
HAL Id: hal-04740477
https://hal.science/hal-04740477v1

Preprint submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Complexity Assessment of Analog and Digital Security
Primitives Signals Using the Disentropy of

Autocorrelation
Paul Jimenez, Raphael Cardoso, Maurìcio Gomes de Queiroz, Mohab Abdalla,

Cédric Marchand, Xavier Letartre, Fabio Pavanello

To cite this version:
Paul Jimenez, Raphael Cardoso, Maurìcio Gomes de Queiroz, Mohab Abdalla, Cédric Marchand, et
al.. Complexity Assessment of Analog and Digital Security Primitives Signals Using the Disentropy
of Autocorrelation. 2024. �hal-04740477�

https://hal.science/hal-04740477v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Complexity Assessment of Analog and Digital
Security Primitives Signals Using the Disentropy of

Autocorrelation
Paul Jimenez, Raphael Cardoso, Maurı́cio Gomes de Queiroz, Mohab Abdalla, Cédric Marchand, Xavier Letartre,

and Fabio Pavanello

Abstract—The study of regularity in signals can be of great
importance, typically in medicine to analyse electrocardiogram
(ECG) or electromyography (EMG) signals, but also in climate
studies, finance or security. In this work we focus on security
primitives such as Physical Unclonable Functions (PUFs) or
Pseudo-Random Number Generators (PRNGs). Such primitives
must have a high level of complexity or entropy in their responses
to guarantee enough security for their applications. There are
several ways of assessing the complexity of their responses,
especially in the binary domain. With the development of analog
PUFs such as optical (photonic) PUFs, it would be useful to
be able to assess their complexity in the analog domain when
designing them, for example, before converting analog signals
into binary. In this numerical study, we decided to explore the
potential of the disentropy of autocorrelation as a measure of
complexity for security primitives as PUFs, TRNGs or PRNGs
with analog output or responses. We compare this metric to
others used to assess regularities in analog signals such as
Approximate Entropy (ApEn) and Fuzzy Entropy (FuzEn). We
show that the disentropy of autocorrelation is able to differentiate
between well-known PRNGs and non-optimised or bad PRNGs in
the analog and binary domain with a better contrast than ApEn
and FuzEn. Next, we show that the disentropy of autocorrelation
is able to detect small patterns injected in PUFs responses and
then we applied it to photonic PUFs simulations.

Index Terms—Complexity, disentropy, Pseudo Random Num-
ber Generators (PRGNs), Physical Unclonable Functions (PUFs).

I. INTRODUCTION

PHYSICAL Unclonable Functions (PUFs) represent a class
of physical security primitives. They play the role of a

physical key protecting an object that may be digital/analog
data or electronic (and photonic) hardware. For some appli-
cations, they might be perceived as the electronic or photonic
analogy of the biometric characteristics of a human being,

This work was supported by the French Agence Nationale de la Recherche
under project number ANR-20-CE39-0004 - PHASEPUF project. F.P., X.L.,
and C.M. acknowledge funding from the European Union’s Horizon Europe
research and innovation program under grant agreement No. 101070238.
Views and opinions expressed are however those of the author(s) only and
do not necessarily reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible for them.

P. Jimenez, R. Cardoso, M. Gomes de Queiroz, M. Abdalla, C. Marchand
and X. Letartre are with Ecole Centrale de Lyon, INSA Lyon, CNRS,
Universite Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69130 Ecully,
France

F. Pavanello is with Univ. Grenoble Alpes, Univ. Savoie Mont Blanc,
CNRS, Grenoble INP, CROMA, 38000, Grenoble, France

M. Abdalla is also affiliated with School of Engineering, RMIT University,
Melbourne, VIC 3000, Australia

such as fingerprints [1], and provide interesting solutions in
the context of the Internet of Things (IoT) [2].

PUF security is based on fabrication variations, i.e, varia-
tions from the designed dimensions of the structure due to the
randomness of the manufacturing process.

The sensitivity to this randomness is what confers on the
PUF its properties of uniqueness and non-clonability [3].
A PUF links an input information e.g., a binary string, called
a “challenge” to a “response” in an ideally deterministic way
forming a so-called challenge-response pair (CRP), that is
not possible to be predicted in advance. Most of the time
PUFs operate with multiple challenges, to build one or more
responses from the set of all possible CRPs (CRPs library).
Hence, the PUF should fulfil some characteristics [3], [4]:

• Physical uniqueness: As explained before, the PUF
should act as a fingerprint and its responses should be
mostly determined by the fabrication variations. Hence,
for a same challenges different PUF instances should have
different responses.

• Physical unclonability: Even with good equipment, an
adversary should not be able to reproduce the PUF thanks
to the unpredictability of fabrication variations.

• Digital unpredictability: It should be impossible to model
the behavior of the PUF numerically (using machine
learning attacks for example).

• Reliability: The PUF should be stable, i.e, for the same
PUF instance, the same challenge should give the same
response (within a certain error tolerance). This stability
should hold over time, even in slightly different experi-
mental conditions.

Depending on the application, some conditions have to be
established on the challenge library size and on the quality
of the responses. Especially in the case of a strong PUF,
mostly suitable for authentication protocols, the CRP library
should be very large to ensure that it would not be possible
for an adversary to have access to a large portion of the
CRP library in a reasonable amount of time [5]. Furthermore,
the responses should be complex enough so that responses
potentially harvested by an attacker cannot be used to train an
algorithm able to predict the rest of the CRPs and to model
the PUF behavior.
Consequently, the responses of a PUF must not have patterns
that are repeated over all instances, within each individual
response of the same instance and between the responses of the

ar
X

iv
:2

40
2.

17
48

8v
2

 [
cs

.C
R

]
 9

 O
ct

 2
02

4

2

same instance (if the responses are made of multiple bits). As
a result, we should not detect patterns in the responses taken
individually, nor in the concatenation of responses coming
from the same PUF instance. Moreover, no patterns should
be observed from the concatenation of responses of different
PUF instances for a same challenge [6]. This argument applies
also to cryptographic primitives for random number generators
(RNGs) in the analog domain which require the absence of
repeating patterns.

There is an entire zoo of PUFs, most of which are elec-
tronic ones and operate in the binary domain as the Arbiter,
SRAM, or Butterfly PUFs [7]. Most of these electronic PUFs
have responses of one bit for one given challenge. A multi-
bits sequence is therefore built by concatenating the one-bit
responses of the PUF for different challenges. In that case there
is no single unambiguous way to assemble its responses into a
sequence. For these PUFs, the NIST test suite [8], especially
suited for the analysis of binary data, can be used to evaluate
some of the statistical properties of the responses [9]. However,
PUFs can also operate in the analog domain, especially in
some recent implementations of optical and photonic PUFs
[3]. For some of these PUFs one challenge give a ordered
response of multiple bits [10]–[14].

