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Drop deformation in a planar elongational flow: impact of surfactant dynamics

Julian Wailliez,†a Paul Regazzi,†b Anniina Salonen,a Paul G. Chen,c Marc Jaeger,c Marc Leonettib and Emmanuelle Rio∗a

Drops in extensional flow undergo a deformation, which is primarily fixed by a balance between their surface tension and the
viscous stress. This deformation, predicted and measured by Taylor on millimetric drops, is expected to be affected by the
presence of surfactants but has never been measured systematically. We provide a controlled experiment allowing us to measure
this deformation as a function of the drop size and of the shear stress for different surfactants at varying concentrations. Our
observation is that the deformation predicted by Taylor is recovered at zero and high surfactant concentration, whereas it
is smaller at concentrations close to the critical micellar concentration. This is in contradiction with the existing analytical
models. We develop a new analytical model, taking into account the surfactant dynamics. The model predicts a transition
between a deformation similar to the one of a pure liquid and a smaller one. We show that the transition is driven by a
parameter KL, which compares adsorption and desorption dynamics. Finally, the concentration C∗, at which we observe this
transition in the extensional flow is in good agreement with the one predicted by independent measurement of KL.

1 Introduction
Two-phases liquid/fluid dispersions, such as emulsions and
foams, are ubiquitous in a wide range of applications ranging
from food industry to cosmetics or structural materials.1 Since
these materials are thermodynamically unstable, they tend to
evolve towards complete phase separation, which can be slowed
down by the addition of surfactants to stabilize the interfaces.

The description of the stability and the evolution of interfaces
loaded with surfactants requires a fine description of their dy-
namics, which includes diffusion in the bulk and at the interface,
convection and adsorption/desorption barriers. A precise under-
standing of the liquid flow is thus needed to describe the convec-
tion. Additionally, the presence of surfactants at the interfaces
confers an additional surface stress, which impacts the flow.2–4

A comprehensive description of a given experimental situation
thus requires a fine control of the liquid flow in the limit of a
low Reynolds number regime, which can easily be achieved in
microfluidics. A key advantage is the ability to directly compare
experimental and theoretical results. A known efficient config-
uration is the deformation of a deformable particle in a planar
extensional flow,5,6, i.e., droplets,7–10 vesicles,10,11 polymer or
DNA,12,13 cells14–16 and microcapsules.17 Beyond the mastered
hydrodynamic stress, one advantage compared to shear flow is
the presence of a stagnation point to trap the particle and study
it. Nevertheless, similar results can be achieved in microfluidics
but with alternative flow such as localized single or successive
constrictions.10,15,16

Here, we focus on the deformation of a drop of radius R in an
extensional flow, historically proposed by Sir Taylor.7 He demon-
strated analytically that in the limit of small deformations with
respect to the initial drop radius and a low Reynolds number, the
drop shape is an ellipsoid of semi-axes L and S: |L− S| � R. He
introduced the so-called Taylor parameter DT = L−S

L+S . Other as-
sumptions are the negligible effect of buoyancy and the lack of
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any walls, i.e., the single drop can be considered in an infinite
viscous medium. We limit the description to the case where the
continuous phase has a viscosity η much larger than the dispersed
one. For pure liquids, with an interfacial tension γ, the shape of
a drop of initial radius R is fixed by a balance between the shear
rate ε̇ and surface tension, leading to

DT = ΞCa, (1)

where Ca = ηε̇R
γ

is the capillary number and Ξ = 2. ε̇ and γ are
respectively the elongation rate and the surface tension. The four-
roll experiment developed by Taylor gave measurements in agree-
ment with this prediction for millimetric drops.7 Similar results
have been obtained in a microfluidic circuit very recently by Lee
et al.8 in the presence of surfactants at high concentration. In this
case, the surfactant dynamics are expected to be fast compared to
the shear rate so that the surface tension remains constant and
homogeneous in time, and the interfaces can be described the
ones of pure liquids.

In the 90s, theoretical studies led to predictions for the Tay-
lor deformation in extensional flows, for interfaces loaded with
surfactants. Leal and Stone9 explored the limit, in which the
surfactants can be considered as insoluble. In this limit, the pref-
actor Ξ in the Taylor deformation (eqn (1)) is expected to vary
between 2 and 2.5. This means that the deformation is always
larger in the presence of insoluble surfactants compared to pure
interfaces with the same surface tension. The reason is that the
surfactants tend to accumulate at the tip of the drop due to con-
vection, which leads to a local decrease of the surface tension so
that the tip becomes easier to deform.

Theoretical developments have proposed that the existence of
a surface viscosity can also affect the deformation.18 In this case,
the deformation can be smaller or larger than the one predicted
by Taylor for free interfaces.

