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Scaling limits for a population model with growth, division

and cross-diffusion

Marie Doumic∗ Sophie Hecht† Marc Hoffmann‡ Diane Peurichard§

October 16, 2024

Abstract

Originally motivated by the morphogenesis of bacterial microcolonies, the aim of this
article is to explore models through different scales for a spatial population of interact-
ing, growing and dividing particles. We start from a microscopic stochastic model, write
the corresponding stochastic differential equation satisfied by the empirical measure, and
rigorously derive its mesoscopic (mean-field) limit. Under smoothness and symmetry as-
sumptions for the interaction kernel, we then obtain entropy estimates, which provide us
with a localization limit at the macroscopic level. Finally, we perform a thorough numerical
study in order to compare the three modeling scales.
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65C05, 65M08

Keywords: Interacting measure-valued processes, systems of particles, deterministic macro-
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1 Introduction

When describing a population of N interacting elements-such as particles, cells or individuals-
and assuming that the population is large, i.e. N → ∞, three spatial scales appear. First, at
the individual or microscopic scale, a stochastic system of particles may be written, where each
individual is characterized by its characteristic traits, its spatial position and its movement.
The interaction between them is regulated by attractive or repulsive forces and/or an external
potential. Second, mean-field or kinetic equations correspond to a mesoscopic scale, where the
number of particles tends to infinity while the interaction kernel remains nonlocal. Finally,
localization limits can be derived, leading to an aggregation equation / porous medium system,
where the interaction range tends to zero. Notably, this third scale may reveal more adequate
than the mesoscopic one to describe systems with short-range interactions, where each cell
interacts only with a limited number of close neighbors. These two types of limits - kinetic limits
and localization limits - have attracted much attention in recent years, we refer to [21, 9, 31] for
recent monographs. In this article, we intend to go one step further by considering a population
of cells growing and reproducing by fission, with the case of bacterial microcolony morphogenesis
in mind [16]. The difficulties are twofold: first, growth and division make the system non-
conservative, since both the number of individuals and their total volume or mass change with
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Lions UMR7598, F-75005 Paris. Email : diane.a.peurichard@inria.fr

1



time; second, the characteristic trait is a continuous variable, unlike the multispecies cases cited
above, leading to a lack of compactness.

Let us consider a stochastic numberNt of spherical individuals (particles/cells) characterized

by their center of mass (Xi)1≤i≤Nt ∈ RdNt
and radius (Ri)1≤i≤Nt ∈ [0, R]Nt . The dynamics of

the particle system is described by the following stochastic differential equation system:

dXi = −
λ

N

Nt∑

j=1

∇xK(Ri, Rj , Xi −Xj)dt+
√
2DdBt,i, (1)

dRi = g(Ri)dt, (2)

where K is the interaction potential, Bt,i are independent Brownian motions, D ≥ 0 is the
diffusion coefficient and g(R) is the growth rate of a particle of size R. In addition, a particle
of size r divides into two daughter cells of size 2−1/dr (so that the total size is conserved upon
division) with an instantaneous probability rate β(r). Upon division, the two daughter cells are

positioned according to X±α2− 1
d r×P (2πθ), for some parameter 0 ≤ α < 1, where θ ∈ [0, 1]d−1

and P (2πθ) defines the spherical coordinates, which are either uniformly randomly chosen in
[0, 1]d−1 or according to a probability law κ(θ)1. This system is a generalisation of the classical
and widely studied system of interacting particles of homogeneous and constant size [28, 30, 9].
Recently, some works have considered the heterogeneity of a particle population by considering
several species interacting through potentials Ki,j for i and j two populations [10], 1 ≤ i, j ≤ K.
Here we go a step further by considering heterogeneity as given by a continuous trait (here the
size of the particle). To our knowledge, this has not yet been considered in the literature.

In the microscopic model (1)-(2) the interaction kernel is scaled by a constant N which
represents the order of magnitude of the total number of particles Nt - for instance, in the
numerical study, we assume a deterministic initial number of particles N0 and take N = N0.
Heuristically, this gives a total interaction strength of order one when N tends to infinity. Let
us therefore consider the point measure

µNt (dr, dx) = N−1

⟨NµN
t ,1⟩∑

i=1

δ(ri(t),xi(t))(dr, dx), (3)

where the sum ranges from 1 to Nt := N⟨µNt ,1⟩, which is finite if the initial number of cells
N⟨µN0 ,1⟩ at time 0 is finite. At the limit N → +∞, if µN0 → µ∞

0 in distribution, we prove that
the measure µNt converges in law toward µ∞

t which is a solution in a weak sense of the equation





∂
∂tµ

∞
t + ∂

∂r (g(r)µ
∞
t )− λ∇x · (µ∞

t ∇xUK [µ∞
t ]) + β(r)µ∞

t −D∆xµ
∞
t

=

∫

[0,1]d−1

21+
1
d β(2

1
d r)κ(θ)µ∞

t (2
1
d r, x± αrP (2πθ))dθ,

µ∞
t=0 = µ∞

0 , g(0)µ∞
t (0, x) = 0,

(4)

where

UK [µ](r, x) =

∫

R+×Rd

K(r, r′, x− x′)µ(dr′,dx′). (5)

The assumptions required and the exact weak convergence result are detailed in Section 2 and
Theorem 2. The proof follows the strategy developed in [19, 33] for nonconservative systems of
particles. The case of conservative size-homogeneous systems, i.e. when we have neither growth
nor division or size structure, has been studied in [28, 30]. In the case without diffusion, we can

1For d = 2, we have P (2πθ) = (cos(2πθ), sin(2πθ)), and for d = 3 we have P (2πθ) =
(sin(2πθ1) sin(2πθ2), sin(2πθ1) cos(2πθ2), cos(2πθ1)).
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also note that the point measure µNt is an exact weak solution of (4) (with D = g = β = 0),
see [21, Sec. 1.5].

Equation (4) represents the particle system on a mesoscopic scale. It is a mixture of two well-
known equations: the aggregation-diffusion equation [3, 6, 14, 20] and the growth-fragmentation
equation [29, 17]. Since it is not the main focus of this paper, the study of the properties of
the new model equation (4) is limited to the observations made thanks to numerical simula-
tions. However, it is important to note that this new equation is likely to reproduce interesting
phenomena (sorting, blow-up, etc) and therefore it would be interesting to study its long-time
behavior in future work.

In the applications we have in mind, another scaling is important, namely the range of
interaction between individuals, which is assumed to be very small compared to the size of
the domain, and of the same order of magnitude as the average size of the cells. The aim is
then to derive what is called a macroscopic or a localization limit, where the interaction kernel
converges toward a Dirac delta function in space, so that the interaction becomes local. To
consider this limit, we first write the equation in dimensionless variables, and then consider a
scaling such that the limit system is given by

∂tu0 + ∂r(g(r)u0)−∇x ·
(
u0(t, r, x)∇x

∫ R

0

Γ(r, r′)u0(t, r
′, x)dr′

)
−D∆xu0

= 21+
1
d β(2

1
d r)u0(t, 2

1
d r, x)− β(r)u0(t, r, x), (6)

where u0 is the density of particles and Γ(r, s) is the integral over space of the interaction
potential K(x, r, s) (we have taken λ = 1 for simplicity, see Section 3.2 for details about the
scaling). The full localization limit has been well studied in the case of equal-sized particles,
without growth or fragmentation: the articles already cited [28, 30] do not carry out only the
micro-meso but also the localization limits, and then the vanishing diffusion limit in [30]. The
article [25] also considers the case of a single species without diffusion, and [7, 8] developed a
gradient-flow approach. These latter studies consider the localization limits in the context of
developing particle methods for approximating aggregation-diffusion equations. Some recent
articles have extended the localization limit to the case of a finite number of interacting species,
see [11, 24] for cases with diffusion, and [5, 15] without, or still [12] for the inviscid limit in the
case of two species.

To our knowledge, the question that interests us, namely the localization limit in the case of
a ’continuous’ heterogeneity, modeled by the addition of a size variable, has not been addressed
yet. However this limit raises a number of difficult questions. First, growth and division render
the system non-conservative, preventing the use of energy estimates. Second, the size of the
particles, being a continuous trait, leads to new difficulties in obtaining compactness estimates.
For these reasons, we derive the rigorous localization limit in the case without growth and
division, thus eliminating the first issue and focusing on the second. The general case is formally
derived and illustrated with numerical simulations.

Assuming no growth (g = 0) and no fragmentation (β = 0), we denote nε the density of
particles, and prove the weak convergence of the sequence nε to n0 solution to the aggregation
equation (29) in Theorem 3. Similar to the method used in various studies [11, 23, 24, 25], we
use entropy dissipations to recover compactness estimates. As is often done [25, 15, 7, 8], we
make the hypothesis that the kernel function is an auto-convolution, i.e. there exists ρ such
that, with ρ̌(r, x) := ρ(r,−x), we have

K(r, r′, x) = [ρ̌(r, ·) ∗x ρ(r′, ·)](x) =
∫

Rd

ρ̌(r, y)ρ(r′, x− y)dy. (7)

Without size dependence, this hypothesis can be found throughout the literature [28, 25, 8, 15]
since it allows to recover classical a priori estimates from the entropies

∫
n lnn and

∫
nK ∗x n

(these classical entropies are generalised to our system), sometimes called Shannon-type and
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Rao-type entropies, respectively [24]. This hypothesis, together with the diffusion term D > 0,
provides us with estimates that lead to a weak convergence of nε. Moreover, considering that
ρ ∈ H1([0, R];L1(Rd)) allows us to recover the compactness for UKε [nε], which allows us to
conclude. Note also that both the micro-meso and meso-macro limits consider a smoothness
hypothesis on the interaction potential, which allows us to avoid blow-up - much progress has
been made recently to derive limits for non-smooth interaction kernels [31].

