, thanks to its ability in alleviating the diffi-
culty of manually annotating medical images.

Methods (Basak and Yin, 2023; Lei et al., 2022; Jin et al.,
2022; Xiang et al., 2022; Basak et al., 2022; Wang et al.,
2023b; Lyu et al., 2022; Adiga et al., 2024; Su et al., 2024)
based on consistency regularization have achieved impressive
performance for semi-supervised medical semantic segmenta-
tion. These methods usually use Mean Teacher framework (Tar-
vainen and Valpola, 2017) or Co-training strategy (Qiao et al.,
2018) to generate variations in the model-level. Another way
aims to generate diverse versions of the same image and enforce
prediction consistency under image variations (Huang et al.,
2022; Xu et al., 2021; Fan et al., 2022; Peiris et al., 2021; Wang
et al., 2023a). A typical approach for image variations involves
the weak-to-strong paradigm (Fan et al., 2022), where weakly-
augmented and strongly-augmented images are employed to
promote consistency. Methods (Peiris et al., 2021; Wang et al.,
2023a) incorporate adversarial training strategy to generate ad-
versarial perturbations on images and make the predictions ro-
bust to adversarial perturbations. Recently, an increasing num-
ber of methods enhance model performance by training unla-
beled images with pseudo labels (Lyu et al., 2022; Qiao et al.,
2022). Since there are inevitable noisy labels in the pseudo
labels for unlabeled images, it is crucial to determine the con-
fidence level of pseudo-labels (Qiao et al., 2022; Wang et al.,

2021a). Moreover, some methods (Liu et al., 2022b) focus on
pseudo rectifying during the training stage. Apart from these
approaches, some methods (You et al., 2022b; Basak and Yin,
2023) exploit contrastive learning to achieve consistent feature
representation.

Considering that objects of interest in medical images usually
have specific shapes, some works (Li et al., 2020; Luo et al.,
2021a; Meng et al., 2022; Wang et al., 2021b; Liu et al., 2022a)
also incorporate shape information to alleviate the problem of
insufficient labeled images in semi-supervised medical image
segmentation. For instance, Li et al. (Li et al., 2020) leverage
signed distance map (SDM) of object surfaces as a multi-task
prediction jointly with semantic segmentation, and use an ad-
versarial loss calculated by SDM as a geometric shape consis-
tency constraint. A dual-task network is used in (Luo et al.,
2021a) to jointly predict segmentation maps and level set repre-
sentations that can capture global-level shape and geometric in-
formation of the target. Wang et al. (Wang et al., 2021b) extend
the mean teacher architecture with foreground and background
reconstruction task and signed distance field prediction task, to
combine semantic information and shape information.

2.3. Tree-based image representation

Typically, an image is usually modeled as a discrete function
defined on pixels or voxels over a 2D or 3D domain V(R2or R3).
However, in the field of image processing and computer vi-
sion, many applications rely on interacting with some primi-
tives of fundamental elements being more meaningful than the
pixels. The tree-based image representation (Xu et al., 2014,
2015, 2016) is composed of a set of regions of the original im-
age. These regions are either disjoint or have inclusion relation-
ship between them, and thus can be encoded into a tree struc-
ture. Hierarchical segmentation and threshold decomposition
are two main branches of tree-based image representations. A
hierarchy of segmentation consists of a set of fine to coarse par-
titions. This hierarchy can be depicted as a tree structure, with
the root node representing the entire image as a unified region,
and the leaf nodes denoting the regions within the finest image
partition. The intermediate nodes, situated between the root and
the leaves, represent regions obtained through the fusion of all
the regions represented by their child nodes. The α-tree (Soille,
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2008) and the binary partition tree (BPT) (Salembier and Gar-
rido, 2000) are two popular works of hierarchical segmentation.

Threshold decompositions developed in mathematical mor-
phology are another widely used type of tree-based image rep-
resentation. Image representations based on threshold decom-
position rely solely on pixel-value ordering, rendering the gen-
erated tree structures invariant to monotonically increasing con-
trast changes. Embedding the set of upper level sets into a tree
structure gives the Max-tree (Salembier et al., 1998). The root
of the Max-tree represents the entire image domain, and the
leaves correspond to the local regional maxima of the image.
By duality, the lower level sets give rise to Min-tree represen-
tation (Salembier et al., 1998). The root of the Min-tree also
represents the entire image domain, while the leaves correspond
to the local regional minima of the image. The Max/Min-tree
can be computed with quasi-linear complexity based on Union-
Find process (Najman and Couprie, 2006; Carlinet and Géraud,
2014). Topographic map (Caselles et al., 1999), also known
as tree of shapes (Monasse and Guichard, 2000), is another
tree representation based on the threshold decomposition. It is
derived by leveraging the inclusion relationship of the shapes,
where a shape is defined as the connected component of up-
per or lower level sets with holes filled. The tree structures
constructed through threshold decomposition are all contrast-
invariant, offering a multi-scale representation, comprising a se-
ries of included or disjoint regions ranging from small to large
scales (Xu et al., 2014, 2015). These trees are proved to be
useful in many applications, such as lymphoma tumor segmen-
tation from PET imaging Grossiord et al. (2020), local feature
detection (Xu et al., 2014), or classification of high resolution
satellite images (Luo and Zhang, 2013).

3. Method

3.1. Overview

Semi-supervised semantic segmentation task aims to en-
hance the performance of segmentation by leveraging a small
set of labeled imagesDl = {(xl, yl)} of N labeled images, along
with a large collection of unlabeled images Du = {xu} of M
unlabeled images, where N ≪ M.

We follow the classical consistency regularization-based
semi-supervised medical image segmentation framework,
which is often composed of image-level variations and model-
level variations on unlabeled images. For the image-level vari-
ations, we resort to the dual contrast-invariant Max-tree and
Min-tree representations (see Sec. 3.2 for the construction) for
connected filterings. We propose novel dual structure-aware
image filterings (DSAIF) as the image-level variations. More
specifically, we propose a novel type of connected filtering, that
preserves only the topologically critical nodes of the Max/Min-
tree. The corresponding filtering, named upper/lower structure-
aware image filtering, and denoted as USAIF/LSAIF, yields
two different images that have the same topological structure
as the original one. We further leverage the invariance prop-
erty of Max/Min-tree with respect to monotonically increas-
ing contrast changes to further enforce the appearance diver-
sity while preserving the topological image structure. For the

model variations, we simply adopt cross pseudo supervision
(CPS) method (Chen et al., 2021) as a baseline example to il-
lustrate our method in Fig. 1. It is noteworthy that DSAIF can
also be applied to other mutual supervision framework such as
MC-Net (Wu et al., 2021), MC-Net+ (Wu et al., 2022a), Co-
BioNet Peiris et al. (2023). The pipeline of the proposed frame-
work using MC-Net, MC-Net+, Co-BioNet as baseline is de-
picted in the Supplementary Material.