For soluble surfactants, their dynamics must also be taken into
account. In a solution of volume concentration C the repartition
of surfactants between surface and volume can be described by
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an isotherm, such as the one of Langmuir:

Γeq = Γ∞

(
KLC

1+KLC

)
, (2)

where Γeq and Γ∞ are respectively the equilibrium and the maxi-
mal surfactant surface concentration and KL is a parameter, which
results from the balance between adsorption and desorption. To-
gether with the Gibbs isotherm, this leads to a state equation.
For example, the Szyszkowski equation allows linking the surface
tension and the surface concentration:19

γ = γ0 +nRT Γ∞ ln(1−Γ/Γ∞) (Szyszkowski), (3)

with n = 1 for neutral and n = 2 for ionic surfactants. γ0 is the in-
terfacial tension for a clean interface, i.e., without surfactants. In
the following, in order to be as general as possible, we introduce
the Gibbs elasticity:

Es = nRT Γ∞. (4)

The influence of adsorption/desorption dynamics has been taken
into account by K. Stebe and her collaborators in simulations, and
they have obtained a wide variety of behaviors, with different
factors Ξ in the linear regime.20–22

Different articles focused on the impact of surfactants on drop
deformation, with aim of better controling and optimizing the
generation of emulsions. In an extensional flow, Milliken et
al.23,24 conclude that it is difficult to predict drop deforma-
tion because of the dynamics of surfactants, which leads to tip-
streaming. Hu and Lips25 have quantified the effect of tip-
streaming by measuring the difference between the actual drop
shape and an ellipse allowing the best shape fit to be obtained.
A recent study8 allowed demonstrating that, at high surfactant
concentration (many times the CMC – critical micellar concentra-
tion), the deformation can be explained by surface tension. There
have been studies in other geometries showing that the impact of
surfactants can be explained by the dynamic surface tension16 or
by a subtle interplay between surface viscosity and elasticity.15

Finally, to our knowledge, these predictions have never been
tested in the literature in this geometry.

We thus developed a microfluidic device to create a controlled
extensional flow around a sub-millimetric drop. We measured the
Taylor deformation as a function of the surfactant concentration
for various surfactants. Our main observation is that the prefac-
tor Ξ is smaller than 2 most of the time, which disagrees with
the existing analytical models. The team of K. Stebe20–22 demon-
strated that such small prefactors can appear in the presence of
bulk surfactant dynamics. Following these results, we propose
an analytical model, which takes into account surfactant adsorp-
tion/desorption and is in agreement with our experimental data.

2 Experimental Setup

2.1 Materials

To simplify the theoretical description of our experiments, we
want to work at small enough Reynolds numbers Re= ρε̇RLc

η
, with

liquid density ρ and canal size Lc, to be in the lubrication approx-
imation and at high enough capillary numbers to observe measur-

able deformations. The choice of a water in oil dispersion allows
capillary numbers up to 10−1 to be reached, keeping the Reynolds
number smaller than 2×10−3. The drawback is that these emul-
sions are highly unstable. However, as we want to work with
single drops, this is not really a problem, but it does require us to
work with dilute emulsions. This avoids collisions, which would
lead to coalescence.

2.1.1 Characterization of the oil phase

For the external oil phase, we used two methyl-terminated sili-
cone oils from CarlRoth, one with a viscosity of 1 Pa s and the
other with a viscosity of 0.5 Pa s. The viscosity of these oils is sen-
sitive to temperature; thus, it has been measured with a double
gap Couette rheometer (Anton Paar 301) as a function of tem-
perature for shear rates in the range 0.5–6 s−1. The oils have
a Newtonian behavior in this range, and the viscosity used has
been adjusted for each experiment depending on the atmospheric
temperature measured during the experiment. Their density of
ρ = 0.98±0.05 g cm−3, close to that of water, allows sedimenta-
tion of water droplets in the channels to be avoided. The draw-
back is that it leads to high uncertainty in the density contrast and
consequently in surface tension measurement, as we will com-
ment later.

2.1.2 Choice of the aqueous phase

The different surfactants used are listed in Table 1. To explore dif-
ferent surfactants, we selected the family of trimethylammonium
bromide (TAB) with two different chain lengths: decyltrimethy-
lammonium bromide (C10TAB) and tetradecyltrimethylammo-
nium bromide (C14TAB). Both were purchased from Sigma
Aldrich and further purified through recrystallization.26 They
have the advantage of being widely used in the literature and be-
ing chemically stable in time. Additionally, they all have the same
hydrophilic head group, so that they mostly differ because of their
solubility, as seen in Table 1, where the CMC varies over three
orders of magnitude. We also used a Gemini surfactant, which
is a non-commercial dimer of dodecyltrimethylammonium bro-
mide (C12TAB) synthesised and given to us by Martin In (Mont-
pellier).27 The solutions are prepared by dissolving the surfactant
in ultrapure water (resistivity = 18.2 MΩ cm).

Table 1 For the different surfactants listed in column 1, column 2 gives
the critical micellar concentration (CMC) in mM, and column 3 the molar
mass in g mol−1. The values of KL are obtained by fitting the data of
Fig. 1 by eqn (5)

