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Abstract
Categorical variables combined with continuous variables are gain-
ing interest in multiple applications of Gaussian processes. Different
covariance functions can be used to handle categorical variables,
but we found in a previous study that one of the most versatile
was initially proposed in an optimization method called COCABO.
Choosing an adequate prior when using a Gaussian process re-
gression can drastically improve the regression performances. We
propose in this paper a modification to the COCABO covariance
function to allow the Gaussian processes to automatically find the
relevance of each categorical variable. This mechanism, is inspired
by Automatic Relevance Determination (ARD) for the continuous
variables, can effectively be used with covariance functions that use
Hamming distance to treat categorical variables. While we use the
Categorical-ARD (CATARD) mechanism with the CoCaBO covari-
ance function, it can be generalized to every covariance function
that does not relax categorical variables to calculate the covariance.
We used both synthetic benchmarks and real world data in order
to establish the performances of the CATARD covariance function.

CCS Concepts
• Applied computing → Chemistry; • Computing methodolo-
gies → Gaussian processes; Uncertainty quantification.
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1 Introduction
Gaussian processes (GPs) have become widely recognized in sci-
entific literature, particularly in the realms of machine learning,
statistics, and probabilistic modeling. Gaussian processes offer a
versatile framework for capturing intricate, non-linear patterns in
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data. The main feature that makes Gaussian processes popular is
their ability to predict a predictive distribution for each input which
can be interpreted as a prediction value (mean of the distribution)
and an associated uncertainty (variance).

The work of Christopher K. I. Williams and Carl E. Rasmussen
in Gaussian Processes for Machine Learning (GPML) [2] played a
tremendous part in the democratization of Gaussian process in the
machine learning community.

Gaussian processes find applications across diverse scientific
fields such as astronomy, physics or biology with researchers con-
tinually exploring new methodologies and advancements [1, 3, 11].
Furthermore, GPs have shown remarkable performances when ap-
plied to noisy data or time related problems.

Gaussian process regression is a kernel based regression method.
The covariance function used to build the kernel constitutes the
prior that the user has on the problem. Hence, the design of covari-
ance functions and their hyper-parameters can strongly influence
the model quality.

For a new input X∗, a fitted GP predicts, after a series of joint
and marginalization operations, a distribution over functions on
the new input. Then, the mean and the variance of this distribution
are respectively considered as the prediction and the associated
uncertainty. The prediction for a new input X∗ is given as follow :

𝜇 (X∗) = 𝐾 (X∗,X) [𝐾 (X,X) + 𝜎2
𝑛𝐼 ]−1y (1)

Whereas the uncertainty is given by :

𝜎 (X∗) = 𝐾 (X∗,X∗) − 𝐾 (X∗,X) [𝐾 (X,X) + 𝜎2
𝑛𝐼 ]−1𝐾 (X,X∗) (2)

where:
• 𝐾 (X∗,X) is the covariance vector between the prediction
point X∗ and the observation points X.

• 𝐾 (X,X) is the covariance matrix between the observation
points X.

• 𝜎2
𝑛 is the noise variance (if the observations are noisy).

• 𝐼 is the identity matrix of dimension 𝑛 × 𝑛.
• y is the vector of observations.

Over the past decade, the significance of categorical variables
in data analysis and statistical modeling has grown exponentially
[8, 12]. The increased availability of diverse and complex datasets
has underlined the importance of effectively handling categorical
information.

Facing continuous and categorical features in a regression prob-
lem can be quite challenging, the standard approach when facing
categorical variables being to numerically encode these variables.
These encoding techniques and specially the one-hot encoding
technique has been used along with continuous kernels to model
datasets withmixed variable inputs using Gaussian processes [5, 19].
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Saves et al. propose the use of a specific distance metric (e.g. Gower
distance), encapsulating both categorical distance and continuous
distance in a more standard covariance function equation [15].
Others rather use, as a main covariance function for the Gauss-
ian processes, the combination of covariance functions that are
designed for several data types [4, 18].

We propose a modification of the covariance function proposed
in an optimization method called COCABO [14] in order to improve
the performances on different regression problems that include con-
tinuous and categorical variables. With this modification, we intend
to automatically capture the relevance of each categorical variable
by using an hyper-parameter for every categorical dimension. Our
interest is mainly drawn from Bayesian optimization, and more
specifically, from chemical formulation and chemical reaction op-
timization where the impact of categorical variables is significant
and heterogeneous.