3.2. Tree Construction

We utilize image threshold decompositions to build the
Max/Min-tree representation. By thresholding a grayscale im-
age x in descending order, starting from hmax to hmin, a sequence
of nested upper level sets is obtained. Each upper level set at
level h is denoted as

Xh(x) = {v ∈ V | x(v) ≥ h}. (1)

Let Pv
h(x) represents the binary connected operator of Xh(x) at

point v, which gives the connected component ofXh(x) contain-
ing v if v ∈ Xh(x), and ∅ otherwise. Then, for any two connected
components Pv1

h1
(x) and Pv2

h2
(x) at respectively level h1 ≥ h2, we

have either Pv1
h1

(x) ⊆ Pv2
h2

(x), or Pv1
h1

(x) ∩ Pv2
h2

(x) = ∅. Based
on this inclusion relationship, a tree structure named Max-tree
is formed, where nodes correspond to connected components.
The parenthood between nodes corresponds to the inclusion re-
lationship between the underlying connected components.

We use a water-covered surface analogy to better illustrate
the process of Max-tree construction and the associated alter-
ations in the level sets. For that, we suppose the surface is
entirely submerged in water. With the level of water gradu-
ally decreasing, islands (regional maxima) emerge first to form
the leaves of the tree. As the water level continues to drop,
these islands expand, building the tree’s branches. At certain
levels, multiple islands fuse into a single connected piece, cre-
ating forks (i.e., the nodes of the tree with several children) in
the tree structure. This process continues until all the water has
evaporated, leaving behind a solitary landmass which forms the
tree’s root, representing the entirety of the image. By duality,
a corresponding dual structure of the Max-tree, known as the
Min-tree, is constructed based on the decomposition of lower
level sets defined by

Xh(x) = {v ∈ V | x(v) ≤ h}. (2)

A synthetic example of Max-tree and Min-tree is given in Fig. 2.
The Max/Min-tree can be constructed efficiently using Union-
Find-based algorithms (Najman and Couprie, 2006; Carlinet
and Géraud, 2014), which have a quasi-linear complexity with
respect to the number of pixels.

3.3. Dual Structure-Aware Image Filterings

The Max/Min-tree representation is equivalent to the origi-
nal image in the sense that the image x can be reconstructed
from the tree T , composed of a set of nodes {N} with inclu-
sion relationship encoded by parent. Specifically, we asso-
ciate the graylevel h to the corresponding node on which the
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Fig. 2. An illustrative example of the proposed DSAIF. For the Max-tree (e) and Min-tree (f) built on the original image (b), we remove every node (marked
in red) without siblings which is topologically equivalent to its ancestor node. The two images reconstructed from filtered Max/Min-tree denoted as USAIF
(a) and LSAIF (c) have the same topological structure as the original image, but are of quite different appearances. The numbers after the letters in (a),
(b), and (c) represent the gray level of the region. The numbers in parentheses in (d-e) ( resp. (f-g) ) means level h in Eq. (1) (resp. Eq. (2)).

underlying connected component is obtained. Each node repre-
sents a connected region in the image and has a gray level h, as
shown in Fig. 2. Then, for each pixel v ∈ V , the grayscale
value x(v) is given by the associated graylevel of the small-
est node containing v. For example, in the Max-tree of Fig. 2
(e), a pixel pF within the region F is contained in the nodes
N(A∪ B∪C ∪D∪E ∪F ∪G∪H),N(A∪ B∪D∪E ∪F ∪G),
N(A ∪ F), where N(A ∪ F) ⊆ N(A ∪ B ∪ D ∪ E ∪ F ∪ G) ⊆
N(A∪ B∪C ∪D∪ E ∪ F ∪G ∪H). The nodeN(A∪ F) is the
smallest node containing pF . Hence, when converting the Max-
tree back to an image, the grayscale value of the pixel pF in the
image is the grayscale level of the nodeN(A∪ F), which is 10.
Removing nodes from the tree and updating the corresponding
parenthood relationship results in a simplified tree, from which
a filtered image is reconstructed. This is one of the most popular
implementations of connected filters.

The topology of the tree encodes the topology of the image
structure. The leaf nodes correspond to local regional maxima
(resp. minima) in the Max-tree (resp. Min-tree). A node hav-
ing more than one child signifies the fusion of two connected
components, triggering a topological change of tree structure
and thus image structure. A node having no siblings is topolog-
ically equivalent to its parent. Therefore, removing all nodes
having no siblings does not change the topological structure of
the image. This gives a simplified tree preserving topologically
critical nodes. The filtered image reconstructed from the sim-

plified tree has the same topological structure as the original
image, but with different appearances. Such filter ψ is called
upper/lower structure-aware image filter denoted as USAIF ψM

and LSAIF ψm for the use of Max-tree and Min-tree, respec-
tively. The filtered image by USAIF is no brighter than the
original image, and the filtered image by LSAIF is no darker
than the original image. Formally, for each pixel v in any im-
age x, ψM(x)(v) ≤ x(v), ψm(x)(v) ≥ x(v). Specifically, when
deleting nodes with no siblings in the Max-tree as part of the
USAIF process, it can lead to a change in the smallest node that
contains certain pixels, thereby altering the grayscale values of
these pixels during the restoration process from tree to image.
For example, in area B of Fig. 2(b), a pixel qB is included in
the smallest node N(A ∪ B ∪ D ∪ E ∪ F ∪ G) in the Max-
tree (when converting the original Max-tree back to image, the
grayscale value of the pixel qB is 5). After USAIF filtering, the
smallest node containing qB in the filtered Max-tree becomes
N(A ∪ B ∪ C ∪ D ∪ E ∪ F ∪G ∪ H), thus the grayscale value
of qB changes to 0. After removing certain nodes, the smallest
node containing a pixel moves closer to the root node. Since
the root node in a Max-tree has a smaller grayscale value, if a
pixel’s grayscale value changes due to USAIF filtering, it will
only decrease. Conversely, since the root node in a Min-tree has
a larger grayscale value, the image will change towards a higher
grayscale value after LSAIF filtering. An illustrative example
of the proposed dual structure-aware image filters (DSAIF) is
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Algorithm 1: Structure-aware image filtering. Small regions with area less than τ may be caused by noise, and do not
contribute to the topological changes. T is either a max-tree or min-tree.

