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Abstract: Recent decentralised control approaches allowing to reduce congestion on transmis-
sion lines consider small sub-transmission areas where to act locally on curtailing renewables.
In the present paper, we underscore the critical need for reliable models to facilitate effective
control implementations and propose to consider a receding horizon approach that exploits data-
based estimation of the underlying model parameters. Simulation results show the effectiveness
of the proposed approach, that is capable to act when needed on minimising renewable power
curtailment while adapting to the possible changes in the topology of the grid.
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1. INTRODUCTION

The evolution of power grids amid the ongoing energy
transition is characterized by a notable integration of re-
newable energy sources, giving rise to various congestion
challenges (see Meyer et al. (2020); Monforti-Ferrario and
Blanco (2021)). Successful management of power conges-
tion is pivotal in attaining the overarching objective (see
Coletta et al. (2020); Liere-Netheler et al. (2020); Orru
et al. (2022)). Recent advancements in control method-
ologies have introduced local decentralized approaches, as
in Henka et al. (2022); Dkhili et al. (2023). These ap-
proaches specifically target the control of predefined sub-
transmission areas associated with particular geographical
regions, which are known to encounter congestion issues
due to high renewable energy generation. The novelty
of such approaches lies in the local scale of the power
management action; each sub-transmission area, called
zone, consider a local controller who possesses only local
information, i.e., of the nodes (buses) and edges inside
the zone, and no communication with external agents or
zones is foreseen. The localized control strategies, involving
measures such as curtailment, storage, and topological
adjustments, have demonstrated their efficacy in mitigat-
ing congestion challenges (see Dkhili et al. (2023); Ganet-
Lepage et al. (2023)).

The control methodologies under consideration are inher-
ently model-based, emphasizing the crucial requirement
for dependable models to enable the implementation of
effective control strategies. The primary objective of this
paper is to expand upon the approaches explored in
Dkhili et al. (2023); Ganet-Lepage et al. (2023); Pham
et al. (2022) by considering scenarios where the model
is not completely known or time-varying. In the exist-
ing literature, discrete-time prediction models for a sub-

transmission area rely on the linearization of power flow
equations, utilizing Power Transfer Distribution Factors
(PTDFs) (refer to Cheng and Overbye (2005)). It is crucial
to emphasize that the PTDF parameters, traditionally
treated as constant in previous studies, pose challenges
in precise computation. This is primarily due to the need
for computations across the entire transmission grid, and
these parameters are subject to influence from alterations
in the network’s topology. Changes in topology may occur
locally or in the surrounding areas. Therefore, control
methodologies need to address these uncertainties and
variations through dynamic adjustments in real-time.

In the current work, we propose employing a Model Predic-
tive Control (MPC) approach (see Camacho and Bordons
(2007)) for congestion management, coupled with data-
based parameter identification to accommodate potential
changes and possible (partial) uncertainties in the model.
This integration allows for the incorporation of real-time
models into the prediction-based control design. As the
model takes on a parameter-varying nature, the ensuing
optimization problem involves time-varying matrices for
the dynamical evolution. Based on the preliminary work
in Ganet-Lepage et al. (2024), where control is not con-
sidered, various estimation methods, primarily relying on
past observations, are explored, ranging from considering
infinite time windows where data is collected to plac-
ing particular emphasis on finite time windows within a
receding-horizon-like framework. Discussions on the im-
pact of the observation window will enrich the paper, as
well as practical considerations due to possible unexpected
behaviours or high mismatches with respect to the initial
values when they are considered known. For our reference
baseline, we utilize the MATPOWER tool in Zimmerman
et al. (2011), which supplies the static parameters for
the PTDF coefficients. Based on the here new suggested
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Fig. 1. Topology of the studied zone: the zone subject to
the congestion management is represented in blue, the
1st-order neighbors of the zone in red. Buses id are
presented in bold along with the information on the
lines, generators and the battery.

possibility to couple estimation and control, recommen-
dations for enhancing parameter estimation capabilities
by establishing a persistently excitation situation created
by control inputs are presented. Simulations show the
effectiveness of the proposed methodology incorporating
both the estimation part and the control one.

