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ABSTRACT
Multi-party access control is emerging to protect shared resources

in collaborative environments. Existing multi-party access con-

trol models often lack essential features to address the challenges

characterizing collaborative decision-making. Collaborative access

decision-making requires mechanisms that optimally account for

the access requirements of all parties without requiring user inter-

vention at evaluation time. This work fills these gaps by proposing a

framework for multi-party access control based on game theory. To

this end, we identify the decision factors influencing access decision-

making in collaborative environments and propose two bargaining

models – a cooperative model and a non-cooperative model – to

investigate the impact of different cooperation assumptions on col-

laborative access decision-making. Our framework ensures fairness

by considering the access requirements of all controllers equally,

achieves optimality by relying on best response strategies, and

guarantees termination. Our evaluation shows that different co-

operation assumptions significantly impact the performance and

outcome of collaborative access decision-making.

CCS CONCEPTS
• Security and privacy→ Access control.

KEYWORDS
Social computing applications, Policy conflict resolution, Collabo-

rative decision-making, Game Theory, Bargaining game
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1 INTRODUCTION
Social computing applications, such as online social networks and

collaborative platforms, have experienced significant growth in

the last decades. These applications enable users to collaboratively
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create, manage, and share resources with other users in real time.

Although they provide several benefits for users and organizations,

these applications also open new privacy and security issues.

Users typically specify access control policies, determining the

accessibility and visibility of their data. However, they might be

unaware of who accesses the data as other controllers can grant

access. Conflicts in users’ policies can result in undesired disclosure

of sensitive information for some users and in reducing sharing

utility for others [5, 6, 25, 26]. Traditional access control mecha-

nisms cannot address these challenges as they are grounded on

the assumption that resources are governed by single entities. We

need a fundamental shift from well-established single-user-centric

models to models in which multiple entities can jointly determine

with whom the resource can be shared [18].

Multi-party access control is an emerging paradigm for protect-

ing co-owned resources [16, 32]. To guarantee the acceptability

of collective access decisions, multi-party access control solutions

should (i) capture real-world decision-making dynamics, (ii) ensure
fairness of the access decision-making process, and (iii) provide an
optimal collective decision. In addition, (iv) they should not rely on

user intervention as it is impractical in many situations.

Existing solutions for multi-party access control do not meet

these desiderata. Some works rely on predefined rules for conflict

resolution [1, 3, 13, 25], thus not accounting for the dynamics of

collective decision-making or propose iterative negotiation proto-

cols in which user intervention is required for conflict resolution

[14, 27]. A recent stream of research has leveraged game theory

as the foundation for the design of multi-party access control so-

lutions [9, 18, 20, 21, 31] since it offers a framework for collective

decision-making and understanding the interactions between in-

dividuals [28]. Although game theory has the potential to meet the

desiderata for multi-party access control, existing solutions based

on game theory only account for a limited set of decision factors

[18, 21, 31], thus not fully capturing the complex dynamics driv-

ing decision-making, do not ensure termination [18, 31], or do not

guarantee the fairness of the decision-making process [18, 20, 31].

This work investigates the application of game theory concepts

to support decision-making in multi-party access control scenarios.

In particular, we propose a bargaining framework, which, given the

controllers’ access requirements for a shared resource, computes

an optimal collective access decision. Our framework involves an

iterative and simultaneous adjustment of all controllers’ access

requirements until an agreement is reached. Our notion of opti-

mality leverages several decision factors (object sensitivity, peer
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influence, relationship with other controllers, and sharing benefits)
that have been shown in the literature to be highly influential in

access decision-making. To account for different strategic environ-

ments influencing user behavior in collaborative decision-making,

we propose two bargaining models: a cooperative model and a

non-cooperative model. We implemented the proposed models and

conducted experiments to assess their performance and outcome.

The main contributions of the work can be summarized as follows:

• Our framework captures collaborative decision-making dynam-

ics by leveraging a broad range of decision factors, achieves

fairness by considering the access requirements of all controllers

equally, and provides a collective decision that optimally benefits

all controllers involved.

• Our framework ensures convergence to a collective access deci-

sion without user intervention. Thus, our framework poses the

basis for developing automated access decision-making.

• Our evaluation shows differences in performance and outcome

between cooperative and non-cooperative models, providing an

understanding of how different strategic environments influence

collaborative decision-making.

The remainder of the paper is structured as follows. Sec. 2 presents

an overview of multi-party access control and discusses related

work. Sec. 3 introduces our game theoretic framework for multi-

party access control, and Sec. 4 presents its evaluation. Finally,

Sec. 5 discusses the main findings and Sec. 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
This section provides background on multi-party access control

and discusses the drawbacks of existing multi-party access control

systems, posing the basis for our proposal.

2.1 Multi-Party Access Control
Multi-party access control is an emerging paradigm for the pro-

tection of resources in collaborative systems, where resources are

jointly owned and managed by multiple entities (hereafter, referred

to as controllers) [16, 32]. Users often specify access requirements

on their resources, determining who can access them and under

which conditions. Ideally, when dealing with co-managed resources,

all controllers’ access requirements should be enforced. However,

the access requirements of a controller can conflict with the ones

of other controllers [3, 13]. Failure to resolve these conflicts can

result in the leakage of sensitive information [29].

Multi-party access control aims to resolve conflicts arising from

evaluating policies authored by different controllers. A large body of

research has investigated the problem of multi-party access control,

especially in the context of online social networks, and proposed

solutions, for example, to find collective non-conflicting policies,

resolve policy conflicts at policy evaluation time, or support con-

trollers in reaching a consensual decision. The next section reviews

the state-of-the-art in multi-party access control.

2.2 Related Work
Existing solutions for multi-party access control can be categorized

according to four main dimensions, namely design properties (i.e.,
design choices and assumptions underlying the proposed solution),

decision factors (i.e., the factors used for conflict resolution), policy

evaluation properties (i.e., properties of the method used for conflict

resolution) and behavioral constraints (i.e., human behavior patterns

influencing decision making). An overview of existing approaches

with respect to these dimensions is presented in Table 1.

Design Properties. Existing multi-party access control systems are

based on different design properties, which determine the require-

ments and assumptions under which the system operates. The first

block of Table 1 presents an overview of the main design properties

and how they relate to the proposed systems.

A key design property is the decision approach adopted for multi-

party data sharing management [16]. Some proposals rely on rules

that predetermine how controllers’ policies are combined and evalu-

ated [1, 3, 13, 25]. For instance, Mahmudlu et al. [13] employ policy

combining algorithms, such as first-applicable, permit-overrides and
deny-overrides, to determine priorities between controllers’ poli-

cies. Other solutions employ aggregation methods, such as voting

schemes, to determine how conflicts are resolved [8] or to deter-

mine the most desired policy for the shared object [23, 29]. Another

stream of research leverages game-theoretic approaches to find an

equilibrium between controller’s preferences [9, 18, 20, 21], where

no controller has an incentive to unilaterally change its privacy

settings. Different classes of game theory have been applied to

multi-party access control, e.g. auction-based games in which con-

trollers bid the values they associate with their privacy preferences

[21], leader-follower games in which the leader (usually a user

with higher authority) first announces its strategy, imposing an

upper-bound to data sharing, and then followers select their best

response to the leader’s strategy [18], or behavioral games in which

users try to maximize their utility [9]. Game theoretic approaches

have been combined with an aggregation method in [31], where

a preference-adjusting game derives controllers’ choices, and then

a voting scheme selects the preferences to be enforced. Interactive

policy negotiation protocols have been proposed in [14, 27] to sup-

port controllers in reaching an agreement over a shared object. In

a similar spirit, Fogues et al. [5] propose a computational model

based on machine learning to predict an appropriate access control

policy for a given multi-party scenario. An orthogonal approach is

proposed by [10], in which the decision is shifted to the individual

level. However, this approach does not preserve object integrity (i.e.,

the object is modified as a result of policy enforcement [23]), thus

affecting the other controllers’ expected utility.

