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ABSTRACT.  The objective of the present work is to describe a technique to approximate atmospheric 22 

path transmissivities using a recurrent structure, following a method proposed recently but limited to 23 

date to high temperature applications. The physical model together with its underlying statistical 24 

assumptions is detailed. It is found to involve a rather simple analytical formula that applies both to 25 

two-layers systems and to more general multi-layers non-uniform configurations. This treatment of 26 

path non-uniformities uses several unknown parameters that are first trained on LBL reference data in 27 

two-layers configurations to illustrate the relevance of the proposed approximate model. Then, in a 28 

second time, model’s parameters are trained on non-uniform path transmission curves representative 29 

of multi-layers atmospheres. The corresponding recurrent formulation is shown to provide accurate 30 

estimates of transmissivities of non-uniform atmospheric paths (maximum relative errors are below 31 

0.35% in all the considered test cases) at a very low CPU cost.   32 

 33 
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 40 
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 43 
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 45 

 46 

 47 



 

3 

1. INTRODUCTION 48 

 49 

Satellite remote sensing is a widely spread method to characterize the state of the atmosphere and to 50 

monitor atmospheric components such as water vapor, clouds and aerosols. Atmospheric instruments 51 

measure radiances averaged over more or less narrow spectral bands. The most recent generations of 52 

satellites produce large amounts of data that need to be converted into geophysical parameters. This 53 

requires the developments of fast though accurate numerical methods to infer profiles of temperature, 54 

species concentrations, etc, from satellite measurements. In most cases, when modeling a radiative 55 

intensity in an atmospheric configuration, one needs to account for the contribution of the absorption 56 

and / or emission of radiative energy by the gaseous components of the atmosphere. Due to the large 57 

amount of data to analyze, the use of high-resolution Line-By-Line (LBL) calculations cannot be 58 

considered for this purpose, even if the amount of computational power available has increased 59 

significantly in the past years.  60 

 61 

Gas radiation modeling has always been intimately connected with statistical sciences [1].  62 

Statistical Narrow Band (SNB) models, for instance, are founded on assumptions about the locations 63 

of line centers (randomly spread over the spectral interval) and about the distribution of linestrengths. 64 

Combined with some realistic additional hypothesis (spectral lines are assumed entirely contained in 65 

the narrow spectral interval, for instance), SNB model theory allows constructing simple though 66 

accurate analytical models based on a few parameters (two, for example, in the case of the widely 67 

spread SNB model for Lorentz lines based on Malkmus’ distribution of linestrengths [2]).  68 

k-distribution methods are constructed, both over narrow spectral intervals [1] or over the full spectrum 69 

[3], with the help of the distribution function of absorption coefficients over the spectral interval. In the 70 

Correlated K-Distribution (CKD) method, statistical assumptions about the relationship between 71 

spectra in distinct thermophysical states are made to extend the method from uniform to non-uniform 72 

configurations: the so-called “correlation” assumption [1,3]. 73 
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In this context, it is not surprising to see the appearance, in the recent years, of new strategies based on 74 

statistical learning methods [4] for fast though accurate modeling of non-uniform gaseous paths. 75 

Principle Component Analysis (PCA) based models [5,6] or techniques founded on unsupervised 76 

learning / cluster analysis [7] are two examples of such approaches. More recently, several attempts 77 

have been reported in the literature to apply methods based on neural networks to model band averaged 78 

gas transmittance [8,9] or to treat more general radiative transfer problems [10].  79 

 80 

One of them, Ref. [9], proposes to apply Recurrent Neural Network (RNN) structures to model non-81 

uniform path transmissivities. The main originalities and advantages of this approach compared to brute 82 

force machine learning methodologies are: 83 

1/ to suggest an RNN-like model mostly built on physical arguments. Indeed, the method consists of 84 

the reformulation of a physical model into a recurrent scheme using statistical assumptions on the 85 

relationship between gas spectra in distinct states. The resulting network topology avoids the black box 86 

disadvantage of most brute force Neural Network models, as all parameters have a clear physical 87 

meaning. The proof of concept was given in Ref. [9]. This reference was however restricted to high 88 

temperature applications. 89 

2/ to propose the use of Exponential Linear Units - ELU [11] - as activation functions. It is well 90 

known [12] that the choice of activation functions can have a significant impact both on the 91 

computational effort required for the training process and on the extrapolation capability of Neural 92 

Network models. The selection of activation functions based on physical arguments is sometimes 93 

recommended for use in Physics Informed Neural Networks (PINN) [13]. This strategy consists of 94 

selecting activation functions closely related to known solutions of the governing Ordinary / Partial 95 

Differential Equations of the physical problem studied instead of generic ones. This approach cannot 96 

be applied directly in the case of gas radiation modeling because the problem of path non-97 

uniformities cannot be fully formulated, to the best of our knowledge, using ODEs / PDEs, even if 98 

some physical constraints can be expressed in terms of derivatives of the transmissivity (see 99 



 

5 

Appendix III for details). The strategy proposed in Ref. [9], and explored further in the present 100 

paper, mostly consists of finding the general form of the solution of implicit equations to treat non-101 

uniform paths (based on the quasi-scaling approximation described in section 2.2) and then use this 102 

functional form to select appropriate activation functions. The proposed method thus replaces 103 

solutions of ODEs / PDEs in PINN by implicit equations, but the main logic to incorporate physical 104 

constraints in a statistical learning framework is the same in both approaches. As will be seen later 105 

in this paper, ELUs are then natural choices. 106 

3/ to embed physical constraints directly inside the structure of the recurrent network. This can be 107 

considered as a type of mathematical induction approach, following the classification proposed in 108 

Ref. [14]. Indeed, constraints on the derivative of the transmissivity are directly included in the 109 

structure of the model without modifications of the loss function, as often done in Machine Learning 110 

studies (called learning bias in Ref. [14]): only the raw data (set of non-uniform path 111 

transmissivities) are used in the training process. This fact is discussed in Appendix III. 112 

 113 

The application of recurrent networks to model non-uniform path transmissivities is explored in the 114 

present work by treating the general case instead of the simplified model of Ref. [9]. For this purpose, 115 

a generalization of the theoretical foundation of the model detailed in [9] is first proposed in section 2. 116 

Both the physical model and the statistical assumptions needed to construct the recurrent approximation 117 

are described. This section is rather technical but all the necessary details to fully understand the method 118 

and follow the steps of the derivation are given. In section 3, a validation of the results of section 2 in 119 

cases of two-layers systems (couples of successive layers along a non-uniform atmosphere) is first 120 

provided to illustrate the relevance of the proposed approximation. Then, in a second time, the 121 

functional form of section 2 is used as a prior knowledge to model non-uniform path transmissivities 122 

in multi-layers configurations, using the same recurrent scheme as in Ref. [9]. The role of the functional 123 

form of section 2 (that takes the form of a Lévy-Khintchine formula) combined with the recurrent 124 

scheme is thus, in a statistical learning context, to reduce the size of the space of possible solutions with 125 
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the aim of both simplifying the training process and increasing the quality of the transmissivity model. 126 

Several application cases are studied in which the present method is assessed against reference LBL 127 

calculations for realistic atmospheres.  128 

 129 

Many elements used in the present paper are closely related to results already discussed within the 130 

development of the l-distribution approach in Refs. [15-17]. However, no detailed knowledge about 131 

this modeling strategy is required to fully understand the present developments, even if some of them 132 

use exactly the same mathematical formalism for convenience. When needed, the elements of l-133 

distribution modeling required to understand the present paper are reminded. 134 

   135 

  136 
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2. GENERAL THEORY 137 

 138 

Let us consider a non-uniform atmosphere divided into n uniform layers. A path in the atmosphere 139 

can be represented by a sequence of lengths 
1 ,..,

n
L L  where each , 1,..,

i
L i n=  is the total distance 140 

traveled by the radiative energy in the i-th layer where the thermophysical state of the gas has index 141 

i and where its spectral absorption coefficient at wavenumber ν  is 
,iνκ . The band averaged 142 

transmissivity of the total path represents the fraction of radiative intensity, averaged over the 143 

spectral interval written ν∆ ,  that travels in the atmosphere without being absorbed. It is given by: 144 

