
HAL Id: hal-04740726
https://hal.science/hal-04740726v1

Submitted on 17 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MARA : a deep learning based framework for multilayer
graph simplification

Cheick Tidiane Ba, Roberto Interdonato, Dino Ienco, Sabrina Gaito

To cite this version:
Cheick Tidiane Ba, Roberto Interdonato, Dino Ienco, Sabrina Gaito. MARA : a deep learn-
ing based framework for multilayer graph simplification. Neurocomputing, 2025, 612, pp.128712.
�10.1016/j.neucom.2024.128712�. �hal-04740726�

https://hal.science/hal-04740726v1
https://hal.archives-ouvertes.fr


MARA: a deep learning based framework for multilayer graph simplification

Cheick Tidiane Baa,e,∗, Roberto Interdonatob,d, Dino Iencoc,d, Sabrina Gaitoa

aDepartment of Computer Science, University of Milan, Milan, Italy
bCIRAD, UMR TETIS, Montpellier, France

cINRAE, UMR TETIS, Univ. Montpellier, Montpellier, France
dINRIA, Montpellier, France

eQueen Mary University of London, London, United Kingdom

Abstract

In many scientific fields, complex systems are characterized by a multitude of heterogeneous interactions/relationships that are
challenging to model. Multilayer graphs constitute valuable tools that can represent such complex systems, thus making possible
their analysis for downstream decision-making processes. Nevertheless , modeling such complex information still remains chal-
lenging in real-world scenarios . On the one hand, holistically including all relationships may lead to noisy or computationally
intensive graphs. On the other hand, limiting the amount of information to model through the selection of a portion of the available
relationships can introduce boundary specification biases. However, the current research studies are demonstrating that it is more
beneficial to retain as much information as possible and at a later stage perform graph simplification i.e., removing uninformative
or redundant parts of the graph to facilitate the final analysis. While simplification strategies, based on deep learning methods,
have been already extensively explored in the context of single-layer graphs, only a limited amount of efforts have been devoted to
simplification strategies for multilayer graphs. In this work, we propose the MultilAyer gRaph simplificAtion (MARA) framework,
a GNN-based approach designed to simplify multilayer graphs based on the downstream task. MARA generates node embeddings
for a specific task by training jointly two main components: i) an edge simplification module and ii) a (multilayer) graph neural
network. We tested MARA on different real-world multilayer graphs for node classification tasks. Experimental results show the
effectiveness of the proposed approach: MARA reduces the dimension of the input graph while keeping and even improving the
performance of node classification tasks in different domains and across graphs characterized by different structures. Moreover,
deep learning-based simplification allows MARA to preserve and enhance important graph properties for the downstream task. To
our knowledge, MARA represents the first simplification framework especially tailored for multilayer graphs analysis .
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1. Introduction

The graph analysis and mining research field has raised in
popularity in the last two decades, thanks to the ability of graphs
to model a wide range of real-life phenomena from physical [1]
to biological [2] and social systems [3], from scientific [4] to
financial data [5, 6], transportation routes [7], and many oth-
ers [8]. In this regard, the multilayer graph model [9] is widely
used as a powerful tool to represent the organization and rela-
tionships of complex systems covering many different domains.
Graphs serve as models for the relationships among intercon-

nected entities, usually depicted as nodes (or vertices) linked
by edges (or links) symbolizing interactions or dependencies.
Multilayer graphs extend the graph model, allowing the defini-
tion of layers, each representing distinct aspects of relationships
or attributes. For example, layers could represent the different
transportation options [10, 11]. As depicted in Figure 1, cer-
tain locations may be connected through trains or buses or by
flight, with cross-layer connections representing the exchange
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options in stations and airports. For the analysis of social me-
dia platforms, the layers could be used to represent different
social network platforms [12], where the same users may show
different relations (e.g., friendships) on different platforms, and
where cross-platform interactions can occur when content pro-
duced on a given platform is shared on a different one. In bi-
ology, it is useful to separate inhibition or catalyst interactions
with different layers, but we need to track the same proteins
across many different interaction types [13, 14]. When analyz-
ing financial purchase behaviours, multilayer networks can be
used, for example, to differentiate transactions made through
different payment methods [15]. Indeed, the multilayer graph
model has been used in different domains and applications, il-
lustrating its large versatility. Multilayer graphs are designed
to provide a more complete representation of the different and
heterogeneous relationships that may characterize an entity in
the graph-structured system, using the rich data available from
complex systems [16] thus, providing an informative model for
the underlying downstream task .

However, collecting a wide set of different relationships
among a large set of entities can easily result in a significant
amount of noise (e.g., incomplete, imprecise, or redundant in-
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Figure 1: Example: a multilayer graph that models a transport system. Lay-
ers represent different transportation modes, from the bus on the bottom layer
(orange) to the trains in the middle layer (green) and flight connections in the
top layer (blue). In each layer, intra-layer connections represent the connec-
tions among airports or stations. Stations and airports usually allow exchanges
among different transportation modes. Pillar links (dashed) represent stations
and airports located together, a common occurrence with central stations and
airport stations. Cross-layer links (dashed and bold) allow us to represent direct
connections among airports or stations. In this example, two direct connections
between the most remote bus stations to the airports are available.

formation) caused by the choice regarding which entities and
relations should be included in the data. Single-layer graphs
are already affected by this phenomenon , known as the bound-
ary specification problem [17, 18], which is exacerbated in mul-
tilayer graphs [19]. For the case of multilayer graphs, the
problem not only requires choosing which entities should be
included in the graph (horizontal boundary) but there is also
the problem of selecting which types of relations have to be
included in the network, i.e., the number of layers and their se-
mantics (vertical boundary specification problem [20]). While
the increasing amount of information opens new research av-
enues [21], it can also include irrelevant knowledge related
to the task at hand [16]. Therefore, it becomes crucial to
conduct effective graph simplification [16], i.e., removing un-
informative or redundant parts of the graph, such as entities,
edges, or even layers to facilitate the final analysis .

While several machine learning techniques for the simplifi-
cation of single-layer graphs have already been proposed in the
literature [22, 23], for the multilayer graphs scenario only a
few preprocessing heuristics, mainly unsupervised, exist [16],
while cutting-edge techniques such as graph neural networks
have not yet been exploited. Furthermore, work on multilayer
graph neural networks [24, 25] demonstrated how crucial is to

design approaches specially tailored for these complex struc-
tures, i.e., to obtain representations ( embeddings ) that convey
the rich information present in the input graph. As a matter of
fact, the straightforward application of single-layer approaches
to multilayer graphs is not trivial: while a single-layer approach
could be applied on each layer separately, the important inter-
play among the various layers would be lost. The same holds
for the simplification task at the heart of this work: a frame-
work able to thoroughly leverage the multilayer structure is of
paramount importance to obtain a simplified multilayer graph
properly optimized for the related downstream task.