Nevertheless, there is an important question to address when
considering these PUFs that operate in the analog domain.
The impact of fabrication variations affect some physical
parameters, but PUFs output signals may present the need for
a conversion from the analog to the binary domain to obtain
responses that can be further used at a system level [10]–[14].
The quality of such responses will be impacted by the chosen
conversion scheme: a different scheme will lead to different
responses and probably different responses quality. Here by
responses quality we refer to the responses complexity and
entropy. Besides, post-processing may be needed to improve
the responses quality. For example, in the first optical PUF
by Pappu and co-workers in 2002 [13], the optical output of
the PUF is a speckle pattern recorded on a 320 × 240 pixel
camera that passes through a threshold filter to obtain an output
in the binary domain, and finally through a Gabor transform
to obtain a 2400-bit key. As discussed in [14], the entropy of
the output response strongly depends on this transformation.
A Gabor transformed image has regularities (zebra-stripes)
leading to important patterns in the responses and hence to
low entropy. Therefore, the Gabor transform may remove parts
of the complexity contained in the optical speckle pattern.

This discussion can be also applied to silicon-photonic
PUFs. For example, in [10] the authors convert their analog
signal in the binary domain using a suite of Hadamard
matrices. They also apply different transformations on the
obtained binary signals to improve their quality (equalization,
grey code, and XOR).

In those cases, we observe that the final entropic quality of
a PUF is in fact the result of a combination of several steps:

1) The complexity of the physical device, its sensitivity to
fabrication variations and its randomness properties.

2) The quality of the analog to binary signal conversion i.e.,
if the conversion retains the entropy contained in the analog
signal.

3) The post-processing step to increase the complexity or
stability of the PUF.

Hence, while designing a PUF, it would be ideal for a
researcher to be able to work independently on each of these
steps. However, by using common benchmarks like the NIST
test suite, it is impossible to evaluate the PUF physical quality
since it requires a binary conversion.

This is also a problem when using TRNGs that operate in
the analog domain, such as photonic TRNGs [15], [16], and it
is important to extract as much information as possible about
the analog signal from the TNRG if we want to analyze the
impact of the binary conversion for instance.

Our goal is therefore to find a way of evaluating the
physical quality of a PUF design or a TRNG by looking at the
complexity of their outputs in the analog domain directly. In
that case, the Shannon entropy [17] used for binary data cannot
be applied. Since one of the basic requirements is the absence
of repeating patterns within or between responses/outputs,
metrics based on the autocorrelation function may be ideal
candidates. Therefore, in this paper, we propose to evaluate
the performance of the disentropy, a metric developed by
R. V. Ramos for quantum applications [18], [19], but also to
obtain a score based on the autocorrelation function [19], [20].
We will first describe the disentropy of the autocorrelation
mathematically, then we will introduce other metrics that are
used to evaluate the complexity of analog signals like the
Approximate Entropy also used in cryprography and security.
Finally, we will compare and evaluate the performance of
these metrics on PRNGs and PUFs responses (analog but also
binary) to assess whether the disentropy of autocorrelation is
a good candidate or not to evaluate the quality of security
primitives. For testing the metrics, rather than TRNG, we
decided to test the metrics on common deterministic PRNGs
whose random properties are easy to modify.

II. THE DISENTROPY OF THE AUTOCORRELATION
FUNCTION

A. The autocorrelation function

The autocorrelation function measures the similarity be-
tween a function or a signal and a delayed version of itself
with delay τ . Castro et al. [19] and Ramos [20] claim that this
function can be used to measure some randomness present in
the signal.
For discrete signals, the autocorrelation function is given by:

rk =
ck
σ2
0

=
1
N

∑N−k
t=1 (st − s̄) (st+k − s̄)

σ2
0

(1)

With k the considered lag (delay), st the discrete signal value
at time t, s̄ the mean value of st and σ2

0 its sample variance.
It is important to note that the autocorrelation function can be
either positive or negative depending on whether two events
are correlated or anti-correlated.
As explained by Ramos in [20] the goal is to obtain a score
from the function, hence, we need to map the function to
a scalar. An intuitive way to obtain it would be to use the
Shannon entropy H defined as [17]:

3

H = −
n∑

i=1

pi log(pi) (2)

Eq. 2 is expressed in terms of a discrete set of probabilities
{pi}.

However, since the autocorrelation function can have nega-
tive values, it cannot be associated to a probability distribution.
Moreover, the logarithm would not be defined on negative
values so the classical definition of entropy as Shannon entropy
cannot be used to map the autocorrelation function to a scalar.

B. The construction of disentropy

In 1988 Tsallis generalised the definition of entropy for
multifractals systems [21] with q ∈ R as:

Sq = k
1−

∑
i p

q
i

q − 1
(3)

Eq. 3 tends to the Boltzmann-Gibbs entropy in the limit of
q → 1. Then, in 1994 he proposed a new way of interpreting
the experimental measurements as q−expectation values [22].
In this work he defines the generalised logarithmic function
as:

lnq(x) =
x(1−q) − 1

1− q
∀x ∈ R+ and q ̸= 1 (4)

This logarithm tends to the natural logarithm when q → 1 and
a generalised exponential function can be attributed to it:

exq = (1+(1−q)x)
1

1−q ∀x/(1+(1−q)x ≥ 0) and q ̸= 1 (5)

With this new logarithm definition (see Eq. 4), it is possible
to express the Tsallis q-entropy Sq as in Eq. 6.

Sq = −k
∑
i

pqi lnq(pi) (6)

Then, da Silva and Ramos introduced the Lambert function
W (z) [20], [23] to further extend the meaning of this definition
of entropy. W (z) is obtained by solving:

W (z)eW (z) = z (7)

This equation has an infinite number of solutions, but only two
branches give real values for z ∈ R. By taking the logarithm of
Eq. 7, and defining z = pi it is possible to obtain a definition
of entropy as:

S = −
∑
i

pi ln(W (pi))−
∑
i

piW (pi) (8)

The term
∑

i piW (pi) is called the disentropy. It is minimal
when the entropy is maximal and vice-versa. It is important
to note here that the disentropy does not contain a logarithm
in its expression.

Next, this entropy is generalised using the Tsallis gener-
alised exponential and Lambert-Tsallis Wq function solution
of:

Wq(z)e
Wq(z)
q = z (9)

By taking the Tsallis q-logarithm of Eq. 9:

lnq(z) = Wq(z) + ((1− q)Wq(z) + 1) lnq(Wq(z)) (10)

At last, a probability pi is inserted in Eq. 9 with z = pi
and by using the Tsallis q-entropy of Eq. 6 neglecting k, one
obtains [19], [20]:

Sq = −
∑
i

pqiWq (pi)−
∑
i

pqi lnq [Wq (pi)]

− (1− q)
∑
i

pqiWq(pi) lnq [Wq (pi)] (11)

where the term:

Dq =
∑
i

pqiWq (pi) (12)

is the Tsallis q-disentropy. Recall that the autocorrelation
function can take values ranging from −1 to 1. Therefore, a
function Wq(rk) defined on this interval shall be found. The
W2(z) function below is defined on the interval of values taken
by the autocorrelation function:

W2(z) =
z

z + 1
, z > −1 (13)

So, by replacing z = pi in Eq. 12 one obtains a value
for the disentropy in the continuous and discrete probability
distributions:

D2 =
∑
i

p3i
pi + 1

(14)

Ramos has shown that this metric can be defined for
functions that are not probability distributions. For example in
the case of the autocorrelation function in [19], [20] and for the
Wigner function in quantum mechanics in [24]. Therefore, in
the case of autocorrelation function, they obtain the disentropy
given by Eq. (15).