 145 

 ( ) ( )1.. 1 ,1 1 ,

1
,.., exp ..

n n n n
L L L L d

ν
ν ν

ν

τ κ κ ν
ν

∆

∆

= ⋅ − ⋅ − − ⋅
∆   (1) 146 

 147 

In the present work, as well as in the l-distribution approach, we seek an approximation of this non-148 

uniform path transmissivity as: 149 

 150 

 ( ) ( )1.. 1 1 1..,..,n n nL L Lν ντ τ∆ ∆=  (2) 151 

 152 

where 
1..nL  is an effective absorption length defined in such a way that the transmissivity of the non-153 

uniform path is the same as the transmissivity of an equivalent path of length
1..nL  in the gas in state 154 

1. Values of 
1..nL  depend on the n lengths 

1 ,..,
n

L L . 155 

In the l-distribution approach, the effective absorption length 
1..nL  is constructed through a recurrent 156 

process defined by the following set of relationships (identical to Eq. (23) of Ref. [9]): 157 

 158 

 
( ).. 1 1..

nn n

i n i i i i n

L L

L L L
ντ ∆

+ +

=
 = + �l

 (3) 159 
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In this method, the treatment of non-uniformities thus starts from one side of the radiation path, 160 

where the state of the gas has index n, and propagates (index i varies from n to 1) until state 1. The 161 

process involves the set of functions , 1,..,
i

i N=l  defined as the inverses of the band averaged 162 

transmissivities 
i

ντ ∆ . These inverse functions obviously exist because band averaged 163 

transmissivities are strictly decreasing functions of the geometrical lengths. The notation “ � ” is 164 

used to represent the functional composition, i.e. ( ) ( )1 1i i i i
L L

ν ντ τ∆ ∆
+ + =  �l l .   165 

The physical interpretation of the recurrent scheme is relatively straightforward. Indeed, it consists 166 

of an iterative homogenization process as explained in depth in Ref. [15]. Interested readers should 167 

consult this reference for more details. 168 

 169 

Application of the recurrent method set by Eq. (3) to generate 
1..nL  requires evaluating the 170 

“coupling” terms involved at each step of the propagative scheme, i.e., the set of functions  171 

( )1i i Lντ ∆
+�l  over the full collection of layers. We derive in this section an analytical formula to calculate 172 

these functions. In order to simplify the notations, we focus on ( )1 2 Lντ ∆
�l  only (coupling between 173 

states 1 and 2) but the same functional form applies to any other couple of states i and i+1. Several 174 

preliminary results are needed for the derivation. They are given in subsection 2.1 (physical model for 175 

( )1ln L Lντ ∆−∂ ∂ )  and 2.2 (statistical method used to represent the relationship between gas spectra in 176 

distinct states). Section 2.3 and 2.4 provide the derivation of the coupling functions, first in a simplified 177 

case (2.3) and then in the general situation (2.4). 178 

 179 

2.1. Physical model for ( )1ln L Lντ ∆−∂ ∂  180 

The derivation described in section 2.3, that focuses on the development of an approximation of the 181 

quantity ( )1 2 Lντ ∆
�l  of Eq. (3), has strong connections with mathematical properties of  182 
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( )1ln L Lντ ∆−∂ ∂ . The present section is devoted to the building of an approximate model for this 183 

quantity from which some important and useful properties can be derived. 184 

 185 

We consider a gas spectrum in state 1 made of N overlapping spectral lines. We approximate the 186 

transmissivity of the array of N lines as the product of the transmissivities of the N spectral lines 187 

considered separately, as done in Statistical Narrow Band model theory [1]. We thus consider that 188 

absorption by a single spectral line is statistically independent from all other spectral lines. This 189 

provides: 190 

 191 

 ( ) ( )1 ,1, 1,

1 1

1
exp

NN

i i

i i

L L d Lν ν
ν

ν

τ κ ν τ
ν

∆ ∆

= =∆

 = ⋅ − ⋅ = ∆  
 ∏   (4) 192 

 193 

where: 194 

 195 

 ( ) ( )1, ,1,

1
exp

i i
L L d

ν
ν

ν

τ κ ν
ν

∆

∆

= ⋅ − ⋅
∆   (5) 196 

 197 

is the band averaged transmissivity of the i-th spectral line of the gas in the thermophysical state of 198 

layer 1 for a gas path length L. 199 

Let ε  be a small and positive real number. We define a “useful” range of lengths, written 200 

( ) ( )min max,L Lε ε   , as the set of lengths such that the value of ( )1 Lντ ∆
 lies in the interval [ ],1ε ε− ,  201 

where most of the dynamics of the transmission curve occurs. This means that the minimum and 202 

maximum lengths are defined as solutions of the implicit equations: 203 

 204 

 
( )
( )

1 min

1 max

1L

L

ν

ν

τ ε ε

τ ε ε

∆

∆

 = −   


=   

 (6) 205 
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Over ( ) ( )min max,L Lε ε   , the array of N spectral lines absorbs a significant quantity of radiation but 206 

each single line alone only absorbs a small amount of radiation: band averaged transmissivities of single 207 

lines are thus close to 1. This is because, if we assume for simplification that all spectral lines are 208 

identical and statistically independent, the transmissivity of a single line over ( ) ( )min max,L Lε ε    takes 209 

a value higher than 
1 Nε  which is thus close to 1 for large N (for instance, values ε =0.001 and N = 210 

1,000 provide 
1 Nε ≈ 0.993 – this means that if we have 1,000 identical lines such that the transmissivity 211 

of the set of lines is 0.001, then each spectral line alone has a band averaged transmissivity of 0.993, 212 

which is clearly close to 1).  This allows writing: 213 

 214 

  ( ) ( ) ( ) ( )1 1, 1, 1,

1 11

ln ln ln 1
N N N

i i i

i ii

L L L L
ν ν ν ντ τ τ τ∆ ∆ ∆ ∆

= ==

 
 − = − = − ≈ −   

 
 ∏  (7) 215 

 216 

Taking the derivative of the previous equation with respect to the gas path length L then provides the 217 

following approximation: 218 

 219 

 
( ) ( )1,1

1

ln N
i

i

LL

L L

νν ττ ∆∆

=

 ∂∂
− ≈ − ∂ ∂ 

  (8) 220 

 221 

As shown in Appendix I, ( )1ln L Lντ ∆−∂ ∂  can then be approximated as:  222 

 223 

 ( ) ( )
1

*

1 ,1

0

ln exp
P

L L k k L dντ ξ ξ∆  −∂ ∂ ≈ ⋅ − ⋅    (9) 224 

 225 
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where ( ) [ ]* , 0,1k ξ ξ ∈  plays the role of an absorption rate (the unit of 
*

k  is cm-1) that governs the 226 

behavior of ( ),1 11 lnPk L Lντ ∆− ⋅∂ ∂  with respect to the gas path length L.  227 

Following Eq. (9), ( ),1 11 lnPk L Lντ ∆− ⋅∂ ∂  is thus a Laplace transform. 228 

 229 

In a neighborhood of a length 
0L  chosen in the range  ( ) ( )min max,L Lε ε   , application of the mean 230 

value theorem to the integral of Eq. (9) ensures the existence of a real ( ) [ ]0 0,1X L ∈  such that: 231 

 232 

 
( ) ( )( )1 0 *

0 0

,1

ln1
exp

P

L
k X L L

k L

ντ ∆∂
− = − ⋅  ∂

 (10) 233 

 234 

For a small positive increment 
0Lδ , using again the mean value theorem and limiting the analysis 235 

to a first order expansion in 
0Lδ , we receive the following approximation: 236 

 237 

 

( ) ( ) ( )( )
( ) ( )