In this work, we propose the MultilAyer gRaph simplificA-
tion (MARA) framework, a GNN-based framework designed
to simplify multilayer graphs based on the downstream task.
MARA generates node embeddings for a specific task by train-
ing end-to-end two main components: i) an edge simplifica-
tion module and ii) a (multilayer) graph neural network. We
tested MARA under node classification on real-world multilayer
graphs from different domains. Experimental results show the
effectiveness of the proposed approach: MARA dramatically
reduces the dimension of the input graph not only maintain-
ing the initial classification performances but even improving
them. With MARA, we do not only enable simplification ap-
proaches that leverage single-layer simplification techniques on
multilayer graphs but we also extend existing methods to work
directly on multilayer graphs. Thus, with MARA, we can select
the most appropriate simplification approach depending on the
downstream task. Moreover, we observe that MARA can in-
fluence and enhance important graph properties, such as label
assortativity. Indeed, as the selection of task-irrelevant edges is
refined during the training, MARA is guided in the selection of
the most important properties to preserve or enhance.

Due to the wide range of data that can be modelled as a mul-
tilayer graph, the proposed framework can have a large room of
applications covering different fields like biology, physics, and
health/medical analysis, where increased robustness is needed
to address noise from data acquisition. Furthermore, data qual-
ity, computational performances and information visualization
are also crucial aspects of any process dealing with massive
amounts of graph-structured data, such as social media , com-
munication, biological, transportation and financial systems.

2. Background

In this section, we provide background knowledge regarding
the formal definition of the multilayer graph model adopted in
this paper, the use of graph neural networks for the analysis of
multilayer graphs, and graph simplification approaches based
on deep learning. All the notations used in this paper are sum-
marized in Table 1.

2.1. Multilayer graph model.

In this subsection, we will define the main concepts for the
multilayer graph model, with the definition and notations we
need to formally define the framework. Since in this work,
we will use ML-GCN (Multilayer Graph Convolutional Neural
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Network) to instantiate MARA, for ease of reference we adopt
similar definitions of multilayer graph as in the work where it
was originally proposed [25]:

Definition 2.1 (Multilayer graph). Given a set V of entities,
and a set of layers L = {L1, ...Ll} with | L |= L >= 2, a mul-
tilayer graph is GL = (VL,EL,V,L), where VL ⊆ V × L is
the set of entity-layer pairings or nodes (i.e., to denote which
entities are present in which layers), and EL = VL ×VL is the
set of directed edges between nodes.

The presence of layers implies that edges can connect
nodes within the same layer or across layers. We define as
within-layer edges the links connecting nodes in the same
graph layer. Formally a link is a within-layer link when
((i, l), ( j.m)) | (i, l), ( j.m) ∈ EL, l = m. The within-layer edges
involving a node (i, l) determine the within-layer neighborhood
Γ(i, l):

Definition 2.2 (Within-layer neighborhood).

Γ(i, l) = {( j, l) ∈ VL|(( j, l), (i, l)) ∈ EL} (1)

Within-layer edges are usually described by a set of adja-
cency matrices A = {A1, ..., Aℓ}, where each matrix Aℓ describes
the links in the corresponding layer ℓ. These adjacency ma-
trices describe layer-by-layer connections. However, one of
the most interesting features of the multilayer graph model, is
the presence of links connecting nodes in different layers, the
cross-layer edges/links. More formally, an edge ((i, l), ( j.m)) is a
cross-layer edge when ((i, l), ( j.m)) | (i, l), ( j.m) ∈ EL, l , m. In
this case, when the focus is on the cross-layer links involving
(i, l), we consider the outside-layer neighborhood. Ψ(i, l) that
includes all nodes reachable with cross-layer links from (i, l).
The outside-layer neighborhood Ψ(i, l) can be formally defined
as:

Definition 2.3 (Outside-layer neighborhood).

Ψ(i, l) = {( j,m) ∈ VL|(( j,m), (i, l)) ∈ EL,m , l} (2)

To represent both within and cross-layer edges, we can define
a Supra adjacency matrix:

Definition 2.4 (Supra adjacency matrix). The supra adjacency
matrix Asup is:

Asup =

Al if diagonal block
Al,m otherwise (i.e., off the diagonal block).

(3)

where Al,m is an adjacency matrix built upon the cross-layer
connections between layer l and layer m (i.e., 1 if there exists
an edge between (i, l) and (u,m) with l = m, and 0 otherwise).

2.2. Graph neural networks.
In the field of deep learning for graph-structured data, graph

neural networks (GNNs) have emerged as the state-of-the-
art approach in many different tasks, such as node classifica-
tion [26], link prediction [27], community detection [28] and

Table 1: Summary of notations used in the paper and their description.

Notations Description
GL Multilayer graph
V Set of N entities (e.g., users)
L, ℓ, Ll Set of layers, number of layers, l-th layer
VL Set of nodes in GL
EL Set of edges GL
A, Aℓ Adjacency matrix in G, Adjacency matrix

of the l-th layer of GL
Asup Supra-adjacency matrix
Ã, Ãsup Adjacency matrix and supra-adjacency

matrix with self loops
vi, i Index i of a node Vi ∈ VL

Γ(i) Neighborhood of node Vi

Γ(i, l) Within-layer neighborhood of node Vi

Ψ(i, l) Outside-layer neighborhood of node Vi

X, Xl Attribute (input feature) matrix, resp. in
the l-th layer of GL

x, x(i,l) Attribute (input feature) vector for node vi,
resp. node vi in the l-th layer of GL

f Number of attributes (input features)
E Edge attribute matrix
fE Number of edge attributes
G(L,X,E) Attributed multilayer graph
d Size of the embedding
Z,Zl Embedding (output feature) matrix, resp.

in the l-th layer of GL
zi, z(i,l) Embedding (output feature) vector for

node vi, resp. node vi in the l-th layer of
GL

W,Wk Weight matrix of a generic, resp. weights
of l-th GNN layers

fW , f (k)
W GNN module, GNN at the k-th GNN

layers
K, k Number of GNN layers, index of a layer

of the GNN
H(k+1) =

f (k)
W (H(k), A)

A GNN layer computation

fθS , f k
θS

simplification neural network and its
parameters, resp. simplification neural
network for a certain GNN layer

hi Hidden layer vector for node vi

h(k)
(i,l) Hidden layer vector at the k-th layer of the

GNN for entity vi in layer Ll of GL
Y , Ŷ Ground truth, predictions

graph classification[29]. GNNs redefine basic deep learning op-
erations, such as convolution, for graph-structured data. Thanks
to their ability to make predictions leveraging the graph struc-
ture jointly with node and edge-level features, they benefit sev-
eral fields such as recommender systems [30], social networks
analysis [31], and network medicine [32]. In the Graph Con-
volutional Network (GCN) model proposed by [33], the op-
eration of convolution on graphs is performed through an ag-
gregation of the values of each node’s features along with its
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neighbors’ features. In general, deep learning models use op-
erations like convolution to learn low dimensional latent repre-
sentations for each node or edge or even entire graphs, the so-
called node/edge/graph embeddings. If these embeddings are d
dimensional, then we can expect them to be low dimensional
i.e. d << |V |, and that similar nodes in terms of network struc-
ture will be characterized by a similar embedding. Given V a set
of vertexes, X the node feature matrix, and A the adjacency ma-
trix, a graph can be represented as G = (V, A, X). A GCN model
wants to compute the best possible embedding h of a node i.
We do so through an aggregation process over a series of graph
convolution layers, where the embeddings in each layer k, are
used to compute the embeddings in the following layer k + 1.
The aggregation in GCN involves the embeddings of the nodes
i neighborhood N(i), to perform the following computation:

h(k+1)
i = σ


∑
j∈N(i)

1√
D̃iiD̃ j j

h(k)
j W (k+1)

 (4)

where D̃ii =
∑

j Ãi j corresponds to the degree of i, computed
on Ai j the adjacency matrix with self-loops added; W are the
aggregation weights of the GCN module. The aggregation that
generates the embedding h(k+1)

i is order-invariant, like the aver-
age function in Eq. 4.