Surfactant CMC M KL
mM g mol−1 m3 mol−1

C10TAB 66 279.16 5.9 ×104

C14TAB 3.6 336.4 1.14×106

Gemini 0.97 614.66 5.32×106

2.1.3 Measure of the interfacial tension

The interfacial tension is measured for oil/surfactant solution in-
terface using a home-made pendant drop experiment. The drop is
deformed by the balance between gravity and capillary forces. To
account for the small density ratio, a small needle is used to en-
hance the ratio between the gravity and the capillary forces and to
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obtain a drop with a high enough deformation to be measured ac-
curately. We us a PHLOX (LedW-BL-50× 50-LLUBQ-IR-24V) lamp
for uniform and powerful lighting conditions. The pictures are
taken using a Basler camera with a telecentric lens (Edmund op-
tics, CompactTL) to obtain sharp contours. The drop shape is fit-
ted by the pendant drop plugin in Fiji.28 Another difficulty is that
the oil is viscous so that it takes a long time to relax into its equi-
librium shape (around 3 minutes). The data are thus obtained
at long times, once equilibrium is reached, which prevents the
measure of dynamical surface tension. However, this time is com-
parable but is smaller than the time for a drop to travel along the
tube between its generation and the measurement cell (around
5 minutes). This ensures that surface tension has reached equi-
librium when we measure drop deformation. Due to the lack of
accuracy in the density contrast, this gives a surface tension with
error bars of 6 mN m−1. The obtained interfacial tensions are
plotted for each surfactant system in Fig. 1. Injecting eqn (2) in
eqn (3) allows to express the surface tension as a function of the
concentration:

γ− γ0 =−RT Γ∞ ln(1+KLC) . (5)

The surface tension curves in Fig. 1 are then fitted by eqn (5)
using KL as a fitting parameter and plotted in Fig. 1 together
with experimental data. The fitted values of KL are listed in Table
1.

Fig. 1 Surface tension measured using the pendant drop method for
each surfactant/oil system. The continuous line is a fit of the data at
concentration smaller than the CMC using the Frumkin equation (eqn
(5)).

2.2 Experimental setup

Our millifluidic chip is built in transparent plexiglass, chosen be-
cause it ages very slowly in ambient light and possesses a high
rigidity that varies little with temperature. This avoids channel
deformation under fluid stress.

2.2.1 Drop generation

A T-junction (Fig. 2b) is used to generate water-in-oil drops. The
principal channel is a square channel with a size Lc = 2 mm. It is
joined by a perpendicular one, in which a tapered glass capillary
is inserted. To avoid droplet coalescence, a diluted emulsion is
required. To obtain such an emulsion, we make a chip, in which
drops of chosen size can be generated at the push of a button.
To achieve this, an Elveflow OB1-type pressure controller is con-
nected to the secondary channel. It is used to apply manually an
over-pressure during the chosen time, which results in the gen-
eration of a single drop. Direct visualization allows stopping the
generation when a drop of the right size is obtained and choosing
the onset of the generation of the next one once the precedent is
far enough. We then obtain a dilute polydisperse emulsion (Fig.
2a), which flows toward the chamber with the extensional flow
configuration.

Fig. 2 (a) Millifluidic chip to create the extensional flow. Inlet 1 is used
to inject the emulsion. Inlet 2 and 3 are used to dilute the emulsion
at will and choose the flowrate and thus the capillary number of the
experiment. Inlet 4 allows injection of the counter-flow to balance the
flows of channels 1, 2 and 3 and generation of the extensional flow. (b)
Visualization of the T-junction, in which three droplets of different sizes
have been generated. (c) Image of a circular drop of radius R entering
the extensional flow and deforming at the center, becoming an ellipse of
principal radii L and S. The three lengths, measured by image treatment,
allow calculation of DT,exp, which is plotted in the inset as a function of
time. It reaches a maximum and remains stable during a few seconds,
because the drop is stuck at the stagnation point. The Taylor deformation
is measured at the maximum.

2.2.2 Planar elongational flow

The planar elongational flow is a symmetrical (cross-shaped) flow
with a point of zero velocity at its center, where the drop will
be maintained and where it reaches a stationary deformation
regime. To create such a flow, we need to inject a given flow
rate through two opposite channels. The flow continues in both
other channels, which are at atmospheric pressure. To do so, we
machined a PMMA sheet to obtain channels measuring 2 mm by
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2 mm, whose structure is shown in Fig. 2(a). Input 1 is used to
inject the emulsion. Inputs no 2 and no 3 allow injection of the
continuous phase at a chosen flowrate, so that we can modify the
capillary number of the flow, with no impact on drop generation.
These two entrances also make it easy to center the drops in the
flow. Input 4 is used to inject the continuous phase that will con-
stitute the counter-flow. The injection rate of the no 4 must corre-
spond to the sum of the injection rates of inlets no 1, 2 and 3. The
two outlets at the extremity of the perpendicular channels are at
atmospheric pressure. The different flowrates are controlled by a
syringe pump AL1000, World Precision Instruments for inlets 1,
2 and 3 and a syringe pump D-401833, Harvard Apparatus for
inlet 4. We consider that the flowrate injected in inlet 4 is cor-
rect when we observe that drops arriving in the elongational flow
cell are stable for a few seconds. In this case symmetry has been
achieved (see inset in Fig. 2c).

Fig. 3 (a) Picture of the flow in the presence of polystyrene particles.
(b) Streamlines obtained by observing the particle flow during a long
time. The data from (b) are treated using PIV to obtain the particles
trajectories (c) and the velocity field (d).

Characterization of the velocity field in the extensional flow
was carried out using polystyrene particles of diameter [50–80]
µm mixed with the silicone oils of 500 and 1000 mPa s−1 (Fig.
3a). The flow is recorded for a specified time depending on the
flowrate, high enough to observe the streamlines (15 s for ε̇ = 1
s−1, Fig. 3b). The images are analyzed using Matlab PIV 2 codes
to extract the particle trajectories (Fig. 3c) and the velocity field
(Fig. 3d). Finally, we obtain a calibration of the shear rate as
a function of the flowrate by fitting the variation of the velocity
gradient by using a linear function (Fig. 4).