2 The COCABO covariance function
The covariance function proposed in COCABO [14] is composed
by two sub-kernels, one for the continuous variables and one for
the categorical variables. This covariance is defined as:

𝐾 (z, z′) = 𝜎𝑔 ((1 − 𝜆) × (𝐾𝑐𝑜𝑛𝑡 (x, x′) + 𝐾𝑐𝑎𝑡 (h, h′)) + 𝜆 × 𝐾𝑐𝑜𝑛𝑡 (x, x′) × 𝐾𝑐𝑎𝑡 (h, h′))
(3)

w.r.t.:
𝐾𝑐𝑜𝑛𝑡 (x, x′) = Matérn5/2 (x, x′) (4)

𝐾𝑐𝑎𝑡 (h, h′) = 𝜎
𝐷∑︁
𝑖=0

𝛼 (ℎ𝑖 , ℎ′𝑖 ) (5)

𝛼 (ℎ𝑖 , ℎ′𝑖 ) =
{

1 if ℎ𝑖 = ℎ′𝑖
0 otherwise

and :
• z = (x, h)
• x the continuous variables
• h the categorical variables
• 𝜎𝑔 the main amplitude hyper-parameter
• 𝜆 the product-sum balance hyper-parameter
• 𝐷 is the number of categorical variables

This covariance function combines the two sub-kernels by summing
them and/or multiplying them. The balance of the product and the
sum is ruled by an hyper-parameter 𝜆. This hyper-parameter, along
with the others of the covariance, is fitted to the data following the
maximization of the log marginal likelihood.

Such a balance allows the model to capture different relations
between variables. On the one hand, the sum will capture an offset
of one variable type over the other. On the other hand, the product
can capture more complex relations such as one variable type that
amplify the other. This balance between the operators enables a de-
sirable versatility when facing heterogeneous datasets (or evolving
ones) [13].

While the COCABO covariance function is capable of handling
a wide variety of regression problems, it does not make any differ-
ence of categorical dimensions since the 𝐾𝑐𝑎𝑡 (Eq. 5) treats every

categorical variable the same way. Many problems possess cate-
gorical variables that impact the output variables with different
magnitudes.

3 CATARD covariance function
One way to capture differences between categorical variables is
to modify the covariance function. Thus, we propose a covariance
function called CATARD which refers to the Automatic Relevance
Determination mechanism applied to CATegorical variables. The
CATARD covariance function is an extension of the COCABO
covariance function given at the equation 3. The only difference
lies within the categorical sub-covariance function.

Usually, in a continuous kernel, the distance between data points
is weighted by the length-scale hyper-parameter in order to tune
the relevance of the distance in the resulting covariance values.

The ARD mechanism enables the ability to treat each dimension
differently by assigning an independent length-scale to each of
these dimensions. It is mainly used for problems where the scale of
each continuous dimension differ from one to another [10].

This ARD mechanism can address the main problem of the CO-
CABO covariance function presented in the previous section but
instead of re-scaling continuous variables independently, we pro-
pose to use an hyper-parameter on each categorical dimension. The
equation of the categorical specific sub-covariance function is then
given by:

𝐾𝑐𝑎𝑡 (h, h′) =
𝐷∑︁
𝑖=0

𝜎𝑖𝛼 (ℎ𝑖 , ℎ′𝑖 ) (6)

where 𝜎𝑖 is the hyper-parameter that is specific to each categor-
ical variable. The hyper-parameter values are tuned following a
maximization of the log marginal likelihood.

Maximizing the Log Marginal Likelihood
Gaussian processes are fitted to the data by finding the optimal
hyper-parameters that maximize the log marginal likelihood (LML).
A standard method (and the one we use) to deal with this maxi-
mization is the Limited-memory BFGS (L-BFGS) [9].

The gradients of the log marginal likelihood are easy to calcu-
late so its maximization can be done with gradient descent based
algorithms. We are looking for the partial derivatives of the LML
with respect to each hyper-parameter we are tuning. Following
Rasmussen’s and Williams’s GPML [2], we have:

𝜕

𝜕𝜃 𝑗
log𝑝 (y|𝑋, 𝜃 ) = 1

2
𝑡𝑟 ((𝛼𝛼𝑇 − 𝐾−1) 𝜕𝐾

𝜕𝜃 𝑗
)

We then need to calculate the gradient of the kernel 𝐾 with respect
to each hyper-parameter 𝜃 𝑗 .