1 Function STRUCT AWARE FILTER(x, τ)
2 T ← Compute Tree(x) ; // max/min-tree computation. (in Sec. 3.2)

3 foreach N ∈ T do
4 numChildren(N)← 0 ; // Initial number of child is 0

5 isRemoved(N)← False ; // Initialize as "not deleted"

6 foreach N ∈ T do
7 if area(N) > τ then // area(N) = number of pixels contained in N

8 + + numChildren(parent(N));
// Increase the number of children of the parent of N

9 else
10 isRemoved(N)← True; // Mark node N as deleted

11 foreach N ∈ T do
// Mark node N with no-siblings as deleted.

12 if numChildren(parent(N)) = 1 then isRemoved(N)← True;
13 foreach v ∈ V do
14 N ← Get Node(v) ; // Get smallest node that contains v
15 while isRemoved(N) do
16 N ← parent(N);
17 x′(v)← x(N) ; // Reconstruct the image from the tree.

18 return x′

given in Fig. 2.
The dual structure-aware image filterings USAIF and LSAIF

preserve the same topological structure as the original image,
while generating diverse image appearances different from the
original one. It is noteworthy that, different from classical
monotonically increasing contrast changes (e.g., Gamma cor-
rection) where pixels with the same graylevel have the same
output graylevel, the proposed DSAIF may yield different out-
put graylevels for the same input graylevel (see A and E in
Fig. 2(a)). Since small regions may be caused by noise, and do
not contribute much to the topological changes, we remove all
nodes whose area is smaller than τ before performing DSAIF.
The algorithm for the proposed structure-aware image filtering
is given in Algorithm 1.

As illustrated in Fig. 2, an image can be viewed as a topolog-
ical landscape with peaks and valleys. The topological structure
of the landscape (i.e. image) is well reflected by the structure
of Max-tree and Min-tree, where the leaf nodes represent peaks
and valleys, respectively. Medical objects of interest often have
some prior topological structure (e.g., containing some peaks
or valleys). The proposed DSAIF removes topologically equiv-
alent nodes while preserving the critical ones whose merging
triggers topological change. When the topological landscape
has only one local minimum and one local maximum simulta-
neously, some regions with different gray levels may be merged
into one in both USAIF and LSAIF. However, this is very rare
in practice. Otherwise, either LSAIF or USAIF preserves the
differentiated gray levels with the surrounding context. The use
of both LSAIF and USAIF helps to effectively alleviate the con-
firmation bias problem during noisy pseudo label learning.

Since the Max-tree and Min-tree are invariant to monoton-
ically increasing contrast changes, we further increase the ap-

pearance diversity while preserving the topological structure by
applying some monotonically increasing contrast changes to the
original image before performing DSAIF. Specifically, we use
Gamma correction or monotonic Bézier Curve for each training
image. For the Gamma correction augmentations, we indepen-
dently random two Gamma values within [0.5, 1.5] to generate
two different views of the image. A Bézier curve is a parametric
curve defined by a set of control points. In this paper, we use
two end points (P0 and P3) and two control points (P1 and P2)
to generate cubic Bézier curves B(t):

B(t) = (1−t)3P0+3(1−t)2tP1+3(1−t)t2P2+t3P3, t ∈ [0, 1], (3)

where t is a fractional value along the length of the line. We
set P0 = (−1,−1) and P3 = (1, 1) as fixed points. Then, we set
P1 = (−z, z) and P2 = (z,−z), where z ∈ [0, 1]. In each iteration,
we randomly choose z1 and z2 from {0, 0.5, 0.75} to generate
two transform functions B1 and B2 applied to the input image.
As illustrated in Fig. 3, applying such monotonically increasing
contrast changes to the image before performing DSAIF yields
many different alternatives with diverse appearances while pre-
serving the topological structure of the original image.

3.4. Mutual Supervision on Dual Structure-Aware Filtered Im-
ages

Network architecture: The model consists of two networks
fθ1 and fθ2 with the same network architecture but different pa-
rameter initializations θ1 and θ2. For each image x, we apply
the monotonically increasing contrast changes and the proposed
DSAIF described in Sec. 3.3 to generate two different views x1
and x2 preserving the topological structure of the original image
as the input for fθ1 and fθ2 , respectively. During the training pro-
cess, we apply the DSAIF transformation to the images with a
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Fig. 3. An illustrative example of leveraging the contrast-invariance property (a) of Max/Min-tree in DSAIF. Applying monotonically increasing contrast
changes before DSAIF increases the appearance diversity while preserving the same topological structure as the original images.

probability of 0.5. In some iterations, both networks receive the
original images as input, and then the pseudo-labels obtained by
the two networks are used for mutual supervision. In other it-
erations, one network receives images filtered by USAIF, while
the other receives images filtered by LSAIF.
Training objective: For each labeled image xl, we adopt the
cross-entropy loss ℓce and dice loss ℓdc as the supervised loss
Ls given by:

Ls = ℓce(pl
1, y

l) + ℓdc(pl
1, y

l) + ℓce(pl
2, y

l) + ℓdc(pl
2, y

l), (4)

where pl
1 and pl

2 are the prediction output of the two networks,
and yl is the corresponding label. For each unlabeled image xu,
we use the pseudo label obtained from one network to supervise
the output of another one. The loss Lu for the unlabeled image
xu is given by:

Lu = ℓce(pu
1, ŷ2) + ℓce(pu

2, ŷ1), (5)

where ŷ1 and ŷ2 are pseudo labels obtained from pu
1 and pu

2,
respectively. The overall training objective L is defined by:

L = Ls + λ × Lu, (6)

where λ balances the two loss terms.

4. Experiments

4.1. Dataset and Evaluation Protocal
Following some existing semi-supervised semantic seg-

mentation methods, we mainly conduct experiments on the
widely used 3D Left Atrium Segmentation MR Dataset
(LA) (Xiong et al., 2021), Pancreas-NIH (Clark et al., 2013),
and PROMISE12 dataset (Litjens et al., 2014).

(a) Image (b) Changed image (c) USAIF (d) LSAIF

Fig. 4. Some qualitative results of DSAIF on LA dataset (Xiong et al.,
2021) (first row), Pancreas-CT (Clark et al., 2013) (middle row), and
PROMISE12 (Litjens et al., 2014) (bottom row). The changed images in
(b) are obtained by applying monotonically increasing contrast change to
the original ones.
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LA Dataset: 3D Left Atrial Segmentation Challenge
dataset (Xiong et al., 2021) consists of 100 MRI scans. Fol-
lowing Wu et al. (Wu et al., 2022a), a fixed split is utilized,
where 80 samples are designated for training and the remaining
20 samples are allocated for testing.