Remark 1. For example, the hypothesis (7) on the interaction potential is satisfied by the
gaussian kernel

K(r, r′, x) =
γ(r)γ(r′)

(2π(r2 + r′2))d/2
exp

(
− |x|2

2(r2 + r′2)

)
,

with γ ∈ H1(R+) ∩ L∞(R+). We have

K(r, r′, x) = γ(r)γ(r′)
∫

Rd

e−
|x−y|2

2r2

(2πr2)d/2
e−

|y|2
2r′2

(2πr′2)d/2
dy = [ρ̌(r, ·) ∗x ρ(r′, ·)](x),

with ρ(r, x) = ρ̌(r, x) = γ(r)
(2πr2)d/2

exp
(
− |x|2

2r2

)
. This example is implemented numerically in

Section 4. We could also generalize it to the convolution of two Gaussians with variance defined
as a function of r, replacing r2 by some σ2(r).

Finally, since the localization limit of the general mesoscopic model (with growth and frag-
mentation) is only formally derived, we provide a thorough numerical study to explore the
link between the three modeling scales. The microscopic model is numerically discretized with
classical methods (explicit Euler scheme), and the meso- and macro-models are discretized with
finite-volume schemes with upwind fluxes [2] with special attention to the fragmentation terms.
Using appropriate observables, we perform a quantitative comparison between the three mod-
els, focusing on the role of the number of particles in the microscopic model. We study three
different settings (with growth and without fragmentation, with fragmentation and without
growth, and with both), which allow us to study precisely the role of each phenomenon at the
different scales. In all cases, we obtain a good qualitative agreement between the three models,
both for the spatial distribution and the size distribution at least in early times, and we show
quantitatively that the micro-meso agreement improves as the number of particles N increases
in each case. However, separating the three cases allows us to better understand the role of
each phenomenon in the convergence of one scale to the other. Indeed, we first observe that
the relative L1-error between the micro and meso densities increases with time in the case with
growth alone while it remains constant in the case of fragmentation alone, suggesting that the
fragmentation process leads to a longer agreement between the micro and meso models com-
pared to the growth process alone. This highlights the key role of repulsive interactions in the
agreement between the micro and meso models. In fact, the mesoscopic model is obtained in the
limit of an infinite number of particles, and therefore of interactions. By creating particles, the
fragmentation process keeps the number of interactions large, whereas with the growth process
alone, the number of interactions only decreases with time as the particles move further apart
due to repulsion. These results are reminiscent of several works in the literature showing that
when considering micro to meso limits in interacting particle systems, low density regimes are
better captured by a large number of particles [27, 13].

Another major observation is the good quantitative agreement between the meso and macro
models even when the localization scaling parameter is not small. In all cases, the meso and
macro models remain close and the relative L1-error between the two densities even decreases
with time. This enables to highlight the fact that we are in a regime where linear diffusion
dominates the non-local effects due to the repulsive interactions. In the appendix, we document
the role of nonlinear diffusion by considering smaller linear diffusion coefficients.

Finally, we show that when both phenomena (growth and fragmentation) are combined, the
meso and macro models produce mass faster than the microscopic dynamics and as a result, the
agreement between the micro and meso and macro models is observed only for early times of the
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simulations. We interpret this again by the fact that the mesoscopic and macroscopic models
are obtained in the limit of infinite number of particles while the microscopic simulations are
done with a finite number of particles, for which errors in the initial condition are amplified
by the growth-fragmentation process. Similar observations have been made for systems with
short-range repulsion and cell division in [27].

The organisation of this paper is schematised in Fig.1. In Section 2, we introduce the
stochastic microscopic system (Section 2.1) and rigorously derive its mean-field limit in the
general case (Section 2.3), including growth, division and interaction (Theorem 2). In Section 3,
Theorem 3, we perform a dimensional analysis (Section 3.1) and introduce the scaling that leads
to the new mesoscopic model (Section 3.2). We then establish the localization limit in the case
without growth and division (Section 3.3) - this could also be thought of as a local-in-time
limit, for systems with slow growth and reproduction and fast interaction. Finally in Section 4,
we carry out a thorough numerical study in order to compare the models and their sensitivity
with respect to scaling parameters.
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Figure 1: Schematic representation of our main models and results

2 A stochastic system of particles with growth, division
and interaction

2.1 Stochastic model

As described in the introduction, we study a large population with a random number of indi-
viduals Nt, where Nt is of the order of a constant N ≥ 1. The individuals evolve according to
the spatial interaction and diffusion described by Equation (1), they grow according to Equa-
tion (2), and divide into two equal-sized daughters, as explained in the introduction, with a
rate β(r) and a spatial distribution of the daughters given by the law κ(θ). At time t, the size-
and space-structured cell population is described by the state (here the size and position) of
the living cells, which we denote by

((r1(t), x1(t)) , (r2(t), x2(t)) , . . . , (ri(t), xi(t)) , . . .) .
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We encode this information into the rescaled point measure µNt defined by Equation (3). Abus-
ing the notation slightly, we define the evaluation maps, for i ∈ N∗,

Ei(t) : µ
N
t 7→ (ri(µ

N
t ), xi(µ

N
t )) = (ri, xi)

( ∞∑

j=1

δrj(t),xj(t)(drdx)
)
= (ri(t), xi(t)).

We denote the state space of sizes and positions by X = (0,∞)×Rd, and the space of finite
point measures with values in X by M =M(X ) . The measure (NµNt )t≥0 can be viewed as
a random variable taking value in T ⊂ D([0,∞),M), where D([0,∞),M) denotes the set of
càdlàg functions from [0,∞) with values in the set of non-negative measures on the (closure)
of the state space of size and position. This set T is defined as piecewise continuous finite
point measures: µ ∈ T if µt is a finite point measure and there exists 0 = t0 < t1 < . . . with
limn tn = ∞ such that µt is continuous for every t ∈ [ti, ti+1). In particular, this allows us to
uniquely define µt−.

We associate each living cell i with a Brownian motion Bi = (Bt
i)t≥0 and assume that they

are independent.

Construction of the model

We have a complete description of µN = (µNt )t≥0 by means of a family of independent Poisson
random measures (Mi(ds,dθ,du))i≥1 with intensities ds⊗dθ⊗du on R+× [0, 1]d−1×R+, and
independent Brownian motions ((Bit)t≥0)i≥1, all defined simultaneously on a sufficiently rich
filtered probability space (Ω,F , (Ft)t≥0,P).

It is given by the following stochastic differential equation, written in a weak sense on test
functions φ(t, r, x) :

⟨µNt , φ(t, ·, ·)⟩ = ⟨µN0 , φ(0, ·, ·)⟩

+

t∫

0

N−1

⟨NµN
s−,1⟩∑

i=1

∫

[0,1]d−1

∫ ∞

0

(
2φ

(
s, 2−

1
d ri(µ

N
s−), xi(µ

N
s−)± α2−

1
d ri(µ

N
s−)P (2πθ)

)

−φ
(
s, ri(µ

N
s−), xi(µ

N
s−)

))

×1l{u≤β(ri(µs−))κ(θ)}Mi(ds,dθ,du)+DN
−1

∫ t
0

⟨µN
s−,1⟩∑
i=1

∇xφ(ri(µNs ), xi(µ
N
s ))dBis

+
t∫
0

〈
∂
∂sφ(s, ·, ·) + g(r) ∂∂rφ(s, ·, ·)−λ∇xUK [µNs− ] · ∇xφ(s, ·, ·)+D∆xφ(s, ·, ·), µNs

〉
ds,

(8)

where

UK [µ](r, x) =

∫

X
K(r, r′, x− x′)µ(dr′,dx′). (9)

In (8), we have denoted
2f(y ± x) := f(y + x) + f(y − x) (10)

2.2 Existence and uniqueness of (8)

This part is classical and follows closely [19] and [33]. However, we need to be careful in some
way in order to account for the nonlinear (and stochastic) evolution of the system between
jumps.
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Assumption 1. We have

• (Division rate) β : (0,∞)→ R+ is bounded.

• (Offspring dissemination) κ : [0, 1]d−1 → R+ is a bounded probability density function.

• (Growth rate) g : R+ → R+ is Lipschitz continuous.

• (Interaction) ∇xK : R+ × R+ × Rd is continuous and x 7→ ∇xK(x, r, r′) is Lipschitz
continuous, locally uniformly in r, r′.

• (Diffusion) Let D ≥ 0 be the (possibly zero) diffusion coefficient.

Theorem 1. Work under Assumption 1. If the F0-measurable finite point random measure
NµN0 is such that P(∃i ̸= j, xi(µ

N
0 ) = xj(µ

N
0 )) = 0, and

E
[
⟨NµN0 ,1⟩p

]
<∞, for some p ≥ 1,

then there exists a unique process (µNt )t≥0 solution to (8). Moreover, for every t > 0, we have

E
[
sup

0≤s≤t
⟨NµNs ,1⟩p

]
<∞. (11)

Proof of Theorem 1. Let us first show (11). By (8) and neglecting negative jumps, we have

sup
s≤min(t,τk)

⟨NµNs ,1⟩ ≤ ⟨NµN0 ,1⟩+ 2

∫ min(t,τk)

0

⟨NµN
s−,1⟩∑

i=1

Mi(ds, [0, 1]
d−1 × [0, ∥κ∥∞∥β∥∞]),

where τk = inf{s ≥ 0, ⟨µs,1⟩ ≥ k} is a localizing sequence. Taking p-power and expectation,
we obtain

E
[

sup
s≤min(t,τk)

⟨NµNs ,1⟩p
]

≤ 2p−1
(
E[⟨NµN0 ,1⟩p] + 2p∥κβ∥p∞E

[( ∫ min(t,τk)

0

⟨Nµs−N ,1⟩ds
)p])

≤ 2p−1
(
E[⟨NµN0 ,1⟩p] + 2p∥κβ∥p∞tp−1

∫ t

0

E
[

sup
u≤min(s,τk)

⟨NµNu ,1⟩p
]
ds

)
.