Existing solutions also differ for the underlying governance model
for shared resources, which determines the level of authority that

controllers have over the shared resource [16]. Two main govern-

ment models are typically considered:multi-ownership, in which all

controllers have the same authority level over the object [8, 10, 14,

31], and asymmetric, in which controllers’ control levels depend on

their relationship with the object [3, 8, 13, 18]. Among approaches

employing an asymmetric model, some assume a predefined set

of types of controllers, e.g. owner, contributor, stakeholder, and

disseminator in [8] or owner and followers in [18], whereas others

support the definition of arbitrary hierarchies of controllers [3, 13].

Solutions for multi-party access control can rely on a centralized
architecture, in which controllers’ policies are collected and pro-

cessed in a central system for conflict resolution, or a distributed
architecture, in which controllers interact with each other to resolve

policy conflicts [16]. In Table 1, we report the architecture when a
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Table 1: Summary of related work
Design Properties Decision Factors Policy Eval. Prop.
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Such et al. [25] R MO C ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ – ✓ –

Akkuzu et al. [1] R MO C ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ – ✓ –

Mahmudlu et al. [13] R A C ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ – ✓ –

Damen et al. [3] R A C ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ – ✓ –

Thomas et al. [29] AG MO C ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ – ✓ –

Squicciarini et al. [23] AG MO C ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ – ✓ –

Hu et al. [7] AG MO C ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ – ✗ –

Hu et al. [8] AG A C ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ – ✓ –

Squicciarini et al. [21] G MO C ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ SoU ✓ F

Hu et al. [9] G MO C ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ SeU ✓ F

Rajtmajer et al. [18] G A C ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ SE ✗ F,B

Squicciarini et al. [20] G MO C ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ – ✗ F

Xiao et al. [31] G+AG MO C ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ EP ✗ F

Such et al. [27] NP MO C ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ED ✓ F

Mehregan et al. [14] NP MO – ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ – ✓ –

Fogues et al. [5] ML MO C ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ – ✗ F

Ilia et al. [10] – MO C ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ – ✓ –

Our work G MO C ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ De ✓ F

Legend:

Decision Approach R: Rule-based AG: Aggregation G: Game Theory NP: Negotiation Protocol ML: Machine Learning

Governance Model MO: Multi-Ownership A: Asymmetric

Architecture C: Centralized D: Distributed

Decision Payoff EP: Emotional Payoff SoU: Social Utility SeU: Selfish Utility ED: Exception Distance SE: Social-Energy De: Desirability

Rationality F: Full B: Bounded

For other criteria, ‘✓’ denotes that the criterion is supported/satisfied by the solution and ‘✗’ that it is not. Symbol –’ denotes that the criterion does not apply to the solution.

prototype implementation is presented or the type of architecture is

explicitly discussed; otherwise, it is marked as not-applicable (‘–’).

From Table 1, we observe that most considered solutions rely on

a centralized architecture. For instance, they assume that conflict

resolution is performed by a mediator or a centralized policy engine

[3, 13, 25], or provide a prototype implementation that operates on

top of existing social networks such as Facebook [7, 21, 23].

Existing solutions also differ for the level of user intervention
required to solve policy conflicts. Some proposals, typically based

on rules, aggregation methods, and machine learning, provide au-

tomated conflict resolution mechanisms to reduce the burden on

the controllers [1, 3, 8, 23]. Other approaches require some form

of user intervention during the decision-making process. In partic-

ular, some approaches require controllers to adjust their policies

to achieve consensus [14, 18, 31]; others only provide controllers

with a suggestion to resolve policy conflicts and require controllers

to confirm such a suggestion [25, 27], possibly leading to manual

negotiation if consensus is not reached.

Decision Factors. Several factors might influence the willingness

of controllers to change their preferences to reach consensus [4,

17]. Table 2 reports the decision factors commonly considered in

the context of multi-party access control, and the second block of

Table 1 presents an overview of their adoption in the literature.

An intrapersonal factor often measured to determine controllers’

willingness to change their preferences is object sensitivity [5, 7,

8], which models the controller’s perception of the importance

of the object. This perception can influence the extent to which

controllers require their constraints to be considered in decision-

making: higher is the perceived importance, the higher the con-

trollers’ tendency to opt for the decision closest to their initial

preferences [5]. A few works consider controllers’ perceived shar-
ing benefits [7, 9, 14, 21], for instance, measured as the number of

Table 2: Decision Factors
Factor Description

Object Sensitivity Perceived importance towards the shared object [7].

Sharing Benefits Perceived advantages obtained by making the shared object avail-

able to others [33].

Peer Influence Influence that a group has on individual members of that group

such that they change their attitude and behavior to match the

one of the group [12].

Justification Influence of reasoning behind other controllers’ preferences and

their perceived consequences [5].

Relationships Influence of interpersonal relations with other controllers [5].

users to which the object is visible. This factor is related to the ex-

pectations of controllers and has been shown to have a significant

influence on group decision-making [33].

Interpersonal factors, such as peer influence [9, 18] and justifi-
cations [5], also influence a controller’s willingness to change their

preferences. Solutions that consider peer influence typically assume

that controllers know each other’s privacy preferences and that

they might change them to behave in accordance with the norms

of their social group [9, 18, 31]. Justifications represent subjective

arguments a controller provides to express the reasoning behind

their specific preferences and the perceived consequences of shar-

ing a certain piece of information. As shown in [5], justifications

can persuade other controllers to adjust their preferences in the

direction of the controller’s preferences.

Another interpersonal factor that is considered in conflict reso-

lution is represented by the relationships with the other controllers
[1, 5, 9, 31]. These relationships affect how each controller perceives

the multi-user scenario and, particularly, influence the extent a con-

troller respects the opinion of other controllers [5]. Some works

model and measure interpersonal relationships quantitatively, e.g.

as trust level [1, 9, 31], whereas others model them qualitatively,

such as friend or colleague [5].
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Table 3: Policy Evaluation Properties
Property Description

Convergence Policy evaluation terminates and a non-conflicting result is returned

in a reasonable time [14].

Optimality Policy evaluation returns the decision that is the most beneficial for

all controllers [5].

Decision Payoff Controllers’ expected gain/loss for a decision [9, 21].

Fairness Controllers should not be able to influence policy evaluation in a

way that exceeds their level of authority [25].

Policy Evaluation Properties. In the context of multi-party access

control, policy evaluation should ensure that a non-conflicting deci-

sion is always reached and that such a decision is acceptable for all

controllers [5, 31]. To assess to what extent and how these require-

ments are addressed by existing solutions, we have identified four

main properties, as described in Table 3. An analysis of the literature

w.r.t. these properties is reported in the third block of Table 1.

A key property for policy evaluation is that a non-conflicting de-

cision should be always obtained in a reasonable time (convergence)
[14]. This property is typically achieved by rule-based [1, 3, 13],

aggregation-based [7, 8, 29] and machine learning-based [5] ap-

proaches, which provide a mean to automatically resolve policy

conflicts. Other approaches such as game theoretic approaches

[9, 18, 31] and negotiation protocols [14, 27] aim to find a consen-

sual decision rather thanmerely resolving policy conflicts. However,

these approaches often provide only conditions under which con-

vergence exists [14, 31] but do not ensure convergence. In general,

convergence is not guaranteed by approaches that require user in-

tervention (e.g., adjusting their preferences) [14, 18, 31] or require

controllers to accept the suggested collective policy [25].

The acceptability of collective decisions is typically addressed

by game theoretic approaches which aim to find a decision that is

the most beneficial for all controllers according to a given payoff
function (optimality). Several payoff functions have been proposed:

some aim to maximize the utility controllers would gain as a group

[21], whereas others aim to maximize individuals’ utility [9]. Some

payoff functions also account for controllers’ tendency to maintain

their initial privacy preferences [18, 27, 31] or aim to minimize the

number of exceptions in the resulting privacy policy so that the

solution is as understandable as possible for users [27].