Pancreas-NIH Dataset: Pancreas-NIH dataset (Clark et al.,
2013) consists of 82 3D abdominal contrast-enhanced CT
scans. Following the commonly-used data split in Luo (Luo
et al., 2021a), we take 62 samples for training and the rest 20
samples for testing.

PROMISE12 Dataset: PROMISE12 dataset (Litjens et al.,
2014) consists of 50 transverse T2-weighted MRI scans. Fol-
lowing the data split in Liu et al. (Liu et al., 2022a), there are 35,
5, and 10 scans for training, validation, and testing. Due to the
low cross-slice resolution, PROMISE12 dataset are segmented
in 2D (slice by slice) (Liu et al., 2022a).

Evaluation protocol: The proposed method is evaluated with
four widely used metrics in semi-supervised medical image seg-
mentation: Dice coefficient (Dice), Jaccard Index (JAC), the
95% Hausdorff Distance (95HD), and the average surface dis-
tance (ASD).

4.2. Implementation Details
The SGD optimizer with a learning rate 10−2 and a weight

decay factor 10−4 is used for all experiments. The loss weight
λ in Eq. (6) is set as a time-dependent Gaussian warming-up
function (Laine and Aila, 2016) using the same parameters as
MC-Net+ (Wu et al., 2022a). We adopt the V-Net (resp. U-Net)
model as the backbone for 3D (resp. 2D) segmentation tasks
following the same settings in MC-Net+ (Wu et al., 2022a) for
fair comparisons. The area threshold parameter τ in DSAIF is
set to 50 in 2D segmentation experiments and 100 in 3D seg-
mentation experiments. For the LA Dataset and Pancreas-NIH
dataset, we use the same geometric transformation settings as
MC-Net (Wu et al., 2021) . Specifically, the LA Dataset em-
ploys rotation, cropping, and flipping, while the Pancreas-NIH
dataset only uses cropping. For the PROMISE12 Dataset, since
MC-Net did not conduct experiment on this dataset, we use the
same geometric transformation settings as SALCC (Liu et al.,
2022a), including rotation, flipping, and resizing. All the ex-
periments are conducted using the Pytorch framework with two
NVIDIA GeForce RTX 3090 GPUs.

4.3. Qualitative Results of DSAIF
Some qualitative results of the proposed DSAIF are shown

in Fig. 4. Both USAIF and LSAIF generate images with di-
verse appearances while preserving the same topological struc-
ture as the original image. Inheriting from the property of con-
nected filters, the proposed DSAIF does not create any new con-
tours. It is also noteworthy that monotonically increasing con-
trast change map pixels with the same graylevel to the same out-
put graylevel. Differently, the output of DSAIF does not only
depend on the input graylevel, but also the image structure. As
shown in the first row of Fig. 4, for similar input graylevels on
different pixels, USAIF may output very different graylevels on
these pixels. Yet, the topological image structure is preserved.

(a) UA-MT (b) URPC (c) MC-Net+ (d) CPS (e) DSAIF (f) GT

Fig. 5. Some qualitative segmentation results of DSAIF on LA
dataset (Xiong et al., 2021) (first two rows), Pancreas-CT dataset (Clark
et al., 2013) (middle two rows), and PROMISE12 dataset (Litjens et al.,
2014) (bottom two rows).

4.4. Comparative Results on Different Datasets

Some qualitative segmentation results on the three datasets
are shown in Fig. 5, where we can observe that the proposed
DSAIF achieves accurate segmentation results. We compare
our proposed method with several state-of-the-art methods in
the field of medical semi-supervised segmentation. Among
them, UA-MT (Yu et al., 2019), CVRL (You et al., 2022a),
SS-Net (Wu et al., 2022b), SimCVD (You et al., 2022b),
LLRU (Adiga Vasudeva et al., 2022), DUO-Net (Peiris et al.,
2021), SCO-SSL (Xu et al., 2021), BCP (Bai et al., 2023),
AC-MT (Xu et al., 2023), AAU (Adiga et al., 2024) also ap-
ply image-level variations. The proposed DSAIF outperforms
these image-level variations methods on three datasets, indicat-
ing the effectiveness of structure-aware image-level perturba-
tions for semi-supervised medical image segmentation.

Results on LA Dataset: Tab. 1 depicts the quantitative evalu-
ation of the LA dataset. Applying DSAIF achieves consistent
improvement across four baselines. Specifically, when using
10% of labeled data, it enhances the Dice coefficient by 2.74%
on MC-Net, 3.41% on CPS, 2% on MC-Net+, and 0.66% on
Co-BioNet. Under the setting of using 10% labeled images, the
proposed method outperforms the baseline CPS by 5.17% Jac-
card index. Under the setting of using 20% labeled images, the
application of DSAIF on MC-Net+ achieved the best perfor-
mance, reaching 92.05% Dice coefficient and 85.32% Jaccard
Index .

Results on Pancreas-NIH Dataset: The quantitative results
on the Pancreas-CT dataset are shown in Tab. 2. Under the
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Table 1. Quantitative evaluation on the LA dataset (Xiong et al.,
2021). † represents the reproduced results based on the open-sourced im-
plementation. We report the mean and standard deviation obtained over
three runs.

L/U Method Dice (%)↑ JAC (%)↑ 95HD↓ ASD↓
80/0 V-Net† 91.82 84.92 5.12 1.71
8/0 V-Net† 80.75 69.81 15.11 3.61

8/72

CVRL (You et al., 2022a) 88.56 78.89 8.22 2.81

(10%)

SS-NET (Wu et al., 2022b) 88.55 79.62 7.49 1.90
SimCVD (You et al., 2022b) 89.03 80.34 8.34 2.59
LLRU (Adiga Vasudeva et al., 2022) 86.58 - 11.82 -
AC-MT (Xu et al., 2023) 89.12 80.46 11.05 2.19
BCP (Bai et al., 2023) 89.62 81.31 6.81 1.76
AAU (Adiga et al., 2024) 86.58 - 11.82 -