Starting from this model, we have seen the surge of many
architectures, to cover different tasks and types of graph data
such as signed graphs, temporal graphs, and more recently mul-
tilayer graphs.

2.3. Graph neural networks for multilayer graphs.
Similarly to single layer graphs, the multilayer network em-

bedding problem consists of learning low dimensional latent
representations for each node (identified by an entity-layer
pair), such that nodes that are similar in GL have embeddings
close to each other [25]. Deep learning tasks are more chal-
lenging to apply on multilayer graphs because of the pres-
ence of intra-layer and cross-layer ( also found as inter-layer)
relations, different layer characteristics, as well as node fea-
tures [25]. There have been some attempts to design meth-
ods and frameworks for deep learning for multilayer graphs.

MANE [34], integrates cross-layer edges for embedded rep-
resentation learning, and formulates node embedding computa-
tion as an optimization problem, incorporating both intra-layer
and cross-layer connections. However, it does not account
for node attributes in the process. In contrast, MGCN [35]
extends the GCN model to multilayer networks by construct-
ing a GCN for each layer, using links only between nodes of
the same layer and combining them in a subsequent step. The
ML-GCN method [25] distinguishes itself by integrating cross-
layer edges into the GCN propagation rules, enabling a more
effective consideration of interlayer connections compared to
MGCN. Additionally, this approach has the ability to lever-
age node features that are not captured by MANE . The ML-
GCN framework reformulates the propagation rule of the GNN
component (i.e. GCN) to aggregate topological neighborhood
information from different layers. While in GCN, aggregation

involves a node’s features and its neighbors’ features, in the
ML-GCN the aggregation is performed with both its neighbors
in that layer (the within-layer neighborhood) and on its neigh-
bors located in other layers where the entity occurs (the outside-
layer neighborhood). More formally:

h(k+1)
(i,l) = σ


∑

( j,m)∈Γ(i,l)∪Ψ(i,l)

1√
D̃iiD̃ j j

h(k)
( j,m)W

(k+1)

 (5)

where D̃ii =
∑

j Ãsup
i j where Asup

i j is the supra-adjacency matrix
with self-loops added.

2.4. Deep learning for graph simplification.
Graph simplification consists of removing uninformative or

redundant parts of the graph while keeping almost all informa-
tion of the input graph [36]. While there are many works on
simplification [37], only a few are focused on simplification for
deep learning on graphs. DropEdge [36] simplifies the graph
for a GNN model (e.g. GCN) by randomly removing a fraction
of the edges from the input graph during the training phase.
The method influences only the training phase, while during
validation and testing the removal is not performed. The evalu-
ation of DropEdge shows that even a random removal can lead
to similar or improved performance across different tasks, such
as node classification and link prediction. As noted in [36],
even when performance gain is not significant, the advantage
of simplification lies in the fact that the randomness and the di-
versity of the input graph are increased, thus reducing the risk
of overfitting (i.e., when the gap between the training error and
test error is too large because the model learns properties of
the training set that are not present in the test set [38]). More-
over, removing edges makes links more sparse, which helps to
reduce the impact of over-smoothing, i.e., the phenomena that
occurs when the node-specific information is lost after several
iterations of GNN message passing [39], leading to very similar
embeddings for every node.

However, this approach has a key limitation: only the graph
neural network component is trained, while the simplification
module cannot improve during training. Therefore, some ap-
proaches were introduced, that rely on a deep learning based
simplification module whose parameters can be tuned dur-
ing training. In this case, the approaches train both compo-
nents end to end: this is the case of NeuralSparse, presented
in [22]. In NeuralSparse [22], the simplification process is done
through the deep neural network: during the training phase, the
deep neural network learns a simplification strategy that favors
downstream tasks. In the testing phase, the neural network is
used to select the edges to remove from the input graph, based
on the learned strategy. The neural network model, i.e., the
multilayer perception (MLP), is given in input an edge’s fea-
tures and the features of the nodes it connects and uses them to
compute a score, that will be higher when the method thinks it
is worth it to keep a certain edge in the graph. During train-
ing, the selection process revolves around a sampling proce-
dure, revolving around k-neighbor subgraphs. In practice, ac-
cording to a hyperparameter k, the method will select for each
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node only a subset k of its neighbors. The selection is done
for each node, leading to a new simplified graph, that is used
for convolution by the GNN. The key advantage is that, in this
case, the simplification module has parameters that can be ad-
justed during training. However this is not straightforward,
since the sampling process is stochastic and thus essentially
non-differentiable. In NeuralSparse, the solution consists of
performing the sampling process with a function that can ap-
proximate the sampling from a categorical distribution, in our
case the selection among edges, but can be made differentiable
through some mathematical reformulations. They selected the
Gumbel-Softmax [40, 41], a method that can approximate the
sampling from a categorical distribution and most importantly,
it is differentiable using a reparameterization trick [41]. The
reparameterization trick rewrites the stochastic sampling pro-
cess as a linear combination of two components, one determin-
istic and the other stochastic [42]. The deterministic part can
be adjusted through backpropagation, while the stochastic part
can be ignored. Therefore, the simplification module is now
trained during the process. Instead, during validation and test-
ing, the graph can be simplified relying on the neural network
component, without the reliance on sampling. When features
are informative for the task, the selection process should be
more accurate, thus leading to a more precise selection process
and potentially to improvements in terms of performance.

Other works rely on similar principles. In AdaptiveGCN [43]
simplification process is led by a deep neural network like in
NeuralSparse, but a simplification step is performed before
each graph convolution step. In PTDnet [44] additional con-
straints on the simplification process are introduced, encourag-
ing the removal of more edges or prioritizing the simplification
of edges connecting different node clusters. Other works such
as [45] and [23] have designed frameworks for simplification
with reinforcement learning. Note that while there are several
works on single-layer graph simplification, there is a lack of
work relying on deep learning for the simplification of multi-
layer graphs.