1 0 0 *

0 0 0 0

,1

1 0

1 0 0

,1

ln1
exp

ln1
exp

P

P

L L
k X L L L L

k L

L
s L L

k L

ν

ν

τ δ
δ δ

τ
δ

∆

∆

∂ +
− = − + ⋅ +  ∂

∂
≈ − ⋅ − ⋅  ∂

 (11) 238 

 239 

where, by reorganizing Eq. (11) and taking the limit 
0 0Lδ → : 240 

 241 

 ( ) ( ) ( )
( )

2 2

1 0 1 0

1 0

,1 1 0

ln lnln 1

ln
P

L L L L
s L

L k L L L

ν ν

ν

τ τ
τ

∆ ∆

∆

 ∂ = ∂ ∂∂= − = − ∂ ∂ ∂ ∂  
 (12) 242 

 243 
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Moreover, one can notice that as ( ),1 11 lnPk L Lντ ∆− ⋅∂ ∂  is a Laplace transform, it is log-convex 244 

[18]. This provides, following the definition Eq. (12), that ( )1 0s L  is a positive and decreasing 245 

function of 
0L : 246 

 247 

 ( ) ( )1 0 10 0s L s≤ ≤  (13) 248 

 249 

The derivation provided in this section shares many similarities with SNB models, as the two 250 

approaches are founded on the same starting point (a spectrum is assumed to be the superposition 251 

of N statistically independent overlapping spectral lines). However, as our objective here is to 252 

provide proofs of Eqs. (11) and (13), that are the only results needed for our development, all 253 

additional assumptions required by SNB models [1] (choice of a distribution of linestrengths and of 254 

a line profile, assumption that spectral lines are fully included in ν∆  and that the number of spectral 255 

line N tends towards infinity) are not needed. It can be checked easily that the property “256 

( ),1 11 lnPk L Lντ ∆− ⋅∂ ∂  is a Laplace transform” applies to standard SNB model formulations, as 257 

particular cases of the present derivation. 258 

 259 

2.2. The concept of quasi-scaled spectra 260 

This section is devoted to a description of the concept of quasi-scaled spectra, used in the present 261 

work to construct an approximation of ( )1 2 Lντ ∆
�l as described in section 2.3. 262 

The concept of quasi-scaled spectra is among the most important ones in the l-distribution approach, 263 

at least as essential as that of “correlated” spectra in non-uniform k-distribution modeling, as they 264 

both consist of statistical models of relationship between gas spectra in distinct thermophysical 265 

states. We say that two spectra represented respectively by an index 1 and 2 are quasi-scaled if, by 266 

writing 
,2 ,1 uν ν νκ κ= ⋅  where uν  is the non-constant scaling coefficient between the two gas spectra, 267 
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,1νκ  and uν  are statistically independent. In this case, we obtain the following relationship between 268 

the transmissivities in the two states averaged over the spectral interval ν∆ : 269 

 270 

 ( ) ( ) ( )
1

2 ,2 1

0

1
expL L d u L dν ν

ν
ν

τ κ ν τ ξ ξ
ν

∆ ∆

∆

= − =   ∆    (14) 271 

 272 

where ( ) [ ], 0,1u ξ ξ ∈ , is the inverse of the distribution function ( )F u  of the spectral variable uν . 273 

The concept of quasi-scaling was studied in depth in Ref. [19]. In this reference, it was verified that 274 

within the assumption of quasi-scaled spectra, an approximation of the transmissivity of a non-275 

uniform path involving both states 1 and 2 can be obtained as: 276 

 277 

 ( ) ( ) ( )
1

12 1 2 1 1 2 1 1 1 2 2

0

,L L L u L d L Lν ν ν ντ τ ξ ξ τ τ∆ ∆ ∆ ∆ = + ≈ +     �l  (15) 278 

 279 

where 
1l  is the inverse of the transmissivity function 

1

ντ ∆  defined as ( )1 1 L Lντ ∆ =�l  for any gas path 280 

length L. This formalism is almost the same as a technique proposed by Godson in the 50s [20] but, 281 

due to the quasi-scaling assumption, the present approach is more restrictive as explained in Refs. 282 

[16,17]. A theoretical justification of the approximation set by Eq. (15) is provided later in this 283 

paper. 284 

 285 

2.3. Lévy-Khintchine representation of ( )1 2 Lτ�l  in the case of weakly non-constant scaling 286 

coefficients ( ) [ ] [ ]min max, , 0,1u u uξ ξ∈ ∈  where max min minu u u− << . 287 

Several analytical functional forms for ( )1 2 Lντ ∆
�l  were studied recently [9,19]. They were however 288 

restricted to rather simple cases (gas spectrum in state 1 was gray, for instance, in Ref. [19]). In the 289 

next two sections we consider the general situation. For this purpose, we first treat an intermediate 290 
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problem for which the non-constant scaling coefficient ( ) [ ], 0,1u ξ ξ ∈  takes values inside a small 291 

interval [ ]min max,u u , max min minu u u− << . The corresponding result is then generalized to arbitrary 292 

situations.  293 

 294 

We consider a value ξ  inside the interval [0,1]. The transmissivity ( )1 u L
ντ ξ∆     can be written as: 295 

 296 

( ) ( )( ) ( ) ( )( )min

min

1 1 1

1

0 0

ln ' ln ' ln '
exp ' exp ' exp '

' ' '

u L u Lu L

u L

L L L
u L dL dL dL

L L L

ξ ξν ν ν
ν τ τ τ

τ ξ
∆ ∆ ∆

∆
    ∂ ∂ ∂

= = ⋅        ∂ ∂ ∂        
  297 

  (16) 298 

 299 

or equivalently: 300 

 ( ) ( ) ( )( )

min

1

1 1 min

ln '
exp '

'

u L

u L

L
u L u L dL

L

ξ ν
ν ν τ

τ ξ τ
∆

∆ ∆
 ∂

= ⋅     ∂  
  (17) 301 

 302 

The change of variable ( ) ( ) minv u uξ ξ= −  (notice from this definition that ( ) 0ν ξ ≥ ) together with 303 

Eq. (11) then provides (function s1 is defined in Section 2.2): 304 

 305 

 ( ) ( ) ( ) ( ) ( )
( )

1 min1 min

1 1 min

1 min

1 expln
exp

'

s u L v Lu L
u L u L

L s u L

ν
ν ν ξτ

τ ξ τ
∆

∆ ∆
 − − ⋅ ∂  ≈ ⋅ ⋅      ∂ 

 (18) 306 

 307 

As the width of the interval [ ]min max,u u  is assumed small, one can write: 308 

 309 

 ( ) ( ) ( ) ( )1 min 1 1 max 1 minu L u L u L u L
ν ν ν ντ τ ξ τ τ∆ ∆ ∆ ∆≥ ≥ ≈    (19) 310 

 311 
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that allows using the following approximation: 312 

 
( )

( )
( )

( )
1 1

1 min 1 min

ln 1
u L u L

u L u L

ν ν

ν ν

τ ξ τ ξ
τ τ

∆ ∆

∆ ∆

       ≈ − + 
 
 

 (20) 313 

 314 

Eq. (20) provides, when combined with Eq. (18): 315 

 316 

 ( ) ( ) ( ) ( ) ( )
( )

1 min1 min

1 1 min

1 min

1 expln
1

'

s u L v Lu L
u L u L

L s u L

ν
ν ν ξτ

τ ξ τ
∆

∆ ∆
 − − ⋅ ∂  ≈ ⋅ +      ∂ 

 (21) 317 

 318 

This estimate of the transmissivity ( )1 u L
ντ ξ∆     can then be plugged into Eq. (14) to yield: 319 

 320 

 ( ) ( ) ( ) ( ) ( )
( )

1
1 min1 min

2 1 min

1 min0

1 expln
1

'

s u L v Lu L
L u L d

L s u L

ν
ν ν ξτ

τ τ ξ
∆

∆ ∆
 − − ⋅ ∂  ≈ ⋅ + ⋅ 
 ∂ 

  (22) 321 

 322 

This result can be equivalently written in terms of the inverse of the band averaged transmissivity 323 