2.3 Drop deformation

The aim of the experiment is to link the drop deformation to the
shear rate. We first define the gray level associated with the po-
sition of the droplet interface to automatically measure both the
radius R of the drop in its spherical state and the lengths of the
long and short axes (L and S) of the drop over time (Fig. 2c, in-

Fig. 4 (a) Velocity in the x and y directions, respectively, averaged and
plotted as a function of the distance to the center of the flow. (b) Shear
rate, obtained by fitting the velocity gradient as a function of the flowrate
by a linear function.

set). L and S values are extracted from the image at the moment
when Taylor deformation is at its maximum. This ensures that
the drop is trapped at the center of the elongational flow.

3 Experimental results

3.1 Free interfaces
As stated in the Introduction, a droplet trapped at the center of an
elongational flow is expected to undergo a deformation propor-
tional to the capillary number Ca. In the case of an interface be-
tween two pure liquid phases, the prefactor Ξ (eqn (1)) is equal
to 2. To validate our experimental setup in this simpler case,
we plotted the deformation as a function of the capillary number
(Fig. 5a). Since the surface tension is known with a low degree
of precision, we adjusted the value of surface tension to obtain a
slope equal to 2. This results in a surface tension γ0 = 21.2 mN
m−1, which is in agreement within the uncertainties, with the sur-
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face tension of 25.1± 6 mN m−1 measured by the pendant drop.
This is equivalent to fixing the oil densities to 0.983 and 0.973 g
cm−3 for the oils of viscosity to 1 Pa s and 0.5 Pa s respectively,
which falls within the uncertainties of the densities given by the
supplier data sheet. These densities will be used for all the experi-
ments in the following, ensuring that relative variations of surface
tension have a better accuracy than their absolute values. Note
that in Fig. 5(a), the color bar denotes the bubble size. No sys-
tematic effect of this parameter is observed, demonstrating that
no confinement effect is exhibited.

Fig. 5 (a) Taylor deformation as a function of the capillary number for
different flowrates and different drop radii. The value of the oil density is
adjusted to obtain the right surface tension for the slope of the continuous
line to be 2 as predicted by Taylor.7 (b) Taylor deformation measured for
different flowrates and bubble sizes for C10TAB at 0, 0.5 and 1 CMC.
The continuous lines are obtained by fitting the data by a linear function.
The slopes Ξ are plotted in Fig. 7.

3.2 Interfaces loaded by surfactants

In the following, the experiment has been performed on drops
whose interfaces are loaded by surfactants. We varied both the
surfactant system and the aqueous surfactant concentration. For

each system, the Taylor deformation has been measured for dif-
ferent flow velocities and drop sizes, which allows us to vary the
capillary number over more than an order of magnitude. The cap-
illary number is built on the surface tension of the oil/surfactant
solution interface, which is measured by the pendant drop using
the density obtained in §2.1.3. A typical result is plotted in Fig.
5(b) for C10TAB concentrations of 0, 0.5 and 1 CMC. The data
always exhibit a linear behavior with Ca, as expected. They are
fitted by a linear function to extract the prefactor Ξ, and depend-
ing on the experiment, we observe Ξ smaller or larger than 2. The
difference between the data obtained at different concentrations
is larger than the noise observed for each one, which makes us
confident in the different slopes measured.

The data will be presented for each system by plotting Ξ as a
function of the surfactant concentration. To evaluate the error bar
on Ξ, we have measured Ξ = DT/Ca for each drop and we have
calculated the standard deviation of these results. In each figure,
the value of the CMC is indicated by a vertical blue line.

For C14TAB, the results are shown in Fig. 6 for the experiments
with both the oil of viscosity 1 and 0.5 Pa s. For the continuous
phase of higher viscosity, the prefactor decreases around the CMC
to reach a minimum of around 1.2. At higher concentrations, it
increases again to saturate at around 2 at concentrations above
the CMC. This is in agreement with the results obtained by Lee
et al.,8 who used the method to measure surface tension at high
surfactant concentrations, much above the CMC. Indeed, at high
concentrations, the surfactant dynamics is expected to be negli-
gible since the interfaces can be repopulated very rapidly when
convection leads to a depleted zone. When the continuous phase
has a smaller viscosity, the variation of Ξ is much smaller. Ac-
tually, in this case, the prefactor can always be considered to be
equal to 2 within the error bars. This means that the effect of sur-
factant dynamics is almost suppressed by a low continuous phase
viscosity.

We used a surfactant with a shorter hydrophobic chain, the
C10TAB to study the impact of surfactant dynamics. For C10TAB,
the results are plotted in Fig. 7 in the presence of the oil of vis-
cosity 1 Pa s. The results are qualitatively very similar, with a
prefactor Ξ close to 2 at small and high concentrations and reach-
ing a minimum of 1.7 at a concentration close to but below the
CMC. This surfactant is much more soluble in water than C14TAB,
which explains its much higher CMC (65 mM instead of 3.5 mM).