D2 =

N−1∑
k=0

r3k
rk + 1

(15)

With this metric it is possible to have a defined scalar
value for the complexity of a signal using the autocorrelation
function. A large positive or negative disentropy shows the
presence of correlations (or anti-correlations) within the signal.
Its ideal value is D2 = 0.5 obtained if r0 = 1 and rk = 0
∀k ̸= 0. Note that the disentropy is not defined for rk = −1
i.e, it is not defined in the case of perfect anti-correlation. In
that case, the metric diverges.

III. APPROXIMATE ENTROPY AND FUZZY ENTROPY

In our study of complexity measures for analog signals
based on the disentropy, we need to compare its performances
with those of other metrics. Below, we will discuss and
compare two of the most used metrics for assessing the
complexity of signals.

A. The Approximate Entropy

As mentioned in the introduction, the NIST test suite for
random and pseudo-rando generators generating binary signals
[8] is commonly used in cryptography and security to evaluate
the quality of security primitives [25], [26]. In this test suite

4

the Approximate Entropy (ApEn) is used to measure the
complexity and detect the presence of repeating patterns in
binary signals. The ApEn has actually been developed by
Steven M. Pincus in 1991 [27] for any kind of vector in
RN . This metric is currently used in medicine [28], [29], but
also in other domains such as climate studies [30] or finance
[31]. The full algorithm of ApEn can be found in [27], [32]
and summarized in Algorithm 1. This algorithm has three
parameters: m ∈ N∗ called the embedding dimension, r ∈ R+

called the noise filter or scaling parameter, and N the number
of samples. The ApEn takes patterns of m points in the signal,
then identifies other patterns that are similar across the signal,
and determines which of these patterns remains similar for the
following m+1 points. In more mathematical terms, ApEn is
based on the conditional probability that a signal that repeated
itself for m points will repeat itself for m+ 1 points [33].

Algorithm 1 The Approximate Entropy algorithm.
Let s ∈ RN be a time series of length N , and n = N−m+1.
Define x ∈ Rm as:
x(i) = [s(i), s(i+ 1), ..., s(i+m− 1)] ∀i ∈ N∗ and i ≤ n
Then compute:

Cm
i (r) =

Number of values j such that d[x(i), x(j)] ≤ r

n

With d a metric comparing two vectors:

d[x(i), x(j)] = max
k=1,...,m

(|s(i+ k − 1)− s(j + k − 1)|)

Next, compute ϕm:

ϕm(r) =
1

n

n∑
i=1

log (Cm
i (r))

The ApEn is then defined by:

ApEn(m, r,N) = ϕm(r)− ϕm+1(r)

In the computation of Cm
i (r), we see that for similarity the

algorithm compares blocks within the resolution r based on
the Heaviside function: if d[x(i), x(j)] ≤ r, then the patterns
are considered similar. Note that r is usually a function of the
standard deviation of s [27], [32].

B. The Fuzzy Entropy

The ApEn can be biased and may indicate more similarities
than contained in the series. It can also be inconsistent and
sensitive to a change in r, and depends on the length N of
the series [32]–[34]. Therefore, other metrics emerged, for
example the Sample Entropy (SampEn) developed by Richman
and Moorman in 2000 [34] fixes some of ApEn problems. In
fact, they have shown that SampEn does not depend on the
series length if N is big enough, and is less biased. This makes
SampEn interesting, but its results can still be untrustworthy
for small N [33], [35]. This problem is mainly linked to the
fact that both SampEn and ApEn use a Heaviside function as
a two state classifier for the blocks similarity. In reality, this
frontier is blurry and it is not easy to determine whether a

pattern belongs to one class or to the other [33], [35]. The
Fuzzy Entropy (FuzEn) has been introduced [33] to overcome
these problems by using the fuzzy sets theory developed by
Zadeh in 1965 [36]. In this paper, Zadeh introduced the idea
of fuzzy sets as a “class with a continuum of grades of
membership” with a “membership function” fA(x) associating
every object x of a space X to a real number in [0, 1]. fA(x)
represents this “grade of membership” of x in A. The closer
fA(x) is to 1, “the higher the grade of membership of x in
A” [36].
In FuzEn algorithm, this membership function fA is therefore
used to replace the Heaviside function in ApEn algorithm.

In [33] Chen et al. use a family of exponential functions as
membership functions. However, other membership functions
can be used such as triangular, Z-shaped, constant-Gaussian as
presented in [35]. They are all functions of r and of a defined
distance metric comparing two vectors, as in Algorithm 1.

In our study, we will compare the results obtained with the
disentropy of the autocorrelation to the results obtained with
ApEn because of its use in cryptography for binary signals
and FuzEn to dispose of ApEn defaults. These metrics will be
first tested on different PRNGs of good and poor quality. All
metrics will be used to find regularities and patterns in their
outputs; ApEn and FuzEn by looking for repeating patterns
of size m and m + 1 along the signal and the disentropy of
autocorrelation by comparing the signal with a delayed version
of itself using autocorrelation.
If a signal does exhibit clear repeating patterns ApEn and
FuzEn would have a value close to 0, on the other side this
signal would obtain a high |D2| value.

IV. SOME PRNGS

A. Linear congruential generator (LCG)

This generator produces a sequence of pseudo-randomised
numbers based on linear recursions given by [37], [38]:.

xk+1 = axk + c mod M (16)

xk being the sequence with k ∈ N, M ∈ N∗ is the modulo,
x0 is the seed, a is the multiplier and c the increment, such
that x0, a, c ∈ ZM [38]. This generator is a common and old
method to make a PRNG, the linear method with c = 0 has
been developed in 1951 by D.H. Lehmer [39].

In this study, we use Lehmer generators and linear con-
gruential generators with parameters shown in Table I. To
obtain optimised PRNGs of good quality with a period of M ,
the parameters M , a, c and x0 must meet certain conditions
[37], [38]. Among the requirements, in the case where M
is a multiple of 4, a − 1 should also be multiple of 4;
further, when c = 0, the seed x0 should be a co-prime of
M . Some parameters in Table I have been chosen to match
the parameters of commonly used random functions as the
C++11 minstd_rand function or the GNU C Library rand
function [38]. Since x0 should be co-prime of M when c = 0,
we chose x0 = 1.