The rest of the paper is organised as follows. Section 2
introduces the considered model as well as the used estima-
tion approaches. Section 3 describes the optimisation prob-
lem to be considered for the receding horizon approach and
numerical results for the case study of interest. Section 4
outlines conclusions.

2. CONGESTION MANAGEMENT AS A
MODEL-BASED CONTROL PROBLEM

2.1 Basic modelling features

The basic principle of congestion management is to avoid
the violation of the safety bounds with respect to the
power flows on the grid lines. This overall objective is
seldom treated in a centralized framework due to the com-
plexity of the power grid’s topology, and the decisions are
usually taken locally with respect to restricted information
within a zone composed of buses and lines. To provide a
generic illustration, let us consider a zone as depicted in
blue in Fig. 1. The red region represents the complement of
the network, only the first-order neighbours being visible
in the graphical representation. The nodes in the zone are
identified with a number in bold and can be associated
to a generator ”Gen”, a battery ”Batt”, both of them or
none of them, depending on the configuration. The lines
are also identified with a specific id. As it can be noted
here, the considered zone is composed of six nodes, seven
lines, four generators and one battery.

In this section, we recall in a concise manner all the
elements needed in order to construct a mathematical
model for the evolution of the power flows within a selected
zone described as above by a subset of buses, generators,
and batteries along with the power lines in view of control
of the power flows. For more details on the principles
and related modelling approaches, the interested reader is
referred to Iovine et al. (2021); Ganet-Lepage et al. (2023).

Topological information: Let Z be the set of buses in the

zone, Z¢ C Z the subset of buses with a generator,
ZB C Z the subset of buses with a battery and £ the
set of power lines in the zone.

Set-up parameters related to the topological information:
Let nV,n% n® n’ be the cardinality indices of Z, 2%,
zB and L, respectlvely. Then, let T be the sampling time
(time step for the simulation), and the delays of the control
action be 7¢ (the delay of power curtailment, which is
equal for all generators) and 7p (the delay of battery power
variation, equal for all batteries); 1 < 75 < 7¢. Let ¢
be the battery coefficient of power injection, and PgG the
maximum installed capacity of the generator g.

Time-varying parameters: Let us consider:

wfl(t); PTDF between line [ and battery b at time ¢;
'l/)g’:l (t); PTDF between line [ and generator g;
wﬁxl(t); PTDF between line [ and bus n.

[ ]

[ ]

[ ]
Let us define the variables of the state space as:
State: Fi(t): power flow on line I; PE (t): curtailed power for
generator g, i.e., the limitation of 1ts maximum generation
capacity; PP(t ): power of battery b; EP(t): energy of
battery b; PgG (t): generation power for the generator g
at time t; zg(t): generation power for the generator g at
time ¢ + 1, equivalent to P (¢ 4 1), but represented as a

separated variable to avoid anti-causality: PgA(t): available
power for generator g at time ¢.

Disturbance: §PT (¢): transit power describing the power
variation at bus n due to power flows transiting between
the zone and the rest of the network; dP;*(t): uncertainty
on the available power at time ¢ for generator g.

Control: 6ch (t): the update of the power curtailment at
time ¢ for generator g; 6 P (t): the update of the battery
power output decided at time t.

The system dynamics of the zone is defined, VI € Z%,
Vg € 29, VbeZB VnGZN

Ft+1)= Z Z/Jlb 0P (t—TR)+
beZB
PR [Zf (t) + Y W ()P (t)
geEZG neZN
PE(t+1)= PC(t)+ 6P (t —7¢)

(1)
28(t) =min ( PA(t) + 0PA(),
PG — PC(t) — 5PC(t — TC)) 2)

2.2 Open-loop online identification of parameters

Previous works (e.g., Pham et al. (2022), Ganet-Lepage
et al. (2023)) build on the working hypothesis that the
power flow dynamical equation in (1) is linear time-
invariant with constant PTDF's coefficients that are com-
puted offline, i.e.,

MOEST mat, VP, (t) =

B mat7 wl n( ) ZJTTT,Lmat (3)
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Fig. 2. Open-loop monitoring of the model parameters.