3. Research questions

From the literature, it becomes clear that graph simplification
has many advantages, such as the limitation of overfitting, that
can lead to better generalization performances and it also limits
the effects of over-smoothing, thus allowing for deeper mod-
els [36]. But while there are several works on single-layer graph
simplification, there is a lack of works relying on deep learning
for the simplification of multilayer graphs, mainly because the
applications of single-layer methods in the multilayer case are
not straightforward. Given the benefits of graph simplification
and the usefulness of the multilayer graph model, it is very im-
portant to fill this research gap. Therefore, in this work, we
face the problem of understanding how we can apply the cur-
rent deep learning based approaches designed for single-layer
graphs to multilayer graphs. Among various aspects, we would
like to see how graph simplification methods influence predic-
tion performances, compared to single-layer cases. Moreover,

we would like to deepen our understanding of the simplifica-
tion process, especially when the methods can tune their selec-
tion strategy. These aspects can be summarized in the following
research questions:
Research question RQ1: What is the impact of graph simpli-
fication performed on multilayer graphs?
Research question RQ2: How does graph simplification influ-
ence the structure of multilayer graphs?
Research question RQ3: How is prediction performance af-
fected by the graph simplification hyperparameters?

4. The MARA framework

In order to address our research questions, in this work,
we introduce a framework for the simplification of multilayer
graphs and evaluate the impact of a simplification approach on
a machine learning task. We evaluate the impact of graph
simplification approaches on a typical learning task, i.e., node
classification. In this section, we formally present the problem
and the framework.

4.1. Problem definition.

The graph simplification problem on single-layer graphs can
be defined as follows: given a graph G(V, E, XE , XV ), where V is
a set of n nodes, E ⊂ V×V is the set of edges; XV is a set of node
attributes, XE is a set of edge attributes. Simplification tries to
obtain a subgraph of G, that would be G′ = G(V ′, E′, XE , XV ),
where V ′ ⊂ V ∨ E′ ⊂ E i.e the number of nodes and/or edges is
reduced. Similarly, on a multilayer graph, simplification can be
defined as the problem of obtaining a graph fθS (GL) = GL′ =
(VL′,EL′,V′,L′) so that the number of nodes and/or edges is
reduced. Formally, we are looking for a simplified multilayer
graph GL′ . such that the following disjunction of conditions
holds: | V |<| V′ | ∨ | L |<| L′ | ∨ | VL |<| VL′ | ∨ | EL |<|
EL
′ |. In the following, we present the framework to compute

the simplified multilayer graph.

4.2. The simplification framework.

We propose the MultilAyer gRaph simplification (MARA)
framework, a GNN-based approach designed to simplify multi-
layer graphs based on the downstream task. An overview of the
framework is presented in Figure 2.

MARA generates node embeddings for a specific task by
training jointly two main components: i) an edge simplification
module and ii) a (multilayer) graph neural network. Based on
this framework, we propose two approaches to perform graph
simplification on a multilayer graph: i) Layer by layer graph
simplification and ii) Multilayer graph simplification. We now
present the two concepts behind them.
Layer by layer graph simplification. To perform graph sim-
plification on a multilayer graph by exploiting methods for
single-layer graphs, we can use a layer-by-layer approach. In
the layer-by-layer simplification, methods are applied to each
layer before recomposing the supra-adjacency matrix: cross-
layer links are not involved. We can define a layer graph as G[ℓ]
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network fW , are used to generate node embeddings for a downstream task. If the simplification module is trainable e.g. a neural network, it is possible to train the
two components jointly: through gradient descent, we update the parameters θ,W backpropagating from the loss function ℓ. In this case, the simplification module
can learn to detect noisy links specifically for the downstream task.
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(b) Multilayer graph simplification with multilayer GNN. A multilayer simplification module (simplification neural network fθ) detects the links to remove by taking into account
the whole input multilayer graph, while a GNN (multilayer graph neural network fW ) is used to generate node embeddings for a downstream task.

Figure 3: Overview of the proposed approaches for multilayer graph simplification: (a) layer-by-layer and (b) multilayer. Note that the difference between the two
approaches lies in the simplification process, while the use of the GNN is the same.

where every edge connects nodes in the same layer ℓ. There-
fore, at each layer ℓ a simplification neural network fθℓS detects
noisy links over the layer-graph G[ℓ], generating a new version
of the graph that we can define as G[ℓ]′. The simplified graphs
are used to update A′sup, which will be used to train the graph
neural network.

It is important to note that simplification can be applied at a
different stages of the process: we can simplify once or before
each graph convolutional layer. In the first case, a simplification
module detects noisy elements while a graph neural network
model is used to generate node embeddings for a downstream

task. Here, simplification occurs only once, so that the graph
is the same at each GNN layer. In the other case, at each GNN
layer, a simplification module detects noisy elements while a
graph neural network model generates node embeddings for
a downstream task. The simplification is performed multiple
times so that before each GNN layer, we are considering dif-
ferent versions of the graph.

MARA allows training with both simplification stages. The
training phase for layer-by-layer graph simplification is sum-
marized in Algorithm 1.

Multilayer graph simplification. To define a simplification
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Algorithm 1 Training step for layer-by-layer simplification
with ML GNN

1: Input: training multilayer graph GL, graph neural network
fW , simplification neural network fθS , simplification stage
stage.

2: Output: Embeddings for downstream task
3: function: LayerByLayerSimplificationTrainingStep(GL, fW ,

fθS ,stage)
4: Asup ←GL.getSupraAdjacencyMatrix()
5: H0 ←GL.Xv ▷ number of GNN hidden layers
6: L← GL.Xv ▷ number of graph layers
7: K = fW .K ▷ number of layers in the graph
8: if stage = ”once” then ▷ Simplify graph just once
9: temp = array()

10: for layer ℓ ∈ 1...L do
11: G←GL.getLayerSubgraph(l)
12: Aℓ ← G.getAdjacencyMatrix()
13: A′ℓ ← fθℓS (Aℓ,G.XV ,G.XE) ▷ simplify layer

subgraph G
14: temp.append( A′ℓ)
15: end for
16: A′sup ←Merge temp into a supra adjacency matrix
17: end if
18: for k = 1...K do ▷ GNN layers activation
19: if stage = ”each” then ▷ Different graph every time
20: temp = array()
21: for layer ℓ ∈ 1...L do
22: G←GL.getLayerSubgraph(l)
23: Aℓ ← G.getAdjacencyMatrix()
24: A′ℓ ← fθℓS (Aℓ,G.XV ,G.XE) ▷ simplify layer

subgraph G
25: temp.append( A′ℓ)
26: end for
27: A′sup ←Merge temp into a supra adjacency matrix
28: end if
29: Hk ← f (k−1)

W (H(k−1), A′sup) ▷ hidden representations
update

30: end for
31: Backpropagation to update fθS , fθW
32: return trained fθS , trained fθW

methodology conceived explicitly for a multilayer graph, able
to properly take into account the complex structure of such a
model, we propose to use a simplification neural network fθ that
detects noisy edges and a graph neural network fW to generate
node embeddings for a downstream task (cf. Fig. 3b). The key
difference with respect to the single-layer counterpart is that the
simplification module is unique, and acts directly on the supra-
adjacency matrix Asup to generate the simplified A′sup. Acting
directly on the supra-adjacency matrix also has an additional
advantage: the simplification module can remove noisy or re-
dundant cross-layer links as well. Even in the multilayer simpli-
fication case, simplification can be applied at different stages:
we can simplify once (i.e., the graph is the same at each GNN
layer) or before each graph convolutional layer (i.e., the sim-

plification is performed multiple times, so that each GNN layer
works on a different version of the graph). The training phase
for multilayer graph simplification is summarized in Algorithm
2.