Using Eq. 16 to generate PRNGs allows us to create non-
optimised ones or PRNGs exhibiting periodic patterns by

5

Fig. 1. Examples of normalised PRNGs output for 10000 samples (a) MT0 (b) LCG Bad (c) LCG 2. Before normalisation, MT0 output have been generated
using the MATLAB™ rand function, LCG Bad and LCG 2 with Eq. 16 equation and parameters in Tab. I.

choosing parameters a, M , and c that do not meet the con-
ditions required to create an optimized PRNG. These PRNGs
presented in Table I (LCG Bad, LCG 1, 2, 3, 4) will therefore
be compared to the optimised ones using the metrics presented
earlier. The parameters of LCG 1, 2, 3 and 4 have been chosen
in order to observe patterns in their output visually, while still
exhibiting randomness as represented on Fig. 1c. LCG 1, 2
and 3 have the same a and M but different c while LCG 3
and 4 only have a different M .

The parameters of LCG Bad have been chosen to create a
bad PRNG exhibiting periodicity as illustrated on Fig. 1b.
In this study, the output of all LCGs will be normalised
between 0 and 1.

TABLE I
PARAMETERS OF LEHMER AND LINEAR CONGRUENTIAL GENERATORS.

PRNG M a c

Minimal standard
generator [37]

231 − 1 16807 0

C++11
minstd_rand

231 − 1 48271 0

GNU C Library
rand

231 1103515245 12345

LCG Bad 5000 17 256

LCG 1 220 1487 25436

LCG 2 220 1487 25236

LCG 3 220 1487 25336

LCG 4 219 1487 25336

B. Mersenne-Twister PRNG

The Mersenne-Twister (MT) algorithm [40] is a common
tool to generate sequences of random numbers. For example,
it is used in python random module [41] and MATLAB™
rand function [42]. Furthermore, the MT algorithm can
be used as a base for cryptographic cyphers, for example
CryptMT [43], or image watermarking techniques [44]. MT
uses the twisted generalized feedback back shift register
(TGFSR) algorithm developed in [45]. The MT19937 algo-
rithm described in [40] has a remarkably large prime period
M = 219937 − 1 making it a good PRNG.
In this work, the MT19937 algorithm in MATLAB™ rand
function will be used with seed 0 and a randomly picked

seed i.e., S = 1773456103, two PRNGs which will be called
MT0 and MTS , respectively. Now that we have defined which
PRNGs are going to be used in this study, we can apply to
them the various metrics discussed so far.

V. PRNGS RESULTS

A. Tests on analog signals
For the ApEn metric, we utilised the MATLAB™

approximateEntropy function [46]. It is recommended
to use the ApEn algorithm with m = 2 or m = 3 as well as r
between 0.1σ0 and 0.2σ0 [27], [32]. Therefore, we took m = 2
and m = 3, and the approximateEntropy function uses
r = 0.2σ0.

For the FuzEn metric, we used the algorithm provided in
[35] with a Gaussian membership function as recommended
for long signals for a faster computation time. We also took
m = 2 and m = 3 as well as and r = 0.1253σ0 as
recommended in the algorithm.

A sweep in m from m = 2 to m = 8 has been performed
for ApEn and FuzEn, results are shown in Appendix A and
confirm the choice of m = 2 and m = 3.

To compute the autocorrelation function we used the
MATLAB™ autocorr function [47] for each lag (delays)
from lag = 0 (no delay) to lag = length(s)− 1.
Next, the disentropy of the autocorrelation function (D2) is
obtained using Eq. 15 by summing for each lag value.

Recall here that D2 can be positive or negative with an ideal
value at D2 = 0.5 in the absence of patterns in the signal [20].
Therefore, we decided to focus on D = |D2 − 0.5| to better
appreciate the variations around 0.

To know how many samples are needed to perform the
analysis, we analysed how ApEn and FuzEn with m = 2
evolve with the number of samples. Results obtained by ApEn
and FuzEn applied on MT0 are shown in Fig. 2. With the
parameters defined previously, ApEn needs more than 1000
samples to converge. The dependency of ApEn on the number
of samples was expected as discussed in Section III-A. FuzEn
converges faster than ApEn, but still needs at least 1000
samples to reduce its oscillations to σFuzEn ∼ 10−2 in order
of magnitude. On the other hand, the disentropy tends to 0
after few oscillations; for 1000 samples its oscillations are in
the order of σD ∼ 10−3. It is not represented on Fig. 2 for
reasons of visibility.

6

In the next studies, we chose to take a number of samples
N = 10000 to make sure that both ApEn and FuzEn have
enough samples to converge and have small oscillations.

Fig. 2. Convergence study of ApEn and FuzEn for MT0 and m = 2.

After 10000 samples, the oscillations for ApEn and FuzEn
are in the order of σFuzEn ∼ σApEn ∼ 10−3, and σD ∼ 10−4

for the the disentropy. Hence, we generated outputs of 10000
samples for each PRNG. For example, the output of MT0,
LCG Bad, and LCG 2 are presented on Fig. 1.

We observe on Fig. 1a that the output of MT0 does not
exhibit observable patterns. On the other hand, by looking
at Fig. 1b we see that LCG Bad has clear repeating patters
and should have bad results for all the metrics, i.e, ApEn
and FuzEn close to zero and a high disentropy. As seen on
Fig. 1c, LCG 2 does not necessarily have repeating patterns,
but straight lines can be observed in its output.

Then, we decided to apply the different metrics on the
PRNGs and compare their results to the scores obtained by
MT0 (for each respective metric) presented in Tab. II.

TABLE II
MT0 SCORES FOR ANALOG SIGNALS

D0 ApEn0 FuzEn0
4.80 · 10−5 m = 2 2.156 2.040

m = 3 1.848 1.926

Results are shown on Fig. 3. All metrics were clearly able
to distinguish the repeating patterns of LCG Bad, but in order

to have a proper visibility of the other PRNGs results, it was
decided to remove its scores from Fig. 3. However, results
from LCG Bad are presented in the Appendix A.

As expected, we observe that the different good or well-
known PRNGs (MTS , MSG, GNU C, C++) obtain good scores
for all metrics, close to those of MT0 with D ∼ 10−4. How-
ever, only the disentropy is capable of clearly distinguishing
between these known PRNGs and LCG 1, 3 and 4. FuzEn
even perceives them as better PRNGs. It can be also seen that
m = 3 obtains better contrast than m = 2 for ApEn and
FuzEn.