By Grönwall’s lemma, we conclude that for every t ≥ 0, there exists Ct > 0 independent of k
such that

E
[

sup
s≤min(t,τk)

⟨NµNs ,1⟩p] ≤ Ct. (12)

As a consequence supk τk =∞ almost surely: by contradiction, assume that for some t0 <∞,
we have P(supk τk ≤ t0) ≥ εt0 > 0. Then, from

sup
t∈[0,min(t0,τk)]

⟨NµNs ,1⟩p ≥ kp1l{τk≤t0}

valid for every k ≥ 0, we infer E[sups∈[0,min(t0,τk)]
⟨NµNs ,1⟩p] ≥ kpεt0 for every k ≥ 0, which

contradicts (12) for t = t0. We then let k →∞ in (12) and obtain (11) by Fatou’s lemma.

We now prove the existence of the process (µNt )t≥0. Let T0 = 0. Assume that for some
s ≥ 0, ⟨µs,1⟩ is finite (this is at least ensured for s = 0 since ⟨µ0,1⟩ is finite almost-surely).
Then the jump rate of the population at time s is bounded by

⟨NµNs ,1⟩∥κβ∥∞.
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It is therefore possible to define almost-surely the increasing sequence of jump times Tk of
NµNs and the process NµNs can be constructed recursively by a simulation algorithm using
acceptance-rejection using the Poisson measures and independent Brownian motions at hand
for all times s < T∞ = supk Tk.

We only need to show that the evolution of NµNs (dr, dx) is well defined on [Tk, Tk+1) for
k ≥ 0. We need some notation. Since the division mechanism is binary, we have exactly
(k + 1)⟨NµN0 ,1⟩ = ⟨NµNTk

,1⟩ particles alive in the time interval [Tk, Tk+1).
Consider now the ordinary differential equation

d
dtR(t, t0, r) = g(R(t, t0, r)), R(t0, t0, r) = r, (13)

for arbitrary t, t0, r. Since g is Lipschitz continuous by Assumption 1, the map (t, r) 7→
R(t, t0, r) is well defined. For s ∈ [Tk, Tk+1) and i = 1, . . . , ⟨NµNTk

,1⟩ = (k + 1)⟨NµN0 ,1⟩, we
then let

ri(µ
N
s ) =





R(s, Tk, ri(µ
N
Tk
)) if b(i) < Tk,

R(s, Tk, 2
− 1

d ri−(µ
N
Tk−)) if b(i) = Tk,

where b(i) denotes the time of birth of the particle i (in particular, it corresponds to one of
the jump times Tj , j = 1, . . . , k). Next, conditional on µNTk

and Tk, we construct a family of

random processes (Xi
s)Tk≤s<Tk+1

for i = 1, . . . , ⟨NµNTk
,1⟩ solution to the system of stochastic

differential equations

Xi
s = xi(µTk

)−λ
∫ s

Tk

Tk∑

j=1

∇xK(ri(µu), rj(µu), X
i
u −Xj

u)du+
√
2DBis−Tk

(14)

for Tk ≤ s < Tk+1 and independent Brownian motions (Bit)t≥0. The Lipschitz property of ∇xK
implies that the Xi are well defined and unique. Then, for s ∈ [Tk, Tk+1), we let

xi(µ
N
s ) =





Xi
s if b(i) < Tk or s > Tk,

Xi−
s

+uiα2
− 1

d ri−(µTk−)P (2πθ) if b(i) = Tk and s = Tk,

where i− denotes the index of the mother cell, and where uj ∈ {±1} with ui + ui′ = 0 for the
two sister particles i and i′ that are such that b(i) = b(i′) = Tk and θ is a random variable with
distribution κ (and independent of the other stochastic components).

It remains to show that T∞ = ∞ almost surely. Assume on the contrary that for some
T < ∞, we have P(T∞ ≤ T ) > 0. We cannot have {T∞ ≤ T} ⊂ {limk⟨µTk

,1⟩ = ∞}, since
this would imply {T∞ ≤ T} ⊂ {supk τk < T} and we have a contradiction with supk τk = ∞
almost-surely. Hence there existsM > 0 and A ⊂ {T∞ ≤ T} with P(A) > 0 such that for every
k ≥ 1, we have ⟨µTk

,1⟩ < M on A. Then we can always assume that the jump times Tk are
obtained as a subsequence of a Poisson counting process with intensity M∥κβ∥∞, for which
supk Tk =∞, a new contradiction. The conclusion follows.

2.3 Large population limit

The convergence result

We need to make some more stringent assumptions.

Assumption 2. We have:

(i) (Division rate) β : (0,∞)→ R+ is differentiable and ∥β′∥∞ <∞.
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(ii) (Offspring dissemination) κ : [0, 1]d−1 → R+ is a bounded probability density function and
κ is symmetrical with respect to the sphere, i.e. κ(θ1 +

1
2 , θ2, · · · , θd−1) = κ(θ).

(iii) (Growth rate) g : R+ → R+ is differentiable.

(iv) (Interaction) ∇xK : Rd × R+ × R+ → R+ is bounded and satisfies

∥∇xK∥∞ + ∥D2
xxK∥∞ + ∥∂r′∇xK∥∞ + ∥∆x(∇xK)∥∞ ≤ CK <∞,

where the supremum is taken over (r, r′, x) ∈ R+ × R+ × Rd.

Let T > 0 be a fixed and finite time horizon. We let MF =MF (X ) denote the space of
finite measures on X of positions and sizes.

We have the following assumption on the initial condition:

Assumption 3. The initial condition µN0 is a F0-measurable random positive measure taking
values inMF that satisfies, for a given constant r0 > 0,

(v) P(∃i ̸= j, xi(µ
N
0 ) = xj(µ

N
0 )) = 0, P(∀i, ri(µN0 ) ≤ r0) = 1,

(vi) supN≥1 E
[
⟨µN0 ,1⟩3 + ⟨µN0 , |x|+ r⟩

]
<∞,

(vii) µN0 → µ∞
0 ∈ MF (deterministic limit) in distribution - for test functions which are

continuous and bounded as N →∞.

Theorem 2. Work under Assumptions 2 and 3. Then for all T > 0, the sequence µN =
(µNt )0≤t≤T solution of (8) converges in law in D([0, T ],MF ) to a deterministic limit µ∞ =
(µ∞
t )0≤t≤T ∈ C([0, T ],MF ) as N →∞.

It is the unique measure-valued function that satisfies sup0≤t≤T ⟨µ∞
t ,1⟩ < ∞ and, using the

notation (10), that is solution of (4) in a weak sense, i.e. it satisfies

⟨µ∞
t , φt⟩ = ⟨µ∞

0 , φ0⟩

+

∫ t

0

∫

X×[0,1]

(
2φs

(
2−

1
d r, x± α2− 1

d rP (2πθ)
)

− φs
(
r, x

))
β(r)κ(θ)µ∞

s (dr, dx)dθds

+

∫ t

0

⟨∂sφs + g(r)∂rφs−λ∇xUK [µ∞
s ] · ∇xφs+D∆xφs, µ

∞
s

〉
ds (15)

for any bounded test functions (t, r, x) ∈ [0, T ] × X 7→ φt(r, x) that are continuously differ-
entiable with bounded derivative in the time and r variables and that are twice continuously
differentiable in the x variable with bounded second order derivatives.

Note that after integrating by parts (15), µ∞ is solution of the equation (4) written in a
strong sense but to be understood in the weak sense of (15).

Remark 2. Assumptions 2 (iii) and 3 (v) imply that for every i, the size of the cell ri(µ
N
t ) ≤

R(T, 0, r0) <∞ at all times 0 ≤ t ≤ T . Therefore we may assume that X = (0, R0]× Rd for
a given R0 > 0. In the proof, we only need this assumption in Step 5.

Proof. We follow the strategy of Theorem 5.3 in [19], see also Section 3 in [33].

Step 1. Uniqueness.
We use a specific form of test functions, namely time-independent test functions ψ : X →

R continuously differentiable in r and twice continuously differentiable in x. For such test

9



functions, (15) becomes

⟨µ∞
t , ψ⟩ = ⟨µ∞

0 , ψ⟩

+

∫ t

0

∫

X×[0,1]d−1

(
2ψ

(
2−

1
d r, x±α2− 1

d rP (2πθ)
)
− ψ

(
r, x

))
β(r)κ(θ)µ∞

s (dr, dx)dθds

+

∫ t

0

⟨g(r)∂rψ−λ∇xUK [µ∞
s ] · ∇xψ+D∆xψ, µ

∞
s

〉
ds. (16)

Let µ, ν be two solutions of (15) satisfying

sup
0≤t≤T

⟨µt + νt,1⟩ <∞.

We equipMF with the H
−(1,2)
∞ norm

∥µ∥
H

−(1,2)
∞

= sup
∥ψ∥C1,2

∞
≤1

∫

X
ψ(r, x)µ(dr, dx),

where we define
∥ψ∥C2,1

∞
= ∥ψ∥∞ + ∥∇xψ∥∞ + ∥∂rψ∥∞ + ∥∆xψ∥∞. (17)

Our aim is to obtain an inequality of the type

∥µt − νt∥H−(1,2)
∞

≤ C(T )∥µ0 − ν0∥H−(1,2)
∞

, (18)

which will imply uniqueness. To do so, let first φt(r, x) be a smooth function on [0, T ]×X such
that

sup
t∈[0,T ]

∥φt∥C1,2
∞

<∞.

We have, for fixed t ∈ [0, T ]:
⟨µt − νt, φt⟩ = I + II + III, (19)

with

I =

∫ t

0

∫

X×[0,1]d−1

(
2φs

(
2−

1
d r

)
, x±2− 1

dαrP (2πθ)
)

− φs(r, x)
)
β(r)κ(θ)(µs − νs)(dr, dx)dθds,

II =

∫ t

0

⟨ ∂∂sφs + g(r) ∂∂rφs−λ∇xUK [µs] · ∇xφs +D∆xφs, µs − νs⟩ds,

III = −λ
∫ t

0

⟨(∇xUK [µs]−∇xUK [νs]) · ∇xφs, νs⟩ds,

where we used the decomposition

∫ t

0

(〈
∇xUK [µs] · ∇xφs, µs⟩ − ∇xUK [νs] · ∇xφs, νs

〉)
ds

=

∫ t

0

⟨∇xUK [µs] · ∇xφs, µs − νs⟩ds+
∫ t

0

⟨(∇xUK [µs]−∇xUK [νs]) · ∇xφs, νs⟩ds.