MC-Net (Wu et al., 2021)† 87.89±0.51 78.58±0.51 10.47±1.98 2.23±0.48

MC-Net + DSAIF 90.63±0.34 82.92±0.45 6.69±0.97 1.57±0.26

CPS (Chen et al., 2021)† 86.79±0.42 77.05±0.56 14.19±2.08 4.25±0.40

CPS + DSAIF 90.20±0.14 82.22±0.23 6.72±0.19 1.77±0.12

MC-Net+ (Wu et al., 2022a)† 88.37±0.45 80.01±0.50 8.16±1.87 1.99±0.43

MC-Net+ + DSAIF† 90.37±0.31 82.55±0.41 7.47±0.95 1.74±0.24

Co-BioNet (Peiris et al., 2023)† 89.05±0.63 79.19±0.57 7.09±1.97 2.12±0.53

Co-BioNet + DSAIF† 89.71±0.46 81.18±0.44 7.36±1.33 2.19±0.48

16/0 V-Net† 88.41 79.43 10.05 2.40

16/64

CVRL (You et al., 2022a) 90.45 83.02 6.56 1.81

(20%)

SimCVD (You et al., 2022b) 90.85 83.80 6.03 1.86
LLRU (Adiga Vasudeva et al., 2022) 88.60 - 7.61 -
MCF (Wang et al., 2023b) 88.71 80.41 6.32 1.90
AC-MT (Xu et al., 2023) 90.31 82.43 6.21 1.76
BCP (Bai et al., 2023)† 90.03 82.35 6.17 1.68
AAU (Adiga et al., 2024) 88.60 - 7.61 -

MC-Net (Wu et al., 2021)† 90.21±0.34 82.24±0.63 6.78±0.87 1.70±0.31

MC-Net + DSAIF 91.63±0.26 84.61±0.42 5.33±0.58 1.35±0.19

CPS (Chen et al., 2021)† 90.07±0.30 82.08±0.49 6.81±0.41 1.99±0.21

CPS + DSAIF 91.20±0.21 83.90±0.35 5.49±0.37 1.57±0.08

MC-Net+ (Wu et al., 2022a)† 91.03±0.29 83.47±0.52 5.99±0.69 1.86±0.25

MC-Net+ + DSAIF† 92.05±0.22 85.32±0.38 4.68±0.54 1.44±0.16

Co-BioNet (Peiris et al., 2023)† 91.04±0.48 82.73±0.79 5.68±0.99 1.52±0.49

Co-BioNet + DSAIF† 91.25±0.43 83.97±0.67 5.14±0.79 1.40±0.37

setting of using 10% labeled data, the proposed method sig-
nificantly improves the baseline CPS (Chen et al., 2021) by
5.96% Dice coefficient and 7.45% Jaccard index, and signif-
icantly outperforms the other state-of-the-art methods. Using
20% labeled data under the CPS (Chen et al., 2021) baseline,
the best result among our three experiments is 82.90 Dice,
71.10 JAC, and 1.60 ASD, which is comparable to the results of
BCP (Bai et al., 2023). It is worth noting that MC-Net+ (Wu
et al., 2022a) provides two kinds of results for the Pancreas-CT
dataset: one without using the multi-scale strategy, consistent
with other datasets, and another using the multi-scale strategy.
Since the open-source code does not include the multi-scale ver-
sion, we incorporate DSAIF based on the version without using
the multi-scale strategy.

Results on PROMISE12 Dataset: On the PROMISE12
dataset, the proposed method achieves even more significant
improvements across four baselines. In particular, as depicted
in Tab. 3, the proposed method outperforms the CPS baseline by
18.27% Dice and 21.67% JAC (resp., 11.93% Dice and 13.35%
JAC) under the setting of using 10% (resp. 20%) labeled data.
When using 20% of labeled data, it enhances the Dice coeffi-
cient (resp. Jaccard index) by 7.86% (resp. 8.16%) on MC-
Net, 11.93% (resp. 13.35 %) on CPS, 12.23% (resp. 11.25%)
on MC-Net+, and 5.56% (resp. 6.03%) on Co-BioNet. The
more significant improvement on this dataset is probably be-
cause that the image variance within the dataset is more promi-
nent, further demonstrating the effectiveness of the proposed
DSAIF using structure information for semi-supervised med-

Table 2. Quantitative evaluation on the Pancreas-NIH dataset (Clark et al.,
2013). † represents the reproduced results based on the open-sourced im-
plementation. ‡ represents Multi-scale MC-Net+. We report the mean and
standard deviation obtained over three runs.

L/U Method Dice (%)↑ JAC (%)↑ 95HD↓ ASD↓
62/0 V-Net† 82.68 71.05 5.19 1.41
6/0 V-Net† 68.69 55.03 13.47 3.63

6/56

UA-MT (Yu et al., 2019) 66.44 52.02 17.04 3.03

(10%)

URPC (Luo et al., 2021b) 73.53 59.44 22.57 7.85
DTC(Luo et al., 2021a) 66.58 51.79 15.46 4.16
MC-Net+ (Wu et al., 2022a)‡ 74.01 60.02 12.59 3.34
BCP (Bai et al., 2023)† 75.57 61.35 27.29 8.16
MLRP (Su et al., 2024) 75.93 62.12 9.07 1.54

MC-Net (Wu et al., 2021)† 69.47±0.82 55.28±1.15 20.74±1.98 5.41±0.67

MC-Net + DSAIF 70.49±0.84 56.63±1.27 13.03±2.12 2.48±0.84

CPS (Chen et al., 2021)† 74.95±0.91 60.86±1.06 13.49±1.87 4.59±0.77

CPS + DSAIF 80.91±0.70 68.31±0.92 7.67±1.63 2.18±0.25

MC-Net+ (Wu et al., 2022a)† 70.13±0.76 55.72±1.08 15.95±1.74 3.79±0.59

MC-Net+ + DSAIF† 73.34±0.65 59.60±1.01 13.02±1.67 1.66±0.53

Co-BioNet (Peiris et al., 2023)† 77.80±0.78 64.54±1.16 9.36±1.78 2.46±0.61

Co-BioNet + DSAIF† 79.63±0.67 66.77±0.91 8.26±1.62 2.19±0.34

12/0 V-Net† 76.91 63.86 8.16 2.07

12/50

UA-MT (Yu et al., 2019) 76.10 62.62 10.84 2.43

(20%)

URPC (Luo et al., 2021b) 80.02 67.30 8.51 1.98
DTC(Luo et al., 2021a) 76.27 62.82 8.70 2.20
CVRL(You et al., 2022a) 76.68 61.16 8.24 3.19
SimCVD (You et al., 2022b) 75.39 61.56 9.84 2.33
MC-Net+ (Wu et al., 2022a)‡ 80.59 68.08 6.47 1.74
MCF (Wang et al., 2023b) 75.00 61.27 11.59 3.27
BCP (Bai et al., 2023) 82.91 70.79 6.43 2.25
MLRP (Su et al., 2024) 81.53 69.35 6.81 1.33