However, one observes that LCG 2 obtains a good score
for the disentropy and the best one for ApEn and FuzEn with
m = 3. This means that D, ApEn and FuzEn are not capable
of perceiving the lines observed for LCG 2 in Fig. 1(c). These
lines are actually dotted lines with a certain periodicity; this
period pline has an impact on the metrics scores. A test has
been conducted with MT0 output in which we included a
diagonal line of a certain periodicity. With m = 3, ApEn
and FuzEn are not able to detect the line for pline > 3. With
m = 2 they don’t detect it for pline > 2, we also tested with
m = 4 and concluded that ApEn and FuzEn would not detect
the line for pline > m. On the other side, the disentropy is
not capable of detecting the line for pline > 40 while the line
with the smallest pline in LCG2 has a period of 64 samples.

By looking at Eq. (15), it is possible to deduce that the score
obtained by the disentropy will depend highly on the number
of samples if the pattern repeats itself periodically. Indeed, if
one defines T as the period of the pattern, and τp a point
in the periodic pattern, then rτp = rτp+T > 0. Hence, the
contribution of the periodic pattern will be added each time
it is observed. This behavior has been verified with LCG Bad
that repeats itself every 500 samples. Fig. 4 shows that the
disentropy score is small for a small number of samples i.e.,
below 500. However, above 500 samples the metric begins to
analyze redundancies and the score D = |D2 − 0.5| grows
linearly with the number of samples due to the increase of
autocorrelation functions r500j with j ∈ N∗.

Fig. 3. Score ratio of PRNGs obtained from (a) D = |D2 − 0.5|, (b) ApEn, and (c) FuzEn compared to MT0 scores for analog signals of Table. II.

7

Fig. 4. Evolution of LCG Bad disentropy with N .

B. Tests on binary signals

Since Eq. (1) is also defined for binary signals we want to
test how the disentropy behaves in that case.

By placing a comparator at 0.5 on the PRNGs output of
section V-A we converted these analog signals into binary
ones. For binary signals the NIST test suite manual [8]
recommend to have m < ⌊log2(N)⌋−5. With N = 10000 this
condition becomes m < 8, hence we decided to compute the
entropies with m ∈ [2, 8] with the last point m = 8 included.
We decided to do the same analysis as in Fig. 3 by comparing
the PRNG scores to the MT0 scores shown in Tab. III.

TABLE III
MT0 SCORES FOR BINARY SIGNALS.

D0 ApEn0 FuzEn0
2.63 · 10−4 m = 2 0.6930 0.6932

m = 3 0.6929 0.6935

m = 8 0.6798 0.6931

First, one observes that ApEn0 and FuzEn0 scores decrease
from values close to 2 in Tab. II to values close to log(2) ≈
0.6931. In fact, the highest ApEn value for binary signals is
known to be equal to log(2) [32].

As in the analog case, all metrics were able to discriminate
LCG Bad; its scores are presented in the Appendix A.

Results for the other PRNGs are presented in Fig. 5 where
we observe that only the disentropy is capable to distinguish
between the well-known PRNGs and LCG 1, 2, 3 and 4.
In Fig. 5(a) and Fig. 5(b) we decided to represent m = 2
and m = 3 because they were the inner dimensions used
in Section V-A and m = 8 because it exhibited the highest
contrast between the PRNGs. The well-known PRNGs still
obtain results close to D0 ∼ 10−4. On the other hand, ApEn
and FuzEn are only capable to discriminate LCG Bad and
LCG 1. By increasing m further, both are more and more
discriminated, but all the other PRNGs obtain scores around
log(2).

It is possible to obtain a p-value from ApEn in the NIST
test suite to discriminate between random and non-random
binary series; if p > 0.01 the series is considered random [8].
Therefore, the ApEn algorithm from [48] has been used.

This algorithm obtains results for m = 2, 3 and 8 similar
to the MATLAB™
approximateEntropy function. In terms of p-values, only
LCG Bad is considered as non-random except for m = 8
where LCG 1 obtains p = 0.0096 and is therefore near the
limit.
Here, the disentropy of autocorrelation outperformed ApEn
and FuzEn and, this time, it is capable of discriminating LCG
2 from the other good PRNGs with one order of magnitude
difference.

VI. PUFS

A. Deterministic patterns
In this section we initially consider series of analog signals

that are not experimental data generated by PUFs.
First, we generate the responses with the MT algorithm,

then we insert patterns inside and, finally, we test them.
We generated the responses Ri of n = 128 samples as

if they were responses coming from the same analog PUF
instance or responses coming from different PUF instances to
be converted in binary. As a reference, 100 different responses
with the MATLAB™ rand function were taken, then we
concatenated them to obtain a series C0 of size N = 12800.
From an application point of view analyzing the concatenation
of responses of different PUF instances to the same challenge
could be used to detect correlations between PUF instances
for example as explained in [6]. Detecting patterns between
instances or between responses of the same instances can also
give information about the PUF to an attacker. The reader may
wonder how to order the concatenation of PUFs responses to
extract as much information as possible, this would not be
addressed in this paper but any patterns found in any responses
ordering might give information about the PUF to an attacker
in case they have access to PUF instances.

As no patterns are present in the responses, the concate-
nation C0 should obtain good scores. Besides, we generated
128-sample-long responses with rand, but this time we added
the conditions presented in Algorithm 2.

Algorithm 2 Deterministic dynamics algorithm.
for k ∈ [2, n] do

if s(k − 1) ≥ 0.9 then
s(k)← 0.1

else if s(k − 1) ≤ 0.1 then
s(k)← 0.9

end if
end for

By doing so, we insert two patterns in the responses of the
PUF with a probability of p = 0.1 each. This simulates a PUF
with a certain deterministic dynamics. These responses will be
the test responses and will be compared to the reference ones
for each metrics. This study has been performed 100 times
to emulate 100 different PUF instances. For each instance we
obtained the concatenation of their responses Ci with i ∈ N∗

and i ≤ 100.
For each Ci we compute the metrics for m = 1, 2 and 3.

We decided to use m = 1 because the patterns implied two

8

Fig. 5. Score ratio of PRNGs obtained from (a) D = |D2 − 0.5| (b) ApEn (c) FuzEn compared to MT0 scores for binary signals of Table. III.

samples. Therefore, ApEn and FuzEn might perform better
with m+ 1 = 2 considering Algorithm 1.

TABLE IV
AVERAGE METRIC SCORE RELATIVE DIFFERENCE OF Ci BETWEEN THE

TEST AND REFERENCE RESPONSES.

D ApEn FuzEn

+27742% m = 1 −15% −26%

m = 2 −20% −16%

m = 3 −12% −19%

In Table IV, we observe that all the metrics were able
to differentiate between the reference and the test responses.
However, for the test responses, the D scores increased by
∼ 102, while ApEn and FuzEn only decreased by ∼ 10−1 in
order of magnitude.

It is possible to analyse the responses individually by
removing the concatenation step. In that case, the metrics
are applied on series of 128 samples making it more difficult
to differentiate between the reference responses and the test
responses. The study has been performed with 500 responses
to have enough data for the mean values of the metrics to
converge. Between the reference and the test signals, the
mean value of D over all responses increased by 331%.
FuzEn(m = 1) and FuzEn(m = 3) decreased by 25% and
20%, respectively and ApEn(m = 1) decreased by 13%, while
ApEn(m = 3) increased by 62%.