In order to get rid of the term II, we use the following lemma.

Lemma 1. Consider the backward transport-diffusion equation (written in strong form) with
terminal condition




∂sus(r, x) + g(r)∂rus(r, x)− λ∇xUK [µs]·∇xus(r, x) +D∆xus(r, x) = 0, 0 ≤ s ≤ t

ut(r, x) = ψ(r, x),
(20)
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for ψ ∈ C1,2∞ . Under Assumption 2, for every µs ∈ C([0, T ],MF ), it admits a classical solution
u that satisfies:

sup
s∈[0,T ]

∥us∥C1,2
∞
≤ C∥ψ∥C1,2

∞
,

where C depends on g, (∇xUK [µs])0≤s≤T and D.

The proof is immediate, since the change of variable s′ = t− s leads to the standard linear
drift-diffusion equation, with a pure backward transport in the r variable.

Let us now take ψ ∈ C1,2∞ such that ∥ψ∥C1,2
∞
≤ 1. We choose φ solution to (20) as the test

function in (15), so that we now have II = 0 in (19).

For the term I, we use that the function

Hφ(s, x, r) =

∫

[0,1]d−1

(
2φ

(
s, 2−

1
d r, x±2− 1

dαrP (2πθ)
)
− φ(s, x, r)

)
β(r)κ(θ)dθ

satisfies

sup
s∈[0,T ]

∥Hφ(s, ·)∥∞ ≤ C∥φ∥∞∥β∥∞,

sup
s∈[0,T ]

∥∂rHφ(s, ·)∥∞ ≤ C (∥∂rφ∥∞∥β∥∞ + ∥φ∥∞∥β′∥∞) ,

sup
s∈[0,T ]

∥∇xHφ(s, ·)∥∞ ≤ C∥∇xφ∥∞∥β∥∞,

sup
s∈[0,T ]

∥∆xHφ(s, ·)∥∞ ≤ C∥∆xφ∥∞∥β∥∞,

where C > 0 only depends on T and d. Therefore, we have

∣∣I
∣∣ ≤ C ′

∫ t

0

∥µs − νs∥H−(1,2)
∞

ds

for some C ′ = C ′′(d, T, ∥β∥∞, ∥β′∥∞) sups∈[0,t] ∥φ(s, ·)∥C1,2
∞
≤ C ′′′∥ψ∥C1,2

∞
<∞.

To bound the term III, we first use Fubini’s theorem,

⟨(∇xUK [µs]−∇xUK [νs]) · ∇xφs, νs⟩

= −
∫

X

(∫

X
∇xK(r, r′, x− x′) (µs(dr′,dx′)− νs(dr′,dx′))

)
· ∇xφs(r, x)νs(dr, dx)

=
〈
−
∫

X
∇xK(r, ·, x− ·)∇x φs(r, x)νs(dr, dx), µs − νs

〉
.

Moreover, the function

(r′, x′) 7→ H̃φ(s, r
′, x′) = −

∫

X
∇xK(r, r′, x− x′)∇x φs(r, x)νs(dr, dx)

satisfies

sup
s∈[0,t]

∥H̃φ(s, ·)∥∞ ≤ ∥∇xK∥∞∥∇x φ∥∞ sup
s∈[0,T ]

⟨νs,1⟩

sup
s∈[0,t]

∥∂r′H̃φ(s, ·)∥∞ ≤ ∥∂r′∇xK∥∞∥∇x φ∥∞ sup
s∈[0,T ]

⟨νs,1⟩

sup
s∈[0,t]

∥∇x′H̃φ(s, ·)∥∞ ≤ ∥D2
xxK∥∞∥∇x φ∥∞ sup

s∈[0,T ]

⟨νs,1⟩,

sup
s∈[0,t]

∥∆xH̃φ(s, ·)∥∞ ≤ ∥∆x(∇xK)∥∞∥∇x φ∥∞ sup
s∈[0,T ]

⟨νs,1⟩,
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therefore
∣∣III

∣∣ ≤ C
∫ t

0

∥µs − νs∥H−(1,2)
∞

ds

with C = Cst(∇xK) sups∈[0,t] ∥φ∥C1,2
∞

sups∈[0,T ]⟨νs,1⟩. Putting I, II = 0 and III together we
obtain

⟨µt − νt, φ(t, ·)⟩ = ⟨µt − νt, ψ⟩ ≤ C
∫ t

0

∥ξs − ζs∥H−(1,2)
∞

ds.

where C is a constant depending on T, d, K, ∥β∥∞, ∥β′∥∞ and ∥ψ∥C1,2
∞
. Taking the supremum

over |ψ|C1,2
∞
≤ 1 we obtain

∥µt − νt∥H−(1,2)
∞

≤ C
∫ t

0

∥µs − νs∥H−(1,2)
∞

ds

for every 0 ≤ t ≤ T . We obtain (18) by Grönwall’s lemma, and uniqueness follows.

Step 2. Moment estimate.
We next establish the moment estimate:

sup
N≥1

EN [ sup
0≤t≤T

⟨µNt ,1⟩3] <∞. (21)

Indeed, we can reproduce line by line the beginning of the proof of Proposition 1 with p = 3
and in the estimate

sup
s≤min(t,τk)

⟨µNs ,1⟩p

≤ 2p−1
(
⟨µN0 ,1⟩p +

(
2N−1

∫ min(t,τk)

0

∑

i≤⟨NµN
s−,1⟩

Mi(ds, [0, 1]
d−1 × [0, ∥κ∥∞∥β∥∞])

)p)

to obtain
sup
N≥1

E
[

sup
0≤t≤T

⟨µNt ,1⟩3
]
≤ CT sup

N≥1
E
[
⟨µN0 ,1⟩3

]

and we obtain (21) by Assumption 3 (vi).

Step 3. Tightness.
We now show that the sequence Law(µN ) in P(D([0, T ],MF )) of laws of µ

N is tight, when
MF is endowed with the vague topology (i.e. for test functions that are continuous with
compact support). The extension to the weak topology (i.e. for test functions that are
continuous and bounded) is done in Step 6 thanks to a classical argument. Again, by a classical
result (see e.g. around Proposition 2 in [32]), the sequence Law(µN ) is tight in P(D([0, T ],MF ))
if, for every twice continuously differentiable (bounded) function ψ on X , the sequence of the
laws of ⟨µN , ψ⟩ is tight in D([0, T ],X ).

Let us now consider a test function of the form (s, r, x) 7→ φs(r, x) which is smooth (dif-
ferentiable in s, in r and twice differentiable in x) and that we can consider for fixed t as a
function defined on X . Setting, for 0 ≤ s ≤ T ,

Hφ(s, r, x, θ) = 2φs
(
2−

1
d ri(µ

N
s−), xi(µ

N
s−)± 2−

1
dαri(µ

N
s−)P (2πθ)

)
− φs

(
ri(µ

N
s−), xi(µ

N
s−)

)
(22)

we have a semimartingale decomposition ⟨µNt , φt⟩ =MN
t (φ) + V Nt (φ), where MN

t (φ) equals

N−1

∫ t

0

∑

i≤⟨NµN
s−,1⟩

∫

[0,1]d−1×R+

Hφ(s, ri(µ
N
s−), xi(µ

N
s−), θ)1l{u≤β(ri(µN

s−))κ(θ)}Mi(ds,dθ,du)

−
∫ t

0

∫

[0,1]d−1

⟨Hφ(s, ·, θ)β, µNs ⟩κ(θ)dθds+ D
N

∫ t

0

⟨NµN
s ,1⟩∑

i=1

∇xφs(ri(µNs ), xi(µ
N
s ))dBis.
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It is a squared integrable martingale with predictable bracket

⟨MN
· (φ)⟩t = N−1

∫ t

0

∫

[0,1]d−1

⟨Hφ(s, ·, θ)2β, µNs ⟩κ(θ)dθds+DN−1

∫ t

0

⟨(∇xφ(s, ·))2, µNs ⟩ds,

and V Nt (φ) = ⟨µNt , φ(t, ·)⟩ −MN
t (φ) has bounded variation. The tightness of the sequence of

the laws of µN is then a consequence of

sup
N≥1

E[ sup
0≤t≤T

⟨µNt , φ(t, ·)⟩] <∞, (23)

sup
N≥1,S,S′

E[|MN
S′ (φ)−MN

S (φ)|] ≤ Cδ1/2, (24)

sup
N≥1,S,S′

E[|V NS′ (φ)− V NS (φ)|] ≤ Cδ, (25)

for some C > 0 uniformly over stopping times 0 ≤ S ≤ S′ ≤ S + δ ≤ T as follows from Aldous’
[1] and Rebolledo’s [22] criteria. Since φ is bounded, (23) follows from (21). Next

E[|MN
S′ (φ)−MN

S (φ)|] ≤ E[⟨MN (φ)⟩S+δ − ⟨MN (φ)⟩S ]1/2

≤ N−1/2
(
3∥φ∥∞∥βκ∥1/2∞ +D∥∇xφ∥∞

)
E
[ ∫ S+δ

S

⟨µNs ,1⟩ds
]1/2

and (24) follows by (21). Finally, V NS′ − V NS is bounded by

∫ S+δ

S

(∫

[0,1]d−1

⟨|Hφ(·, θ)|β, µNs ⟩κ(θ)dθ + ⟨∂sφ+ g(r)|∂rφ|+λ|∇xUK [µNs ] · ∇xφ|+D|∆xφ|, µNs
〉)

ds

≤ δ
(
3∥φ∥∞∥βκ∥∞ + ∥∇xK∥∞∥∇xφ∥∞ sup

0≤t≤T
⟨µNt ,1⟩+D∥∆xφ∥∞

)
sup

0≤t≤T
⟨µNt ,1⟩

where we used |∇xUK [µNs ](r, x)| ≤ ∥∇xK∥∞⟨µNs ,1⟩. Thus (25) follows by (21) likewise.