1

ντ ∆  as: 324 

 ( ) ( ) ( )
( )

1
1 min

1 2 min

1 min0

1 exp s u L v L
L u L d

s u L

ν ξ
τ ξ∆ − − ⋅  ≈ + �l  (23) 325 

 326 

Using Eq. (23) directly is not convenient because it involves the quantity ( )1 mins u L  that depends on 327 

the gas path length L. No simple model for ( )1 mins u L  seems to be available in the general frame 328 

(see its definition, Eq. (12)). Consequently, in order to simplify the model, we rewrite Eq. (23) as: 329 

 330 

 ( ) ( ) ( ) ( )
( )

1
1

1 2 min

10

1 exp 0
1

0

s v L
L u L L d

s

ν ξ
τ ϕ ξ∆ − − ⋅  ≈ ⋅ + +   �l  (24) 331 
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where: 332 

 ( ) ( ) ( )
( )

( ) ( )
( )

1 1
1 min 1

min 1 min 10 0

1 exp 1 exp 01

0

s u L v L s v L
L d d

u L s u L s

ξ ξ
ϕ ξ ξ

 − − ⋅ − − ⋅       = ⋅ − 
  
   (25) 333 

 334 

The difference between the two integrals inside the brackets in Eq. (25) can be written as a double 335 

integral to yield: 336 

 337 

( ) ( ) ( ) ( ) ( ) ( )( )
1 1

min
1 min 1

min min0 0

1

1
0 exp exp 0 1

u u
L v s u L v Lt s v Lt dt d

u u
ϕ ξ ξ ξ ξ

≤

  −≤ = ⋅ ⋅ − ⋅ − − ⋅ ≤ <<       
 

 
�������������������������

 338 

  (26) 339 

 340 

The first inequality (on the left, viz. positivity) arises directly from application of the relationship 341 

Eq. (13) that provides, for any (obviously positive value) of the product ( ) Ltν ξ , 342 

( ) ( ) ( ) ( )1 0 min 1exp exp 0s L u L Lt s Ltν ξ ν ξ− = ⋅ ≥ − ⋅       . In Eq. (26), ( )
1

0

u u dξ ξ=   is the mean 343 

scaling coefficient equal to the ratio of the Planck mean absorption coefficients in states 1 and 2 344 

(value at the optically thin limit). 345 

 346 

Eq. (26) proves that Eq. (24) can be reasonably approximated as: 347 

 348 

 ( ) ( ) ( )
( )

1
1

1 2 min

10

1 exp 0

0

s v L
L u L d

s

ν ξ
τ ξ∆ − − ⋅  ≈ + �l  (27) 349 

 350 

that does not depend anymore on ( )1 mins u L . The parameter ( )1 0s  that appears in Eq. (27) can be 351 

estimated directly from LBL data following its definition: 352 
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 353 

 ( ) ( )
( ) ( )

2 2
2,11

1 ,1 ,1 ,1 ,1 ,1

1 ,1

ln 0 1 1
0 , ,

ln 0

SP

P P SP

P

kL
s k k d k d

L k

ν

ν νν
ν ν

τ
κ ν κ ν

τ ν ν

∆

∆
∆ ∆

∂ ∂
= − = − = ⋅ = ⋅

∂ ∂ ∆ ∆    354 

  (28) 355 

 356 

In Eq. (28), 
P

k  is the Planck mean absorption coefficient, whereas 
SP

k  denotes Super Planck mean 357 

absorption coefficient [1]. These two mean absorption coefficients are both calculated in state 1 in 358 

Eq. (28). 359 

 360 

One can notice here that if the same assumptions and steps as used in this section are used to evaluate 361 

( )1 12 1 2,L Lτ�l , where ( )12 1 2,L Lτ  is defined as the first term at the RHS in Eq. (15), one obtains: 362 

 363 

 ( ) ( ) ( )
( ) ( )

1
1 2

1 12 1 2 1 min 2 1 1 2 2

10

1 exp 0
,

0

s v L
L L L u L d L L

s

ν νξ
τ ξ τ∆ ∆− − ⋅  ≈ + + = +� �l l  (29) 364 

 365 

Proving this statement mostly requires changing all the occurrences ( ) (resp. )minu L u Lξ  by 366 

( )1 2 1 2(resp. )minL u L L u Lξ+ +  in Eqs. (16-26). This modification only affects the definition of 367 

function ϕ . This function remains however small compared to 1, yielding Eq. (29). This provides, 368 

a posteriori, a theoretical justification of the approximation set by the second part of Eq. (15).  369 

 370 

Eq. (27) also shows that ( )1 2 Lντ ∆
�l  is a Bernstein function [21] (also called Laplace exponent of a 371 

Lévy subordinator in statistical science), viz. a function whose derivative is a Laplace transform. 372 

Formula (27) is the Lévy-Khintchine representation of this Bernstein function. It has the same 373 

mathematical form in the general case as in the previously treated simpler situations of Refs. [9,19]. 374 
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This appurtenance of  ( )1 2 Lντ ∆
�l  to the family of Bernstein functions is central in the extension of 375 

the case treated in this section, that implicitly assumes that the two states 1 and 2 are close to each 376 

other, to more general scenarios. This generalization is discussed in the next section. 377 

 378 

2.4. General case 379 

It was shown in Ref. [19] that the quasi-scaling assumption is reasonable when the thermophysical 380 

states 1 and 2 are close to each other. This constraint is not verified in general radiative transfer 381 

calculations for which large gradients of temperature, pressure and species concentrations may be 382 

encountered along a radiation path. However, for any given couple of states 1 and 2, we can assume 383 

that there exists a sequence of N (finite) close intermediate states {1}=1, {2},..{N-1},{N}=2 such 384 

that gas spectra between any couple of states {i} and {i+1} follow the assumptions of section 2.3. 385 

In this case, using these intermediate states, one can write: 386 

 387 

 ( ) { } { } ( ) { } { } { } { } { } { } ( )( )1 2 1 1 2 2 3 1
...

N N N
L L L

ν ν ν ν ντ τ τ τ τ∆ ∆ ∆ ∆ ∆
−

  = =    
� � � � �l l l l l   (30) 388 

 389 

i.e., function ( )1 2 Lντ ∆
�l  can be constructed as the composition of N-1 intermediate functions. As 390 

gas spectra between any couple of states {i} and {i+1} follow the assumptions of section 2.3, by 391 

construction, all functions { } { }1
, 1,.., 1

i i
i N

ντ ∆
+ = −�l  in Eq. (30) are of the Bernstein type. Their 392 

combination is thus also a Bernstein function [21], viz. of the form of Eq. (27). This property on 393 

combinations of Bernstein functions thus allows generalizing very straightforwardly our physical 394 

model of section 2.3 to more general situations. Notice that if the functional form of the solution is 395 

known at this level, the set of states {2},..{N-1} is unknown. Its specification can be avoided by 396 

using tools from statistical learning, as explained in the next section. The method proposed to derive 397 

the model parameters from high resolution LBL data is adapted from Ref. [9] and is first described 398 

in this specific application context. The model set by Eqs. (15,27) is then applied to atmospheric 399 
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calculations. Comparisons with reference LBL calculations over non-uniform atmospheric paths are 400 

then provided. 401 

 402 

  403 
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3. APPLICATION 404 

 405 

In this section, we compare non-uniform atmospheric transmissivities obtained by application of 406 

Eq. (27), combined with the propagative scheme of Eq. (3), with simulations obtained by the l-407 

distribution method based on mapping functions, as used for instance in Ref. [17]. These two 408 

methods are assessed against reference LBL calculations. Results of CKD models for various 409 

numbers of gray gases are also provided for completeness. All model parameters are constructed 410 

with the help of the same high resolution LBL data. Water vapor was chosen for the present analysis 411 

and the Mid Latitude Summer profile was selected. This profile is discretized in 49 uniform layers 412 

between 0 km (ground) and 120 km (top of the atmosphere). The METimage / EPS-SG channel 413 