To foster the acceptability of collective decisions, policy evalua-

tion should also guarantee the fairness of the decision-making pro-

cess by accounting for the preferences of all controllers [8, 23, 31].

In solutions employing multi-ownership models, fairness implies

that all controllers should influence the decision-making process

equally [23]. On the other hand, in solutions employing an asym-

metric data governance model, where controllers are assumed to

have a different level of authority on the shared object, fairness

should also account for such differences. From Table 1, we can

observe that most approaches guarantee the fairness of the conflict

resolution process. An exception is the proposal in [7] in which the

data owner can adjust the weights used to determine the trade-off

between data sharing and privacy loss; while this can help effec-

tively resolve policy conflicts, the data owner can influence the

conflict resolution process to the detriment of other controllers.

Approaches based on machine learning such as [5] might also not

satisfy fairness. Bias in the data used to train the classifier can lead

to the controllers’ preferences to be not equally representative.

Behavioral Constraints. A few works have investigated human

behavioral patterns and biases influencing access decision-making

in multi-party scenarios and how these can be integrated into policy

evaluation to approximate human behaviors [18, 21, 31]. In par-

ticular, they considered how rational users act for their decisions.
The last block of features in Table 1 reports for each proposal the

adopted rationality model. For solutions in which policy evalua-

tion is performed by the system without any regard for humans’

behavioral patterns, we consider the feature not applicable (‘–’).
Most game-based approaches assume full rationality, where

users choose their strategy to find an outcome that maximizes

utility [9, 21, 27]. Rajtmajer et al. [18] observe that the rational-

ity of individuals in decision-making might be limited, e.g., by

their knowledge and beliefs. To account for this, they propose a

bounded rationality model for multi-party access control to account

for controllers’ cognitive limitations. A different approach to emu-

late human decision-making is proposed in [5], which employs a

classifier to predict the optimal collective policy.

2.3 Discussion
Several works have investigated the problem of multi-party access

control. A stream of research has proposed solutions that require

user intervention for conflict resolution [14, 18, 31], which however

is impractical and unacceptable in several situations [22, 31] and

does not guarantee to reach an agreement between controllers. A

few studies have proposed game theoretical approaches to simu-

late group dynamics and human interactions, thereby enabling the

prediction of group access decisions that optimize collective utility.

Group decision-making is a complex human interaction and human

cognition process, where several factors can influence the dynam-

ics between users and group decision-making. However, existing

approaches for multi-party access control tend to focus only on

a limited number of decision factors, only partially capturing the

dynamics and complexity inherent in group decision-making.

To address these gaps, we investigate game theoretical approaches

for multi-party access control, which account for a comprehensive

set of decision factors at play in group decision-making. By doing

so, our solution offers a robust solution to group access decision-

making, paving the way for effective and acceptable collective

decisions in practical scenarios.

3 A GAME THEORETIC MODEL FOR
MULTI-PARTY ACCESS CONTROL

We propose a framework for multi-party access control based on

game theory. This section provides preliminaries on game theory

and introduces our framework. Based on this framework, we pro-

pose two models for collaborative access decision-making, which

rely on different cooperation assumptions.

3.1 Preliminaries on Game Theory
Game theory is a theoretical framework proposed to analyze

strategic interactions between agents, in which the outcome of an

agent’s choices depends on the ones of others. Each agent (or player)
has a set of possible strategies they can select from to act at any

point in the game. The strategies selected by the players determine

the outcome. The game outcome is computed for each player using
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a payoff function, which accounts for the strategies chosen by both

the player and all other players. Indeed, payoffs’ interdependence is

what distinguishes a game setting from optimization problems [28].

Equilibria are typically employed in game theory as analysis

tools to study the behavior of players. An equilibrium is a state of

the game in which all internal forces of the game balance each other.

The equilibrium typically adopted in game theory is the Nash equi-

librium, which denotes a state of the game in which no players can

benefit by unilaterally changing their strategy. At the Nash equilib-

rium, all players select their best response strategy, which leads to the
highest payoff for a player given the strategies of all other parties.

A game has underlying assumptions describing the character-

istics of the environment and players. The players are assumed to

have a set of behavioral capacities, referred to as rationality. A fully

rational player is expected to select the strategies that yield the most

preferred outcomes. Bounded rationality, conversely, leads to satis-

factory decisions (in contrast to optimal decisions) [18]. Games also

differ in playing sequence, i.e., the order in which players make de-

cisions. All players make decisions simultaneously in simultaneous-

move games, while sequential-move games are played in turns.

In this work, we focus on a particular type of games, namely

bargaining games, which applies to situations where players have a

common interest, i.e., reaching a consensus is preferable to no agree-
ment. However, they might have conflicting interests [2]. As two

alternative interpretations, bargaining interactions can be analyzed

either through a cooperative perspective, in which prescriptive rules
are employed to obtain a desirable agreement for all players, or

a non-cooperative perspective, in which a descriptive analysis of

players’ moves are used to determine their best response [11]. It

is worth noting that cooperative and non-cooperative do not refer

to the degree of cooperation between the parties; rather, they are

alternative ways of facing the strategic environment.

3.2 Multi-party Access Control Framework
We model the decision-making process in multi-party access con-

trol as a game framework that simulates the interactions between

controllers. This section presents our game framework along with

the underlying assumptions and its representation.

Assumptions. We assume that users participating in the multi-

party access control game are fully rational. This is because we aim
to design a multi-party access control mechanism that computes

the “best” access decision based on the controller’s access control

policy rather than an environment to simulate their interactions.

We also assume that controllers play simultaneously, i.e., there is no
specific order in which the strategies of the controllers are applied

in the decision-making process. Any notion of sequential behav-

ior, although possible, would introduce inherent asymmetry in the

authority that controllers have on the shared object.

Game Graph. We represent the game settings for the multi-party

access control mechanism as a graph, called game graph. A game

graph 𝐺 = (𝑆, 𝐸) is a directed graph, where 𝑆 is the set of states

and 𝐸 ⊆ 𝑆 × 𝑆 is the set of edges. For an 𝑛-player game, a state is

modeled as a tuple P = (𝑃1, . . . , 𝑃𝑛), where 𝑃𝑖 denotes the access
control policy of controller 𝑖 at state P. For the purpose of this work,
we do not introduce a specific policy specification language; instead,

we assume that a controller specifies the set of users to whom the

controller allows access to a given object (hereafter we refer to

this set as access preferences). Edges represent transitions between
states and are labeled with an 𝑛-tuple 𝑒 = (𝜎1, . . . , 𝜎𝑛), where 𝜎𝑖
denotes the action performed by controller 𝑖 at a given point of the

game. Controllers’ actions are determined by the strategies they

play, from a given strategy space Σ. Intuitively, a strategy represents
how a controller could update her access preferences. The next state

is determined by combining the strategies of all controllers. Note

that our framework does not impose specific constraints on the

strategies the controllers can select; we only require they operate

on sets (see Example 1 for sample strategies).

Example 1. Let us consider a two-player multi-party access con-
trol game played by Alice and Bob where 𝑃𝑎 and 𝑃𝑏 denote their
initial access preferences, respectively. We assume a strategy space
comprising three strategies: Σ = {con, per, res}. The conservative
strategy (con) models situations in which a controller prefers to keep
her preferences as they are. The permissive strategy (per) models
the cases where a controller is willing to relax her preferences by
granting access also to the users allowed by other controllers; this
strategy can be modeled as the union (∪) of the controllers’ prefer-
ences. The restrictive strategy (res) models the cases where a
controller is willing to restrict the accessibility of the object to the
users that both controllers grant access; this strategy can be modeled
as the intersection (∩) of controllers’ preferences.