Therefore, the classical congestion management process
is considered decoupled with respect to parameter iden-
tification algorithms, which are used only for monitoring
purposes (see Fig. 2). Recently, real-time monitoring of
the PTDF parameters has been investigated, showing that
Least Squares-based methodologies can be adapted to
receding horizon configurations and topology constraints
(see Ganet-Lepage et al. (2024)). Several practical consid-
erations are made, e.g., the importance of having an initial
reference value to consider in case of missing data or unex-
pected behaviours (named regularisation) and the impact
of the excitation on the quality of parameter identification.
In the present paper, we briefly recall the main elements
of the open-loop PTDF identification based on real-time
data collection as a motivation for its further integration
in the feedback decision-making.

Two strategies are considered for collecting data for esti-
mation purposes:

a) a variable horizon, ranging from the initial time when
data collection is available to the current one;

b) a fixed horizon, where a receding time windows is
considered for collecting data for the estimation. In
practice, a fixed number of previous sampling times
is here considered (10 or 30 steps).

The optimisation problem used to estimate these time-
varying PTDFs relies on power flow variations 0F; and
generation power variations 6PgG :

0Fi(t) = Rt +1) = F(t), P (t)==2/(1) = P (1) (4)
The power flow equation for a given line l € L becomes:

SF(t ZéPb (t—78) - ¥i5(1)

bezB (5)
+ Z SPE(t) - v () + > SPL(t)- v, (t)
geZG nezZN
The following notations are introduced for data collections:
5F (1) 5P (1)
SFt)=| "ePBt)y = | 1y | e R,
dF,.(t) SPE, (1)
SPE(t) SPI(t)
oPE() = | R, 6PT(t)=| :, |eR"
SPS%(t) SPL, (1)
Let W() = [0f(1)] € R, wO() = [uf,(1)] €
R xn® (t) = [wln( )] € R™*""and the block
matrix \Il = [w5 (1) t) ()] € R X (07404

Consequently, by considering all lines [ the power flow
equation (5) is rewritten as,:
5PB (t - TB)
IPE(t) (6)
sPT(t)

By considering the past Hp-step horizon, i.e., from ¢t — H),
to t — 1, we define the matrices:

AF(t) = [5F(t — H,)- ' SF(t - 1)} e R xHy |

APB(t—1p) = [5133(75 — H,—7p)6PB(t—1— TB)] c

RanHp,

APG(t) = |:5PG(t — Hp)t(SPG(t _ 1):| c RnGXHp’

APT<t) = [5PT(t — Hp)t(SPT(t _ 1)i| c RRNXHP,

and the block matrix AP(t) = APG(t) As al-
APT(t)

ready discussed, each matrix is the collection of past ob-
servations from ¢t — H, up to ¢t — 1.

2.2.1. Basic Least square problem  Under the assump-
tion of constant PTDFs over the observation horizon,
a linear regression can be defined to reconstruct these
PTDFs ¥(t):

AF(t) = U(t) - AP(t) + S(1) (7)

where S(t) € RH xn" corresponds to the slack matrix of
the difference between the left-hand side and the rest of
the right-hand side.

AF(t) and AP(t) are data, namely past observations. We
want to select the PTDFs in ¥(t), such that the Frobenius-
norm of the slack matrix S(t) is the smallest, noted ||| ¢.

Thus, the targeted optimization problem is defined as:
V(1) = rgmin| AP() ~ ¥() - AP@]r  (8)

We stress that the PTDFs represent a percentage of
generation power which is distributed over a line: the flow
is directed, thus to move in both directions. Then, the
percentage can also be negative. Therefore, we consider
the following constraint:

-1<¥<1 (9)
where 1 € R(7+n+n™)xn" i 5 vector composed by ones.

For any given bus, the power generated is entirely spread
on the lines connected with this bus. Topological con-
straints on the PTDFs resume the property: the sum of
the PTDFs of all lines connected to this bus is equal to
100% (it si true for any type of PTDF; 4B 4 or 4V):

> Vi — 3 Y1 = 100%

leLl s.t. n=fromBus of [ leLl s.t. n=toBus of |

(10)
As lines are directed edges, the direction is dealt with a
positive or negative coefficient.