The behavior of the larger Gemini surfactant is qualitatively
different. The results are plotted in Fig. 8, again using the oil
of 1 Pa s viscosity. The variation of Ξ is much stronger than with
the other surfactants. Ξ reaches a maximum close to 2.5 at low
concentrations before decreasing to reach a minimum of 1.2 for a
concentration close to but smaller than the CMC. The value of Ξ

equal to 2.5 at small concentration is the signature of a regime, in
which the surfactant can be described as an insoluble one.

Finally, our experimental results can be summarized as follows.
In a pure liquid, we find experimental results compatible with the
Taylor model. A finer comparison is delicate because of the larger
uncertainties in the surface tension measurements using the pen-
dant drop. We have measured the effect of the presence of sur-

1–11 | 5



Fig. 6 Variation of Ξ with the surfactant concentration for C14TAB.
The vertical blue line represents the CMC, which is given in Table 1.
The error bars are given by the standard deviation of Ξ, which can be
measured for each experiment.

Fig. 7 Variation of Ξ with the surfactant concentration for C10TAB.
The vertical blue line represents the CMC, which is given in Table 1.
The error bars are given by the standard deviation of Ξ, which can be
measured for each experiment.

factants over a wide concentration range with systems with dif-
ferent solubilities. In all cases, at high concentrations, the slope
tends to 2 and the pure liquid behavior is restored. This is con-
sistent with an interpretation in which the interfaces are repop-
ulated very rapidly at high concentrations, resulting in interfaces
of homogeneous surface tension. There is a significant effect at
intermediate concentrations for all surfactants in the presence of
oil of viscosity η = 1 Pa s with a minimum value of Ξ smaller than
2. This result cannot simply be explained by the model proposed
by Stone and Leal,9 in which Ξ is always larger than 2. Unlike

Fig. 8 Variation of Ξ with the surfactant concentration for the Gemini
surfactant. The vertical blue line represents the CMC, which is given in
Table 1. The error bars are given by the standard deviation of Ξ, which
can be measured for each experiment.

the other two surfactants, for the Gemini surfactant, at very low
concentrations, there is a regime in which the slope reaches the
maximum value of 2.5 predicted by Leal and Stone.9 Finally, for
C14TAB, we tested two different viscosities. We obtain an almost
complete disappearance of the effect for a viscosity of 0.5 Pa s,
half that used previously.

4 Model

4.1 Interface and perturbation
In the absence of flow, the droplet is a sphere of radius R as the
energy is governed by surface tension. Under flow, the droplet
deforms. To examine the effect of absorption-desorption of solu-
ble surfactants on drop deformation, we adopt the same assump-
tions as those in the seminal works of Taylor, Stone, and Leal.7,9

The system is analyzed within the framework of small deforma-
tions and under the low Reynolds number regime. The drop is
assumed to be isolated (without wall interactions) and to have
the same density as the surrounding fluid, thus neglecting buoy-
ancy effects.

The position of its interface is determined in spherical coordi-
nates as:

xxxI = r(θ ,φ)eeer, (6)

where time has been omitted as we are only considering the fi-
nal stationary state. Any surface function of (θ ,φ) can be de-
composed as an infinite sum of spherical harmonics, each repre-
senting a different type of deformation, see appendix in Boedec
et al. 29 for details. Since the capillary number Ca is the main con-
trol parameter and as it is small, all the physical quantities are ex-
panded linearly with Ca using the spherical harmonics Yl,m(θ ,φ)

as in previous studies.9 For example, the radial position and the
surface concentration of surfactants are

r = R

(
1+Ca∑

l,m
fl,mYl,m

)
+O

(
Ca2
)
, (7)
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Γ = Γeq

(
1+Ca∑

l,m
gl,mYl,m

)
+O

(
Ca2
)
, (8)

where l varies from zero to infinity while −l ≤m≤ l. fl,m and gl,m

are the amplitudes of each mode (l,m) which only depend on the
physical parameters. The experimental images correspond to the
field of view θ = π/2.

4.2 Surfactant dynamics

In the stationary state, the equation of conservation of the surfac-
tant concentration C inside the droplet reads

(vvvin ···∇∇∇)C = D∆C, (9)

where vvvin is the internal velocity and D is the coefficient of diffu-
sion of free surfactants in the droplet. In the linear state, eqn (9)
reduces to the Laplace equation, i.e., ∆C = 0.

In this study, we consider that surfactants can adsorb and des-
orb, obeying the kinetic model of Langmuir.30–32 The derived re-
sults, however, are more general. Specifically, we investigate drop
deformation in the regime of small deformations at leading order.
Since the equations are linearized, any kinetic model will yield
the same outcome. The chemical balance between adsorption
and desorption at the interface is equal to the normal component
of the volume flux JJJ of surfactants :

JJJ ·nnn =−K1C
(

1− Γ

Γ∞

)
+K2Γ, (10)

JJJ =−D∇∇∇C+Cvvvin, (11)

where nnn the unit normal vector, K1 a kinetic constant character-
izing the adsorption and K2 the desorption. In the resting state,
eqn (10) reduces to the Langmuir isotherm given by eqn (2) with

KL =
K1

K2Γ∞

. (12)

We introduce the ratio ψeq between the surface concentration in
surfactants at equilibrium and the maximum one:

ψeq =
Γeq

Γ∞

=
KLC0

1+KL
. (13)

In addition to kinetics, surfactants at the interface are also free
to move along the interface by advection or diffusion satisfying
this equation of conservation in the stationary state:

∇∇∇s ··· (vvvsΓ)+Γ(∇∇∇s ···nnn)(vvvI ···nnn)

= Ds∆sΓ+K1C
(

1− Γ

Γ∞

)
−K2Γ,

(14)

where Ds is the coefficient of surface diffusion, ∆s (≡ ∇∇∇s ···∇∇∇s) the
Laplace–Beltrami operator and ∇∇∇s =

(
I−nnnnnnT ) ···∇∇∇ is the surface

gradient operator. vvvs = (I−nnnnnnT ) ··· vvvI is the in-plane surface veloc-
ity. The left member corresponds to the advective part, while the
first term of the right member is the diffusive one. The difference
with Stone and Leal 9 is the presence of the kinetic term.