Algorithm 2 Training step for multilayer simplification with
ML GNN

1: Input: training multilayer graph GL, graph neural network
fW , simplification neural network fθS , simplification stage
stage.

2: Output: Embeddings for downstream task
3: function: MultilayerSimplificationTrainingStep(GL, fW ,

fθS ,stage)
4: Asup = GL.getSupraAdjacencyMatrix()
5: H0 = GL.Xv ▷ Initial embeddings are node features
6: K = fW .K ▷ number of GNN hidden layers
7: if stage= ”once” then ▷ Simplify graph just once
8: A′sup ← fθS (Asup,GL.XV ,GL.XE) ▷ Simplify
9: end if

10: for k = 1...K do ▷ GNN layers activation
11: if stage = ”each” then ▷ Different graph every time
12: A′sup ← fθS (Asup,GL.XV ,GL.XE) ▷ Simplify
13: end if
14: Hk ← f (k−1)

W (H(k−1), A′sup) ▷ hidden representations
update

15: end for
16: Backpropagation to update fθS , fθW
17: return trained fθS , trained fθW

5. Experimental evaluation

In this section, we present the dataset we collected or gener-
ated and the experimental setting we used to perform the frame-
work evaluation.

5.1. Data.

For the experimental evaluation, we selected datasets from
different domains showing different structural characteristics.
Dataset characteristics are summarized in Table 2.

Table 2: Summary of structural characteristics of the graph datasets: type of
the graph, number of layers (L), number of nodes (|V |), number of edges (|E|),
density (mean/SD) over the layers (d), and number of classes (C)

dataset L |V | |E| d C
imdb-mlh 2 5614 23208 0.0007 ± 0.0000 3
um-econ 2 15414 224855 0.0018 ± 0.0012 4

um-socioeco 4 18212 1199863 0.0138 ± 0.0118 4
Koumbia 2 2 4492 18783 0.0010 ± 0.0001 2
Koumbia 5 5 11230 91938 0.0010 ± 0.0002 2

All the selected multilayer graph datasets are associated with
real-word node features, a characteristic that can be leveraged
by a simplification module to guide the underlying decision
process. The um-econ and um-socioeco [12] multilayer graphs
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Table 3: AUC (mean and standard deviation over 3 random seeds [46]) obtained by the baseline and MARA.

data um-econ um-socioeco imdb-mlh Koumbia 2 Koumbia 5
model simp stage
GNN - - 0.7420 ± 0.0022 0.6939 ± 0.0234 0.8035 ± 0.0218 0.9056 ± 0.0049 0.9237 ± 0.0033

MARA multi once 0.7451 ± 0.0128 0.6936 ± 0.0279 0.8135 ± 0.0351 0.9068 ± 0.0007 0.9228 ± 0.0041
(DE) each 0.7487 ± 0.0150 0.6905 ± 0.0233 0.8122 ± 0.0324 0.9042 ± 0.0075 0.9246 ± 0.0069

l-b-l once 0.7407 ± 0.0083 0.6939 ± 0.0234 0.8005 ± 0.0253 0.9059 ± 0.0059 0.9252 ± 0.0063
each 0.7418 ± 0.0102 0.6988 ± 0.0130 0.8079 ± 0.0280 0.9022 ± 0.0045 0.9238 ± 0.0051

MARA multi once 0.7522 ± 0.0084 0.6924 ± 0.0208 0.8011 ± 0.0299 0.9023 ± 0.0042 0.9223 ± 0.0138
(NS) each 0.7458 ± 0.0107 0.6817 ± 0.0347 0.7987 ± 0.0257 0.9080 ± 0.0023 0.9244 ± 0.0093

l-b-l once 0.7438 ± 0.0113 0.7199 ± 0.0099 0.8077 ± 0.0260 0.9087 ± 0.0045 0.9205 ± 0.0022
each 0.7457 ± 0.0008 0.7076 ± 0.0423 0.8046 ± 0.0249 0.9103 ± 0.0052 0.9281 ± 0.0067

describe user interactions in a decentralized social media plat-
form (Steemit) [47, 48]. In these graphs nodes are users, and
layers are interactions of different types. Users can engage
in various actions that form connections between them, either
explicitly or implicitly. Key operations include social activities
typical of traditional social networks, such as posting, rating,
voting, sharing, and following. For instance, ”following” is an
explicit action connecting two users, while voting for a post or
comment by another user forms an implicit relationship. Ad-
ditionally, users can participate in monetary operations involv-
ing the trading of cryptocurrency tokens, which the platform
distributes to incentivize participation (a detailed recap can be
found here [47]). In our framework, different layers separate
various types of interactions, with each intra-layer connection
representing a different relationship type. For example, the ”fol-
lowing” relationship layer is distinct from the trading relation-
ship layer. Cross-layer links connect the same user across these
layers. Although the platform supports numerous interactions,
our focus is on the most common and significant ones. User
labels describe their migration to a different social media plat-
form, called Hive (4 cases: inactive, stay, leave, active on both
as defined in previous works [49, 50]). User migration has
gained increasing relevance [51, 52, 53, 54], particularly with
the emergence of new-generation platforms [55, 56, 57, 50, 12].
Although the Steemit platform supports numerous interactions,
our focus is on the most common and significant ones, as in pre-
vious works. The um-econ dataset is a subgraph composed of
2 layers of economic interactions, while um-socioeco considers
interaction on 4 layers, 2 social and 2 economic.In addition, to
graph structure, we also have user features derived from graph-
based metrics, such as PageRank [58]. IMDb-mlh [59] is a
multilayer graph derived from IMDb. IMDb (Internet Movie
Database) is an online database offering detailed information
about films, TV shows, video games, and streaming content,
including cast, crew, plot summaries, and user reviews. For
its richness in terms of data, it has been used as a data source
for many machine learning tasks and network analysis tasks
[60, 61, 62, 63]. Different multilayer graphs can be derived
from this data source, depending on the selected task, in this
work, we rely on the version used in [59], where nodes are
movies and two movies are connected if they share either an
actor or a director. The layers separate the type of connection,

so the intra-layer layer can represent either a shared actor or a
shared director. Cross-layer links, similar to the previous case,
maintain the identity, linking the same movies across the layers.
Movie labels describe the movie type (action, comedy, drama).
In addition, node features are generated from a text summary of
the plot, to be leveraged by the machine learning models. Fi-
nally Koumbia 2 and Koumbia 5 [64, 25] are multilayer graphs
extracted from a time series of Sentinel-21 optical satellite im-
ages, covering the agricultural landscape of Koumbia in Burk-
ina Faso. The graphs are generated via the geo2net framework2,
which allows to derive multilayer graphs from satellite images
with an arbitrary number of layers, for a customizable detailed
representation of the dataset. In the derived graphs, the nodes
represent segments of the satellite image, and labels correspond
to either crop (cultivated areas) or no-crop (uncultivated ar-
eas, such as forests) segments. Layers correspond to functional
classes (e.g., temporal radiometric profiles).More precisely, the
framework infers both nodes and edges from Satellite Image
Time Series, and similarly layer memberships and edge weights
are also derived this way, for both intra-layer links and cross-
layer links. A key difference from other datasets is that cross-
layer links can link both the same nodes across layers but can
also link different nodes across different layers, with different
weights determined by the geo2net framework. The network
also includes real-world attributes for each node, correspond-
ing to a time series of radiometric statistics for each segment.