2.2.2. Least Squares optimisation with reqularisation  To
tackle high variability of the estimation in case of missing
data or unexpected values, we introduce a regularized ver-
sion of the Least Squares method with topology constraint.
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The PTDF estimation variables are decomposed into two
parts: the default time-invariant PTDF U™ defined in
Eq.(3), plus a new variable AW¥(¢) that represents the
variation of the PTDF with respect to the time-invariant
variable.

U(t) = Um* + AV(t) (11)
where U™ is the matrix similar to ¥(¢) but with the
entries replaced by the elements in (3). Since the time-
invariant PTDFs UM% respect the topology constraint in
(10), the variation variables AW(t) should not change this

property:
>

leL s.t. n=fromBus of [ leL s.t. n=toBus of [

6t (t)— 6thrn(t) =0

(12)
where 01 ,,(t) are the entries of A¥(¢). Thus, the optimi-
sation problem of the regularized Least-Squares method
with constraints is:

V(1) =arg min |AF() — ¥(t) - AP + | V()|

s.t. (9), (10), (11), (12)
(13)

The first term aims to find PTDF's such that the linear
regression is accurate. The second term aims at allowing
variations in the PTDF but by avoiding unrealistic PTDF
values. Arbitrarily, we choose ¢ = 1 in the next simulation
but this can be further used as tuning parameter.

2.8 Identification results and comparisons: an overview

We consider here the process illustrated in Fig. 2, involving
a closed-loop congestion-management that is decoupled
from the PTDF identification mechanism. At each time
step, the system receives input signals from the controller.
Simulation data, including power flow and controller out-
puts, are then used for parameter identification. The red
block in Fig.2 indicates the supervision objective of the
PTDF identification, which will be subject to updates in
the subsequent section.

Four methods were considered, encompassing both grid-
based properties and data-driven observation approaches:
MATPOWER’s computation of the PTDF, relying on the
topology and power network properties; Utilizing Matlab’s
built-in pseudoinverse function; Solving a Least Squares
optimization problem formulated with Yalmip (see Lof-
berg (2004)) and solved using Gurobi; Extending the last
approach with additional topological constraints, i.e., en-
suring that for a given bus, the sum of the PTDF between
the bus and all adjacent edges equals 100%. Detailed
information on the performance of the various approaches
is available in Ganet-Lepage et al. (2024). Here, we provide
a brief overview. Since the results from the pseudoinverse
and least squares approaches are similar when considering
all past data, we focus here on a past fixed-window data
collection.

Comparison of 10-step and a 30-step horizon estimations
without the topology constraint exhibit similar perfor-
mances. In the tested scenario (see Fig. 3), introducing
topological constraints yields identification results close
to the reference values provided by MATPOWER. The
topology constraint increases the sensitivity with a short
fixed-size horizon estimation. This is motivated by the

419

makePTDF of Matpower
pseudoinverse (Matlab pinv)

— — least squares

— — least squares, sum PTDF = 1

least squares, sum PTDF =1, regularized
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04 H
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|
|
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i

L
0 200 400 600 800 1000 1200
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Fig. 3. Estimation of the PTDF parameters using a reced-
ing horizon window of 10-step. "sum PTDF=1" refers
to the topological constraint. The use of different con-
straints, implementation schemes and regularisation
is illustrated on line 7 with generator 4.

subsequent coupling constraints, which amplify the effect
of a single PTDF variation over the neighbours, such that
the sum of PTDFs is balanced according to 10. With the
considered 10-step horizon (Fig. 3), the parameter esti-
mation is impacted by the lack of input signal excitation,
which leads to singularities in the regression matrix and
ultimately results in PTDF values on the boundaries of the
admissible interval. Regularisation plays an essential role
in the mitigation of such episodes. Consequently, despite
the topology constraint the estimations is evolving closer
to MATPOWER’s values.