An excerpt of the game graph for the two-player game with strategy
space Σ and initial state P0 = (𝑃𝑎, 𝑃𝑏 ) is shown in Fig. 1. The edges
correspond to the application of the strategies of the two controllers.
For simplicity, we do not introduce dedicated labels to represent ac-
tion; instead, we annotate edges with the strategy that induced the
action. It is worth noting that our game graph admits loops. They can
occur, for instance, when both players apply the conservative strategy
(represented by edges with label [con, con]), or through traversing
several states (e.g., after moving from P3 to P10, applying strategies
[res, per] would bring the system back to P3).

A state is terminal if all controllers of a shared object have an

agreement about granting access to a given user. To evaluate an

access request against the controllers’ preferences, we introduce the

evaluation function 𝑒𝑣𝑎𝑙 . Formally, given an access request issued

by a user 𝑟 for an object and the access preferences 𝑃 specified by

a controller for that object, the function 𝑒𝑣𝑎𝑙 is defined as:

𝑒𝑣𝑎𝑙 (𝑃, 𝑟 ) =
{
𝑃𝑒𝑟𝑚𝑖𝑡 if 𝑟 ∈ 𝑃
𝐷𝑒𝑛𝑦 otherwise

(1)

Based on Eq. 1, we say that a state P = (𝑃1, . . . , 𝑃𝑛) is terminal for

an access request issued by a requester 𝑟 iff:

𝑒𝑣𝑎𝑙 (𝑃1, 𝑟 ) = 𝑒𝑣𝑎𝑙 (𝑃2, 𝑟 ) = · · · = 𝑒𝑣𝑎𝑙 (𝑃𝑛, 𝑟 ) (2)

It is worth noting that the exact set of terminal states can only

be determined based on the given access request. Nonetheless,

it is trivial to observe that states in which the preferences of all

controllers are the same are always terminal states regardless of

the given access request. Hereafter, we refer to these states as sink
states. For instance, states P4, P8, and P9 in the game graph of Fig. 1

are sink states. We can observe that, with the strategy space defined

in Example 1, the application of any (combination of) strategies to

a sink state results in a self-loop.

In this work, we restrict our focus to multi-party access control

games whose graph is admissible. A game graph is admissible if
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P0 = (𝑃𝑎, 𝑃𝑏)

P1 = (𝑃𝑎, 𝑃𝑎 ∩ 𝑃𝑏) P2 = (𝑃𝑎 ∪ 𝑃𝑏, 𝑃𝑏) P3 = (𝑃𝑎, 𝑃𝑎 ∪ 𝑃𝑏) P4 = (𝑃𝑎 ∪ 𝑃𝑏, 𝑃𝑎 ∪ 𝑃𝑏) P5 = (𝑃𝑎 ∪ 𝑃𝑏, 𝑃𝑎 ∩ 𝑃𝑏) P6 = (𝑃𝑎 ∩ 𝑃𝑏, 𝑃𝑏) P7 = (𝑃𝑎 ∩ 𝑃𝑏, 𝑃𝑎 ∪ 𝑃𝑏) P8 = (𝑃𝑎 ∩ 𝑃𝑏, 𝑃𝑎 ∩ 𝑃𝑏)

P9 = (𝑃𝑎, 𝑃𝑎) P10 = (𝑃𝑎 ∪ 𝑃𝑏, 𝑃𝑎)

[con, con]

[con, res] [per, con] [con, per] [per, per] [per, res] [res, con] [res, per] [res, res]

[con, con]
[con, per]
[res, con]
[res, per]

[res, res]
[con, res]

[res, res]
[res, con]

[con, per]
[per, per]

[per, con]
[con, res]
[per, res]

[res, per] [per, res] All

All

All

Figure 1: Game graph for a two-player case with three strategies. The label ‘All’ indicates all combinations of possible strategies.

the following conditions hold: (1) There is at least one sink state

in the game graph. (2) There is at least one directed path to a sink

state from every state in the game graph. Note that this restriction

does not affect the generality of our approach. For example, games

in which the strategy space includes strategies that account for

the preferences of all controllers equally (such as strategies res
and per in Example 1) ensure the existence of both sink states

and a one-step path from each state to a sink state. Strategies that

involve the preferences of a subset of controllers also guarantee

the existence of sink states, but multiple steps might be needed to

reach a sink state from a given state.

Payoff Function. For our game framework, we employ a payoff

function representing the desirability of a state for a controller,

i.e., how agreeable an outcome of the game is for the controller.

Several decision factors can influence the willingness of a controller

to change their preferences to reach a consensus (cf. Table 2). The

payoff function should account for these factors to reflect the actual

decision-making process in multi-party access control. Note that

some factors require comparing the preferences of a controller

with those of other controllers. Thus, the payoff function should

not consider only the preferences of the controller for which the

outcome is assessed but also the preferences of all other controllers.

Based on these observations, we determine the payoff of our

multi-party access control game for a controller in terms of the deci-

sion factors identified in Section 2.2.
1
Specifically, we define a payoff

function that computes the desirability of a state P = (𝑃1, . . . , 𝑃𝑛)
according to a controller i as follows:

𝑢𝑖 (P) = 𝑠𝑙𝑖 · 𝐽𝑎𝑐 (𝑃𝑖 , 𝑃0𝑖 ) +
1

𝑁 − 1
∑︁

𝑗 ∈{1...𝑛}, 𝑗≠𝑖
𝑟𝑒𝑙𝑖 𝑗 · 𝐽𝑎𝑐 (𝑃𝑖 , 𝑃 𝑗 )

+ 𝑠𝑏𝑖 · |𝑃𝑖 | +
𝑝𝑒𝑖

𝑁 − 1
∑︁

𝑗 ∈{1...𝑛}, 𝑗≠𝑖
𝐽𝑎𝑐 (𝑃𝑖 , 𝑃 𝑗 ) + 𝜖 (3)

where 𝑠𝑙𝑖 , 𝑟𝑒𝑙𝑖 𝑗 , 𝑠𝑏𝑖 , 𝑝𝑒𝑖 ≥ 0, and 𝜖 >0 is an arbitrary small positive

constant that serves to ensure termination of the bargaining models.

The first term represents a controller’s willingness to maintain

her initial preferences 𝑃0
𝑖
based on the perceived object sensitivity

𝑠𝑙𝑖 (the more sensitive an object is, the higher 𝑠𝑙𝑖 is). Intuitively, this

term denotes that a controller more likely tends to prefer her initial

preferences for objects perceived as highly sensitive, decreasing the

payoff when its similarity with the updated preferences decreases.

To compute the similarity between the updated preferences 𝑃𝑖 and

1
We do not consider the justification factors in this work. This factor expresses the

reasoning behind preferences, which cannot be expressed as a numerical value and,

thus, easily integrated into the payoff function. A possibility is to represent this factor

as a constraint to the controllers’ optimization objectives and transform the problem

into a constrained game. We leave the study of this solution for future work.

her initial preferences 𝑃0
𝑖
, we use the Jaccard index, a standard

measure for the similarity between two sets, defined as:

𝐽𝑎𝑐 (𝑃𝑖 , 𝑃0𝑖 ) =
|𝑃𝑖 ∩ 𝑃0𝑖 |
|𝑃𝑖 ∪ 𝑃0𝑖 |

The second term represents the influence of interpersonal rela-

tionships on the payoff, such that a controller is expected to gain a

higher payoff when her preferences are more similar to the ones of

strongly related controllers. Coefficient 𝑟𝑒𝑙𝑖 𝑗 denotes the strength

of the relationship between 𝑖 and 𝑗 . In particular, the stronger the

relationship (e.g., friends vs. acquaintances), the higher 𝑟𝑒𝑙𝑖 𝑗 is.

The third term represents the contribution of sharing benefits

to the payoff. Coefficient 𝑠𝑏𝑖 denotes the importance of sharing

an object with a large audience for controller 𝑖 . For example, an

influencer could gain higher profit from sharing than a regular user.