4.3 Hydrodynamical equations

As previously mentioned, experiments are performed in the
regime of low Reynolds number. The flow dynamics are thus de-
scribed by the Stokes equations:

∆vvvout =
1

ηout ∇∇∇pout, ∇∇∇ ··· vvvout = 0,

∆vvvin =
1

η in ∇∇∇pin, ∇∇∇ ··· vvvin = 0,

(15)

with vvv the velocity of the fluid, p its pressure and η the viscosity.
"in" and "out" indicate that the equation concerns respectively the
pressure and velocity inside the drop or in the continuous phase.
The boundary condition is

lim
r→∞

vvvout = vvv∞. (16)

For a planar extensional flow, such boundary condition is

vvv∞ = ε̇
(
xeeex− yeeey

)
. (17)

We assume that the velocities are continuous at the interface

vvvI = vvvout = vvvin for xxx = xxxI . (18)

In the stationary state, the surface velocities can only be tangen-
tial to the interface:

vvvout ···nnn = vvvin ···nnn = 0 for xxx = xxxI , (19)

Moreover, in addition to the velocity continuity, the fundamen-
tal equation of coupling between flow and interfacial properties
is provided by the mechanical equilibrium at the interface:(

ΠΠΠ
out−ΠΠΠ

in
)
···nnn+FFF I = 000 for xxx = xxxI , (20)

where ΠΠΠ is the hydrodynamic stress tensor and FFF I the mechanical
response of the interface to hydrodynamic jump by the contribu-
tions of Laplace contribution and surface tension gradients:

FFF I =−2γHnnn+∇∇∇sγ + fff visc,2D, (21)

where H = ∇∇∇s ··· nnn/2 is the mean curvature. Here, γ is the out-
of-equilibrium surface tension which is assumed to be linked to
the surface concentration Γ through the Szyszkowski equation
(eqn (3)). The first term corresponds to a jump of pressure as
in the Laplace equation, leading to a bulk flow if the curvature
varies. The second one plays a role when the surface concen-
tration of surfactants varies along the surface, leading to the so-
called Marangoni effect. The third term fff visc,2D takes into ac-
count the two-dimensional dissipation when considering the sur-
face shear viscosity and the surface dilatational viscosity.

A classic way to write fff visc,2D is to use the Boussinesq–
Scriven tensor, as in recent analytical and numerical studies on
droplets.18,33,34 It is negligible in our case as the dissipation is
dominated by the external viscosity. Indeed, the contribution
of each surface viscosity can be evaluated by two dimension-
less numbers Bq called Boussinesq numbers: Bqs = ηs/ηR and
Bqd = ηd/ηR for shear (ηs) and dilatational (ηd) surface viscosi-
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ties. In experiments, when the external viscosity is divided by 2,
the Boussinesq numbers are multiplied by 2, whereas Ξ increases
to be equal to 2 (Fig. 6), as for pure liquids. This is in contra-
diction with the expected impact of surface dissipation. In the
following, this contribution is thus neglected.

4.4 Non-dimensional equations and solution

In the analytical derivation, the lengths, the time, the pressure,
the bulk surfactant concentration C and its surface concentration
Γ are made dimensionless considering the physical quantities R,
1/ε̇, ηε̇, C0 and Γeq respectively. In the following, dimensionless
quantities are used.

One obtains (
ΠΠΠ

out−λ ΠΠΠ
in
)
·nnn =

2
Ca

(
1−

Esψeq

γeq
(Γ−1)

)
Hnnn+

Esψeq

Caγeq
∇∇∇sΓ.

(22)

In our experiments, the viscosity contrast λ = η in/ηout ≈ 10−3 so
that we choose to take λ = 0 in the following. The solution is
determined at the first order in Ca. The zeroth order implies no
deformation for the droplet and thus no flow at the interface. We
multiply the evolution (eqn (14)) by R2/DsΓeq to obtain

Caζ ∇∇∇s ···
(

Γvvvin
s

)
+2Caζ H(vvvin ···nnn) = ∆sΓ+

K1R2C0

DsΓeq
C
(
1−ψeqΓ

)
− K2R2

Ds
Γ,

(23)

with the non-dimensional quantities,

ζ =
γR

ηoutDs
, k∗1 = K1

R
Ds

,

k∗2 = K2
R2

Ds
, α = R

C0

Γeq
.