MC-Net (Wu et al., 2021)† 78.26±0.35 65.12±0.42 11.90±2.04 3.25±0.83

MC-Net + DSAIF 79.13±0.42 66.23±0.38 7.77±1.65 1.85±0.43

CPS (Chen et al., 2021)† 79.63±0.14 66.77±0.19 8.77±1.46 2.33±0.62

CPS + DSAIF 82.66±0.32 70.75±0.44 7.11±1.01 1.75±0.22

MC-Net+ (Wu et al., 2022a)† 79.16±0.31 66.56±0.35 8.62±1.61 1.79±0.42

MC-Net+ + DSAIF† 80.65±0.27 68.22±0.25 7.10±1.49 1.47±0.35

Co-BioNet (Peiris et al., 2023)† 82.05±0.39 70.08±0.53 5.58±1.74 1.46±0.59

Co-BioNet + DSAIF† 82.52±0.30 70.59±0.39 5.47±1.53 1.49±0.51

ical image segmentation. Quantitative trend analyses of our
DSAIF under CPS baseline for different labeled data portions
are depicted in Fig. 6-Fig. 8.

4.5. Ablation Studies

We conduct ablation studies on LA dataset under the setting
of using 10% labeled data. As depicted in Tab. 4, directly adopt-
ing monotonically increasing contrast changes and random ro-
tation as data augmentations do not significantly improve the re-
sults (86.79% to 87.20% Dice). Applying the proposed DSAIF
on the original images outperforms the baseline by 1.38% Dice
and 1.97% Jaccard index. Besides, combining these data aug-
mentations and DSAIF significantly boosts the segmentation
results by 3.0% Dice and 4.54% Jaccard index. This demon-
strates that the performance improvement is mainly brought by
the proposed DSAIF.

We also conduct an ablation study on the area threshold τ
involved in the proposed DSAIF. As shown in Fig. 5, different
settings of τ slightly influence the results. Using too small val-
ues makes DSAIF sensitive to noise. Using too large values
may filter out some important regions. Setting τ = 100 gives
the best result.

4.6. Domain Generalization Results

We conduct cross-domain experiments on prostate segmen-
tation task in the semi-supervised setting to further verify the
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Fig. 6. Quantitative trend analysis on LA dataset under CPS baseline for different labeled data portions.
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Fig. 7. Quantitative trend analysis on Pancreas-NIH dataset under CPS baseline for different labeled data portions.
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Fig. 8. Quantitative trend analysis on PROMISE12 dataset under CPS baseline for different labeled data portions.
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Table 3. Quantitative evaluation on the PROMISE12 dataset (Litjens et al.,
2014). † represents the reproduced results based on the open-sourced im-
plementation. We report the mean and standard deviation obtained over
three runs.

L/U Method Dice (%)↑ JAC (%)↑ 95HD↓ ASD↓
35/0 U-Net† 84.63 73.73 3.63 1.27
4/0 U-Net† 51.72 39.02 43.30 11.81

4/31

UA-MT (Yu et al., 2019)† 49.81 37.52 74.03 15.95

(10%)

URPC (Luo et al., 2021b)† 51.70 38.30 75.19 22.32
SCO-SSL (Xu et al., 2021)† 62.34 48.04 33.79 9.39
DUO-Net (Peiris et al., 2021)† 45.02 32.64 69.36 29.62
SALCC (Liu et al., 2022a)† 63.85 48.07 40.68 7.50
SCP-Net (Zhang et al., 2023) 66.21 - - 11.56
BCP (Bai et al., 2023)† 77.93 64.35 27.39 6.65

MC-Net (Wu et al., 2021)† 54.26±4.29 41.44±2.89 35.82±4.63 10.48±2.31

MC-Net + DSAIF 78.26±1.02 65.22±0.86 11.26±1.12 4.58±0.68

CPS (Chen et al., 2021)† 63.55±2.50 48.08±1.76 40.50±2.66 12.20±1.42

CPS + DSAIF 81.82±0.18 69.75±0.27 5.14±0.68 1.42±0.11

MC-Net+ (Wu et al., 2022a)† 55.40±3.65 42.01±2.47 31.79±3.57 9.51±1.99

MC-Net+ + DSAIF† 72.75±1.21 58.87±0.96 11.94±1.42 2.97±0.84

Co-BioNet (Peiris et al., 2023)† 66.25±2.76 50.92±1.83 23.41±2.89 8.42±1.61

Co-BioNet + DSAIF† 80.82±0.45 68.18±0.72 8.84±1.03 2.15±0.67

7/0 U-Net† 65.63 52.44 12.36 2.98

7/28

UA-MT (Yu et al., 2019) 61.55 - - 13.94

(20%)

URPC (Luo et al., 2021b) 61.55 - - 9.63
SCO-SSL (Xu et al., 2021)† 74.60 61.72 18.40 5.02
DUO-Net (Peiris et al., 2021)† 70.18 54.95 22.14 5.49
SALCC (Liu et al., 2022a) 70.30 - - 4.69
SCP-Net (Zhang et al., 2023) 77.06 - - 3.52
BCP (Bai et al., 2023)† 80.26 67.46 9.67 4.87

MC-Net (Wu et al., 2021)† 71.70±1.26 59.71±1.98 19.48±2.02 8.38±1.34

MC-Net + DSAIF 79.56±1.67 67.87±2.12 15.32±2.48 6.17±1.54

CPS (Chen et al., 2021)† 72.06±2.73 59.53±2.21 9.55±1.72 1.71±0.05

CPS + DSAIF 83.99±0.81 72.88±1.09 5.04±0.61 1.24±0.11

MC-Net+ (Wu et al., 2022a)† 66.91±1.72 55.26±2.31 12.74±1.93 2.41±1.51

MC-Net+ + DSAIF† 79.14±1.13 66.51±1.75 10.60±1.83 2.47±1.20

Co-BioNet (Peiris et al., 2023)† 76.32±1.64 63.74±1.91 7.23±1.74 1.72±1.17

Co-BioNet + DSAIF† 81.88±1.26 69.77±1.87 5.50±1.68 1.49±1.02

Table 4. Abaltion study on LA dataset (Xiong et al., 2021) under 10% la-
beled data using CPS Chen et al. (2021) as baseline. We report the mean
and standard deviation obtained over three runs.