𝜕𝐾

𝜕𝜎𝑔
=
𝐾

𝜎𝑔

𝜕𝐾

𝜕𝜆
= 𝜎𝑔 × (𝐾𝑐𝑜𝑛𝑡𝐾𝑐𝑎𝑡 − 𝐾𝑐𝑜𝑛𝑡 − 𝐾𝑐𝑎𝑡 )

𝜕𝐾

𝜕𝜎Matérn5/2

= 𝜎𝑔 × ((1 − 𝜆) 2𝐾𝑐𝑜𝑛𝑡
𝜎Matérn5/2

+ 𝜆 − 2𝐾𝑐𝑜𝑛𝑡
𝜎Matérn5/2

× 𝐾𝑐𝑎𝑡 )

𝜕𝐾

𝜕ℓ
= 𝜎𝑔 ×

5𝑟2𝜎2
Matérn5/2

3ℓ3 exp ( −
√

5𝑟
ℓ

) [1 + 𝑟
√

5
ℓ
]𝜆( 1

𝜆
− 1 + 𝐾𝑐𝑎𝑡 )
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Name Cont.var. Cat.var. Number of categories
Styblinski-Tang 4 4 [2, 3, 5, 10]

Ackley 4 4 [2, 3, 5, 10]
Rosenbrock 4 4 [2, 3, 5, 10]

Table 1: Synthetic problems

𝜕𝐾

𝜕𝜎𝑖
= 𝜎𝑔𝛼 (ℎ𝑖 , ℎ′𝑖 ) × (1 − 𝜆 + 𝜆 × 𝐾𝑐𝑜𝑛𝑡 (x, x′))

These partial derivatives are quick to compute. Hence, the opti-
mization of the hyper-parameter can be straightforward using gra-
dient based methods. We used a multi-started gradient descent to
maximize the LML. The number of starting points depends on the
number of hyper-parameters, which for the proposed model, is
related to number of categorical variables. In our experiments, we
used 10 starting points because we have a limited (3 to 5) number
of categorical variables. We observed that increasing the number
of starting points do not significantly increase the performance of
the model.

4 Experiments
4.1 Synthetic data
First, in order to evaluate the effectiveness of the CATARD approach
on diverse problems, we propose to use well-known synthetic func-
tions to generate datasets. These functions were taken from the
optimization community and often serve as benchmarks for op-
timization methods [16]. For this study to be the most generic
possible, we selected functions with diverse shapes: Rosenbrock
function (valley), Ackley function (peaked) and Styblinski-Tang
(bowl). Since these synthetic functions contain only continuous
inputs, we discretized a subset of the continuous continuous dimen-
sions to have both continuous and categorical inputs.

Then, we sampled data from these functions and we used the
resulting datasets to train the Gaussian processes. In order to obtain
a representative dataset we sampled the data using a method for
each variable type and concatenate the two sets of variables.

For the continuous variables, we used a Latin Hypercube Sam-
pling (LHS) technique that ensure a low discrepancy between data
points [7]. For the categorical variables, we drew a subset of all pos-
sible combinations with a method called Generalized Subset Design
(GSD) [17] because GSD ensures a well balanced categorical dataset
(no categories are over or under represented). We used the quotient
of the Euclidian division of the number of categorical combinations
by the size of the subset we need as the reduction factor (method
parameter).

4.2 Real world data
Secondly, we harvested public chemical formulation datasets (de-
scribed in Table 2). These datasets are particularly suited for this
study because they have multiple continuous and categorical vari-
ables and the importance of the different categorical variables is
heterogeneous.

The lubricant formulation problem consists of predicting the
coefficient of dynamic friction with 10 continuous variables and 3
categorical ones.

Formulation name Outputs Cont.var. Cat.var. Nb. of categories Size
Lubricant 1 7 3 [2, 3, 6] 38
Hair dye 2 9 3 [5, 5, 3] 28
Rubber 3 10 3 [4, 3, 3] 59

Polycarbonate resin 3 11 5 [3, 20, 4, 3, 3] 87
Table 2: Real world problems

The hair dye formulation problem consists of 2 outputs (the
coloration intensity and the rinsing sensation) with 9 continuous
variables and 3 categorical ones.

The rubber formulation problem consists of 3 outputs (theMooney
viscosity, the energy dissipation factor tan(𝛿) and the crack re-
sistance growth). 10 continuous variables are used along with 3
categorical variables.

The polycarbonate resin formulation problem consists of predict-
ing 3 output variables (the elasticity modulus, the impact resistance
and the heat resistance) from 11 continuous variables and 5 cat-
egorical ones. We address this problem as 3 different regression
problems (one for each output).