Step 4. From ∣∣⟨µNt , φt⟩ − ⟨µNt−, φt⟩
∣∣ ≤ 3∥φ∥∞N−1,

almost-surely, we infer that any process µ∞ such that Law(µ∞) is a limit point of Law(µN ) is
almost-surely continuous, in a strong sense, i.e. in total variation say.

Step 5. We now show that almost-surely, any µ∞ of Step 4 is the unique solution of (15). First,
sup0≤t≤T ⟨µ∞

t ,1⟩ <∞ almost surely by (21). For ν ∈ C([0, T ],MF ), introduce

Ψt(ν) = ⟨νt, φt⟩ − ⟨ν0, φ0⟩ −
∫ t

0

∫

X×[0,1]

Hφ(s, x, r, θ)β(r)κ(θ)νs(dx, dr)dθds

−
∫ t

0

⟨∂sφ+ g(r)∂rφ−λ∇xUK [νs] · ∇xφ+D∆xφ, νs
〉
ds,

where Hφ is defined in (22). For every N ≥ 1, we have

MN
t (φ) = Ψt(µ

N ). (26)

On the one hand,

E[|MN
t (φ)|2] = E[⟨MN

· (φ)⟩t] ≤ N−1
(
(3∥φ∥∞)2∥βκ∥∞ +D2∥∇xφ∥2∞

) ∫ t

0

E[⟨µNs ,1⟩]ds

13



that converges to 0 thanks to (21). On the other hand, since µ∞ is almost surely strongly
continuous and φ is continuous, using moreover Assumption 3 (vi) and (vii), we have that
ν 7→ Ψt(ν) is almost-surely continuous2 at µ∞. Moreover

Ψt(ν) ≤ C(1 + sup
0≤s≤t

⟨νs,1⟩2).

Therefore, using (21) again, the sequence Ψt(µ
N ) is uniformly integrable and we infer E[|Ψt(µN )|]→

E[|Ψt(µ∞)|]. We conclude E[|Ψt(µ∞)|] = 0 by (26) and obtain the result.

Step 6. Let τ > 0 By the preceding results, we have that ⟨µN , 1l|(r,x)|≤τ ⟩ converges in law to
⟨µ∞, 1l|(r,x)|≤τ ⟩. The result holds true replacing 1l|(r,x)|≤τ by 1 up to an error controlled by
supN≥1 µ

N (1l|(r,x)|≥τ ) + µ(1l|(r,x)|≥τ ). Both terms converge to 0 as τ → ∞. This is a conse-

quence of the fact that supN≥1 E
[
supt∈[0,T ]⟨µNt , |x|+r⟩

]
<∞, which is proved in the same way

as (21) thanks to the assumption supN≥1 E
[
⟨µN0 , |x|+ r⟩

]
<∞. (We omit the details.) Hence

⟨µN ,1⟩ to ⟨µ∞,1⟩ in law in D([0, T ],X ). Since the limiting process is continuous, the global
convergence result also holds true when P(D([0, T ],MF ) is equipped with the weak topology,
following the criterion proved in Roelly and Méléard [26].

The proof of Theorem 2 is complete.

3 From the mean-field equation to a localization limit

3.1 Dimensionless equations

We express the problem (4) in dimensionless variables. From now on, we denote by u(t, r, x) the
solution to (4). Let t0 be the unit of time and x0, r0, µ0 = 1

r0xd
0
be the units of space, size, and

distribution function respectively. The scaling of u comes from the fact that it is a probability
distribution on R+ × Rd. We define the dimensionless variables:

x̄ =
x

x0
, r̄ =

r

r0
t̄ =

t

t0
, ū(t̄, r̄, x̄) =

u(t, r, x)

µ0
,

and we introduce the following dimensionless parameters:

λ̄ =
λ

t0
, ḡ = g

t0
r0
, β̄ = t0β, D̄ = D

t0
x20
, K̄(r̄, r̄′, x̄) = K(r, r′, x)

t20
x20
.

We have

∂tu(t, r, x) =
1

t0r0xd0
∂t̄ū(t̄, r̄, x̄), ∂r(gu) =

1

t0r0xd0
∂r̄(ḡū),

and from (9)

∇xUK [u](r, x) =

∫

Rd×R+

∇xK(r, r′, x− x′)u(t, r′, x′)dx′dr′

=

∫

Rd×R+

x20
t20

1

x0
∇x̄K̄(r̄,

r′

r0
, x̄− x′

r0
)

1

r0xd0
ū(t̄,

r′

r0
,
x′

x0
)dx′dr′

=
x0
t20

∫

Rd×R+

∇x̄K̄(r̄, r̄′, x̄− x̄′)ū(t̄, r̄′, x̄′)dx̄′dr̄′

=
x0
t20
∇x̄ŪK̄ [ū](r̄, x̄).

2Here we use the fact that although the mapping x ∈ D([0, T ],X ) 7→ x(t) is not continuous for the Skorokhod
topology, it is continuous at x if x is continuous as a function from [0, T ] to X .
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In this new set of variables, thanks to the appropriate links between the scalings, Equa-
tion (4) remains (omitting the bars for the sake of clarity):

∂tu+ ∂r(gu)− λ∇x ·
(
u∇xUK [u]

)
+ β(r)u−D∆xu

=

∫

[0,1]d−1

21+
1
d β(2

1
d r)κ(θ)u(2

1
d r, x±αrP (2πθ))dθ.

Finally, choosing the size scale with R0 (see remark 2), the time scale with λ = 1 and space
scale with D gives

∂tu+ ∂r(gu)−∇x ·
(
u∇xUK [u]

)
+ β(r)u−D∆xu

=

∫

[0,1]d−1

21+
1
d β(2

1
d r)κ(θ)u(t, 2

1
d r, x±αrP (2πθ))dθ.

It is noteworthy that here, we have chosen to follow the system at the diffusion time scale.

3.2 Scaling

So far, the chosen time and space scales are microscopic ones, and describe the system at
the scale of the agent interactions. In order to describe the system at the macroscopic scale,
we introduce a small parameter ε ≪ 1 and choose the space, time and size units as x̃0 =
ε−1x0, t̃0 = ε−2t0, r̃0 = r0. The variables t, r, x and unknown u are correspondingly changed
to x̃ = εx, t̃ = ε2t, r̃ = r, uε(t̃, r̃, x̃) = ε−du(t, r, x). We suppose that α = O(1), that growth
and fragmentation are slow processes, i.e g̃ = g

ε2 , β̃ = β
ε2 with g̃, β̃ of order one, and that the

interaction function K acts at the microscopic scale, hence tends towards a Dirac delta:

K(r, r′, x) =
1

εd
K̃(r̃, r̃′,

x̃

ε
),

where K̃ is of order 1 in L∞. We have

∇xUK [u](t, r, x) =

∫∫

Rd×[0,R]

∇xK(r, r′, x− x′)u(t, r′, x′)dx′dr′

= ε

∫∫

Rd×[0,R]

1

εd
∇x̃K̃(r̃, r̃′,

x̃− εx′
ε

)εduε(t̃, r̃
′, εx′)dx′dr̃′

= ε

∫∫

Rd×[0,R]

1

εd
∇x̃K̃(r̃, r̃′,

x̃− z
ε

)uε(t̃, r̃
′, z)dzdr̃′

= ε

R∫

0

[∇x̃Kε(r̃, s, .) ∗ uε(t, s, .)](x̃)ds,

where we have noted Kε(r, r
′, x) = 1

εd
K̃(r, r′, xε ). Then, we compute

∫

[0,1]d−1

21+1/dβ(21/d)κ(θ)u(t, 21/dr, x± αrP (2πθ))dθ

=

∫

[0,1]d−1

21+1/dε2+dβ̃(21/d)κ(θ)uε(t̃, 2
1/dr̃, x̃± εαrP (2πθ))dθ

= ε2+d21+1/dβ̃(21/d)uε(t̃, 2
1/dr̃, x̃) +O(ε3),
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where we have used the fact that
∫

[0,1]d−1

κ(θ))dθ = 1. Altogether, omitting the tildes for the

sake of clarity, we obtain:

∂tuε + ∂r(guε)−∇x ·
(
uε∇x

R∫

0

[Kε(r, s, .) ∗ uε(t, s, .)](x)ds
)
+ β(r)uε −D∆xuε

= 21+1/dβ(21/d)uε(t, 2
1/dr, x) +O(ε), (27)

Remark 3. Under these scaling assumptions, we account for the fact that particles are very
small compared to the space scale. In this regime, the small parameter ε takes into account the
local character of the interaction, which typically occurs at the same scale as the radius r of a
particle, whereas we consider a large number of cells, occupying a domain of much larger size.
Another possibility would have been to fix the space scale and rescale the size variable. This
would be accompanied by different scaling assumptions for the dimensionless parameters. Here,
the spatial interaction is kept of order 1 by setting the interaction strength of order 1

εd
. In the

limit ε → 0, the interaction kernel therefore converges towards a Dirac delta function. This
particular regime is usually called the localization limit.

As detailed in the introduction, the rigorous derivation of the localization limit for this
system presents several difficulties due to (a) the growth and division terms which lead to a
nonconservative equation and prevent the use of entropy estimates, and (b) the size-structure
of the density which requires new estimates to ensure compactness. Therefore in this paper,
we present the rigorous proof of the localization limit for a simplified system without growth
or fragmentation. This work is presented in the next Section 3.3. The case with growth and
fragmentation is illustrated numerically in Section 4.

3.3 Localization limit for a system without growth and fragmentation

Let us consider Equation (27) without the growth and fragmentation terms, namely:

∂tnε(t, r, x)−∇x ·
(
nε(t, r, x)∇xUKε

[nε]
)
= D∆xnε(t, r, x), (28)

with UKε
[nε] =

∫ R
0
[Kε(·, r, s) ∗x nε(t, s, ·)](x)ds. In the following, we establish rigorously the

limit ε→ 0 of the model (28) towards the following equation:

∂tn0(t, r, x)−∇x ·
(
n0(t, r, x)∇xU0[n0]

)
= D∆xn0(t, r, x), (29)

with U0 =
∫ R
0

Γ(r, s)n0(t, s, x)ds and Γ(r, s) =
∫
Rd K(r, s, x)dx.