CPS Aug DSAIF Dice (%) JAC (%) 95HD ASD
✓ 86.79±0.42 77.05±0.56 14.19±2.08 4.25±0.40

✓ ✓ 87.20±0.34 77.68±0.48 12.58±1.15 4.02±0.53

✓ ✓ 88.17±0.09 79.02±0.14 11.26±1.81 3.02±0.45

✓ ✓ ✓ 90.20±0.14 82.22±0.23 6.72±0.19 1.77±0.12

generalization performance of the proposed DSAIF. Under the
setting of using 10% (resp. 20%) labeled data, we use 4
(resp. 7) labeled images and 31 (resp. 28) unlabeled images in
PROMISE12 dataset to train the model, and test the model on
2 different data sources with distribution shift: Site A and B are
from NCI-ISBI13 dataset (Bloch et al., 2015). As depicted in
Tab. 6, though the monotonically increasing contrast changes is
helpful in domain generalization, the proposed DSAIF further
significantly improves the baseline of using monotonically in-
creasing contrast changes, demonstrating the effectiveness of
DSAIF in domain generalization under semi-supervised set-
ting. Specifically, under the setting of using 10% labeled data,
DSAIF achieves 11.56% (resp. 9.16%) Dice (resp. JAC) im-
provement on Site A and 8.61% (resp. 7.53%) Dice (resp. JAC)
improvement on Site B. Under the setting of using 20% labeled
data, DSAIF achieves 4.77% (resp. 4.76%) Dice (resp. JAC)
improvement on Site A and a 9.02% (resp. 8.39%) Dice (resp.
JAC) improvement on Site B.

Table 5. Ablation study on the area threshold τ involved in the proposed
DSAIF on LA dataset (Xiong et al., 2021) under 10% labeled data using
CPS Chen et al. (2021) as baseline.

Threshold τ 0 50 100 150 200

Dice (%) 89.23 90.03 90.33 89.76 89.01

Table 6. Cross-dataset performance on prostate segmentation. We report
the mean and standard deviation over three runs.

Setting L/U: 4/31 L/U: 7/28
Dice (%) JAC (%) Dice (%) JAC (%)

Site A

CPS (Baseline) 15.34±1.32 9.89±1.16 65.14±2.08 52.50±2.00

CPS + Aug 28.80±5.39 18.73±4.02 70.43±2.33 57.31±1.29

CPS + DSAIF 40.36±2.62 27.89±2.17 75.20±0.33 62.07±0.61

Site B

CPS (Baseline) 37.30±6.86 25.84±6.05 40.37± 6.91 33.45±4.21

CPS + Aug 39.89±1.84 28.10±1.69 55.14±2.97 41.03±1.00

CPS + DSAIF 48.50±4.01 35.63±3.92 64.16±2.89 49.42±2.95

4.7. Discussion

In the scenario with unlabeled data, two networks learn
through mutual supervision. The pseudo-labels produced by
fθ1 serve as the supervised signal for fθ2 , and vice versa. During
the training process, three situations may arise: 1) Both net-
works produce correct pseudo-labels; 2) only one of the net-
works generates correct pseudo-label, while the other produces
incorrect pseudo-label; 3) both networks produce incorrect out-
puts. When the first or second scenario occurs, the networks
have the opportunity to gain useful knowledge from the unla-
beled data. However, in the third scenario, where both net-
works make consistent incorrect predictions on some pixels,
the mutual supervision between them may lead to a confirma-
tion bias in the results. This makes the model overfit to noisy
pseudo labels, yielding degenerated segmentation performance.
Appropriate diversity between two networks’ erroneous predic-
tions helps to avoid such confirmation bias issue of overfitting
to incorrect pseudo-labels. We define quantitative metrics De

(resp. Dc) to characterize such diversity of erroneous predic-
tions (resp. correct predictions) on unlabeled training images
between the two mutually supervised networks. For that, let E1

and E2 denote the set of pixels with incorrect prediction of the
first and second network, respectively. We compute De as the
Dice score between E1 and E2 given by:

De = 2 × |E1 ∩ E2|/(|E1| + |E2|), (7)

where |·| denotes the cardinality. Similarly, let C1 and C2 denote
the set of pixels with correct prediction of the first and second
network, respectively. We compute Dc as the Dice score be-
tween C1 and C2 given by:

Dc = 2 × |C1 ∩ C2|/(|C1| + |C2|). (8)

The comparison of De and Dc for the baseline model and the
proposed method during the training process is depicted in
Fig. 9. Indeed, for a pair of different augmented versions of
the same image, the more different they are, it is reasonable
that the segmentation results differ more. This may yield more
pronounced inconsistency on both incorrect and correct predic-
tions. Thanks to the large appearance diversity between USAIF
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Fig. 9. (a) Dice score De defined in Eq. (7) between erroneous predictions of two mutually supervised networks on unlabeled training images of PROMISE12
Dataset (Litjens et al., 2014) during the training process. (b) Dice score Dr defined in Eq. (8) between correct predictions of two mutually supervised
networks on unlabeled training images of PROMISE12 Dataset (Litjens et al., 2014) during the training process.
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Fig. 10. (a) (resp. (b)) Dice score between the ground-truth and the network fθ1 (resp. fθ2 ) outputs on unlabeled training images of PROMISE12 Dataset (Lit-
jens et al., 2014) at different iterations in the training process.

and LSAIF while preserving the same topological structure as
the original image, the proposed DSAIF has less consensus on
the erroneous predictions of the two mutually supervised net-
works (see the left side of Fig. 9). The inconsistency between
correct predictions (see the right side of Fig. 9) is in general less
significant than that between erroneous predictions. Besides, in
the early stages of the training process, the difference between
the two Dice Dc curves on correct predictions for the baseline
method and our method is greater than in the later stages. As
training progresses, the two curves converge. By the time it
reaches 10,000 iterations, the difference between them narrows
to less than 0.001. This also indicates that, as long as one net-
work predicts correctly, both networks will evolve towards the
correct direction as training continues (see the almost 1.0 for the
Dice Dc at the end of the training process). This helps to alle-
viate the confirmation bias issue of overfitting to noisy pseudo
labels on unlabeled images, resulting in better pseudo labels
of unlabeled images during the training process (see Fig. 10).
Therefore, the proposed DSAIF is effective in improving the
performance of semi-supervised medical image segmentation.

It is noteworthy that the tree of shapes (Monasse and
Guichard, 2000), known also as topographic maps (Caselles
et al., 1999), provides another way to convert the image into
a structure-aware tree space. This leads to a single filtered im-
age while preserving the topological structure of the original
image. Yet, the proposed method requires generating dual im-
ages with very different appearances to decrease the consensus

of erroneous predictions on unlabeled images. Therefore, we
choose the Max/Min-tree representation in our DSAIF. How-
ever, it would be interesting to explore the use of tree of shapes
for more structure-aware filters in semi-supervised medical im-
age segmentation. This is left for future work.