4.3 Methods
We propose to compare our model against Gaussian processes with
other covariance functions.

First, the method denoted as "OHE" refers to a one-hot encod-
ing of categorical variables with a Matérn5/2 covariance function.
While this can be considered as the standard approach to handle
categorical variables it has many drawbacks. They are mainly due
to the number of input dimensions that grows with the number of
categories.

The COCABOmethod refers to the covariance function proposed
in the optimization method COCABO [14] and described in section
2. This covariance function is based upon a combination of a sum
and a product of two covariance functions designed and applied on
continuous and categorical variables separately.

The "GOWER" method refers to Gaussian Processes with a
Gower distance based Matérn5/2 covariance function. The Gower
distance [6] enables covariance calculation between two points
without the supplementary dimensions that an encoding imposes.
Many recent works uses the Gower distance to quantify the corre-
lation between mixed variables.

4.4 Uncertainty based Metrics
While the standard machine learning metrics, such as the mean
squared error (MSE) or the coefficient of determination (R2), are
designed to resume the capacity of the model to generalize over a
dataset, they do not include the notion of uncertainty. Hence, in
order to capture the uncertainty in the metrics we used, we chose
to use both of the log marginal likelihood (LML) and the mean
standardized log loss [2] (MSLL) as they provides different insights
on the quality of the fit.

4.4.1 Log Marginal Likelihood. The log marginal likelihood corre-
spond to the probability of the observed data integrated over the
model parameters. This metric is composed by three terms that are
respectively built upon the difference between predictions and the
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ground truth (referred as error term), the uncertainty (complexity
term), and a constant depending on the number of input data points:

log𝑝 (y|𝑋, 𝜃 ) = −1
2
y𝑇K−1y − 1

2
log |K| − 𝑛

2
log 2𝜋 (7)

Where K is the covariance matrix, and y is the observations. The
first term is the only one that involves the observations (the error
term). The complexity term penalizes data dispersion given by the
covariance. This metric is usually used without a cross validation.
Thus, without noise, the LML is only composed by the complexity
and the constant terms.

4.4.2 Mean Standardized Log Loss. The Mean Standardized Log
Loss refers to the mean of the log probability of the predictions.
The MSLL does not use the determinant of the kernel but we can
identify two main components in the equation 8. The first term
is based on the uncertainty and it reflects the complexity of the
model. The second term is the prediction error squared is divided
by the variance. This second term makes the MSLL more sensitive
to overfitting than the LML.

− log𝑝 (𝑦 |X, y, 𝑥) = 1
2

log(2𝜋𝜎2) + (𝑦 − 𝑦)2

2𝜎2 (8)

Where 𝜎 is the uncertainty at test points and (𝑦−𝑦)2 is the squared
prediction error. The Mean Standardized Log Loss is built follow-
ing a cross validation. In this work we used a leave-one out cross
validation on smaller datasets (size ≤ 50), we used a 5-fold cross
validation otherwise.

5 Results
We compare the CATARD covariance based GP to three other GPs
with different covariance functions: a Matérn5/2 covariance func-
tion with a one-hot encoding of the categorical variables, the CO-
CABO covariance function, and a Matérn5/2 covariance function
that uses the Gower distance instead of an Euclidian distance. In
order to measure the performance of each model, we use the LML
and the MSLL as regression metrics because they include the predic-
tion uncertainty in their calculations. We use the same approach to
construct and fit the Gaussian Processes on the synthetic regression
problems and all four of the chemical formulation datasets.

5.1 Synthetic problems
The next tables show the metrics for each selected methods on the
three synthetic datasets we built (respectively Ackley 3, Rosenbrock
4 and Styblinski-Tang 5). Each table is splitted following the size of
the dataset we generated (50, 100 and 150 points).

50 100 150

LML MSLL LML MSLL LML MSLL

OHE -70.87 1.59 ± 1.95 -133.82 1.35 ± 0.26 -190.31 1.35 ± 0.48

GOWER -70.47 1.54 ± 1.98 -133.65 1.38 ± 0.24 -188.37 1.38 ± 0.48

COCABO -69.2 1.54 ± 2.29 -112.93 1.06 ± 0.27 -162.982 1.14 ± 0.55

CATARD -67.24 1.61 ± 2.35 -122.87 1.18 ± 0.28 -161.24 1.21 ± 0.65

Table 3: Ackley Log marginal likelihood and Mean Standard-
ized Log Loss for the presentedmodels on theAckley problem
with 3 different sample sizes: 50, 100, 150.