(24)

Such expressions are used to give a physical meaning to the ki-
netic quantities during resolution. ζ is the ratio of the surface
diffusion time R2/Ds over the viscous relaxation time ηoutR/γ of
an interface governed by a surface tension γ. It is also the ra-
tio of the surface Peclet number over the capillary one. k∗1 =

(R2/Ds)/(R/K1) and k∗2 =(R2/Ds)/(1/K2) compare the surface dif-
fusion to adsorption and desorption kinetics respectively. α is
a surface covering affinity comparing the number of surfactants
present in the solution and the number of surfactants necessary
to cover the interface. In the limit α << 1, almost all the surfac-
tants are at the interface and recalls the insoluble case while on
the contrary, if α >> 1, surfactants have a stronger affinity to the
bulk.

Using eqn (18), (22), (19) and (14), the amplitudes fl,m and
gl,m of eqn (7) and (8) are determined, leading to the Tay-
lor parameter in the plane θ = π/2: DT = (L− S)/(L + S) =
(r(π)− r(0))/(r(π)+ r(0)). It varies linearly with Ca

DT

Ca
= Ξ =

5
8

16+4 Esψeq
γeq

ζ (1+Λ)

5+ Esψeq
γeq

ζ (1+Λ)
. (25)

The surface concentration is given by

Γ = 1+Caζ
5(1+Λ)

10+2 Esψeq
γeq

ζ (1+Λ)
cos(2φ), (26)

with Λ a term coming from kinetic effects:

Λ =−
1+ k∗1

k∗2
ψeqα

1+α
k∗1
k∗2

ψeq−3 k∗1
k∗2

Ds
D
(
1−ψeq

)
+ 6

k∗2

, (27)

which can be recasted considering eqn (12)

Λ =− 1+KLC0

1+KLC0−3KLC0
Ds
D

1−ψeq
ψeq

+ 6
k∗2

(28)

A first examination of Λ shows that it can be positive or negative
depending on the adsorption-desorption and diffusive parame-
ters. If the internal diffusion of surfactants was omitted (D→ 0),
there is no effect of kinetics as expected: Λ→ 0. In our exper-
imental configuration, the ratio of diffusivities D/Ds is expected
to be larger than 1 considering the Einstein relation for the diffu-
sivity and the external viscosity higher than the internal one. The
variation of the kinetic parameter Λ with KLC0 is given in Fig. 9
considering that the typical time of desorption is slow compared
to all other times, an expected limit. In this case, the kinetic pa-
rameter is negative leading to 1+Λ < 0 in a large range of KLC0.
The transition (Λ =−1) corresponds to the limit of small surface
coefficient of diffusion: Ds << D and k?2 = K2R2/Ds << 1.

For Es = 0 one recovers the usual Taylor deformation for planar
extensional flow with a slope Ξ = 2 (Taylor 7) if the variations
of surface tension are high (Esζ >> γeq), the slope is equal to
2.5 (Vlahovska et al. 35) as expected in the elastic limit. Without
kinetics (Λ = 0), eqn (25) is the same as the one of Stone and
Leal.9 Finally Ξ < 2 is permitted by considering kinetic effects.
As expected, adsorption-desorption kinetics only contribute when
the equation of state (eqn (3) and (5)) depends on the surface
concentration of surfactant. More accurately, in order to get the
slope Ξ = DT/Ca < 2 the quantity Esψeq

γeq
ζ needs to be moderate

(not a pure elastic response) and Λ must be smaller than −1.
The variation of the slope with the dimensionless elastic number
demonstrates a high sensitivity of the slope to small variations of
the kinetic parameter as shown in Fig. 10 from Ξ≈ 2.5 to Ξ≈ 1.3.
The addition of adsorption and desorption mechanisms modifies
the classic point of view of interfaces only governed by surface
elasticity which only allows 2 ≤ Ξ ≤ 2.5 in partial disagreement
with our observations.

5 Discussion
In the model, the deformation of a droplet is determined in the
regime of low Reynolds number and in the limit of small capillary
number taking into account the Langmuir model of adsorption-
desorption kinetics and the Szyszkowski state equation. The slope
Ξ = DT/Ca, an essential feature in determining which physical
effects dominate, varies in the range 1.3 ≤ Ξ ≤ 2.5. As shown
previously, the range Ξ < 2 is only allowed in the presence of
kinetics. The droplet then becomes less deformable.

This is correlated with the sign of 1+Λ leading to an inver-
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Fig. 9 Kinetic parameter Λ as a fonction of of KLC0 for different diffusive
coefficients D/Ds. ψeq = 0.5, k∗2 = 100.

Fig. 10 Prefactor Ξ as a function of the elastic parameter Esζ/(2γeq) for
different values of Λ. ψeq = 0.5.