In summary, various tuning parameters and configurations
can be used for the reconstruction in real time of the
PTDFs. These PTDF parameters can be further made
available to the controller through parameter adaptation
of the dynamical model. Note, however, that the effective-
ness of the controllers’ decisions will be impacted by the
quality of data. In particular, the associated data may not
provide meaningful PTDF parameters if the system lacks
excitation.

For a variable horizon that accumulates data from the
beginning of a simulation, past observations of the sys-
tem remain useful for PTDF estimation, but a forgetting
mechanism needs to be adopted in order to discharge the
memory of the identification block. Alternatively, the use
of a constant receding horizon estimation exhibits good
convergence but remains fragile when the persistence of
excitation is not guaranteed. In such cases, the regularisa-
tion around a default value diminishes the impact on the
PTDF estimation.

2.4 Congestion management as a control problem

Given the model description above, the operational prob-
lem related to congestion management can be resumed by
the following objectives:

e Maintain power flows within the capacity of the lines
by means of curtailment and battery storage

e Minimize the generation curtailments whenever pos-
sible

e Prioritize the use of battery storage for congestion
management
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APC applied
t APB applied

time
t+N

t+7p

t+Te prediction horizon N

Fig. 4. A visual representation of the prediction horizon
and the possibility to tuse the control inputs over it.

o After the overflow mitigation, bring the battery power
output close to zero in order to prepare for the next
congestion episode.

As it can be seem from these main objectives, the curtail-
ment and storage signals are used in a feedback control
framework using the available measurements in terms of
power flows, production and energy at the level of the
battery. In order to fine-tune the model parameters, the
next section will detail an optimization-based design that
exploits the dynamical constraints and the available data
in real time.

3. TIME-VARYING MPC

This Section combines the previously introduced estima-
tion methodologies in real-time together with the possibil-
ity to control the system using a predictive strategy.

3.1 Model-based Predictive Control principles for congestion
management

The systems having actuation delays for both the battery
and the curtailment (see Hoang et al. (2021)), a receding
horizon control approach as the MPC is considered to
compensate them. The prediction horizon is illustrated in
Fig. 4. Given a current time ¢, the prediction spans over NV
steps, accounting for control delays. Three phases emerge:
1) until the activation of the first delayed battery control
action, the systems evolve uncontrolled; 2) subsequently,
until the first curtailment is activated, only battery con-
trols are applied (shown in green on Fig. 4), and overflows
cannot be avoided; 3) finally, with the combined effect
of curtailment and battery control actions (in green and
red on Fig. 4), no overflow is tolerated up to the end of
the horizon. Over the horizon, transit power disturbances
APT(t), plus states and disturbances of available power
are estimated.

The MPC targets the following goals, which will be de-
scribed in a cost function J to be minimized:

I Forbid power flows to be over the capacity lines after
the activation of the first curtailment control;

II Limit power flows to be over the capacity lines until

the activation of the first curtailment control;

Minimize the curtailment controls over the horizon;

Contain the power overflows during the horizon by

using the battery;

V Concentrate the battery utilisation over the whole

horizon instead of in a single instant; 3

Bring back the battery power output to PP in case

of no overflow nor curtailment signal.

11
v

VI

The considered constraints over the prediction horizon are,
vt € [t,t + N]:

Guillaume Ganet—Lepage et al. / IFAC PapersOnLine 58-13 (2024) 416—423

PP <PP(W)<BP, 0<PC(t) < P8 (14a)
B <EP()<EP, —P¢ <P (') <PZ, (14b)
PP —PE <opP(t) < PP - P}, (14c)

When both control actions are delayed and cannot occur,
there are no constraints on the overflow. However, when
the battery comes into play, i.e., V' € [t + 1+ 75,t + 7¢],
soft constraints are applied. They are implemented via
slack variables & (t'), and result to describe the power line
overflow on line j at time ¢ with respect to its limit L; as,
Vt'et+ 14 1p,t+ 7¢]:

L - &)< FHEE) <L+ &), &{)>0 (15)

Then, no overflow is tolerated when both curtailment and
battery controls are applied Vt' € [t + 1+ 7¢,t + NJ,
therefore hard constraints are defined as:
L, <F(t) <L
These constraints satisfy objective I.