50 100 150

LML MSLL LML MSLL LML MSLL

OHE -69.64 1.46 ± 1.21 -136.65 1.40 ±0.18 -202.53 1.34 ± 0.28

GOWER - 69.60 1.43 ± 1.06 -136.55 1.42 ± 0.20 -198.62 1.37 ± 0.29

COCABO -60.93 1.30 ± 1.52 -98.87 0.75 ± 0.08 -136.91 0.78 ± 0.21

CATARD -55.481 0.939 ± 1.02 -95.02 0.74 ± 0.08 -134.40 0.81 ± 0.23

Table 4: Rosenbrock Log marginal likelihood and Mean Stan-
dardized Log Loss for the presented models on the Rosen-
brock problem with 3 different sample sizes: 50, 100, 150.

50 100 150

LML MSLL LML MSLL LML MSLL

OHE -69.53 1.41 ± 1.20 -134.97 1.39 ± 0.21 -196.47 1.33 ± 0.25

GOWER -69.52 1.43 ± 1.17 -134.87 1.41 ± 0.17 -199.62 1.50 ± 0.59

COCABO -67.65 1.49 ± 1.22 -120.37 1.11 ± 0.11 -176.33 1.11 ± 0.20

CATARD -62.52 1.29 ± 1.19 -119.43 1.23 ± 0.11 -175.23 1.17 ± 0.24

Table 5: Styblinski-Tang Log Marginal Likelihood (LML) and
Mean Standardized Log Loss (MSLL) for the presentedmodels
on the Styblinski-tang problem with 3 different sample sizes:
50, 100, 150.

The CATARD covariance based GP does not provide satisfactory
MSLL on the Ackley benchmark datasets as shown in the Table
3. Moreover the two nearly identical LML on both of the datasets
with 50 and 150 samples and the higher LML on the dataset with
100 samples also favor the COCABO covariance function over the
CATARD one. We argue that the ability of the CATARD-based
Gaussian process to determine the influence of each categorical
variable separately on the output is not relevant in the Ackley
scenario as the discretization of the complex structure of the Ackley
function leads to highly similar categorical variables. Therefore,
these results expose the limitations of the CATARD covariance
function.

As shown in Table 4, the CATARD covariance function outper-
forms the other approaches on the Rosenbrock regression problem.
However, as the size of the dataset increases, the COCABO covari-
ance function find itself to be a viable alternative to the CATARD
approach.

On the Styblinski-Tang regression problem (Table 5), the CATARD
shows the higher LML with the smallest MSLL by a large margin
on the smallest dataset. Once more, as the size of the dataset in-
creases, the performance gap between the CATARD and COCABO
covariance functions diminishes, ultimately favoring the COCABO
covariance function.

Overall, the CATARD covariance function tends to have a higher
log marginal likelihood than the other methods. It indicates that
the covariance function needs less kernel amplitude to explain the
observations. This is mainly due to the focus on relevant categorical
variables that the ARD mechanism provides. The metrics we used
in our benchmarking strategy provide insights into the quality of
the fit of the GPs, making them relevant metrics for choosing a
covariance function over a dataset. Consequently, they are also
relevant metrics for determining whether or not to incorporate the
ARD mechanism into the covariance function.
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5.2 Real world problems
The next tables provide the results of the 4 covariance functions
on 4 datasets that comes from chemical formulation experiments.
The size of these datasets range from 28 to 87. Their distribution is
sparse and may contain noise. We did not include a noise specific
hyper-parameter on any of the Gaussian processes but it can be the
subject of further experiments.

Models Dynamic friction coef.

LML MSLL

OHE -31.71 0.21 ± 0.75

GOWER -44.56 0.68 ± 1.57

COCABO -30.68 0.66 ± 3.20

CATARD -26.58 0.64 ± 3.64
Table 6: Lubricant formulation Log Marginal Likelihood and
Mean Standardized Log Loss of the presented models on the
only dependent variable of the lubricant formulation

Coloration intensity Rinsing sensation

LML MSLL LML MSLL

OHE -34.15 1.98 ± 3.09 -22.82 1.15 ± 2.22

GOWER -26.41 1.29 ± 3.12 -15.41 0.77 ± 1.84

COCABO -21.638 1.18 ± 2.71 -12.31 0.15 ± 1.52

CATARD -20.78 1.10 ± 2.33 -11.57 0.18 ± 1.64
Table 7: Hair dye formulation Log Marginal Likelihood and
Mean Standardized Log Loss of the presented models on the
two dependent variables of the hair dye formulation.