5.2. Experimental setting.
In this work, we focus on node classification tasks, i.e., we

learn the embeddings required to predict the label associated
with each node in the graph. As GNN for MARA we select
the GCN, but note that any other GNN model can be lever-
aged. As a baseline, we consider the multilayer GNN [25]
(GNN). As previously discussed, MARA can be equipped with
different simplification strategies as well. In this work, we se-
lected i) DropEdge [36] (MARA(DE)), the single-layer graph
simplification method that randomly removes edges with prob-
ability p, and ii) NeuralSparse [22] ( MARA(NS)), which is

1https://sentinel.esa.int/web/sentinel/missions/

sentinel-2
2https://gitlab.irstea.fr/raffaele.gaetano/geo2net
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able to leverage node features to select a subset of edges to
keep (a subgraph-based selection process is performed where
for each node only k of its neighbors are kept as well as their
connecting edges). Note that both approaches were originally
designed for single-layer simplification, hence for this work, we
extended them to perform multilayer (multi) and layer-by-layer
(l-b-l) simplification (cf. Section 4). Moreover, each imple-
mentation can be applied at different stages: we can simplify
once or before each graph convolution layer (cf. Section 4).
For MARA(DE), we consider different drop rate probabilities
p = {0.1, 0.3, 0.5, 0.7}, while for MARA(NS), we assess differ-
ent k = {5, 10.15}, with τ varying during training as in [22]. We
perform all the experiments with a transductive learning setting
like in [25]. In a transductive setting, all node attributes and
topological information can be used for training, while only a
subset of labels is visible to the GNN model. All models were
trained using the Adam optimization algorithm [65] with full
batch training [33], L2 weight regularization set to 0.0005. For
each graph and method, the average accuracy was computed
over 3 independent runs, where each run corresponded to a dif-
ferent train-validation-test split, with 25% of training entities
as previously done in [25] and the rest split in validation (25%)
and test entities (50%). The combination of hyperparameters
with the best average validation metric is selected, and we re-
port the final test metric. Due to the huge number of combina-
tions, we rely on early stopping, training for 250 epochs with 10
epochs of patience (reloading the best model). As an evaluation
metric, we select AUC (Area under the ROC Curve) as done
in [22], since it is well suited for datasets showing unbalanced
label distribution, such as Imdb, um-econ and um-socioeco.

6. Results

In this Section, we report the experimental results and the re-
lated discussion with the aim of providing answers to the afore-
mentioned research questions (Section 3).

6.1. Framework evaluation.

We first focus on the research question RQ1 by targeting the
performance achieved by the simplification methods.

Table 3 reports the average AUC scores on the test set.
We can observe how MARA generally improves upon the
GNN baseline, and systematically achieves the best perfor-
mances. Note that MARA(NS) almost consistently outperforms
MARA(DE), demonstrating the importance of exploiting node
features for the simplification task. The only exception is rep-
resented by imdb-mlh, where features information improves the
performance, but the MARA(DE) variant obtains even better
performance. Additional insights can be obtained by compar-
ing the multilayer (multi) vs layer-by-layer (l-b-l) and the once
vs each approaches. Regarding MARA(DE), we note that multi
tends to be more effective on 2-layer graphs (i.e., um-econ, um-
socioeco and Koumbia-2) while l-b-l seems to be more effec-
tive in presence of a greater number of layers. Note also that,
with the (DE) variant, simplifying once tends to be the win-
ning choice. This is consistent with the stochastic nature of

this approach, i.e., repeating a random process at each layer
may negatively impact the result. As concerns MARA(NS), l-b-
l tends to be the best choice in most cases: it may be because the
NeuralSparse simplification strategy is based on a single-layer
notion of a node’s neighborhood. Devising an advanced strat-
egy to properly take into account the multilayer neighborhood
is left as future work. In terms of when to simplify (stage), for
the (NS) variant, we can see that simplifying once brings better
results for datasets showing an unbalanced distribution of the
labels (i.e., um-econ, um-socioeco and imdb-mlh), while sim-
plifying before each convolution layer seems the best approach
for the more balanced Koumbia graphs.

Overall, MARA leads to significant performance improve-
ments, while the variety of proposed approaches allows
MARA to find the most suitable simplification approach for
tasks of different domains.

6.2. Analysis of simplified graphs.
In this section, we discuss how the simplification process im-

pacts the structural characteristics of the multilayer graphs, pro-
viding an answer to research question RQ2. For each dataset,
we compare graph structure before and after the simplifica-
tion with MARA. We show results for each prediction sub-task,
i.e., user migration prediction on um-econ (Table 4 ), movie
classification on imdb-mlh (Table 5) and cropland mapping on
Koumbia-2 (Table 6)while the other results can be consulted in
the Appendix. For the analysis, we first focus on the um-econ
case (Table 4 ). It can be noted how the impact of MARA(NS)
can be different on each layer of a specific graph, while the
action of MARA(DE) seems to be more uniform over a given
graph. Once again, this is consistent with the fact that one
approach leverages node features while the other is a random
approach. The clearest impact is observed on the number of
intra-edges, MARA drastically reduces the number of edges
while still improving the performance: this is extremely im-
portant as the computation cost of graph convolution is linear in
the number of graph edges [33], making a reduced number of
edges an ideal property. In addition, some interesting observa-
tions can be drawn about label assortativity, i.e., the similarity
of connections in the graph with respect to node labels (high
label assortativity means that a node is more likely to connect
with a node with the same label). We can see how MARA(NS)
tends to increase label assortativity across layers: this makes
sense as MARA(NS) can leverage node features, so it would be
able to preserve the connections between similar nodes. Such
behavior cannot be replicated by the random procedure behind
MARA(DE). Similarly, as regards transitivity (i.e., the fraction
of all possible triangles present in a graph), we can observe a
general decrease, since the number of triangles is necessarily
reduced as we remove edges. However, on layers with lower
transitivity (< 0.1), only MARA(NS) increases transitivity val-
ues: this can be observed in um-econ and um-socioeco.

The relevance of training jointly simplification and graph
neural network is, therefore, the most important observation:
during the training, MARA(NS) improves its capacity to rec-
ognize edges that are unrelated to the task at hand, allowing
it to determine which graph characteristics are most crucial to
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Table 4: Statistics for each graph layer before and after the simplification on um-econ dataset.