On the other hand, the prior knowledge about the topological
structure of medical objects has also been explored in (Clough
et al., 2020; Hu et al., 2019, 2021; Hu, 2022; Gupta et al., 2022;
Singh et al., 2023) for medical image analysis. Most of them
focus on designing topology-aware loss functions to incorpo-
rate the prior structure knowledge, helping to yield more plau-
sible segmentation results. This is different from our DSAIF,
which aims to generate dual images with different appearances
while preserving the critical topological structure of the origi-
nal image. This helps to cope with confirmation bias issue in
semi-supervised medical image segmentation. It would also be
interesting to combine DSAIF with these topological analysis
tools in the future work.

A limitation of the current work is that the proposed DSAIF
requires some extra time during the training process (but no
extra runtime during inference). As shown in Alg. 1, the
DSAIF is composed of 1) Min/Max-tree computation based
on union-find process, 2) removing nodes with small areas
and nodes without siblings and 3) reconstructing filtered im-
age from Min/Max-tree. The union-find-based Min/Max-tree
computation approach (Najman and Couprie, 2006; Carlinet
and Géraud, 2014) would take O(nα(n)) time, where n is the
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total number of pixels and α is a very slow-growing “diago-
nal inverse” of the Ackermann’s function. Removing nodes
with small areas and nodes without siblings would take O(N)
time, where N is the total number of nodes of the tree which is
smaller than n. Reconstructing a filtered image from Min/Max-
tree would take O(n) time. When using the online strategy for
training, DSAIF processing is required for each iteration, which
adds some extra time. For instance, on the PROMISE12 dataset,
which uses 2D slices as inputs, the total training time for the
baseline (resp., our DSAIF) is about 4.5 hours (resp., 7 hours).
On the LA dataset, which uses 3D volumes as inputs, the to-
tal training time of the baseline (resp., our DSAIF) is about 7.5
hours (resp., 13 hours). It is noteworthy that the inference time
remains the same as the baseline method, while requiring ac-
ceptable extra training time. Currently, we adopt CPU-based
algorithm to build Max/Min-tree, which is not as efficient as
GPU-based algorithm (Blin et al., 2022). Yet, this GPU-based
algorithm (Blin et al., 2022) does not support 3D images. In the
future, we plan to explore the implementation of DSAIF with
GPU (Blin et al., 2022) to further accelerate the training pro-
cess. An alternative solution is to compute the DSAIf offline,
which does not increases the training time. This approach will
be explored in the future.

5. Conclusion

We propose a novel image-level variation method named
dual structure-aware image filterings (DSAIF) for semi-
supervised medical image segmentation. Specifically, we lever-
age the dual Max-tree and Min-tree image representation, and
remove all nodes having no siblings in the corresponding tree.
This equals to remove all topologically equivalent regions while
preserving topologically critical ones, resulting in two images
with diverse appearances while having the same topological
structure as the original image. By incorporating the proposed
DSAIF into mutually supervised networks, the consensus on
erroneous predictions for unlabeled images is decreased. This
helps to alleviate the confirmation bias issue, where models tend
to overfit to noisy pseudo labels, thereby enhancing the perfor-
mance of segmentation. Extensive experimental results on three
widely used benchmark datasets demonstrate that the proposed
method significantly/consistently outperforms the state-of-the-
art methods. In the future, we would like to explore DSAIF
in more semi-supervised medical image segmentation frame-
works, and using tree of shapes for more structure-aware filters.
Combing DSAIF with other topological analysis tools is also an
interesting direction to explore.
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Xu, Y., Carlinet, E., Géraud, T., Najman, L., 2016. Hierarchical segmentation
using tree-based shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 39,
457–469.
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Supplementary Material on the pipeline of DSAIF, based on
MC-Net Wu et al. (2021), MC-Net+Wu et al. (2022a), and
Co-BioNet Peiris et al. (2023)

MC-Net. The pipeline of the proposed framework based on
MC-Net (Wu et al., 2021) is depicted in Fig. 11. MC-Net (Wu
et al., 2021) comprises one shared encoder and two different
decoders with distinct up-sampling strategies. Different from
CPS, MC-Net (Wu et al., 2021) introduces a mutual consistency
constraint between the probability output of one decoder and
the soft pseudo labels of the other decoder. DSAIF enables the
shared encoder to receive both Max-tree and Min-tree filtered
images. The two decoders probabilistically receive features of
images generated by either filtered Max-tree or filtered Min-
tree in every iteration. When one decoder takes in features of
the image generated with filtered Max-tree, the other decoder
processes features of the same image generated with filtered
Min-tree, and vice versa.

MC-Net+. The pipeline of the proposed framework based on
MC-Net+ (Wu et al., 2022a) is depicted in Fig. 12. MC-
Net+ (Wu et al., 2022a) comprises one shared encoder, and
three different decoders with distinct up-sampling strategies.
DSAIF enables the shared encoder to receive Max-tree, Min-
tree filtered images, and original images. The first and third
decoders probabilistically receive features of images generated
by either filtered Max-tree or filtered Min-tree in every iteration,
and the second decoder receive features of original images.

Co-BioNet. The pipeline of the proposed framework based on
Co-BioNet (Peiris et al., 2023) is depicted in Fig. 13. Co-
BioNet (Peiris et al., 2023) comprises two networks. DSAIF
enables the two networks to receive both Max-tree and Min-
tree filtered images, and other settings are consistent with Co-
BioNet.
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Fig. 11. The pipeline of the proposed DSAIF framework using mutual su-
pervision of MC-Net (Wu et al., 2021) as the model-level variations. The
pipeline composed of image-level variations and model-level variations on
images. We propose novel dual structure-aware image filterings (DSAIF)
based on Max/Min-tree representation as the image-level variations.
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Fig. 12. The pipeline of the proposed DSAIF framework using mutual su-
pervision of MC-Net+ (Wu et al., 2022a) as the model-level variations. The
pipeline composed of image-level variations and model-level variations on
images. We propose novel dual structure-aware image filterings (DSAIF)
based on Max/Min-tree representation as the image-level variations.
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Fig. 13. The pipeline of the proposed DSAIF framework using mutual su-
pervision of Co-BioNet (Peiris et al., 2023) as the model-level variations.
The pipeline composed of image-level variations and model-level varia-
tions on images. We propose novel dual structure-aware image filterings
(DSAIF) based on Max/Min-tree representation as the image-level varia-
tions.
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