Finally, the last term is used to account for peer influence on the

payoff. In particular, this term measures the similarity between a

controller’s preferences and the group norm (i.e., the preferences of

all other controllers).
2
Coefficient 𝑝𝑒𝑖 is an indicator of the extent

controller 𝑖 is subject to the influence of her peers. Similarly to the

first term, we employ the Jaccard index to calculate the similarity

between the access preferences of two controllers.

Note that the payoff function in Eq. 3 should be defined for each

controller who can weigh the factors differently (by setting param-

eters 𝑠𝑙𝑖 , 𝑟𝑒𝑙𝑖 𝑗 , 𝑠𝑏𝑖 , and 𝑝𝑒𝑖 ). Further discussion is provided in Sec. 5.

Bargaining Frameworks. Controllers’ access preferences might

conflict, where some controllers allow a user to access the shared

object while others do not. To reach a consensus on whether access

should be granted, controllersmight have to adjust their preferences.

Indeed, if no agreement is reached, the enforced decision might

carry low utility for controllers, for example, leading to not sharing

the object at all, or unbalanced empowerment between controllers.

This provides a natural context for applying bargaining frameworks

in multi-party access control, where the controllers adjust their

preferences to reach an agreement.

We propose two bargaining models, a cooperative model (Sec-

tion 3.3) and a non-cooperative model (Section 3.4), for our multi-

party access control game framework. The cooperative model emu-

lates a group decision-making process by aggregating the payoffs

of the individual controllers into a group-representative payoff us-

ing a prescriptive rule (hereafter referred to as bargaining rule). At
each game step, the model selects the state that optimizes these

2
Note that peer influence and interpersonal relationships measure different aspects.

While interpersonal relationships account for cases where a controller changes her

preferences towards the ones of a closely related individual, peer influence captures

the attitude toward group dynamics.



A Bargaining-Game Framework for Multi-Party Access Control SACMAT 2024, May 15–17, 2024, San Antonio, TX, USA

values until a group agreement (represented by a terminal state) is

reached. Conversely, the non-cooperative model aims to determine

each controller’s best response by focusing on individual choices.

To this end, it relies on a descriptive analysis of the decision-making

processes obtained by simulating the multi-party access control

game to identify, for each controller, the preferences that optimize

her payoff until an equilibrium is reached.

It is worth noting that the bargaining procedure may not termi-

nate since the game graph can have loops. To prevent the procedure

from entering an infinite loop and thus guarantee termination, we

introduce a discount factor 𝜌 (where 0 < 𝜌 < 1). In the cooperative

model, the discount factor is used to reduce the collective payoff

of a state based on the number of times the state is visited. On the

other hand, the non-cooperative model utilizes the discount factor

to reduce the payoff of a state for a controller based on the number

of times the controller chooses a specific preference. We present

the two bargaining models in the following sections.

3.3 Cooperative Model
The cooperative bargaining model relies on a collective approach

to decision-making. For every possible outcome of the game, a

collective value is calculated based on the payoffs of all controllers,

and the outcome with the highest value is chosen as the solution

of the game. This could be interpreted as if the controllers jointly
select the outcome that is more desirable for all of them [2].

To support cooperative decision-making, we employ a bargain-
ing rule that specifies the aggregative selection procedure. Intu-

itively, a bargaining rule takes the payoffs of all controllers as input

and returns a collective value. Several bargaining rules have been

proposed in the literature, motivated by different applications. Well-

known bargaining rules are the Nash rule, Kalai-Smorodinsky rule,

Egalitarian, and utilitarian rule [15]. Among them, we employ the

utilitarian rule, which selects the outcome that maximizes the sum

of individual payoffs, since it satisfies crucial properties for multi-

party access control (cf. Section 2), namely optimality (it provides

Pareto optimal solutions) and fairness (payoffs of all controllers are

included in the bargaining rule).

Algorithm 1 presents the cooperative bargaining process. The al-

gorithm takes as input a game graph (𝑆, 𝐸) and the access request (is-
sued by a user 𝑟 ) to be evaluated and returns the access decision to be

enforced. For each state P, the algorithm keeps a counter 𝑘P, initial-
ized to 0 (lines 1 to 3), recording the number of times P has been vis-

ited. The game starts from the initial state P0, which comprises the

controllers’ initial access preferences, and traverses the game graph

until a terminal state is reached. While the current state (denoted by

C) is not terminal (cf. Eq. 2), the algorithm increases the counter 𝑘C,
and then uses the bargaining rule to compute the collective payoffs

for each state connected to C via a direct edge (represented by

𝑅(C) = {P| (C,P) ∈ 𝐸}). The state providing the maximum collec-

tive payoff is then selected as the next state to be visited (line 8). If

two or more states have equal sum values, one is selected randomly.

To prevent entering an infinite loop, the bargaining rule uses

the discount factor 𝜌 to reduce the cumulative payoff provided by

a state P based on the number of times it was visited (recorded by

𝑘P). Formally, given the set of states reachable by the current state

Algorithm 1: Cooperative Bargaining
Data: Game graph (𝑆, 𝐸), access request issued by user 𝑟

Result: access decision
1 forall P ∈ 𝑆 do
2 𝑘P ← 0

3 end
4 C← P0;
5 while C is not a terminal state do
6 𝑘C ← 𝑘C + 1;
7 P∗ ← argmaxP∈𝑅 (C) 𝜌

𝑘P ·∑𝑛
𝑖=1 𝑢𝑖 (P);

8 C← P∗;
9 end

10 return 𝑒𝑣𝑎𝑙 (𝐶𝑖 , 𝑟 )

C, the bargaining rule is defined as follows:

P∗ = arg max

P∈𝑅 (C)
𝜌𝑘P ·∑𝑛

𝑖=1 𝑢𝑖 (P) (4)

Note that in Eq. 4, controllers are assumed to have equal bargaining

power. Accounting for asymmetric power can be easily achieved,

for instance, by adding a user-specific weighting to the payoff

contribution of each controller.

The algorithm terminates when a terminal state is reached by

returning the access decision corresponding to the reached terminal

state (line 10). Recall that, in a terminal state, the evaluation of the

access preferences of all controllers yields the same access decision;

therefore, it is irrelevant which one is selected to determine the

access decision to be enforced.

Example 2. Consider the game graph in Fig. 1. Assuming that
the initial state P0 is not terminal, the bargaining rule calculates the
collective payoff for all states directly connected to P0 and selects the
one that maximizes the aggregated value, e.g., P3. Algorithm 1 checks
the termination condition for P3 and, assuming it is not satisfied, the
bargaining rule is applied again to that state to find a state with the
highest collective payoffs in 𝑅(P3), e.g., P9. Note that both [res, res]
and [con, res] edges would perform the same transition. State P9 is
a terminal state and, thus, Algorithm 1 terminates by returning the
corresponding access decision.

Algorithm 1 always terminateswhen the game graph is admissible.
Here, we present the main result and the intuition of the proof.

Theorem 1. Consider a multi-party access control game such that
the game graph is admissible. The cooperative bargaining approach,
as defined in Algorithm 1, always terminates.

A sufficient condition for termination of Algorithm 1 is to reach a

sink state. When the state selection process enters a loop, using the

discount factor in the bargaining rule ultimately breaks out of the

loop. Indeed, after a certain number of loop iterations, the payoff of

the states forming the loop decreases to a point where the bargain-

ing rule selects a state outside the loop. Since no loop is iterated

infinitely and each state has a path to a sink state, the algorithm

eventually reaches a sink state and terminates. It is worth noting

that Algorithm 1may terminate before reaching a sink state; indeed,

it is sufficient that a terminal state is reached for the algorithm to ter-

minate (Recall that sink states are a special case of terminal states).
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3.4 Non-cooperative Model
Our non-cooperative model relies on the standard game-theoretic

notion of Nash equilibrium as the solution of the multi-party ac-

cess control game. At each step of the game, the controllers simul-

taneously play their best response strategies based on the latest
preferences of the other controllers until a Nash equilibrium is

reached. In this respect, the Nash equilibrium can be interpreted

as a self-enforcing solution by rational players where it is in each

player’s interest to maintain their selected access preferences [28].