ℓ
Intra-layer
edges

Label
assortativity Transitivity Indegree

mean
Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0
174381.00
6207.00
(-96.44%)

0.08
0.35
(+320.57%)

0.01
0.02
(+86.70%)

23.63
1.17
(-95.06%)

3610.00
328.00
(-90.91%)

23.63
1.02
(-95.69%)

6021.00
3.00
(-99.95%)

L1
35060.00
5038.00
(-85.63%)

0.27
0.62
(+127.57%)

0.00
0.02
(+2947.23%)

5.55
0.87
(-84.39%)

937.00
145.00
(-84.53%)

5.55
1.02
(-81.71%)

4769.00
3.00
(-99.94%)

MARA
(DE)

L0
174381.00
121999.00
(-30.04%)

0.08
0.08
(+2.17%)

0.01
0.01
(-31.27%)

23.63
16.53
(-30.03%)

3610.00
2552.00
(-29.31%)

23.63
16.53
(-30.03%)

6021.00
4230.00
(-29.75%)

L1
35060.00
24578.00
(-29.90%)

0.27
0.27
(-1.44%)

0.00
0.00
(-31.29%)

5.55
3.89
(-29.87%)

937.00
642.00
(-31.48%)

5.55
3.89
(-29.89%)

4769.00
3349.00
(-29.78%)

Table 5: Statistics for each graph layer before and after the simplification on imdb-mlh dataset.

ℓ
Intra-layer
edges

Label
assortativity Transitivity Indegree

mean
Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0
6121.00
2818.00
(-53.96%)

0.70
0.87
(+23.27%)

0.40
0.29
(-28.36%)

4.27
3.09
(-27.55%)

79.00
42.00
(-46.84%)

4.27
3.09
(-27.55%)

79.00
40.00
(-49.37%)

L1
5355.00
2816.00
(-47.41%)

0.72
0.90
(+24.60%)

0.38
0.00
(-100.00%)

4.00
3.09
(-22.63%)

69.00
42.00
(-39.13%)

4.00
3.09
(-22.63%)

69.00
38.00
(-44.93%)

MARA
(DE)

L0
6121.00
4277.00
(-30.13%)

0.70
0.71
(+1.44%)

0.40
0.26
(-34.14%)

4.27
3.00
(-29.80%)

79.00
55.00
(-30.38%)

4.27
2.98
(-30.27%)

79.00
53.00
(-32.91%)

L1
5355.00
3749.00
(-29.99%)

0.72
0.73
(+0.47%)

0.38
0.26
(-29.83%)

4.00
2.79
(-30.22%)

69.00
46.00
(-33.33%)

4.00
2.81
(-29.71%)

69.00
49.00
(-28.99%)

Table 6: Statistics for each graph layer before and after the simplification on Koumbia 2 dataset.

ℓ
Intra-layer
edges

Label
assortativity Transitivity Indeg

mean
Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0
5724.00
2254.00
(-60.62%)

0.72
0.90
(+24.26%)

0.16
0.00
(-100.00%)

4.39
2.85
(-35.18%)

20.00
11.00
(-45.00%)

4.39
2.85
(-35.18%)

24.00
11.00
(-54.17%)

L1
4779.00
2253.00
(-52.86%)

0.79
0.91
(+15.07%)

0.20
0.00
(-100.00%)

3.97
2.85
(-28.32%)

25.00
22.00
(-12.00%)

3.97
2.85
(-28.32%)

27.00
20.00
(-25.93%)

MARA
(DE)

L0
5724.00
2909.00
(-49.18%)

0.72
0.72
(-0.67%)

0.16
0.08
(-52.59%)

4.39
2.21
(-49.64%)

20.00
13.00
(-35.00%)

4.39
2.22
(-49.55%)

24.00
15.00
(-37.50%)

L1
4779.00
2356.00
(-50.70%)

0.79
0.79
(+0.24%)

0.20
0.09
(-53.31%)

3.97
1.97
(-50.41%)

25.00
13.00
(-48.00%)

3.97
1.97
(-50.50%)

27.00
17.00
(-37.04%)

maintain or enhance. Additionally, with both variants, MARA
demonstrates the capability of significantly reducing the num-
ber of edges while improving or at least keeping performance.

6.3. Hyperparameters sensitivity analysis.
As a last analysis step, we address RQ3, which requires us to

evaluate the impact of the hyperparameters on the graph simpli-
fication methods. To this end, we study the impact of varying
the main hyperparameters, i.e., the drop rate p for MARA(DE)
and k for MARA(NS). In Figure 4 we report a sensitivity anal-
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Figure 4: Sensitivity analysis based on AUC, for the 2-layer graphs. We com-
pare the AUC for the baseline (in red), with the AUC (average, standard devia-
tion) for the best simplification method (in blue).

ysis for p and k, where the other hyperparameters are set to the
best performing combination. We can see that for um-econ, low
k values lead to lower performance. Similarly, a high drop rate
of p seems to lead to worse performance. For imdb-mlh, we
can draw similar observations for p (i.e., a high drop worsens
the performance), while variations of k seem to have a minor
impact on the process. Similarly, the impact of k is minor also
for Koumbia-2. In this case, the impact of p seems to be re-
duced too.

Overall, the takeaway is that both MARA(NS) and
MARA(DE) are robust to variations of their respective main
hyperparameters k and p. This makes them solid and easy to
deploy, by making hyperparameter tuning relatively unimpor-

tant.

7. Conclusions

The findings presented in this work show the significance
of the proposed framework: MARA leads to significant perfor-
mance improvements, by selecting the best available simplifica-
tion strategies. These advances in performance are even more
noteworthy when we take into account that MARA achieves
them while drastically reducing the number of edges. Most im-
portantly, MARA shows the importance of jointly training the
simplification of the multilayer graphs and the node classifica-
tion tasks. As the ability to identify task-irrelevant edges in-
creases, MARA is guided to discover the most important graph
properties to preserve or enhance.

These findings hold practical significance with direct appli-
cations. Providing a methodology to easily perform multi-
layer graph simplification can help scholars and practitioners
from multiple fields to improve both scalability and prediction
performances in their everyday tasks. Considering interdisci-
plinary research environments, a simplification method can also
favour the interplay between domain experts and data scien-
tists. Domain experts would be allowed to collect and model
a large number of relations, regardless of the fact that some of
these data may be considered noisy or negligible for a specific
task, since data scientists could, in turn, enhance the quality of
a given model for a downstream task through graph simplifi-
cation. In this regard, studying the graph simplification model
also provides an opportunity for improved model understand-
ing. As the model learns to select the most important graph
parts, we obtain not only a simpler graph but also an opportu-
nity to understand what entities, relations and layers are cen-
tral for the outcomes of the selected model to be reliable. This
method can be useful in any setting with complex and rich mul-
tilayer network structures, like the one covered by the consid-
ered datasets.