(16)

Therefore, the selected objective function is:
t+71c t+N

S Yaw ey X Rt

t'=t+rp+11eL t'=t ge NC

J(t) =m

overflows
t+N

+13 Y. > (6PE(t) - 6PP)?

t'=t beN'B

curtailment control

battery control
t+N

Y, Y (B) - B

t'=t+1 beNB

batteries’ power output

(17)

where 6 PP, PP are used to represent a reference value of
the corresponding variables. The positive parameters 7y,
72, v3 and 4 are to be selected properly with respect to the
design’s priorities. The adherence to the constraint defined
in (15), coupled with the consideration of associated costs
in (17), fulfills objective II. Objective III is addressed
through the imposition of costs on curtailment controls.
Additionally, objective V is met by incorporating costs
on battery controls, subsequently satisfying objective IV
through a judicious selection of coefficients . Objective
VI is achieved by introducing costs associated with the
battery state.

8.2 On-line parameter identification coupled with model-
based predictive control

We consider now the PTDFs coefficients becoming time-
varying, i.e., the constraints in (3) are removed. Con-
sequently, the power flow equation in (1) exhibits time
dependency due to the time-varying PTDFs. This presents
a notable departure from earlier works as Iovine et al.
(2021); Hoang et al. (2021); Pham et al. (2022); Ganet-
Lepage et al. (2023). The optimization problem consists
then of two key components. Firstly, employing a historical
horizon there is parameter identification of PTDF's at the
current time t: wfb(t),wfg(t),l/}l]yn(t). Secondly, after the
parameter identification at time ¢, the predictive control
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Fig. 5. On-line identification coupled with MPC

phase unfolds with a prediction horizon in the future. We
assume that the PTDFs remain constant over this pre-
diction horizon and fix them to the just-identified values.
An optimization problem is then solved. This methodol-
ogy establishes a coupling (see Fig. 5) between parameter
identification and model predictive control that is missing
in previous work as Ganet-Lepage et al. (2024).

The optimisation problem representing this coupling two-
phase approach is:

0= min J(t) in (17)
SPE(t),0PE(t')
s.t. 1),(2),(14) V¢ €[t,t+ N]

)
15) W eft+mp+1,t+70] (18)
16) Vt' e [t+7c+1,t+ N]
13) V' €ft— H,t—1]
We remark that (13) corresponds to the parameter identi-
fication using the past horizon, while the other equations
are based on the prediction horizon.

(
(
(
(

3.8 Case study

We demonstrate the methodology through a case study
involving controllers based on various parameter identifica-
tion methods. The objective is to evaluate the performance
of a controller that integrates online parameter identifica-
tion with MPC in a simulated zone. The zone shown in
Fig. 1 is considered for tests. Since line 1 emerges as the
most susceptible to overflow hazards and considering the
topology, Generator 2, Generator 4, and the battery are
identified as the most influential elements for power flow
on line 1, as outlined in Table 1.

Impact | PTDF of gen on line 1
Gen 2 40%
Gen 4 30%
Batt 30%
Gen 1 13%
Gen 3 4%

Table 1. PTDFs of line 1

Five scenarios are selected, each employing a different
parameter identification method based on the information
from the preceding section and Ganet-Lepage et al. (2024),
as illustrated in Table 2.

In terms of figures, the PTDF estimates between Line 1
and Gen 2, Gen 4, or the battery are depicted in Fig. 6, Fig.
7, and Fig. 8, respectively. Line 1’s power flow is presented
in Fig. 9. For generators, Gen 2 is shown in Fig. 10, and

Case Parameter identification method

a MATPOWER’s PTDF

all past horizon Least Squares with topology
all past horizon Regularized Least Squares with topology
30-step horizon Regularized Least Squares with topology
10-step horizon Regularized Least Squares with topology

o A0 o

Table 2. Simulation cases shown in the figures

Gen 4 in Fig. 11. The battery is illustrated in Fig. 12. As
for the omitted elements, during this simulation, line 1’s
potential overflows govern the controls, and Generators 1
and 3 have minimal influence on line 1, as indicated in
Table 1. We stress that the focus is not on the battery
energy during this simulation.