Fig. 11 Variation of the surface concentration of surfactants Γ along
the surface. φ = 0,π correspond to the poles of the ellipsoid drop shape.
Esζ/2γeq = 2 (solid line), Esζ/2γeq = 5 (dashed line). Caζ = 0.1

sion of the gradient of surfactant concentration compared to the
regime governed by pure elasticity (eqn (26)). Indeed, in the
regime described by Leal and Stone, the surfactants tend to ac-

cumulate at the pole, where they are entrained by convection:
case 1+Λ > 0 (Fig. 11). The smaller surface tension at the pole
leads to an easier deformation. When 1+Λ becomes negative,
eqn (26) shows that the surfactants actually accumulate at the
equator (Fig.11) due to the bulk diffusion. This leads to the in-
verse effect, i.e., a deformation smaller than for a pure liquid.
The theoretical change of the Taylor parameter D compared to
the well-known result of Stone and Leal9 is only included in the
kinetic parameter Λ. However, it is essential to see that the limit
D→ 0 leads to Λ= 0. Without the internal diffusion of surfactants,
i.e., the redistribution of the surfactant concentration driving the
internal diffusive flux, there is no such a non-intuitive effect of
adsorption-desorption in the regime of low deformations. Finally,
the following simple condition must be fulfilled to have a slope
smaller than 2:

R2

D
(1−ψeq) > 2

R
K1

, (29)

Considering the initial eqn (27), it’s interesting to be able to re-
duce such complexity to such a simple criterion. To our point
of view, this reflects the simplicity of the model’s basic equations
and the limited number of characteristic times. As intuitively ex-
pected, a fast internal diffusivity compared to adsorption inhibits
the process as internal concentration is homogenized. A conse-
quence of our interpretation is the essential role of confinement,
i.e., that the surfactants are inside the drop. If the bulk surfac-
tants are outside, they are entrained far from the droplet by the
extensional flow, which prevents adsorption. Our analytical de-
velopments confirm this understanding. Indeed, the expression
of the deformation with surfactants outside is the same as eqn
(25) except that the quantity 1+Λ is now positive whatever the
adsorption and desorption coefficients. For the sake of simplic-
ity, these results will be presented elsewhere with an extension to
general linear flows.36 When the surfactant concentration is close
to saturation (ψeq ≈ 1), the condition revealed by eqn (29) is lost
and the slope goes back to 2.

The theoretical predictions are difficult to compare directly
with experiments. Indeed, in the literature, the measurements
of the adsorption/desorption coefficients K1 and K2, the surface
diffusion coefficient Ds and the equilibrium surface concentration
Γeq are scarce and lack of accuracy. Nevertheless, the model al-
lows to predict a slope Ξ smaller than 2 in the particular case,
where KL×C is larger than 0.5 as long as ψeq � 1. We have ex-
tracted the concentration C? from the data in Fig. 6–8, at which
the deformation is minimal. The error bars are given by the dif-
ference between the concentration just before and just after this
transition.

This concentration C? is plotted in Fig. 12 as a function of the
value of 1/KL listed in Table 1. Note that each point is for a dif-
ferent surfactant, condensing an extensive study, which accounts
for the scarce sampling with three points in Fig. 12. The points
extracted from our data suggest that the parameter KLC is indeed
the right one to describe the small deformation observed at in-
termediate concentration. As the concentration increases and ap-
proaches the CMC, the interfaces is close to saturation, which re-
leases one of the hypothesis necessary to observe a slope smaller
than 2. This suggests that the physical reason, why we observe a

1–11 | 9



slope smaller than 2, is the fine balance between adsorption and
desorption, predicted by the model. While the final analytical
result may appear complex, the initial model is straightforward,
with no intricate assumptions regarding the transport equation.
For instance, the kinetic process is modeled in its simplest form.
It is also worth noting that any more sophisticated model would
yield the same result at leading order due to the linearization pro-
cess.

Fig. 12 Concentration measured at the minimal deformation, C? as a
function of the prediction 1/KL.

6 Conclusion
We have performed an experiment allowing us to observe the de-
formation of a water drop immersed in oil in an extensional flow
in the presence of surfactants. In the regime of small deforma-
tions and low Reynolds number, previous results suggested that
the Taylor deformation varies linearly with the capillary number
and that the slope can only range between 2 (pure liquids) and
2.5 (Gibbs elasticity of insoluble surfactants). We measured the
Taylor deformation as a function of the velocity for different sur-
factant concentrations and systems. The recurrent observation is
that the deformation is smaller than the one predicted for a pure
liquid with the same surface tension, i.e., a slope smaller than 2.
Such a result cannot be explained by the seminal theoretical re-
sults of Taylor,7 Stone and Leal9 as it should do. Here, to propose
a physical mechanism compatible with experiments, we consider
the solubility of surfactants and the kinetic transfers at the sur-
face (adsorption-desorption), which were not considered in pre-
vious models. We provide an analytical model, which predicts all
the observed regimes, notably the one leading to a smaller de-
formation (slope smaller than 2). This new non-intuitive regime
requires the surfactant solubility, low surfactant surface coverage
and a bulk diffusion time larger than the characteristic adsorption
time. Within these hypotheses, the deformation is driven by the
surfactant bulk concentration through the parameter KLC, where
KL quantifies the adsorption/desorption dynamics. Our experi-
mental data are in good agreement with this prediction, showing

that the analytical model is able to describe qualitatively the ob-
served experimental regime.

In this work, we have chosen to focus on surfactants with sim-
ilar hydrophilic heads but significantly different solubilities. Ex-
perimentally, our results should be extended to different surfac-
tant families, such as non-ionic or anionic types. Additionally, a
complete comparison between experimental data and the model
would require the measurement of certain parameters, which is
still a challenge.

This would obviously be very useful to achieve a comprehen-
sive and more quantitative description of dynamic interfaces. A
key insight from this study is that surfactant solubilities and their
dynamics can have a major impact even in simple configurations.
We hope this work inspires further research to deepen under-
standing of interfacial dynamics involving soluble surfactants.
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