VII-20 optical filter (that defines a spectral range that extends from 10579.7715 cm-1 up to 414 

11312.2172 cm-1) is considered in the calculations. The spectral resolution of the LBL calculation 415 

is 0.01 cm-1 (the spectral band thus contains 73,245 values of wavenumbers). Section 3.1 is devoted 416 

to the analysis of two-layers systems. Its main objective is to demonstrate the relevance of Eq. (27) 417 

for the calculation of ( )1 2 Lντ ∆
�l  and to show how the unknown quantities in the model can be 418 

obtained by regression using a standard algorithm from the machine learning community. Section 419 

3.2 describes preliminary results of a prototype code used to extend the results of section 3.1. to real 420 

non-uniform atmospheres made of n higher than 2 uniform sub-layers. In the same section 3.2, 421 

additional test cases related to oxygen in the A-band as well as a mixture of CO2, H2O and O3 are 422 

also treated. For these supplementary cases, the optical filters of METimage / EPS-SG channel VII-423 

16 and METimage / EPS-SG channel VII-39 were selected respectively for O2 and the CO2-H2O-424 

O3 mixture. The test cases considered are limited to purely absorbing atmospheres but extension of 425 

the method to scattering atmospheres can be made in exactly the same way as described in Ref. [17]. 426 

 427 

 428 

 429 
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3.1. Analysis of two-layers configurations 430 

The objective of the present section is to study the validity of the functional form set by Eq. (27) to 431 

treat two-layers configurations. For this purpose, the estimation of the unknown coefficients of the 432 

model in the case of two-layers systems, that is to say the parameters 
minu  and ( )*v ξ , is first made 433 

by applying the following steps: 434 

Step 1/ for regression purpose, we select the following approximation of ( )1 2 Lντ ∆
�l  derived in 435 

Appendix II (Eq. (II.4)) and rigorously equivalent to Eq. (27): 436 

 437 

 ( ) ( ) ( ) ( )
( ) ( )

*1
1

1 2 min min *

10

1 exp 0

0

s v L
L u L u u d

s v

ν ξ
τ ξ

ξ
∆

 − − ⋅ ≈ + − ⋅
⋅�l  (31) 438 

 439 

that we approximate, using a Gauss Legendre quadrature to calculate the integral that appears at the 440 

RHS (see Eq. (II.5)), as: 441 

  442 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

*

*

1 2 1 2 min min min *
1

1 exp 0
, ;

0

N
i

i i

i i

s v x L
L u v x L u L u u

s v x

ν ντ τ ω∆ ∆

=

 − − ⋅  ≈ = + − ⋅  ⋅� �l l  (32) 443 

 444 

The order of the Gauss Legendre quadrature (whose weights and nodes are written 
i

ω  and 
i

x  445 

respectively) was set to 16, as suggested in Ref. [9]. The main interest of this choice of functional 446 

form for ( )1 2 Lντ ∆
�l  is that the initialization of the parameters to adjust is straightforward, as 447 

discussed in Appendix II. 448 

Step 2/ a loss function L is defined: 449 

 450 
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( ) ( ) ( )( ) ( )

( ) ( )( )

2
* *

min 2 1 1 2 min 2

0

1
2

*

1 1 2 min 2

0

, , ;

, ;

i i

i

u v x L u v x L d L

u v x d

ν ν ν ν

ν ν

τ τ τ τ

ξ τ τ ξ ξ

+∞
∆ ∆ ∆ ∆

∆ ∆

    = −    

  = −   





�

�

l

l l

L

 (33) 451 

 452 

The integral from 0 to 1 is calculated, using a uniform discretization of the unit interval, as: 453 

 454 

  ( ) ( ) ( )( ) 2
* *

min 1 1 2 min 2

1

1
, , ; ,

J

i j i j j

j

j
u v x u v x

J J

ν νξ τ τ ξ ξ∆ ∆

=

    = − =     �l lL  (34) 455 

 456 

Application of the previous definition of the loss function requires evaluating the set of lengths 457 

( ) ( )2 2 , 1,j j J j Jξ = =l l . These quantities are calculated using high resolution (200,000 points) 458 

mapping functions together with the “standard” l-distribution model formulation (see Ref. [15] for 459 

details). Mapping functions at the same high resolution are also used to calculate the transmissivity 460 

functions in state 1, i.e., 
1

ντ ∆ , as required by Eq. (34). In our calculations, the total number of lengths 461 

along the transmission curves was set to J=20,000.  462 

Step 3/ the loss function is minimized using ADAM’s [22] method. ADAM is a first-order gradient 463 

optimization method based on adaptative estimates of lower-order moments. An ADAM code using 464 

explicit gradients (simple to evaluate analytically using the definitions of Eqs. (32,34)) was written 465 

in Fortran 90. The learning rate was set to 0.5 (rather standard value used in ADAM) and a simple 466 

learning decay rate strategy was applied (for every step along the learning process where the loss 467 

function increases, the learning rate is decreased by 0.05 percent – this simple strategy was found 468 

to accelerate the convergence of the optimization process). The solution is attained when the loss 469 

function between two successive iterations does not change from more than 10-4 %. In general, this 470 

level of convergence is attained after a few dozen of thousands of iterations. Notice that in this 471 

section, our objective is to validate Eq. (27), reason why such a strong convergence criterion was 472 
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selected. In the optimization code, the following constraints are set to follow the definition of this 473 

variable: ( )*
0, 1,iv x i N> = .  474 

 475 

Results of the model after optimization of its parameters are depicted in Figures 1, 2 and 3 for layers 476 

between 0 (ground surface) and 16 km. Preliminary numerical tests (not depicted here) have shown 477 

that, in these cases, errors of more than a few percent of the full transmission scale can be observed 478 

if a single scaling coefficient (either based on the optically thin limit, viz. defined as the ratio of 479 

Planck mean absorption coefficients, or at the optically thick limit, for which the minimum value of 480 

scaling coefficient over the band is obtained) is used: gas spectra are thus not rigorously scaled in 481 

the configurations treated. However, in all cases of Figure 1-3, the residual defined as the difference 482 

( ) ( ) ( )( )*

2 2 1 1 2 min , ;ir L L u v x L
ν ν ν ντ τ τ τ∆ ∆ ∆ ∆   = −   �l  is lower than 10-4 indicating the relevance of 483 

the functional form set by Eq. (II.5), and thus as an extension of the model of Eq. (27), to calculate 484 

( )1 2 Lντ ∆
�l . The quality of the approximation shows, indirectly, that if all the assumptions made to 485 

construct Eq. (27) are probably not rigorously verified, they are sufficiently realistic to provide 486 

relevant and accurate estimates of ( )1 2 Lντ ∆
�l .  487 

 488 

 489 
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 490 

Figure 1. Residuals at the end of the fitting process for two-layers systems (for layers 1 to 5) – loss 491 

function given by Eq. (33). 492 

 493 

 494 

 495 

Figure 2. Residuals at the end of the fitting process for two-layers systems (for layers 6 to 10) – 496 

loss function given by Eq. (33). 497 

 498 
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 499 

Figure 3. Residuals at the end of the fitting process for two-layers systems (for layers 11 to 15) – 500 

loss function given by Eq. (33). 501 

 502 

It is important to notice that at some locations along the non-uniform atmosphere, especially at high 503 

altitudes where the gaseous absorption is small, the set of input lengths  ( ) ( )2 2 , 1,j j J j Jξ = =l l  504 

required for the optimization may take rather unrealistic values (for instance, for layer 20 which is 505 

20 km above the ground surface, the length required in the selected case of water vapor to absorb 506 

1% of the incident radiation, i.e., the length to reach a value of transmissivity of 0.99, is higher than 507 

3000 km which is rather unrealistic for standard Earth remote sensing applications). In this case, the 508 

loss function is adapted to restrict the range of values of ( )2 Lντ ∆
 to the Optically Thin Limit 509 