Note that ApEn(m = 3) gives a wrong result in that case,
in fact its mean value should decrease as ApEn(m = 1) and
FuzEn. This error is probably due to shortness of the responses
that hinders ApEn to give meaningful results as the pattern is
too short to be observed with m = 3.

Now we consider 100 instances of a PUF that has a defect
where some samples will always be equal. For example, one
can set the value of the first sample, forcing it to be equal to
0.5. In that case, no metrics are able to differentiate between
the reference and the test concatenations. If we force the first
two response samples to be equal to 0.2 and 0.1 respectively,
the [0.2, 0.1] pattern will repeat itself every 128 bits in the
concatenation. The tests are performed with different number
of responses Nresp. Intuitively, by increasing the number of
responses, we increase the length of the concatenation and
number of repeating patterns inside. Results are presented

in Tab. V. We decided to put 0% if the relative difference
between the reference and test responses is lower than 1%
and smaller than the standard deviation of the metrics over
the 100 instances.

TABLE V
AVERAGE METRIC SCORE RELATIVE DIFFERENCE OF Ci BETWEEN THE

TEST RESPONSES WITH THE [0.2, 0.1] PATTERN AND REFERENCE
RESPONSES.

Metrics Nresp = 100 Nresp = 200 Nresp = 500

D 0% +719% +4930%

ApEn(m = 1) 0% −0.3% −0.3%

FuzEn(m = 1) −0.5% −0.5% −0.5%

ApEn(m = 2) 0% −0.3% −0.3%

FuzEn(m = 2) −0.4% −0.3% −0.3%

ApEn(m = 3) 0% −0.2% −0.2%

FuzEn(m = 3) 0% −0.3% −0.3%

For Nresp = 100, we observe that only FuzEn is capable
of detecting the pattern with a very small contrast of 0.5% for
m = 1 and 0.4% for m = 2. However, by increasing the num-
ber of responses, and therefore by increasing the number of
patterns present in the signal, the disentropy contrast increases
drastically, while the FuzEn and ApEn contrast remains very
small for all m.

B. Test on PUFs responses

Here, we use the simulated outputs of photonic PUFs
previously published [11]. In this paper different photonic
PUF architectures based on symmetric ring resonator arrays
have been simulated and their responses have been tested
using NIST tests (including ApEn) for two different binary
conversions. We will focus our discussion here on PUF 1
and PUF 3 because of their different NIST ApEn [48] scores.
PUF 3 is very simple and composed of one ring per array
while PUF 1 is more complex and composed of 10 rings per
array.

In this paper, the binary challenges are created using the
MT algorithm and encoded in light. 150 instances of each
architecture are simulated with fabrication variations. For each
instance 100 responses of 128 bits are generated by sampling
and converting the analog outputs into binary. At the end,
these responses have been concatenated for the NIST tests

9

evaluation. Their results are compared in Table VI with N%
ApEn

the percentage of instances passing the ApEn test [48].

TABLE VI
RESULTS SUMMARY OF PUF 1 AND PUF 3 ARCHITECTURES.

PUF 1 PUF 3

N%
ApEn 1-7% 46%

Uniqueness High Low

Impact on challenge-encoded inputs High Low

For two different binary conversion schemes, PUF 1 obtains
low N%

ApEn compared to PUF 3 despite the bias in PUF 3
responses due to the conversion to a binary format. PUF 1
can operate effectively on the inputs encoded with the chal-
lenges to generate unique instances because of its fabrication
variations and architecture. It also degrades the quality of the
inputs, while PUF 3 is not complex enough to have an impact
on the inputs.

Given that N%
ApEn(PUF 1) < N%

ApEn(PUF 3) in the binary
domain, one expects D(PUF 1) > D(PUF 3) in the analog
domain as well. For the 150 instances we indeed obtain
D(PUF 1) ∼ 10−2 and D(PUF 3) ∼ 10−4.

Moreover, with a number of samples in the same order of
magnitude N = 100 × 128 ∼ 104 we expected D(PUF 3) to
be close to D(MT0) ∼ 10−4 of Fig. 3(a).

Also, as shown in Fig. 3(a), the score D(PUF 1) ∼ 10−2 has
the same order of magnitude as D of LCG 1, 3 and 4 exhibiting
patterns. This indicates the presence of patterns in the analog
PUF 1 outputs and indicates that the low N%

ApEn(PUF 1) is
not entirely caused by a bad binary conversion scheme or the
bias in the responses.

On the ApEn and FuzEn side, we discovered that the analog
outputs of PUF 3 obtained a score very close to log(2) for
both metrics. This means that ApEn and FuzEn are seeing the
outputs of PUF 3 as signals close to binary data.

As shown in Fig. 6, the normalised analog outputs of PUF 3
are closely oscillating between two levels: 0 and 1 due to the
low impact that the PUF 3 architecture has on the input light
encoded with the binary challenges. Therefore, ApEn(PUF 1)
> ApEn(PUF 3) and FuzEn(PUF 1) > FuzEn(PUF 3) even if
PUF 1 has patterns and N%

ApEn(PUF 1) < N%
ApEn(PUF 3).

Fig. 6. Normalised output 1 of PUF 3 first instance compared to challenge 1.
The delay caused by the PUF have been compensated to align the challenge
with the output on the figure.

Hence, one should be careful while using ApEn and FuzEn
on analog signals if they oscillate between two levels. As
we observed on Fig 3(a) and Fig. 5(a), the disentropy is not
highly affected by the transformation from analog to binary
signal (c.f the well-known PRNGs and LCG Bad results).
As mentioned in [32], the ApEn algorithm gives a relative
value allowing to compare signals using the same “alphabet”.
Therefore, depending on the application, this characteristic of
ApEn and FuzEn to be sensitive to the type of signals can
make a comparison between analog signals complicated.

One could argue that a binary signal is less complex than
an analog signal with a very large number of levels. However,
for security applications where the signal has to be converted
into binary data, the detection of patterns and correlations in
the signal might be more important than the complexity in
terms of levels and the instability of ApEn and FuzEn can be
detrimental in this regard.

VII. CONCLUSION

In this study we were able to show that the disentropy of
autocorrelation is an interesting metric to assess the complex-
ity of security primitives outputs, both in the analog as well
as in the binary domain. The disentropy is able to differentiate
between well-known and optimized PRNGs and ones of lower
quality with a greater contrast than ApEn and FuzEn. It can
also be used to detect patterns in the analog outputs and binary
responses of PUFs.
Furthermore, the disentropy does not need inputs whereas
ApEn and FuzEn results depend highly on their input pa-
rameters such as the inner dimension m. In addition, ApEn
and FuzEn depend on the type of the input signal s; with the
chosen m and r we observed that the ideal value for ApEn and
FuzEn is close to 2 for analog signals and log(2) for binary
ones or analog signals fluctuating between two levels. On the
other hand, the results obtained from the disentropy do not
suffer from this characteristic since it only detects the amount
of correlation in signals.