Future research will focus on analyzing how multilayer sim-
plification can be beneficial for a variety of tasks, including link
prediction (removing unimportant or ”spam” links to improve
prediction performance), clustering (removing redundant links
should improve boundaries between clusters, thus improving
cluster quality), and graph classification (removing noisy links
should help in the identification of similar graphs). Finally,
additional future works will focus on the interaction between
graph properties and downstream tasks to support multilayer
simplification. A better understanding of graph properties can
be beneficial in the development of simplification algorithms
and overall it could lead to a better understanding of complex
systems spanning different domains.
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Table A.7: Statistics for each graph layer before and after the simplification on um-socioeco dataset.

Intra-layer
edges

Label
Assortativity Transitivity Indegree

mean
Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0
579352.00
4624.00
(-99.20%)

0.06
0.14
(+146.19%)

0.20
0.00
(-100.00%)

130.25
4.02
(-96.92%)

1875.00
31.00
(-98.35%)

130.25
4.02
(-96.92%)

2990.00
5.00
(-99.83%)

L1
476439.00
4652.00
(-99.02%)

0.05
0.15
(+181.36%)

0.11
0.01
(-95.09%)

107.64
4.02
(-96.26%)

1759.00
34.00
(-98.07%)

107.64
4.02
(-96.26%)

4262.00
6.00
(-99.86%)

L2
74580.00
4603.00
(-93.83%)

0.12
0.44
(+277.44%)

0.01
0.03
(+287.20%)

19.38
4.01
(-79.30%)

2543.00
331.00
(-86.98%)

19.38
4.01
(-79.30%)

3753.00
5.00
(-99.87%)

L3
14856.00
4586.00
(-69.13%)

0.39
0.73
(+85.09%)

0.01
0.00
(-100.00%)

6.26
4.01
(-36.02%)

276.00
66.00
(-76.09%)

6.26
4.01
(-36.02%)

701.00
5.00
(-99.29%)

MARA
(DE)

L0
579352.00
492450.00
(-15.00%)

0.06
0.06
(+0.84%)

0.20
0.17
(-15.26%)

130.25
111.16
(-14.65%)

1875.00
1601.00
(-14.61%)

130.25
111.16
(-14.65%)

2990.00
2543.00
(-14.95%)

L1
476439.00
404974.00
(-15.00%)

0.05
0.05
(+0.57%)

0.11
0.09
(-15.12%)

107.64
91.95
(-14.58%)

1759.00
1493.00
(-15.12%)

107.64
91.95
(-14.58%)

4262.00
3623.00
(-14.99%)

L2
74580.00
63393.00
(-15.00%)

0.12
0.12
(-0.89%)

0.01
0.01
(-14.71%)

19.38
16.92
(-12.68%)

2543.00
2173.00
(-14.55%)

19.38
16.92
(-12.68%)

3753.00
3201.00
(-14.71%)

L3
14856.00
12628.00
(-15.00%)

0.39
0.39
(+0.24%)

0.01
0.01
(-14.64%)

6.26
5.77
(-7.81%)

276.00
229.00
(-17.03%)

6.26
5.77
(-7.81%)

701.00
604.00
(-13.84%)
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Table A.8: Statistics for each graph layer before and after the simplification on Koumbia 5 dataset.

Intra-layer
edges

Label
Assortativity Transitivity Indegree

mean
Indegree
max

Outdegree
mean

Outdegree
max

MARA
(NS)

L0
4157.00
2252.00
(-45.83%)

0.84
0.95
(+12.85%)

0.25
0.00
(-100.00%)

7.15
6.30
(-11.87%)

33.00
28.00
(-15.15%)

7.15
6.30
(-11.87%)

38.00
28.00
(-26.32%)

L1
5752.00
2249.00
(-60.90%)

0.70
0.90
(+28.24%)

0.22
0.00
(-100.00%)

9.03
7.47
(-17.27%)

39.00
27.00
(-30.77%)

9.03
7.47
(-17.27%)

36.00
25.00
(-30.56%)

L2
4951.00
2252.00
(-54.51%)

0.70
0.88
(+25.94%)

0.22
0.00
(-100.00%)

8.64
7.44
(-13.91%)

47.00
41.00
(-12.77%)

8.64
7.44
(-13.91%)

53.00
41.00
(-22.64%)

L3
3635.00
2252.00
(-38.05%)

0.98
1.00
(+1.36%)

0.24
0.00
(-100.00%)

6.82
6.21
(-9.02%)

39.00
37.00
(-5.13%)

6.82
6.21
(-9.02%)

42.00
36.00
(-14.29%)

L4
5605.00
2266.00
(-59.57%)

0.68
0.87
(+28.12%)

0.20
0.04
(-79.11%)

9.29
7.80
(-16.00%)

48.00
41.00
(-14.58%)

9.29
7.80
(-16.00%)

50.00
41.00
(-18.00%)

MARA
(DE)

L0
4157.00
3534.00
(-14.99%)

0.84
0.85
(+0.65%)

0.25
0.20
(-18.32%)

7.15
6.87
(-3.88%)

33.00
33.00
(-)

7.15
6.87
(-3.88%)

38.00
37.00
(-2.63%)

L1
5752.00
4890.00
(-14.99%)

0.70
0.70
(+0.28%)

0.22
0.19
(-16.06%)

9.03
8.65
(-4.25%)

39.00
36.00
(-7.69%)

9.03
8.65
(-4.25%)

36.00
35.00
(-2.78%)

L2
4951.00
4209.00
(-14.99%)

0.70
0.69
(-1.12%)

0.22
0.19
(-13.45%)

8.64
8.31
(-3.82%)

47.00
46.00
(-2.13%)

8.64
8.31
(-3.82%)

53.00
52.00
(-1.89%)

L3
3635.00
3090.00
(-14.99%)

0.98
0.98
(+0.18%)

0.24
0.20
(-14.39%)

6.82
6.58
(-3.56%)

39.00
39.00
(-)

6.82
6.58
(-3.56%)

42.00
40.00
(-4.76%)

L4
5605.00
4765.00
(-14.99%)

0.68
0.68
(-0.38%)

0.20
0.17
(-14.34%)

9.29
8.92
(-4.03%)

48.00
47.00
(-2.08%)

9.29
8.92
(-4.03%)

50.00
48.00
(-4.00%)
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Appendix A.2. Hyperparameter tuning - parameter space

{'datasets': [('um-econ', 'features'),
('um-socioeco', 'features'),
('imdb-mlh', 'features'),
('Koumbia_2', 'features'),
('Koumbia_5', 'features')],

'architecture': ['multi'],
'architecture_simp': ['multi', 'single'],
'model': ['gcn', 'gcn-de', 'gcn-ns'],
'gnn_level': [True, False],

'drop_rate_p': [0.1, 0.3, 0.5, 0.7],

'k': [5, 10, 15],

'tau': [0.001],

'standardize': [True],

'feat-variability': ['fixed'],
'split': ['25 50 25'],
'plots': [True],

'early-stop': [True],

'fastmode': [True],

'gpu': [1],

'run': [1],

'debugging': [False],

'dropout': [0.3],

'hidden': [16, 32],

'lr': [0.002],

'num-layers': [2],

'ns_num_hidden': [32],

'epochs': [250],

'patience': [10]}
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