(exponent OTL): 510 

 511 

 ( ) ( ) ( )( )
min

1
2

* *

min 1 1 2 min 2, , ;OTL

i iu v x u v x d
ν ν

τ

ξ τ τ ξ ξ∆ ∆    = −     �l lL  (35) 512 

 513 
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For the construction of Figure 4, that considers layers at altitudes located between 16 and 21 km, 514 

the value 
minτ  was set to 0.9. This choice means that in the regression process, only the values of 515 

gas path lengths such that ( )2 min 0.9Lντ τ∆ ≥ =  are considered to evaluate the model’s coefficients 516 

minu  and ( )*v ξ . With this new loss function, very low residuals (absolute value of maximum is 517 

below 1.1x10-6) are obtained at high altitudes as shown in Figure 4: the model set by Eq. (27) thus 518 

remains valid.  519 

 520 

Figure 4. Residuals at the end of the fitting process for two-layers systems (for layers 16 to 20) – 521 

Adjustment of the coefficients at the OTL (loss function defined by Eq. (35)). 522 

 523 

3.2. Generalization to n-layer configurations 524 

In the previous section, we have restricted our analysis to two-layers systems. We have shown that 525 

the proposed functional form Eq. (27) provides, after an appropriate adjustment of the models’ 526 

coefficients, an accurate approximation of ( )1 2 Lντ ∆
�l . In the present section, we treat the more 527 

general case of non-uniform atmospheres made of n (higher than 2) layers. For this purpose, we 528 

have combined the iterative scheme of Eq (3) with Eq. (27). This allows constructing a function of 529 

the n lengths encountered along a non-uniform atmosphere made of n distinct uniform layers. This 530 



 

27 

function can be trained over non-uniform path transmissivities following a logic similar to the one 531 

described in the two-layers configurations of Section 3.1. But, in this case, the total number of 532 

parameters to optimize is not 17 anymore but 17 (n-1) (the value n-1 arises from the fact that in the 533 

recurrent process, only n-1 functions of the form of Eq. (27) are used as shown in Eq. (3)). The 534 

prototype code to generate the model’s coefficients was written in Python using the PyTorch library. 535 

The construction of the set of parameters for the n-layer system was done applying the following 536 

steps (we provide here the main logic, as a proof of concept): 537 

Step #1: a rough analysis of two-layers systems is first performed. ADAM method as provided in 538 

PyTorch is used to improve the initial set (constructed in exactly the same way as in 3.1) but the full 539 

convergence is not sought out in order to reduce the CPU cost. ADAM method is run for each couple 540 

of layers for 500 iterations. This process is parallelized on 48 processors (one processor for each 541 

couple of layers). 542 

Step #2: at this level, we have a rough estimate of the model parameters. The full set of coefficients 543 

is re-adjusted on non-uniform path transmissivities calculated with the help of the l-distribution 544 

method based on mapping functions. For this purpose, approximations of non-uniform path 545 

transmissivities using the l-distribution method are selected every 500 m (the full atmosphere has a 546 

length of 120 km) and several relative air mass (1, 2, 4, 8, 16 and 24) are considered. The total 547 

number of input data (values of non-uniform path transmissivities) used for the training process is 548 

thus 1,440. 549 

Step #3: non-uniform path transmissivities based on the l-distribution method, as used in Step #2 to 550 

train the full model, are replaced by transmissivities evaluated LBL. The training set is constructed 551 

using the same method as for the l-distribution training of Step #2 and also contains 1,440 values of 552 

non-uniform path transmissivities. The main difference between Step #2 and Step #3 is that Step #2 553 

uses non-uniform path transmissivities evaluated with the help of the l-distribution model whereas 554 

in Step #3 reference LBL calculations are used. 555 
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Step #4: once the set of parameters is considered sufficiently close to the optimal solution, the 556 

Bernstein functions Eq. (27) are used to update the mapping functions required by the l-distribution 557 

method. This allows constructing a model that has the same accuracy as after Step #3 but with a 558 

minimal CPU cost. The model at this level is called Augmented l-distribution. Additional details on 559 

the transition between Steps #3 and #4 are provided in Appendix III. A diagram that summarizes 560 

the various steps of the process is given in Figure 5. 561 

 562 

 563 

 564 

Figure 5. The several steps of the regression process. Input data (LBL spectra and optical filter) 565 

are on the top left – output data (coefficients of the Lévy-Khintchine (LK) formula all along the 566 

atmosphere) are on the bottom right. Step #4 is not depicted on the figure. 567 

 568 

Figure 6 depicts results of comparisons for several values of Relative Air Mass, from 1 (single path 569 

in the non-uniform atmosphere) up to 24 (relationships between RAM values and angles between 570 

the incident radiation and the Earth surface can be found, for instance, in Ref. [17]). This figure 571 
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illustrates how the quality of the model (measured in terms of the relative error of the model 572 

compared with reference LBL calculations) evolves after each step of the process.  573 

 574 

 575 

Figure 6. Evolution of the relative errors of the model at various stages of the training process. 576 

 577 

In Figure 6, the top layer shows LBL transmission curves over the non-uniform atmospheres. At a 578 

given distance from the ground surface (abscissa), it depicts the transmissivity of the path between 579 

the top of the atmosphere and this location / abscissa. 580 

The second layer (starting again from the top) displays results of the “standard” l-distribution model 581 

based on mapping functions, as described in Refs. [15,17].  The accuracy of the method is rather 582 

satisfying, with relative differences lower than 0.8% when compared with reference LBL 583 

calculations. 584 

The third layer was constructed using directly the outputs of Step #1 (parameters adjustments on 585 

two-layers systems) combined with the iterative scheme of Eq. (3). Results are very close to those 586 

of the l-distribution model based on mapping functions (second layer), but not rigorously the same. 587 
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After Step #2 (fourth curve), the outputs of the “standard” l-distribution model and the combination 588 

of Eqs. (3,27) are virtually undistinguishable. This results can be explained by two factors: 1/ the 589 

second training stage of Step #2 improves the initial learning stage of Step #1, which was probably 590 

not pursued long enough to reach a full convergence, 2/ very likely, as only the set of lengths actually 591 

used in the radiative transfer calculation are considered in the training, local adjustments are made 592 

that allow improving further the model’s accuracy (in the same way, local adjustments at the OTL 593 

were found to provide a slightly higher accuracy than if the full range of Eq. (33) was used in Section 594 

3.1).  595 

The fifth layer depicts results after Steps #3 and #4 (notice that when high resolution mapping 596 

functions are constructed, as is the case here where 20,000 points are used for each updated mapping 597 

function, results of Steps #3 and #4 are virtually identical). The gain in terms of accuracy compared 598 

to the “standard” l-distribution model is significant (a factor of about 2) but the two models used to 599 

construct the second and fifth layers share the same CPU cost (after Step #4). This figure illustrates 600 

the importance of the results described in the present work. Indeed, the use of the functional form 601 

Eq. (27) derived on the present paper together with the iterative scheme of Eq. (3) allows 602 

constructing a model of non-uniform path transmissivity that can reach a very high accuracy (of 603 

about 0.35 % when compared with LBL data) at a very low CPU cost (the CPU time to generate a 604 

full transmission curve, made of 1,200 values of non-uniform path transmissivities, is 0.1 ms on a 605 

single core of an Intel Xeon Silver 4214R 2.4 GHz processor).   606 

 607 

Eventually, one can notice that Figure 6 depicts results associated with the training set, obtained by 608 

considering the values of relative air mass of 1, 2, 4, 8, 16 and 24. In order to evaluate how the 609 

method extends to more general radiative transfer scenarios, we have generated model parameters 610 

(using steps from #1 to #4) over 6 standard atmospheric profiles (Mid-Latitude Summer and Winter, 611 

US standard, Tropical, Sub-Arctic Summer and Winter). Then, for a given value of relative air mass 612 

between 1 and 24 by unit step, we have searched over the full transmission curve (as already said, 613 



 