Before stating our main result, we list a set of regularity assumptions on the interaction
function and the initial data.

Assumption 4 (Interaction function). We assume that

Γ(r, s) :=

∫

Rd

K(r, s, x)dx ∈ L∞([0, R]2), ∀(r, s) ∈ [0, R]2. (30)

In addition we suppose that there exists

ρ ∈ H1([0, R];L1(Rd)) (31)

such that, with ρ̌(r, x) := ρ(r,−x), we have

K(r, s, x) = [ρ̌(r, ·) ∗x ρ(s, ·)](x). (32)
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The reason for this somewhat technical assumption, used in many and various studies -
e.g. [28, 25, 15, 7], lies in the following computation. First, we obviously have that Kε(r, s, x) =
[ρ̌ε(r, ·) ∗x ρε(s, ·)](x). Under Assumption 4, we may write that for a given function f ∈
Lp([0, R]× Rd),

∫

Rd

∫ R

0

∫ R

0

f(r, x) [Kε(r, s, ·) ∗x f(s, ·)](x) dsdrdx

=

∫

Rd

∫ R

0

∫ R

0

f(r, x) [ρ̌ε(r, ·) ∗x ρε(s, ·) ∗x f(s, ·)](x) dsdrdx

=

∫

Rd

∫ R

0

∫ R

0

[ρε(r, ·) ∗x f(r, ·)](y) [ρε(s, ·) ∗x f(s, ·)](y) dsdrdy

=

∫

Rd

(∫ R

0

[ρε(r, ·) ∗x f(r, ·)](y) dr
)2

dy ≥ 0

(33)

This type of computation will be used several times in the following section, and is a key point
for several estimates.

Assumption 5 (Initial data). We define XR = [0, R]× Rd and we assume that




niniε := nε(0, ·, ·) ≥ 0, niniε ∈ L∞([0, R];L1(Rd) ∩ L2(Rd)),∫

XR

|x|2niniε drdx < +∞, niniε ln(niniε ) ∈ L1(XR),
(34)

with uniform bounds with respect to ε in the respective functional spaces.

We are now in position to state the main result of this section.

Theorem 3. Let T > 0 and R > 0. We define XT,R = [0, T ] × XR. Let Kε and (niniε )
satisfy Assumptions 4 and 5. After extraction of subsequences, the density nε solution to (28)

converges weakly in L1+ 2
d (XT,R) as ε → 0 to a limit n0 ∈ L1+ 2

d (XT,R) which satisfies (29) in
the sense of distributions.

To prove this result we show that UKε
[nε] is compact in L1

loc([0, T ]×[0, R]×Rd), thus allowing
us to extract a strongly converging subsequence. In Section 3.3.1, we show different a priori
estimates which we use in Section 3.3.2 to show the compactness of (pε). Finally Section 3.3.3
contains the proof that the limit of an extracted subsequence is solution of (29), which concludes
the proof of Theorem 3.

Let us also note that, having already proved by Theorem 2 the existence and uniqueness
of a weak solution to (28), the series of a priori estimates used for Theorem 3 implies, under
Assumptions 4 and 5, the existence of a strong solution.

3.3.1 A priori estimates

In this section we present estimates for nε and qε defined as follows:

qε(t, x) :=

∫ R

0

[ρε(r, ·) ∗x nε(t, r, ·)](x)dr. (35)

Then we can write

UKε
[nε](t, r, x) =

∫ R

0

[Kε(·, r, r′) ∗x nε(t, r′, ·)](x)dr′ =
∫ R

0

[ρ̌ε(r, ·) ∗x ρε(r′, ·) ∗x nε(t, r′, ·)](x)dr′

=

∫

Rd

ρ̌ε(r, x− y)
(∫ R

0

[ρε(r
′, ·) ∗x nε(t, r′, ·)](y)dr′

)
dy

= [ρ̌ε(r, ·) ∗x qε(t, ·)](x).

17



Thus Equation (28) can be rewritten as

∂tnε(t, r, x)−∇x ·
(
nε∇x[ρ̌ε(r, ·) ∗x qε(t, ·)](x)

)
= D∆xnε(t, r, x), on XT,R. (36)

Proposition 1. Work under Assumptions 4 and 5 and let nε be solution to (36). Then

nε ≥ 0 on XT,R.

In addition, for t ∈ [0, T ], uniformly with respect to ε,

∫

XR

|x|2nε(t, r, x)drdx < +∞ and

∫

XR

nε(t, r, x) | ln(nε(t, r, x))|drdx < +∞.

Moreover we have the following estimates on nε uniformly with respect to ε,

nε ∈ L∞([0, T ]× [0, R];L1(Rd)) (37)
√
nε ∈ L2([0, T ]× [0, R];H1(Rd)) (38)

nε ∈ L1+ 2
d (XT,R) (39)

∇xnε ∈ L
d+2
d+1 (XT,R), (40)

and the following estimates on qε defined by (35), uniformly with respect to ε,

qε ∈ L∞([0, T ];L1(Rd)) (41)

qε ∈ L2([0, T ];H1(Rd)). (42)

Finally we also have uniformly with respect to ε

nε|∇xρ̌ε ∗x qε|2 ∈ L1(XT,R). (43)

Proof. Step 1. Positivity and L1 bounds (37) and (41).
Let us first prove that nε ≥ 0. We multiply the equation (36) by −1lnε≤0 and use the

notation |nε|− = −nε1lnε≤0 to get

∂t|nε|− ≤ ∇x ·
(
|nε|−∇x[ρ̌ε ∗x qε]

)
+D∆x|nε|−.

The last term is found using the so-called Kato’s inequality ∆f(y) = f ′′(y)|∇xy|2 + f ′(y)∆y ≥
f ′(y)∆y for f(y) = |y|− and y = nε, see [4]. Integrating in space gives

d

dt

∫

Rd

|nε|− ≤ 0.

Hence |nε(t, r, x)|− ≤ |niniε (r, x)|− = 0, for all (t, r, x) ∈ XT,R, which gives us positivity. Addi-
tionally, integrating (36) in space gives

d

dt

∫

Rd

nε(t, r, x)dx =

∫

Rd

∇x ·
(
nε(t, r, x)∇x[ρ̌ε(r, ·) ∗x qε(t, ·)](x)

)
+

∫

Rd

D∆xnε(t, r, x) = 0.

Therefore
∫
Rd nε(t, r, x)dx =

∫
Rd n

ini
ε (r, x)dx ≤ ∥niniε ∥L∞([0,R];L1(Rd)) and we have estimate (37).

Moreover

∥qε∥|L1(Rd) ≤
∫ R

0

∥ρε(r, ·) ∗x nε(t, r, ·)∥|L1(Rd)dr

≤
∫ R

0

∥ρε(r, ·)∥|L1(Rd)∥nε(t, r, ·)∥|L1(Rd)dr

≤ ∥ρ∥|L1([0,R]×Rd)∥nε(t, ·, ·)∥|L∞([0,R];L1(Rd)),

18



so we have estimates (41) uniformly with respect to ε.

Step 2. L2 bounds (42) and (43) - ”Rao-type” entropy inequality. For the L2 control, we
consider the equation satisfied by qε, obtained by integrating the convolution product of (36)
with ρε on [0, R]:

∂tqε(t, ·) =
∫ R

0

ρε(r, ·)∗x∂tnε(t, r, ·)dr = ∇x·
(∫ R

0

ρε(r, ·)∗x[nε(t, r, ·)∇xρ̌ε(r, ·)∗xqε]dr
)
+D∆xqε.

(44)
We multiply equation (44) by qε and integrate over space

d

dt

∫

Rd

|qε|2 = −
∫

Rd

∫ R

0

(ρε ∗x [nε∇xρ̌ε ∗x qε])dr · ∇xqε −D
∫

Rd

|∇xqε|2

= −
∫

Rd

∫ R

0

[nε∇xρ̌ε ∗x qε] · (ρ̌ε ∗x ∇xqε)dr −D
∫

Rd

|∇xqε|2

= −
∫∫

XR

nε|∇xρ̌ε ∗x qε|2 −D
∫

Rd

|∇xqε|2.

Thus by integrating over time

∫

Rd

|qε|2 +D

∫ T

0

∫

Rd

|∇xqε|2 +
∫ T

0

∫

XR

nε|∇xρ̌ε ∗x qε|2 ≤
∫

Rd

|q0ε |2.

Given that
∫
Rd |qε(t, ·)|2 ≤ R∥ρε∥2|H1([0,R];L1(Rd)∥n0ε∥2|L∞([0,R];L2(Rd)) ∈ L∞([0, T ]), it proves the

results (42) and (43). Note that for (42) it is crucial that D > 0.

Remark 4. This last computation of the L2 norm of qε is equivalent to considering the clas-

sical entropy
∫
Rd

∫ R
0
nε(r, x)

∫ R
0
[Kε(·, r, s) ∗x nε(s, ·)](x)dsdrdx, sometimes called a ”Rao-type

entropy”.

Step 3. Second moment control.
Multiplying (36) by |x|2 and integrating on XR, we have

d

dt

∫

XR

|x|2nε =
∫

XR

|x|2∇x · [nε∇x(ρ̌ε ∗ qε)] +D

∫

XR

|x|2∆xnε

= −
∫

XR

2nεx · ∇x(ρ̌ε ∗ qε)−D
∫

XR

2x · ∇xnε

≤ 2
(∫

XR

|x|2nε
)1/2(∫

XR

nε|∇xρ̌ε ∗ qε|2
)1/2

+ 2dD

∫

XR

nε

Hence after integration, denoting Vε(t) :=
( ∫

XR
|x|2nε

)1/2

, we have

V 2
ε (t) ≤ V 2

ε (0) + 2DdT∥nε∥L∞([0,T ];L1(XR)) + 2

∫ t

0

Vε(s)
(∫

XR

nε|∇xρ̌ε ∗ qε|2
)1/2

(s)ds,

and thanks to [18, Theorem 5],

Vε(t) ≤ Vε(0) +
√
2DdT∥nε∥L∞([0,T ];L1(XR)) +

∫ T

0

(∫

XR

nε|∇xρ̌ε ∗ qε|2
)1/2

.