Algorithm 2 presents the non-cooperative bargaining procedure.

As for the cooperative model presented in Section 3.3, the algorithm

takes as input a game graph (𝑆, 𝐸) and the access request (issued
by a user 𝑟 ) to be evaluated and returns the access decision to be

enforced. For each controller 𝑖 , the algorithm uses a counter 𝑘𝑃𝑖 to

keep track of how many times the controller has selected 𝑃𝑖 . These

counters are initialized to 0 (lines 1 to 5). The current state C is ini-

tialized to state P0, which comprises the initial access preferences

of the controllers for the requested object (line 6).

The algorithm checks if the current state is an equilibrium (line 7).

Intuitively, the game converges to the Nash equilibrium when all

controllers keep their current access preferences, indicating that

such preferences result in the highest payoff for them with respect

to the preferences of the other controllers. Formally, the current

state C is a Nash equilibrium if the following condition holds:

∀𝑖 ∈ {1, . . . , 𝑛} ∀𝑃𝑖 ∈ Π𝑖 (C) 𝜌𝑘𝐶𝑖 ·𝑢𝑖 (C) ≥ 𝜌𝑘𝑃𝑖 ·𝑢𝑖 (C−𝑖 , 𝑃𝑖 ) (5)

where Π𝑖 (C) = {𝑃𝑖 | P ∈ 𝑅(C)} represents the set of possible

access preferences that controller 𝑖 could obtain by applying a

strategy to C and 𝑢𝑖 (C−𝑖 , 𝑃𝑖 ) is the payoff of the current state in

which the access preferences of controller 𝑖 are replaced with 𝑃𝑖 .

Similar to the bargaining rule in Eq. 4, we use the discount factor 𝜌

to prevent entering an infinite loop but this time we consider the

number of times preferences have been chosen by the controller.

If the current state is not an equilibrium, the counter 𝑘𝐶𝑖
is

updated (line 9), and the algorithm computes the best response for

every controller based on the preferences of the other controllers

in the current state (lines 8 to 11). Given the current state C, the
resulting preferences for controller 𝑖 through the application of the

best response strategy are calculated as follows:

𝑃∗𝑖 = arg max

𝑃𝑖 ∈Π𝑖 (C)
𝜌𝑘𝑃𝑖 · 𝑢𝑖 (C−𝑖 , 𝑃𝑖 ) (6)

Intuitively, each controller’s best response is selected among the set

of possible preferences that can be obtained by applying a strategy

to the current state, Π𝑖 (C), in such a way that it maximizes the

controller’s payoff assuming that other players maintain their pref-

erences, i.e., 𝑢𝑖 (C−𝑖 , 𝑃𝑖 ). After the best response of every controller

is computed, the best responses of all controllers are combined to

update the current state (line 12)
3
. If two or more preferences lead to

equal payoffs for a controller, the preferences used to determine the

new current state are selected randomly. The algorithm continues

until an equilibrium is reached.

At equilibrium, all controllers are set with the preferences that

result in the highest payoff for them according to the preferences

of other controllers. If the equilibrium corresponds to a terminal

3
Note that while creating the game graph, all possible combinations of strategies are

considered to create the connected states to each state. Therefore, the combination of

best response preferences is necessarily among the states connected to a current state.

Algorithm 2: Non-cooperative Bargaining
Data: Game graph (𝑆, 𝐸), access request issued by user 𝑟

Result: access decision
1 foreach player 𝑖 do
2 foreach access preferences 𝑃𝑖 do
3 𝑘𝑃𝑖 ← 0

4 end
5 end
6 C← P0;
7 while C is not a game equilibrium do
8 foreach player 𝑖 do
9 𝑘𝐶𝑖

← 𝑘𝐶𝑖
+ 1;

10 𝑃∗
𝑖
← argmax𝑃𝑖 ∈Π𝑖 (C) 𝜌

𝑘𝑃𝑖 · 𝑢𝑖 (C−𝑖 , 𝑃𝑖 )
11 end
12 C← (𝑃∗

1
, . . . , 𝑃∗𝑛);

13 end
14 if C is terminal then
15 return 𝑒𝑣𝑎𝑙 (𝐶𝑖 , 𝑟 )
16 else
17 return MAJ (C)
18 end

state, the algorithm returns the associated access decision (line 15).

Otherwise, if the equilibrium does not correspond to a terminal

state, this would mean that a consensus cannot be reached. Intu-

itively, such a state indicates that the controllers agree that they
disagree. In this case, we use majority voting to determine the final

decision (line 17). In particular, given a state P, function MAJ (P)
returns permit if the majority of controllers would grant access to

the requester based on their preferences at P; otherwise, the access
decision is deny (ties are resolved in a deny decision).

Example 3. Let us consider the game graph in Fig. 1. At P0, Alice
selects the preferences (amongst her possible preferences in the states
directly connected to P0) that maximize her payoff while Bob is as-
sumed to maintain his preferences from P0 unchanged. Similarly, the
best response for Bob is computed while Alice is assumed to maintain
her preferences from P0 unchanged. Assume that Alice’s best response
is Pa (obtained through the conservative strategy con) and Bob’s best
response is Pa ∪ Pb (obtained through the permissive strategy per).
Combining these preferences results in the selection of P3 as the next
state through edge [con, per]. Suppose now that P3 is an equilibrium.
If P3 is also terminal (recall that, besides trivial cases where the pref-
erences of all controllers are the same, determining whether a state is
terminal depends on the actual access request), Algorithm 2 returns
the corresponding access decision. Otherwise, if P3 is not terminal,
the access decision to be enforced is determined using majority voting
based on the controllers’ access preferences at P3.

It is worth noting that reaching an equilibrium is a sufficient con-

dition for the termination of the non-cooperative model. Depending

on the strategy space, the while condition at line 7 could be relaxed

by requiring the current state to be either an equilibrium or a ter-

minal state for exiting the loop, thus speeding up convergence. For

instance, this would be the case for the strategy space introduced

in Example 1. Since those strategies are based on the union and

intersection operators over sets, if, at a given state, the requester
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belongs to the preferences of all controllers, the application of any

combination of strategies results in a state in which the user still

belongs to the preferences of all controllers, thus yielding decision

permit. Similar reasoning applies to the case where a user does not

belong to the preferences of any controller.

Algorithm 2 always reaches equilibrium and terminates when

the game graph is admissible. Next, we present the main results

along with the intuition of the proof.

Theorem 2. Consider a multi-party access control game such
that the game graph is admissible. The non-cooperative bargaining
approach, as described in Algorithm 2, always terminates.

We first observe that sink states satisfy the Nash equilibrium

condition. Moreover, the non-cooperative algorithm does not enter

an infinite loop. This is because using the discount factor to compute

the best response (Eq. 6) results in selecting a state outside the loop

with a higher payoff. Similar to the cooperative model, since no loop

is iterated infinitely and each state has a path to a sink state, the non-

cooperative model always reaches a state that satisfies the Nash

equilibrium condition (possibly a sink state) and, thus, terminates.

4 EVALUATION
We evaluated the cooperative model (Section 3.3) and the non-

cooperative model (Section 3.4) in terms of their performance and

outcome. In particular, we are interested in answering the following

research questions:

RQ1: How does the number of controllers affect the performance

and outcome of the proposed models?

RQ2: How does the discount factor affect the performance and

outcome of the proposed models?

RQ3: How does the granularity of the strategy space affect the

performance and outcomes of the proposed models?