31 

1,200 values of non-uniform path transmissivities are estimated for a given RAM) the maximum 614 

relative error of the model when compared with reference LBL calculations. For comparison 615 

purpose, we have made the same calculations for two CKD models based on Gauss-Legendre 616 

quadratures at orders 64 and 256. Results are depicted in Figure 7 for H2O (same case as for Figure 617 

6), Figure 8 for O2 and Figure 9 for the mixture (treated as a single gas). The set of RAMs used for 618 

the training is depicted by small vertical rectangles (connected to the RAM axis) in Figures 7-9. 619 

 620 

 621 

Figure 7. Maximum relative errors / LBL for 6 standard atmospheres and values of relative air 622 

mass between 1 and 24 (case of water vapor). 623 

 624 

 625 

 626 
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 627 

Figure 8. Maximum relative errors / LBL for 6 standard atmospheres and values of relative air 628 

mass between 1 and 24 (case of oxygen A-band). 629 

 630 

 631 

 632 

Figure 9. Maximum relative errors / LBL for 6 standard atmospheres and values of relative air 633 

mass between 1 and 24 (case of CO2-H2O-O3 mixture). 634 

 635 
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From Figures 7 to 9, several conclusions and comments can be drawn: 636 

- The level of accuracy observed over the full set of RAMs indicates that the coefficients of 637 

the sequence of Bernstein functions generalize well, even when applied to cases outside the 638 

training set. The Augmented l-distribution model provides an accuracy higher than 0.35% 639 

for water vapor when assessed against reference LBL calculations, over the 6 standard 640 

atmospheres. It is below 0.35% for O2 and 0.20% for the mixture over the same set of cases. 641 

- In most cases, for water vapor (Figure 7), the accuracy of the Augmented l-distribution 642 

method is lower than a CKD model with 256 gray gases but higher than a CKD model with 643 

64 gray gases. This result cannot be considered as general (as illustrated by Figures 8 and 9) 644 

because the CKD model performs particularly well for H2O, as absorption by water vapor 645 

only occurs in the first gaseous layers close to the ground where almost no gradient of 646 

pressure and species concentrations is found (see the top layer of Figure 6: all the dynamics 647 

of the transmission curves is below 10 km).  648 

- Even if the Augmented l-distribution model provides a slightly lower accuracy for H2O than 649 

the CKD model with 256 gray gases, it outperforms this method in terms of calculation cost. 650 

Indeed, as shown in Ref. [17] where the “standard” l-distribution method was compared with 651 

CKD-256 k in realistic cloudy atmospheres, the CPU cost of Augmented l-distribution 652 

(which is the same as the l-distribution model of Ref. [15,17] as only the mapping functions 653 

differ between the two techniques) is about ten times lower than CKD-256 k. In many 654 

applications, the 0.35% accuracy of Augmented l-distribution method may be sufficient, 655 

considering the significant gain in terms of CPU cost of this technique compared with the 656 

more widely spread CKD model. 657 

- For the oxygen and mixture cases (Figures 8 and 9), the Augmented l-distribution model 658 

provides a higher accuracy than both CKD-64 k and CKD-256 k methods at a lower 659 

computational cost. 660 
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6. CONCLUSION 661 

 662 

This paper is the continuation and generalization of a recent paper dedicated to the use of recurrent 663 

methods to approximate non-uniform path transmissivities. A general formula was derived and 664 

found to yield exactly the same recurrent structure as in our previous work. This formula involves 665 

coefficients that have a clear physical meaning. However, they cannot be specified directly. A 666 

training process using as input LBL transmission curves was thus developed to allow the 667 

identification of the unknown coefficients of the proposed model. The non-uniform path 668 

transmissivity approximation was then assessed against reference LBL calculations and found to 669 

provide the same level of accuracy as the l-distribution model with high-resolution (20,000 values) 670 

mapping functions after a first training stage limited to the analysis of two-layers systems. A second 671 

regression scheme was then added in which LBL data were used directly for the training of the 672 

model’s coefficients. After this second step, the model was found to provide very accurate 673 

approximations of non-uniform path transmissivities, with errors lower than 0.35 % compared to 674 

LBL in all the cases considered. Adding this second learning stage was shown to have no impact on 675 

the CPU cost of the method, leading to an approximate technique that is among the most accurate 676 

and fastest in the field. 677 

 678 

Implications of the present results are numerous. From a practical perspective, the present technique 679 

allows reducing significantly the memory cost of the l-distribution method: indeed, look-up tables 680 

of Gr functions using 20,000 points can be condensed into 17 parameters which can be useful in 681 

terms of delivery of the model’s parameters. Moreover, it also increases significantly its level of 682 

accuracy (a factor of about 2 in terms of relative errors was obtained in this work). From a theoretical 683 

perspective, the present developments show that the copula model used in the l-distribution method 684 

is of the Levy Subordinated type. The method developed here can be, a priori, extended to any other 685 

LS-HAC copula models. The fact that a LS-HAC is obtained proves that the model embeds in its 686 



 

35 

structure some physical constraints about the derivatives of the transmissivity.  Eventually, the 687 

present work shows that the use of recurrent network structures to model non-uniform path 688 

transmissivities is not limited to the simplified l-distribution model treated in our previous paper but 689 

that this property extends to LBL input data as considered here. Additionally, this result is not 690 

limited to high temperature applications but it is shown to apply to atmospheric configurations too.    691 

 692 

 693 

 694 

  695 
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APPENDIX I. Proof of Eq. (9) 767 

 768 

The objective of this appendix is to provide a proof of Eq. (9). For this purpose, we first consider a 769 

single spectral line (index i) of the gas in state 1. The derivative of the transmissivity of this single line 770 

with respect to the gas path length L is (following a mathematical treatment similar to the one used in 771 

k-distribution methods): 772 

 773 

 ( ) ( ) ( )*
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 ∂ −∂
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  (I.1) 775 

 776 

where H is the Heaviside step function.  777 

The sum over all spectral lines, i.e. over all indices i, then provides: 778 
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 781 

Dividing both sides of Eq. (I.2) by the Planck mean absorption coefficient of the gas in state 1 yields: 782 
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It can be readily checked that ( )*
F k : 1/ is a strictly increasing function of the variables 

*
k , 2/ takes 786 

value 0 for 
* 0k =  and 1 for *

k = +∞ . ( )*
F k is thus a distribution [23]. This allows rewriting (using 787 

the inverse ( )*k ξ of ( )*
F k defined as ( ) [ ]* , 0,1F k ξ ξ ξ  = ∈  ): 788 

 789 
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1
exp
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 791 

Eq. (I.4) provides Eq. (9) when combined with Eq. (8). 792 

 793 

 794 

  795 
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APPENDIX II. Reformulations of Eq. (27) and their properties 796 

 797 

The objective of this second appendix is to derive two equivalent formulations of Eq. (27). It is 798 

motivated by the observation that even if Eq. (27) has strong implications in terms of the statistical 799 

analysis of the model (indeed, as the combinations of successive inverses of transmissivities and 800 

transmissivities are Bernstein functions, application of the recurrent scheme of Eq. (3) is equivalent to 801 

the construction of a Lévy Subordinated Hierarchical Archimedean Copula LS-HAC [24], for which 802 

the so-called sufficient nesting condition [25,26] is naturally fulfilled -  this “copula” view is not 803 

analyzed further in the present work but additional details can be found in Ref. [17]), Eq. (27) is neither 804 

the most convenient for regression purpose nor for a physical analysis of the model. Consequently, we 805 

derive here two equivalent formulations of Eq. (27) and illustrate how they can be used to provide an 806 

initialization of the regression scheme described in Section 3.1 and to a better understanding of the 807 

physical model described in this work. 808 

 809 

For this purpose, we first modify Eq. (27) into: 810 

 811 

 ( ) ( ) ( )
( ) ( ) ( )
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1 exp 0
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L u L v d
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 813 

Eq. (II.1) can be equivalently rewritten as: 814 

 815 
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 817 

that is to say, as ( ) ( )
1

min min

0

1
' 'v d u u d u uν

ν

ξ ξ ν
ν ∆

= ⋅ − = −
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 820 

The quantity ( )*F ξ  is a distribution over the unit interval. This provides: 821 