However, we saw that none of the metrics were able to
detect the lines in LCG 2 analog output. ApEn and FuzEn
failed in detecting these lines for a period pline > m and
the disentropy for pline > 40. Also, the score given by
the disentropy depends highly on the length of the signal.
Therefore, we recommend using it with a comparison. We
suggest to compare the score obtained by the signal under test
alongside a signal of the same length generated with the MT0

algorithm.

APPENDIX

To confirm the choice of m = 2 and m = 3 for ApEn and
FuzEn we decided to conduct a study of the influence of m in
the ApEn and FuzEn scores. As shown in Fig. 7, with m = 1
we cannot differentiate between MT0 and LCG Bad. Using
m = 2 we obtain a high score for MT0 as expected, but a
small contrast compared to LCG Bad. m = 3, seems to be
the best candidate since it has the largest contrast between the
two PRNGs while giving a high score for MT0. For m > 3,
the contrast decreases and ApEn gets close to 0 for MT0.

10

Fig. 7. LCG Bad and MT0 entropy score evolution with m for analog signals.

The scores obtained by LCG Bad are hard to represent
in Fig. 3 and Fig. 5 without losing visibility for the other
PRNGs. Therefore, its results are presented in Tab. VII for
analog signals and in Tab. VIII for binary signals.

TABLE VII
LCG BAD SCORES FOR ANALOG SIGNALS.

D ApEn FuzEn

2.51 m = 2 1.939 1.241

m = 3 0 0.398

TABLE VIII
LCG BAD SCORES FOR BINARY SIGNALS.

D ApEn FuzEn

2.60 m = 2 0.692 0.690

m = 3 0.685 0.677

m = 8 0.367 0.381

ACKNOWLEDGMENTS

The authors would like to thank R. V. Ramos for the helpful
and interesting discussion on disentropy and Stefano Giordano
for useful feedback.

REFERENCES

[1] Roel Maes. Physically Unclonable Functions: Constructions, Properties
and Applications. Springer, Berlin, Heidelberg, 2013.

[2] Armin Babaei and Gregor Schiele. Physical Unclonable Functions in
the Internet of Things: State of the Art and Open Challenges. Sensors,
19(14):3208, July 2019.

[3] Fabio Pavanello, Ian O’Connor, Ulrich Ruhrmair, Amy C. Foster, and
Dimitris Syvridis. Recent Advances in Photonic Physical Unclonable
Functions. In 2021 IEEE European Test Symposium (ETS), pages 1–10,
Bruges, Belgium, May 2021. IEEE.

[4] Abhranil Maiti, Vikash Gunreddy, and Patrick Schaumont. A Systematic
Method to Evaluate and Compare the Performance of Physical Unclon-
able Functions. In Peter Athanas, Dionisios Pnevmatikatos, and Nicolas
Sklavos, editors, Embedded Systems Design with FPGAs, pages 245–
267. Springer New York, New York, NY, 2013.

[5] Ulrich Rührmair, Jan Sölter, and Frank Sehnke. On the Foundations
of Physical Unclonable Functions, 2009. Publication info: Published
elsewhere. Unknown where it was published.

[6] Mitsuru Shiozaki, Yohei Hori, and Takeshi Fujino. Entropy Estimation
of Physically Unclonable Functions with Offset Error, 2020. Publication
info: Preprint. MINOR revision.

[7] Mohammed Al-Haidary and Qassim Nasir. Physically Unclonable
Functions (PUFs): A Systematic Literature Review. In 2019 Advances in
Science and Engineering Technology International Conferences (ASET),
pages 1–6, Dubai, United Arab Emirates, March 2019. IEEE.

[8] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine
Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David Banks,
N. Heckert, James Dray, San Vo, and Lawrence Bassham. A Statistical
Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications. Technical Report NIST Special Publication
(SP) 800-22 Rev. 1, National Institute of Standards and Technology,
April 2010.

[9] Cedric Marchand, Lilian Bossuet, Ugo Mureddu, Nathalie Bochard,
Abdelkarim Cherkaoui, and Viktor Fischer. Implementation and Char-
acterization of a Physical Unclonable Function for IoT: A Case Study
With the TERO-PUF. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(1):97–109, January 2018.

[10] Bryan T. Bosworth, Iskandar A. Atakhodjaev, Michael R. Kossey,
Brian C. Grubel, Daniel S. Vresilovic, Jasper R. Stroud, Neil MacFar-
lane, Jesús Villalba, Najim Dehak, A. Brinton Cooper, Mark A. Foster,
and Amy C. Foster. Unclonable photonic keys hardened against machine
learning attacks. APL Photonics, 5(1):010803, January 2020.

[11] Paul Jimenez, Raphael Cardoso, Maurı́cio Gomes de Queiroz, Mohab
Abdalla, Clément Zrounba, Ulrich Rührmair, Cédric Marchand, Xavier
Letartre, and Fabio Pavanello. Photonic Physical Unclonable Function
Based on Symmetric Microring Resonator Arrays. In Frontiers in
Optics + Laser Science 2023 (FiO, LS) (2023), paper JTu4A.82, page
JTu4A.82. Optica Publishing Group, October 2023.

[12] Farhan Bin Tarik, Azadeh Famili, Yingjie Lao, and Judson D. Ryckman.
Scalable and CMOS compatible silicon photonic physical unclonable
functions for supply chain assurance. Scientific Reports, 12(1):15653,
September 2022.

[13] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Phys-
ical One-Way Functions. Science, 297(5589):2026–2030, September
2002.

[14] Ulrich Rührmair, Christian Hilgers, Sebastian Urban, Agnes
Weiershäuser, Elias Dinter, Brigitte Forster, and Christian Jirauschek.
Optical PUF reloaded. Cryptology ePrint Archive, 2013.

[15] Apostolos Argyris, Stavros Deligiannidis, Evangelos Pikasis, Adonis
Bogris, and Dimitris Syvridis. Implementation of 140 Gb/s true
random bit generator based on a chaotic photonic integrated circuit.
Optics Express, 18(18):18763–18768, August 2010. Publisher: Optica
Publishing Group.

[16] Kazusa Ugajin, Yuta Terashima, Kento Iwakawa, Atsushi Uchida,
Takahisa Harayama, Kazuyuki Yoshimura, and Masanobu Inubushi.
Real-time fast physical random number generator with a photonic inte-
grated circuit. Optics Express, 25(6):6511–6523, March 2017. Publisher:
Optica Publishing Group.

[17] C. E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27(3):379–423, July 1948. Conference Name:
The Bell System Technical Journal.