Overall, examining line 1’s power flow in Fig. 9, the
controllers effectively handle the overflows. The PTDF
estimates closely align with the reference values from
MATPOWER’s PTDF. Battery controls are implemented
when power flows approach their limits, and curtailment
controls on generators are also activated when the battery
capacity is insufficient.

Cases (a), (b), and (c) of the simulations are considered
together due to their similarities. In Fig. 9, starting from
400 seconds, line 1’s power flow approaches the limit,
necessitating controls to prevent overflows. During this
period, the MPC predicts that the generations of Gen 2
and Gen 4 will sharply increase, reaching the maximum
capacity of the generators. This scenario would result in an
overflow on line 1. To address this issue, the MPC decides
to fully utilize the battery over the horizon, as shown in
Fig. 12, and to curtail Gen 2, as illustrated in Fig. 10,
which is the generator with the most significant influence
on line 1, as indicated in table 1. Regarding Generator 4 in
Fig. 11, two small curtailment controls are applied at 300
and 400 seconds. These occur when the prediction expects
Gen 4’s generation to reach its remaining capacity while
Gen 2 would not reach it. Consequently, curtailing Gen 4
becomes necessary to reduce its generation, while this is
not the case for Gen 2.

Case (b) is the only scenario without a PTDF reference,
making accurate PTDF estimation between the battery
and the line possible only by applying battery controls
and observing their consequences on the lines with data
measures. The controller refrains from acting until 400
seconds, causing an absurd PTDF estimate between the
battery and line 1 at that time, as shown in Fig. 7. Due
to this incorrect PTDF estimate related to the battery,
the controller makes erroneous battery controls, justifying
subsequent curtailment controls on Gen 4, which is on the
same bus as the battery, instead of applying curtailment
controls on Gen 2, as in the other cases. After battery
controls are implemented after 430 seconds, the PTDF
estimate between the battery and line 1 gradually evolves
towards a value close to those of other PTDF estimation
methods, as depicted in Fig. 8. It is worth noting that
in the cases of generators, variations in generation power,
due to external available powers, create a persistence of
excitation allowing accurate PTDF estimation between a
line and a generator.

In conclusion, the PTDF estimate of the battery in case (b)
is initially wrong, leading to different battery and curtail-
ment controls. However, each controller effectively man-
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Fig. 7. PTDF estimate between generator 4 and line 1, the
5 cases of table 2 are considered.

ages overflows. Case (a) represents the standard method
used in previous works. Case (b) corresponds to a scenario
where no PTDF reference is provided, and the estimator
relies solely on cumulative data measures. Case (c¢) involves
a PTDF reference, aiming to slightly enhance the PTDF
values using cumulative data measures. Cases (d) and (e)
are similar to case (c) but with a storage constraint on the
data measures. Therefore, simulations show the effective-
ness of the proposed method regardless of the choice of a
kind of coupled estimator-controller.

4. CONCLUSIONS

This paper enhances the feasibility of estimating PTDF
parameters in model-based control strategies for power
congestion management in sub-transmission areas. The
proposed control scheme effectively estimates and controls
the local area, thus to relax the need of perfect knowl-
edge of the system based on a computation that requires
knowledge of the whole transmission grid. A comparative
analysis of the impact of various estimation methods on
the considered receding horizon control approach is pre-
sented. Future research will concentrate on refining the
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Fig. 8. PTDF estimate between battery and line 1, the 5
cases of table 2 are considered.
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Fig. 9. Line 1’s power flow, the 5 cases of table 2 are
considered.
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Fig. 10. Generator 2’s information, the 5 cases of table
2 are considered. Continuous lines mean generation
powers, dotted lines means remaining capacities.
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Fig. 11. Generator 4’s information, the 5 cases of table
2 are considered. Continuous lines mean generation
powers, dotted lines means remaining capacities.
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Fig. 12. Battery power output, the 5 cases of table 2 are
considered.

estimation of PTDF parameters, particularly in scenarios
involving changes in topology.
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