 822 
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 824 

where ( ) ( ) ( ) [ ]1
* * , 0,1v v Fξ ξ ξ

−
= ∈� . 825 

Using a Gauss Legendre quadrature at order N to approximate the integral over [0,1] that appears 826 

in Eq. (II.4), we obtain: 827 

 828 
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 830 

where , 1,
i

i Nω =  and , 1,
i

x i N=  are respectively the weights and nodes of the Gauss Legendre 831 

quadrature. 832 

Eq. (II.5) can be compared with Eqs. (19,29) from Ref. [9] that yields, in the case of gas spectra that 833 

follow rigorously the assumptions of the SNB model for Lorentz lines with Malkmus’ distribution of 834 

linestrengths: 835 
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where (see Ref. [9]) parameters ( ) , 1,iu x i N=  are obtained as solutions of the implicit equations (P 839 

is the incomplete gamma function [27]): 840 

 841 

 ( ) ( ) ( ) ( )1

0

1
1 2 ; , ; exp

u

a

i i
P u x x P a u t t dt

a

−= = ⋅ −   Γ   (II.7) 842 

 843 

Based on this result, we can use the formal analogy between Eqs. (II.5) and (II.6) to initialize the 844 

regression scheme by setting, at the first step of the minimization process: 1/ ( )min ,2 ,1u Min ν νκ κ← , 845 

and 2/ ( ) ( ) ( ),2*

2 1

1

0

P

i i

k
v x u x

s

α π
β

⋅
← ⋅ ⋅ with 2α =  at the OTL (in this case the model of Eq. (II.6) is 846 

almost exact [1,16,28]) and 4α =  when the full range of lengths is used (this value of 4α =  was 847 

found in practice to provide slightly more accurate results than 2α =  when the loss function is defined 848 

by Eq. (33)). Selecting the value 
,2 2

min

,1 1

P

P

k
u

k

β
β

←  as suggested by Eq. (II.6) was not found to yield, in 849 

the treated cases, significant differences with ( )min ,2 ,1u Min ν νκ κ← . Additional details about the 850 

regression method are given in Section 3.1. 851 

 852 

Moreover, Eq. (II.4) can be written as: 853 

 854 
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 856 

The quantity inside the integral at the RHS can be itself written as an integral to yield: 857 

 858 
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Introducing the path dependent / effective scaling coefficient ( )u L  such that ( ) ( )1 2 L u L Lντ ∆ = ⋅�l , 860 

we eventually obtain (in the next equation as well as in Eq. (II.9), variable t is a dummy variable 861 

only required to reformulate the integral. It has no physical meaning and no unit): 862 

 863 

 ( ) ( ) ( ) ( )
1 1

*

min min 1

0 0

exp 0u L u u u s v Lt d dtξ ξ ≈ + − ⋅ − ⋅    (II.10) 864 

 865 

This relationship shows that the effective scaling coefficient is a decreasing function of the gas path 866 

length. It provides the proper asymptotic limits of the quasi-scaled model at the optically thin (u  for 867 

small values of L) and thick (
minu  for large values of L) limits. Moreover, as the double integral 868 

decreases with respect to L, we have ( )u L u≤  and thus: 869 

 870 

 ( ) ( ) ( )2 1 1L u L L uL
ν ν ντ τ τ∆ ∆ ∆= ⋅ ≥    (II.11) 871 

 872 

This result is consistent with the following inequality (application of Jensen’s inequality to the 873 

transmissivity function 
1

ντ ∆ ): 874 
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APPENDIX III. Analysis of the transition from Step #2 up to #4 of section 3.2 878 

 879 

The objective of this appendix is to provide details about the transition between the regression scheme 880 

of Step #2 described in section 3.2 (based on adjustment of the parameters on solution of a “standard” 881 

l-distribution model), Step #3 (regression on non-uniform path LBL transmissivities) and Step #4 882 

(update of the mapping functions used in the “standard” l-distribution formulation). 883 

 884 

As can be seen on the fourth layer of Figure 6, the “standard” l-distribution model provides an estimate 885 

of the non-uniform path transmissivity as: 886 

 887 

 ( ) ( )1.. 1 1 1..,..,n n nL L Lν ντ τ∆ ∆≈  (III.1) 888 

 889 

where 
1..nL  is obtained by the following recurrent process: 890 
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 893 

in which (for instance for the couple of layers 1 and 2): 894 

 895 
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 898 

The third step of section 3.2 consists of an adjustment of all the parameters involved in the recurrent 899 

scheme on non-uniform LBL data. This produces a new estimate: 900 
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 901 

  ( ) ( )1.. 1 1 1..
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L L L
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 903 

where 
1..nL
+  is obtained by the following recurrent process: 904 
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 907 

in which (for instance for the couple of layers 1 and 2): 908 
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 911 

In general, as can be seen by comparing the fourth and fifth layers of Figure 6: 912 

 913 

 ( ) ( )1 1.. 1 1..n n
L L

ν ντ τ∆ ∆ +≠  (III.7) 914 

 915 

Let us now consider the case for which all lengths are set to 0 except in layer i chosen arbitrarily in 916 

{2, N}. We have: 917 

 918 
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 920 

and thus: 921 

 922 
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 ( ) ( )1 1..n i iL Lν ντ τ∆ ∆=  (III.9) 923 

 924 

For the same set of lengths, we have: 925 

 926 

 ( ) ( )1.. 1.. 1 2 1 2 10, 0,.., ,.., 0 ..n n i n i iL L L L L L Lλ λ λ+ +
−= = = = = � � �  (III.10) 927 

 928 

that leads to: 929 

 930 

 ( ) ( ) ( ) ( )1 1.. 1 1 2 1
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n i i i i i i
L L L L

ν ν ντ τ λ λ λ τ τ∆ + ∆ + ∆
−= = ≠� � � �  (III.11) 931 

 932 

The use of the propagative scheme set by Eq. (III.5) instead of Eq. (III.2) does not allow recovering 933 

the transmission curves encountered along the non-uniform path but generates a new set of functions 934 

iτ +  of the gas path lengths , 2,..,
i

L i n= . These functions are obtained as the combination of 935 

Bernstein functions (that also provides a Bernstein function [21]) and of a Laplace transform (the 936 

true transmissivity in the first layer, as seen in Eq. (III.11)): 
iτ + are consequently Laplace transforms 937 

too. These new functions are strictly decreasing and thus invertible. Let us write 
i

+
l  these inverses. 938 

From the definition of functions 
iτ +  we have: 939 

 940 
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 942 

and thus: 943 

 944 
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This shows that the recurrent scheme of Eq. (III.5) takes exactly the same form as the one given by 946 

Eq. (III.2). The same optimized code as used for the “standard” l-distribution method can thus be 947 

used to apply the Augmented version, by simply replacing the look-up tables based on  , 1..i i n
ντ ∆ =  948 

by look-up tables based on { }1 2, ,..,
n

ντ τ τ∆ + + . Calculation of these new look-up tables can be made 949 

by applying the definition of functions 
iτ +  given by Eq. (III.11). 950 

 951 

One can eventually check without difficulty that the corresponding model (based on the set 952 

{ }1 2, ,..,
n

ντ τ τ∆ + + ) follows the following constraints on the derivative of the non-uniform path 953 

transmissivity: 954 
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and: 958 
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 961 

Eq. (III.14), that follows here from the convexity property of Bernstein functions (see also Ref. [17] 962 

for additional details), has a long history in the development of band model theory. Indeed, in some 963 

configurations, the widely spread Curtis-Godson approximation was shown to fail to ensure this 964 

inequality. This led to the development of the Lindquist-Simmons approximation [1]. Eq. (III.15), that 965 

follows directly from the LS-HAC copula model, ensures the proper sign of the method when used for 966 

the calculation of net exchange rates, as discussed in Ref. [17]. 967 