The number of controllers managing the shared object can sig-

nificantly affect the size of the game graph.RQ1 aims to investigate

the effect of this complexity on the performance of our bargaining

models. We introduced a discount factor to ensure the termination

of the decision-making process (cf. Section 3.2). RQ2 aims to study

how different choices of the discount factor impact the performance

and the collective decisions returned by the models. We also expect

the performance and outcome of the multi-party access control

game to be influenced by the granularity of the strategy space. In

particular, providing controllers with fine-grained strategies to re-

solve conflicts can allow controllers to identify access decisions

with a higher collective payoff but at the cost of performance. RQ3
aims to explore this trade-off.

4.1 Implementation
We implemented a prototype of our multi-party access control

framework, encompassing both the cooperative (Algorithm 1) and

non-cooperative (Algorithm 2) models in Python. We also imple-

mented a variant of the non-cooperative model in which the termi-

nation condition (line 7 of Algorithm 2) is relaxed by requiring the

current state to be either a Nash equilibrium or a terminal state (see

Sec. 3.4 for the rationale behind this variant). We refer to this variant

as the relaxed non-cooperative model. We implemented a strategy

space that includes the permissive, restrictive, and conservative strate-
gies as described in Ex. 1; the permissive and restrictive strategies

can be tuned to account for the preferences of an arbitrary number

of controllers. For instance, in a three-party game, our implemen-

tation allows for an instance of these strategies in which the pref-

erences of all three controllers are considered as well as instances

in which the controllers’ preferences are considered pairwise.

The proposed models require an exhaustive search to find the

neighbor of the current state with maximum payoff (Eq. 4 and Eq. 6),

which is time and memory-consuming. To this end, we applied

several optimizations in our implementation. For the cooperative

model, we employed a depth-first search to determine the neighbor

of the current state with the highest payoff. The computation starts

considering one controller’s preference, and the group payoff is it-

eratively updated by considering one additional controller at a time.

Once the preferences of all controllers are considered, the state

with maximum payoff (P∗ in Eq 4) is updated, and our prototype

backtracks to visit the next neighbor state, thus reducing the recom-

putation of the terms in the payoff function that were already com-

puted. In the non-cooperative model, we shifted our search space

to controllers’ possible preference set instead of searching through

all neighbor states. This is because the same preferences of a con-

troller might appear in several neighbor states. Our prototype only

generates the neighbor states comprising the preferences with the

highest payoff for each controller, thus reducing the search space.

4.2 Experiment Design
We conducted three sets of experiments to answer our research

questions. In this section, we present the approach employed for

the generation of the data used in the experiment, the settings of

the experiments, and the evaluation metrics.

Data Generation.We simulated a collaborative system comprising

30 objects and 500 users. We randomly generated the set of initial

access preferences for each user using a Gaussian distribution. The

size of each controller’s set of initial preferences ranges between 10

and 100 users with a mean of 50 and a standard deviation of 50. We

also generated a sharing benefit (𝑠𝑏) and a peer influence (𝑝𝑒) coeffi-

cient using a Gaussian distribution. Each object is assigned a given

number of controllers (see below for details); for each controller as-

signed to an object, we generate a sensitivity level (𝑠𝑙 ) for that object

based on a Gaussian distribution. Note that we adopted the common

statistical modeling practice of employing normal distributions to

avoid strong assumptions. This approach is particularly suitable for

the cooperative model, where the summation of payoffs (cf. Eq. 4)

introduces variables in the form of “sums of coefficients”. These vari-

ables, based on the Central Limit Theorem, follow a normal distri-

bution regardless of the underlying distribution. To account for the

strength of the relationship (𝑟𝑒𝑙 ) between controllers, we generated

a social graph involving the users in the system using a power-law

degree distribution, as suggested in [30]. We then assigned a value

to every relationship in the social graph, denoting its strength, based

on an exponential distribution [24]. Access requests were generated

by randomly selecting an object and a user within the system.

Settings.We performed three experiments to investigate the im-

pact of the number of controllers, discount factor, and granularity of

the strategy space on the performance and outcome of the proposed

models. In each experiment, we varied one parameter while keeping

the others fixed. A summary of the settings is given in Table 4.
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Table 4: Experiment Settings. The parameter controlled in
each experiment is reported in bold.

Controllers Discount Factor Strategy Granularity

Experiment 1 [2, 20] 0.8 All

Experiment 2 10 [0.1, 0.99] All

Experiment 3 6 0.8 {2 . . . 6}

Experiment 1: Impact of the number of controllers (RQ1). In this

experiment, we fixed the discount factor to 0.8 and increased the

number of controllers from 2 to 20 similar to previous studies (e.g.,

[8]). The strategy space comprises three strategies, conservative,

permissive, and restrictive, where the last two account for the pref-

erences of all controllers.

Experiment 2: Impact of the discount factor (RQ2). In this experiment,

we fixed the number of controllers for an object to 10 and varied

the discount factor from 0.1 to 0.99. We used the same settings of

Experiment 1 for the strategy space.

Experiment 3: Impact of the granularity of the strategy space (RQ3).
To study the impact of the granularity of the strategy space, we

created different strategy spaces in which we varied the number of

controllers whose preferences are considered by the permissive and

restrictive strategies, thus allowing a controller to be influenced

by only a subset of other controllers. In particular, we varied the

number of controllers whose preferences are accounted for by the

permissive and restrictive strategies from 2 (the minimummeaning-

ful number) to the total number of controllers. We used the same

settings of Experiment 1 for the discount factor. On the other hand,

we reduced the number of controllers to 6 to keep the experiment

manageable (see Section 5)

Evaluation Metrics. We assessed our bargaining models (coop-
erative, non-cooperative, and relaxed non-cooperative) in terms of

their performance and outcome. To assess the performance, we

measured the computation time of decision-making processes and

the number of iterations required to reach the collective decision.

To evaluate the outcome of group decision-making, we measure

the ability of the models to determine the controllers’ preferences

that maximize the group payoff. To this end, for each game, we

compute the ratio between the group payoff of the state used to

make the decision (P𝑓
) and the one of the initial state (P0) as follows:∑𝑛

𝑖=1 𝑢𝑖 (P𝑓 )∑𝑛
𝑖=1 𝑢𝑖 (P0)

Note that this metric is based on the equation for computing the

payoff in the collaborative model (Eq. 4) without the discount factor.

This is because we are interested in measuring the outcome of the

models rather than the process to reach that outcome, providing a

fairer comparison between the models. We also evaluated to what

extent the bargaining process impacts the collective decision. To this

end, we compared the access decision obtained using our models

with the decision that could be enforced considering only the initial

preferences of the controllers. To compute the access decision on

the initial state, we considered three baseline approaches largely

used in the literature: permit-overrides, which returns permit if at
least one controller grants access to the requester, deny-overrides,
which returns deny if at least one controller denies the access,

and majority voting, which returns the decision of the majority of

controllers (ties are resolved in a deny decision).

4.3 Results
Fig. 2 shows the results of the experiments. For each parameter

configuration, we performed 1000 experiment runs, each run with

a newly randomly generated initial set of access preferences and

request (cf. Sec. 4.2). In the plots, we reported the average of the

measurements along with the 95% confidence interval through

shaded areas.

Experiment 1: Impact of the number of controllers. Fig 2a shows that

increasing the number of controllers increases the execution time

for all models. However, the increase is more prominent for the

cooperative model than for the other two models. The cooperative

model is faster for fewer controllers (up to 5). For larger numbers,

its execution time experiences exponential growth (which is why

this experiment was stopped after 14 controllers for the coopera-

tive model). The execution times of the two other game models are

similar, with the relaxed model being faster due to its relaxed ter-

mination condition. However, increasing the number of controllers

causes the two approaches to converge. The increase in execution

time for the cooperative model is due to an increase in the number

of iterations needed to reach a terminal state (Fig. 2b) as well as to

an increase in the execution time per iteration. On the other hand,

the number of controllers has only a limited effect on the number of

iterations to reach termination for the non-cooperative model and

its variant. Fig. 2c shows the ratio of the final payoff to the initial

one. We can observe that the ratio decreases with the increase in

the number of controllers for all models. For a low number of con-

trollers, the non-cooperative model provides a ratio above 1 (even

higher than the cooperative model) but drops rapidly before stabi-

lizing around five controllers. Conversely, the cooperative model

experiences a slighter drop and maintains its payoff ratio above 1.