Applying the Cauchy-Schwarz inequality to the second member of the right-hand side of the
equation and taking the square, we obtain

∫

XR

|x|2nε ≤ 3

∫

XR

|x|2niniε + 6DdT∥nε∥L∞([0,T ];L1(XR)) + 3T

∫

XT,R

nε|∇xρ̌ε ∗ qε|2 < +∞
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thanks to the initial condition (34), to (37) and to (43).

Step 4. H1 norm estimate (38) for
√
nε and entropy estimate. We consider the classical

”Shannon-type” entropy E(nε) :=
∫
XR

nε lnnε and compute its derivative

d

dt

∫

XR

nε lnnε =

∫

XR

(1 + lnnε)∂tnε

= −
∫ R

0

∫

Rd

∇xnε · ∇x[ρ̌ε ∗x qε]−D
∫

XR

1

nε
|∇xnε|2

= −
∫

Rd

|∇xqε|2 − 4D

∫

XR

|∇x
√
nε|2.

Then after integrating in time
∫

XR

nε| lnnε|+
∫ T

0

∫

Rd

|∇xqε|2 + 4D

∫ T

0

∫

XR

|∇x
√
nε|2 ≤

∫

XR

n0ε lnn
0
ε +

∫

XR

nε| lnnε|−.

Moreover
∫
XR

nε| lnnε|−drdx can be decomposed as follows:
∫

XR

nε| lnnε|−dxdr =
∫

XR

nε| lnnε|−1lnε≥e−|x|2dxdr +

∫

XR

nε| lnnε|−1lnε≤e−|x|2dxdr.

We then bound each term, noticing first that if nε ≥ e−|x|2 then | lnnε|− = − ln(nε)1lnε≤1 ≤ |x|2∫

XR

nε| lnnε|−1lnε≥e−|x|2dxdr =

∫

XR

nε| lnnε|−1lnε≥e−|x|2dx ≤
∫

XR

|x|2nεdxdr < +∞,

and, noticing now that if x ≥ 1 and if y ≤ e−|x|2 then y| ln(y)| ≤ e−|x|2 | ln(e−|x|2)| because
u 7→ u| log(u)| is increasing on (0, e−1) (with a maximum on e−1) so that

∫

XR

nε| lnnε|−1lnε≤e−|x|2dxdr

≤
∫ R

0

∫

|x|≤1

nε| lnnε|−1lnε≤1dxdr +

∫ R

0

∫

|x|≥1

|x|2e−|x|2dxdr < +∞.

This gives ∇x
√
nε in L2(XT,R). Together with estimates (37) we have estimate (38). Notice

that we have used the assumption D > 0 in a crucial way here.

Step 5. L1+ 2
d norm estimate (39) for nε and L

d+2
d+1 norm estimate (40) for ∇xnε.

We want to apply the Gagliardo-Nirenberg interpolation inequality on Rd, which states that
for 1 ≤ q, r ≤ ∞ and θ ∈ [0, 1] such that 1

p = θ( 1r − 1
d ) +

1−θ
q there exists some constant C

depending only on d, q, r, θ such that for any f : Rd → R we have

∥f∥Lp(Rd) ≤ C∥∇f∥θLr(Rd)∥f∥1−θLq(Rd)
.

We apply it to f =
√
nε, q = r = 2 and θ = d

d+2 , so that p = 2+ 4
d , we integrate on [0, T ]×[0, R],

and we have

∥nε∥1+
2
d

L1+ 2
d (XT,R)

=

∫ T

0

∫ R

0

∥√nε∥2+
4
d

L2+ 4
d (Rd)

≤ C
∫ T

0

∫ R

0

∥∇x
√
nε∥(2+

4
d )θ

L2(Rd)
∥√nε∥(2+

4
d )(1−θ)

L2(Rd)

≤ C
∫ T

0

∫ R

0

∥∇x
√
nε∥2L2(Rd) ∥

√
nε∥

4
d

L2(Rd)

≤ C ∥∇x
√
nε∥2L2(XT,R) ∥nε∥

2
d

L∞([0,T ]×[0,R];L1(Rd))
,

which thanks to (37) and (38), gives (39). Then given Hölder’s inequality 3 with d+1
d+2 = 1

2+
d

2d+4

3applied under the form ∥fg∥Lr ≤ ∥f∥Lp∥g∥Lq if 1
r
= 1

p
+ 1

q
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we have
∥∇xnε∥

L
d+2
d+1 (XT,R)

= 2∥√nε∇x
√
nε∥

L
d+2
d+1 (XT,R)

≤ 2∥√nε∥
L

2d+4
d (XT,R)

∥∇x
√
nε∥L2(XT,R)

≤ 2∥nε∥2
L1+ 2

d (XT,R)
∥∇x
√
nε∥L2(XT,R).

This provides us with the last inequality (40) and concludes the proof.

3.3.2 Compactness

The estimates (39) and (40) provide us with sufficient compactness for nε, so that we now focus
on the variable UKε

, for which we recall that it can be rewritten as

UKε [nε](t, r, x) =

∫ R

0

[Kε(·, r, r′) ∗x nε(t, r′, ·)](x)dr′ = ρ̌ε(r, ·) ∗x qε(t, ·)(x).

Given estimate (41) we have

∥UKε [nε](t, ·, ·)∥L1(XR) ≤ ∥ρ̌ε∥L1(XR)∥qε(t, ·)∥L1(Rd) ≤ ∥ρ∥L1(XR)∥qε∥L∞(0,T ;L1(Rd)) ≤ C,

and given estimate (42)

∫
XT,R

|UKε
[nε](t, r, x)|2drdxdt ≤

∫ T
0

∫ R
0
∥ρ̌ε(r, ·)∥2L1(Rd)∥qε(t, ·)∥2L2(Rd)drdt

≤ ∥ρ∥2L2(0,R;L1(Rd))∥qε∥2L2([0,T ]×Rd) ≤ C

and

∫
XT,R

|∇xUKε
[nε](t, r, x)

2dxdrdt ≤
∫ T
0

∫ R
0
∥ρ̌ε(r, ·)∥2L1(Rd)∥∇xqε(t, ·)∥2L2(Rd)drdt

≤ ∥ρ∥2L2(0,R;L1(Rd))∥qε∥2L2([0,T ];H1(Rd)) ≤ C

hence uniformly with respect to ε

UKε [nε] ∈ L∞([0, T ], L1([0, R]× Rd)) and UKε [nε] ∈ L2([0, T ]× [0, R], H1(Rd)).

In addition we have ∂rUKε [nε] = (∂rρ̌ε) ∗x qε, thus thanks to assumption (31)

∫
XT,R

|∂rUKε
[nε](t, r, x)|2drdxdt ≤

∫ T
0

∫ R
0
∥∂rρ̌ε(r, ·)∥2L1(Rd)∥qε(t, ·)∥2L2(Rd)drdt

≤ ∥∂rρ∥2L2(0,R;L1(Rd))∥qε∥2L2(XT,R) ≤ C,

so finally
UKε [nε] ∈ L2([0, T ], H1([0, R]× Rd)). (45)

Therefore we have immediately

UKε
[nε] ∈ L1

loc(XT,R),
∇xUKε

[nε] ∈ L1
loc(XT,R),

∂rUKε
[nε] ∈ L1

loc(XT,R),
(46)

and writing the equation satisfied by UKε , obtained by integrating in [0, R] the convolution
product of (36) with Kε, we have

∂tUKε
[nε] = ∇x ·

(∫ R

0

Kε(·, r, r′) ∗x
[
nε(t, r

′, ·)∇xUKε
[nε](t, r

′, ·) +D∇xnε(t, r′, ·)
]
(x)dr′

︸ ︷︷ ︸
Pε(t,r,x)

)
.

(47)
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We now prove that Pε(t, r, x) ∈ L1(XT,R) uniformly with respect to ε, since:

∥Pε∥L1(XT,R) ≤
∫ T

0

∫ R

0

∫

Rd

∫ R

0

|Kε(·, r, r′)| ∗x
∣∣∣nε(t, r′, ·)∇xUKε [nε](t, r

′, ·) +D∇xnε(t, r′, ·)
∣∣∣(x)dr′dxdrdt

≤
∫ T

0

∫ R

0

∫ R

0

∥Kε(·, r, r′)∥L1(Rd)

[
∥nε(t, r′, ·)∇xUKε [nε](t, r

′, ·)∥L1(Rd)

+D∥∇xnε(t, r′, ·)∥L1(Rd)

]
dr′drdt

≤ R∥K(·, r, r′)∥L∞([0,R]2,L1(Rd))

[
∥nε∥

1
2

L∞([0,T ]×[0,R],L1(Rd))
∥nε|∇xρ̌ε ∗x qε|2∥

1
2

L1(XT,R)

+ 2D∥
√
nε(t, r′, x)∥L2(XT,R)∥∇x

√
nε(t, r′, x)∥L2(XT,R)

]
,

where we have done two Cauchy-Schwarz inequalities, writing respectively

nε∇xUKε
= n

1
2
ε n

1
2
ε ∇x(ρ̌ε ∗ qε), and ∇xnε = 2

√
nε∇x

√
nε.

Finally, the right-hand side is uniformly bounded with respect to ε thanks to the assumption (30)
and to the estimates (37), (43) and (38).