[18] R. V. Ramos. Quantum and Classical Information Theory with Disen-
tropy, January 2020. arXiv:1901.04331 [quant-ph].

[19] G. S. Castro and R. V. Ramos. Enhancing eavesdropping detection
in quantum key distribution using disentropy measure of randomness.
Quantum Information Processing, 21(2):79, February 2022.

[20] R. V. Ramos. Estimation of the Randomness of Continuous and Discrete
Signals Using the Disentropy of the Autocorrelation. SN Computer
Science, 2(4):254, July 2021.

[21] Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statis-
tics. Journal of Statistical Physics, 52(1-2):479–487, July 1988.

[22] C. Tsallis. What are the Numbers that Experiments Provide. Quı́mica
Nova, 1994.

[23] G.B. Da Silva and R.V. Ramos. The Lambert–Tsallis W q function.
Physica A: Statistical Mechanics and its Applications, 525:164–170,
July 2019.

[24] R. V. Ramos. Disentropy of the Wigner function. Journal of the Optical
Society of America B, 36(8):2244, August 2019.

[25] Abdelkarim Cherkaoui, Lilian Bossuet, and Cedric Marchand. Design,
Evaluation, and Optimization of Physical Unclonable Functions Based
on Transient Effect Ring Oscillators. IEEE Transactions on Information
Forensics and Security, 11(6):1291–1305, June 2016.

[26] Miguel Garcia-Bosque, Adrián Pérez-Resa, Carlos Sánchez-Azqueta,
Concepción Aldea, and Santiago Celma. Chaos-Based Bitwise Dynami-
cal Pseudorandom Number Generator On FPGA. IEEE Transactions on
Instrumentation and Measurement, 68(1):291–293, January 2019. Con-
ference Name: IEEE Transactions on Instrumentation and Measurement.

11

[27] S M Pincus. Approximate entropy as a measure of system complexity.
Proceedings of the National Academy of Sciences, 88(6):2297–2301,
March 1991.

[28] Andreas Holzinger, Christof Stocker, Manuel Bruschi, Andreas Auinger,
Hugo Silva, Hugo Gamboa, and Ana Fred. On Applying Approximate
Entropy to ECG Signals for Knowledge Discovery on the Example of
Big Sensor Data. In Runhe Huang, Ali A. Ghorbani, Gabriella Pasi,
Takahira Yamaguchi, Neil Y. Yen, and Beijing Jin, editors, Active Media
Technology, pages 646–657, Berlin, Heidelberg, 2012. Springer.

[29] Radhagayathri K. Udhayakumar, Chandan Karmakar, Peng Li, and
Marimuthu Palaniswami. Effect of embedding dimension on complexity
measures in identifying Arrhythmia. In 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pages 6230–6233, Orlando, FL, USA, August 2016. IEEE.

[30] Alfonso Delgado-Bonal, Alexander Marshak, Yuekui Yang, and Daniel
Holdaway. Analyzing changes in the complexity of climate in the
last four decades using MERRA-2 radiation data. Scientific Reports,
10(1):922, January 2020.

[31] Alfonso Delgado-Bonal. Quantifying the randomness of the stock
markets. Scientific Reports, 9(1):12761, September 2019.

[32] Alfonso Delgado-Bonal and Alexander Marshak. Approximate Entropy
and Sample Entropy: A Comprehensive Tutorial. Entropy, 21(6):541,
May 2019.

[33] Weiting Chen, Zhizhong Wang, Hongbo Xie, and Wangxin Yu. Charac-
terization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, 15(2):266–
272, June 2007.

[34] Joshua S. Richman and J. Randall Moorman. Physiological time-series
analysis using approximate entropy and sample entropy. American Jour-
nal of Physiology-Heart and Circulatory Physiology, 278(6):H2039–
H2049, June 2000.

[35] Hamed Azami, Peng Li, Steven E. Arnold, Javier Escudero, and Anne
Humeau-Heurtier. Fuzzy Entropy Metrics for the Analysis of Biomedical
Signals: Assessment and Comparison. IEEE Access, 7:104833–104847,
2019.

[36] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, June
1965.

[37] S. K. Park and K. W. Miller. Random number generators: good ones
are hard to find. Commun. ACM, 31(10):1192–1201, October 1988.

[38] Kamalika Bhattacharjee and Sukanta Das. A search for good pseudo-
random number generators: Survey and empirical studies. Computer
Science Review, 45:100471, August 2022.

[39] Derrick H. Lehmer. Mathematical models in large-scale computing units.
Ann. Comput. Lab.(Harvard University), 26:141–146, 1951.

[40] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor. ACM Transactions on Modeling and Computer Simulation, 8(1):3–
30, January 1998.

[41] random — Generate pseudo-random numbers. Date Accessed: 03
September 2024, url: https://docs.python.org/3/library/random.html.

[42] Control random number generator - MATLAB rng -
MathWorks France. Version: MATLAB 2023b, url:
https://fr.mathworks.com/help/matlab/ref/rng.html.

[43] Makoto Matsumoto, Takuji Nishimura, Mariko Hagita, and Mutsuo
Saito. CRYPTOGRAPHIC MERSENNE TWISTER AND FUBUKI
STREAM/BLOCK CIPHER, 2005. Publication info: Published else-
where. Unknown where it was published.

[44] Koyi Lakshmi Prasad, T.Ch. Malleswara Rao, and V. Kannan. A Hybrid
Semi-fragile Image Watermarking Technique Using SVD-BND Scheme
for Tampering Detection with Dual Authentication. In 2016 IEEE 6th
International Conference on Advanced Computing (IACC), pages 517–
523, Bhimavaram, India, February 2016. IEEE.

[45] Makoto Matsumoto and Yoshiharu Kurita. Twisted GFSR generators.
ACM Transactions on Modeling and Computer Simulation, 2(3):179–
194, July 1992.

[46] Measure of regularity of nonlinear time series - MATLAB approx-
imateEntropy - MathWorks France. Version: MATLAB 2023b, url:
https://fr.mathworks.com/help/predmaint/ref/approximateentropy.html.

[47] Sample autocorrelation - MATLAB autocorr - Math-
Works France. Version: MATLAB 2023b, url:
https://fr.mathworks.com/help/econ/autocorr.html.

[48] Steven Kho Ang. stevenang/randomness testsuite, July 2024. original-
date: 2017-12-31T15:55:33Z.

	Introduction
	The Disentropy of the Autocorrelation Function
	The autocorrelation function
	The construction of disentropy

	Approximate entropy and Fuzzy entropy
	The Approximate Entropy
	The Fuzzy Entropy

	Some PRNGs
	Linear congruential generator (LCG)
	Mersenne-Twister PRNG

	PRNGs Results
	Tests on analog signals
	Tests on binary signals

	PUFs
	Deterministic patterns
	Test on PUFs responses

	Conclusion
	Appendix
	References