A comparison of the outcome of the three models with the three

baseline approaches for conflict resolution (Fig. 2d) reveals that

the cooperative model tends to behave as the permit-overrides

baseline, while the non-cooperative models show similarity with

deny-overrides and align more closely with the majority voting

baseline. In particular, the cooperative model is more likely to re-

solve policy conflicts into a permit decision due to the maximization

function used for the collective payoff (cf. Sec. 5). This becomes

more evident when the number of controllers increases, as the ini-

tial state is more likely to be in conflict. The non-cooperative and

relaxed non-cooperative models show the opposite behavior. Note

that these two models always return the same decisions.

Experiment 2: Impact of the discount factor. Our results show that

the cooperative model is less sensitive to changes in the discount

factor, particularly in terms of execution time (Fig. 2e) and payoff

ratio (Fig. 2g). Conversely, the non-cooperative and relaxed non-

cooperative models undergo an increase in execution time and num-

ber of iterations when increasing the discount factor (see Fig. 2e and

Fig. 2f). The payoff ratio for these models experiences a moderate in-

crease, consistently staying below the payoff ratio observed for the

cooperative model. It is worth noting that, particularly for higher

discount factor values (i.e., 0.99), all three models show a more

noticeable increase in execution time and number of iterations.

In line with prior findings, we observe that the outcome of the

cooperative model does not depend on the discount factor (Fig. 2h).

The other two models behave similarly to the cooperative model for
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Figure 2: Results for Experiment 1 (2a, 2b, 2c, 2d), Experiment 2 (2e, 2f, 2g, 2h), and Experiment 3 (2i, 2j, 2k, 2l)

low discount factors, but they tend to return a deny decision when

the discount factor increases. For low values of the discount fac-

tor, the non-cooperative model mostly finds terminal equilibrium
states; for high discount factors, equilibrium states are mostly non-

terminal and, thus majority voting is employed to make a decision,

often resulting in a deny decision.

Experiment 3: Impact of the granularity of the strategy space. Our
results show that the choice of the strategy space has a remarkable

impact on the performance of the cooperative model. (Fig. 2i). In par-

ticular, the execution time is higherwhen the strategy space is larger.

This can be explained by noting that the size of the strategy space

significantly impacts the state space. This intuition was confirmed

by analyzing the execution time per iteration. On the other hand, the

non-cooperative and relaxed non-cooperative models are less sub-

ject to variations. By increasing the scope of the strategy, the coop-

erative model reaches a terminal state with fewer iterations (Fig. 2j)

while the other two models show the opposite behavior. Finally, we

can observe in Fig. 2k that the non-cooperative model achieves a

higher payoff ratio when employing more fine-grained strategies.

When comparing the outcomes of the three models with the

baseline approaches (Fig. 2l), we observe that the cooperative model

tends to align with majority voting when the strategies involve the

preferences of fewer controllers, and to return a permit decision
when the strategies account for the preferences of more controllers.

The other twomodels show an opposite behavior. For small strategy

scope, the non-cooperative model is more likely to reach a non-
terminal equilibrium state. In these states, controllers generally

have preferences closer to their initial preferences (cf. Sec. 5), often

resulting in a deny decision.

5 DISCUSSION
Effects of cooperation assumptions on performance and decision. As
discussed in Section 3, bargaining interactions for multi-party ac-

cess control can be analyzed through either a cooperative or a non-

cooperative perspective. To this end, we proposed and evaluated

twomodels, each capturing a different perspective. The results show

that the cooperative model makes a decision based on a state with

a higher collective payoff compared to the non-cooperative model

(Figs. 2c, 2g, 2k). On the other hand, it is more computationally

demanding, even if the number of iterations needed to reach consen-

sus is generally lower. In particular, the cooperative model becomes

impractical in settings with a large number of controllers (Fig. 2a)

or a large strategy space (Fig. 2i). One interesting observation is the

positive effect of employingmore fine-grained strategies on the non-

cooperativemodel (Fig. 2j, 2k). Although using these strategies leads

to a larger state space, it better captures the possible dynamics be-

tween controllers, leading to equilibrium in fewer iterations (Fig. 2j)

and with a higher payoff ratio (Fig. 2k). Furthermore, although the

three models can reach similar collective decisions at certain set-

tings, the non-cooperative model and its variant are usually more

inclined toward majority vote. The high similarity with the majority

vote makes the decisions of these models explainable, but it is not

necessarily preferable in terms of performance (e.g., collective gain).

Characterization and parametrization of the payoff function. Our
framework is equipped with a payoff function (Eq. 3) consisting of

several factors influencing collaborative access decision-making.

These factors have a potentially different impact on the decision out-

come. For instance, the first term (object sensitivity) pushes towards
preserving the initial preferences. The second (relationship between
controllers) and fourth (peer influence) terms push toward reaching

a consensus by increasing the similarity between their preferences.
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The third term (shared benefits) increases with higher cardinality

preferences, pushing toward a permit decision. After an in-depth

analysis, we observed that the cooperative and non-cooperative

models account for these terms differently. The cooperative model

reinforces the terms favoring a permit decision (by including more

users in the controllers’ preferences) as it aims to maximize the

cumulative payoff. In contrast, the non-cooperative model mainly

relies on the first term to reach equilibrium. The strength of the

payoff terms is also influenced by the factor parametrization, which

may also influence the behavior of the models. In this study, we used

the same factor parametrization for all models to allow a fair com-

parison. The parametrization should be defined on a per-user basis.

Some factors may be inferred from user behavior, while others may

be provided through user self-reported data. To limit the burden

on the controllers in setting their parameters, our framework can

leverage pre-defined personas [19] to represent the different user
types engaging in collaborative access decision-making.

Towards the development of multi-party access control mechanisms.
Mechanisms for multi-party access control should capture the com-

plex dynamics underlying decision-making in collaborative sys-

tems and satisfy the principles of fairness and optimality. Moreover,

they should not rely on user intervention. To address these chal-

lenges, our framework leverages four factors influencing users’

decision-making to compute acceptable collaborative decisions that

maximize controllers’ payoffs. In this work, we considered a multi-

ownership governance model. Our framework achieves fairness by

considering the payoff of all controllers equally. Although our pay-

off function (Eq. 4) can be adapted to handle asymmetric governance

models, for instance, by using a weighted summation of controller

payoffs, more research is needed to capture the dynamics underly-

ing those governance models. We proposed two bargaining models

and showed that they terminate without requiring user interven-

tion as needed in other works [14, 27, 31]. Thus, our framework has

the potential to operate in real-world collaborative environments

where controllers might not be available all the time to resolve con-

flicts. We realized and evaluated a prototype of our framework to

gain practical insights. Despite some optimizations (cf. Section 4.1),

our framework, and especially the collaborative model, might not

scale when objects are associated with a large number of controllers

or the strategy space is ample, due to an exhaustive state space

exploration. Further optimizations are needed to unlock the full

potential of our framework. For instance, accounting only for “rele-

vant” subsets of controllers while creating fine-grained strategies

can reduce the search space and, thus, decrease the execution time.

6 CONCLUSION
In this work, we proposed a game theoretical framework for multi-

party access control, comprising two bargaining models, to inves-

tigate different strategic environments influencing collaborative

decision-making. Our models guarantee termination without user

intervention, posing the basis for developing automated multi-party

access control mechanisms. Our evaluation shows that different

cooperation assumptions significantly impact the performance and

outcome of collaborative access decision-making. In future work,

we plan to perform user studies to support factor parametrization

and define personas representing typical user behaviors in collabo-

rative access decision-making. We also plan to investigate optimiza-

tions tailored to the efficient computation of the collective payoff.
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