Mooney viscosity Energy dissipation Crack resistance growth

LML MSLL LML MSLL LML MSLL

OHE -83.26 1.52 ± 0.71 -83.57 1.50 ± 0.68 -71.79 1.19 ± 1.28

GOWER -77.07 0.95 ± 0.99 -81.79 0.902 ± 0.99 -66.79 0.75 ± 1.49

COCABO -64.30 0.89 ± 1.50 -67.69 0.81 ± 1.10 - 64.29 0.76 ± 1.66

CATARD -62.43 0.97 ± 1.59 -66.18 0.68 ± 1.22 -58.11 0.73 ± 1.68

Table 8: Rubber formulation Log Marginal Likelihood and
Mean Standardized Log Loss of the presented models on the
two dependent variables of the rubber formulation.

Elasticity Impact resist. Heat resist.

LML MSLL LML MSLL LML MSLL

OHE -68.40 1.44 ±0.65 -94.46 1.23 ± 0.26 -98.00 1.52 ± 0.86

GOWER -70.01 1.34 ± 0.63 -81.83 2.38 ± 0.61 -84.94 1.35 ± 0.86

COCABO -24.67 1.10 ± 0.65 -76.38 1.21 ± 2.51 -64.24 1.04 ± 0.68

CATARD -18.59 1.12 ± 0.65 -65.792 1.20 ± 0.82 -60.66 1.37 ± 0.57

Table 9: Polycarbonate resin formulation Log Marginal Like-
lihood and Mean Standardized Log Loss of the presented
models on the three dependent variables of the polycarbon-
ate resin formulation

The results on real world data (Tables 6, 7, 8, 9) show an improve-
ment for all LML.

On the lubricant formulation dataset (Table 6), the Matérn5/2
kernel with one-hot encoding yields the lowest MSLL by a large
margin. We emphasize that the error term of the MSLL is divided
by the squared variance of the prediction, which makes the MSLL
highly sensitive to outliers. Therefore, the one-hot encoding ap-
proach is capable of effectively modeling the outliers present in the
lubricant dataset.

The regression performances on the hair dye formulation (Table
7) show that the CATARD covariance function produces a GP with a
higher LML than the other approaches. While these metrics indicate
a superior modeling capacity of the CATARD-based GP, the MSLL
(and the associated standard deviation) on the rinsing sensation
dependent variable shows the COCABO-based GP as the most
accurate.

On the rubber formulation dataset (Table 8), the CATARD-based
GP outperforms the other GPs on every LML and almost every
MSLL. The only instance where the COCABO covariance function
achieves a lower MSLL is for the regression on Mooney viscosity,
indicating a more accurate model.

On the polycarbonate formulation dataset (Table 9), the CATARD-
based GP offers the higher LML for the three dependent variables.
For both Elasticity and Heat Resistance, using the COCABO covari-
ance function results in a smaller MSLL. However, for the Impact
Resistance regression, the MSLL of the GP built upon the COCABO
covariance function fluctuates more, with a standard deviation of
2.51, which makes the CATARD covariance approach preferable.

The results on the real world datasets suggest that selecting the
CATARD function for Gaussian process regression can be effective,
particularly when there is a need to differentiate the relevance of
categorical variables and when the dataset contains few outliers.

6 Conclusion
In this paper, we have shown that a covariance function capable of
capturing differences of each categorical variables in terms of im-
pact on the output leads tomodels with bettermetrics. The synthetic
benchmarking strategy we used is inspired from the optimization
literature with a discretization of a subset of the input variables
and a DoE approach to sample these highly practical functions.

While our results shows an improvement in the modeling of un-
certainty, prediction error based metrics aren’t drastically improved.
Further experiments could involves new metrics, comparison with
more and newer models such as Bayesian hierarchical models or
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an extension of the benchmarking strategy to consolidate the per-
formances of the CATARD covariance function.

As well as the continuous ARDmechanism, the ARDmechanism
applied to categorical variables can be applied for many covariance
functions. We believe that this works paves the way to multiple
kernel regression methods with mixed variables and in particu-
lar Gaussian Processes applications. Our motivation stems from
Bayesian optimization, where the selection of the covariance func-
tion significantly enhances the performance of the optimizers [13].
Consequently, the application of the CATARD covariance function
within a Bayesian optimization framework to optimize chemical
will be the focus of future research.
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