Then, with the same method as for the multispecies case [15, Section 3.2.], we can show
that for a compact set K ⊂ [0, R]×Rd and for any k > 0, we have

∥UKε
[nε](t+ k, r, x)− UKε

[nε](t, r, x)∥L1((0,T )×K)

≤ C(K,T )k∥UKε [nε]∥L2((0,T ),H1(K)) ≤ C(K,T )
√
k. (48)

Then, given (46), UKε
[nε] satisfies the assumptions of the Weil-Kolmogorov-Frechet theorem

on L1((0, T )×K), hence the sequence UKε [nε] is compact in this space.

3.3.3 Convergence

Given the previous estimates, we can extract a subsequence (we do not change the notation for
the sake of clarity) such that

UKε [nε]→ j0 strongly in L1((0, T )× (0, R);L1
loc(Rd)), (49)

nε ⇀ n0 weakly in L1+ 2
d (XT,R), (50)

∇xnε ⇀ ∇xn0 weakly in L
d+2
d+1 (XT,R). (51)

In addition, from the uniform bound UKε
[nε] ∈ L2(XT,R) thanks to (45), and the strong limit

(49), we have

UKε
[nε]→ U0 strongly in Lp((0, T )×(0, R);Lqloc(Rd)) ∀1 ≤ p < 2, 1 ≤ q < 2. (52)

We are left to show the convergence in equation (28). Let us define ϕ ∈ C∞
c (XT,R). Then

multiplying equation (28) by ϕ and integrating by parts, we have

∫

XT,R

nε∂tϕ =

∫

XT,R

nε∇xUKε
[nε] · ∇xϕ+D

∫

XT,R

∇xnε · ∇xϕ

= −
∫

XT,R

(∇xnε · ∇xϕ)UKε
[nε]−

∫

XT,R

nε (∆xϕ)UKε
[nε] +D

∫

XT,R

∇xnε · ∇xϕ.

The left-hand side converges thanks to the weak convergence (50) of nε. The first and second
terms of the right-hand side converge thanks to the strong convergence (52) of UKε [nε] and the
weak convergence (51) of ∇xnε and (50) of nε respectively. Finally, the last term converges
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thanks to the weak convergence (51) of ∇xnε. Then passing to the limit and integrating by
part, we have

∫ T

0

∫ R

0

∫

Rd

n0∂tϕ =

∫ T

0

∫ R

0

∫

Rd

n0∇xU0 · ∇xϕ+D

∫ T

0

∫ R

0

∫

Rd

∇xn0 · ∇xϕ. (53)

Finally we are left to show that U0 =
∫ R
0

Γ(r, s)n0(t, s, x)ds. Let us define ϕ ∈ C∞
c (XT,R),

then

∣∣∣
∫

XT,R

(
UKε

[nε](t, r, x)−
∫ R

0

Γ(r, s)n0(t, s, x)ds
)
ϕ(t, r, x)dxdrdt

∣∣∣

≤
∣∣∣
∫

XT,R

(∫ R

0

[Kε(·, r, s) ∗x nε(t, s, ·)](x)− Γ(r, s)n0(t, s, x)ds
)
ϕ(t, r, x)dxdrdt

∣∣∣

≤
∣∣∣
∫ T

0

∫ R

0

∫ R

0

∫

Rd

(
[Kε(·, r, s) ∗x nε(t, s, ·)](x)− Γ(r, s)nε(t, s, x)

)
ϕ(t, r, x)dxdrdsdt

∣∣∣

+
∣∣∣
∫ T

0

∫ R

0

∫ R

0

∫

Rd

(
nε(t, s, x)− n0(t, s, x)

)
Γ(r, s)ϕ(t, r, x)dxdrdsdt

∣∣∣

≤
∫ T

0

∫ R

0

∫ R

0

∫

Rd

∣∣∣[Kε(·, r, s) ∗x ϕ(t, ·, r)](x)− Γ(r, s)ϕ(t, r, x)
∣∣∣nε(t, x, s)dxdrdsdt

︸ ︷︷ ︸
Iε

+

∫ T

0

∫ R

0

∫ R

0

∫

Rd

∣∣∣nε(t, s, x)− n0(t, s, x)
∣∣∣|Γ(r, s)||ϕ(t, r, x)|dxdrdsdt

︸ ︷︷ ︸
IIε

For the first term, applying Hölder’s inequality with 1 = 2
2+d + d

2+d we have

Iε ≤ ∥[Kε(·, r, s) ∗x ϕ(t, ·, r)](x)− Γ(r, s)ϕ(t, r, x)∥
L

2+d
2 ([0,T ]×[0,R]2×Rd)

R∥nε∥
L

2+d
d (XT,R)

.

Since ϕ ∈ C∞
c (XT,R) and

∫
Rd Kε(x, r, s)dx = Γ(r, s), we have for all (r, s) ∈ [0, R]2, thanks to

the continuity in r and s of Γ linked to Assumption (31)

[Kε(·, r, s) ∗x ϕ(t, r, ·)]→ Γ(r, s)ϕ(t, r, ·), in L
2+d
2 (Rd).

In addition

∥[Kε(·, r, s)∗xϕ(t, ·, r)](x)−Γ(r, s)ϕ(t, r, x)∥
L

2+d
d (Rd)

≤ 2∥Γ∥L∞([0,R]2)∥ϕ(t, ·, r)∥
L

2+d
2 (Rd)

∈ L1([0, T ]×[0, R]2.)

Thus thanks to the dominated convergence theorem,

∥[Kε(·, r, s) ∗x ϕ(t, r, ·)](x)− Γ(r, s)ϕ(t, r, x)∥
L

2+d
2 ([0,T ]×[0,R]2×Rd)

→ 0,

and since nε ∈ L1+ 2
d (XT,R) uniformly with respect to ε by (39) we have Iε → 0.

The second term can be rewritten as

IIε ≤ ∥Γ∥L∞([0,R]2)

∫ T

0

∫ R

0

∫

Rd

∣∣∣nε(t, s, x)− n0(t, s, x)
∣∣∣
( ∫ R

0

|ϕ(t, r, x)|dr
)
dxdsdt,

with
∫ R
0
|ϕ(t, r, x)|dr ∈ L1+ d

2 (XT,R), therefore thanks to the weak convergence (50) we have

IIε → 0 and p0(t, r, x) =
∫ R
0

Γ(r, s)n0(t, x, s)ds. Thus given (53), n0 is solution of (29), and
this ends the proof of Theorem 3.

We can now deduce formally the localization limit of the complete model (27). Denoting
by u0(t, r, x) the formal limit of uε(t, r, x) solution of (27), we deduce that u0 is solution of the
local equation (6).

23



4 Numerical simulations

In this section, we numerically investigate the link between the microscopic model of Section 2,
the mesoscopic model given by Equation (4) and the macroscopic model given by Equation (6).

4.1 Numerical setting for the microscopic model

We consider a spatial square domain Ω ∈ R2 taken large enough so that the spatial support of the
solution remains far from the boundaries. We throw initially N particles uniformly distributed
in a ball centered in the center of the domain and having radius S. The N individual particle
radii are initially chosen randomly from a uniform distribution U([rmin, rmax]). We consider
discrete times tn =

∑n
i=0 ∆t

i with some carefully chosen time step ∆tn (see below), and we
consider a splitting scheme for the different mechanisms (spatial motion, growth and division).

Space motion of particles. The equation of motion for the particles given by Equation (1) is
solved using an explicit Euler scheme: Given a configuration at time tn (Xn

i , R
n
i )1≤i≤Nn , the

displacement of the particles during a time step ∆tn is given by

X
n+1/2
i = Xn

i −
∆tn

N

N(t)∑

j=1

∇K
(
Xn
i −Xn

j , R
n
i , R

n
j

)
+
√
2D∆tn ηi,

where ηi is randomly chosen from a normal distributionN (0, 1). For all simulations, we consider
the following interaction potential:

K(x, r, s) =
γ(r)γ(s)

(2π(r2 + s2))d/2
exp

(
− |x|2

2(r2 + s2)

)
, (54)

with γ(r) = r.
Particle growth. The particle radii are actualized between times tn and tn +∆tn according

to
R
n+1/2
i = min(rmax, R

n
i +∆tng(Rni )).

In the following, we consider a constant growth term g(r) = g. Notice that the growth law has
been truncated to ensure that particle radii do not exceed the threshold rmax.

Particle division. The division process is modeled by a Poisson process of radial-dependent
frequency β(r): for each cell i, the probability to divide between time steps tn and tn +∆tn is
given by

P(cell i divides between tn and tn +∆tn) = 1− e−β(R
n+1/2
i )∆tn .d

We use a rejection method to decide upon the division of a cell based on this probability. To
ensure that cell radii do not exceed rmax, we virtually consider that β(rmax) = +∞, i.e cells of
maximal radius divide with probability one.

When a cell i divides, its radius and position are actualized according to




Xn+1
i ← X

n+1/2
i − αR

n+1/2
i√

2
(cos(θi), sin(θi))

Rn+1
i ← R

n+1/2
i√

2
,

where θi is chosen randomly from a uniform distribution U([0, 2π]. Simultaneously, a new cell

of radius
R

n+1/2
i√

2
is created at position X

n+1/2
i + α

R
n+1/2
i√

2
(cos(θi), sin(θi)).

The position and radii of all the cells k that were not subjected to division in between tn

and tn +∆t are then set to {
Xn+1
k ← X

n+1/2
k

Rn+1
k ← R

n+1/2
k .
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Parameters Value Description
N [500, 5000] Initial number of cells
rmin 0.2 Minimal cell radius
rmax 1 Maximal cell radius
D 0.01 Diffusion coefficient
g 0.008 Growth rate
β̄ 0.05 Maximal division rate (for r < rmax)
α 0.1 Position of the daughter cells after division
Tf 100 Simulation time
S 2 Radial support of the initial condition

Table 1: Model parameters for the microscopic simulations

We choose the fragmentation rate function β(r) such that

β(r) =





0 for r <
√
2 rmin

β̄ r−
√
2 rmin

rmax−
√
2 rmin

for r ∈ [
√
2 rmin, rmax)

+∞ for r ≥ rmax

Finally, we ensure that the motion of particles during two time steps does not exceed a given
threshold by using an adaptative time step. More specifically, we set

∆tn = min
( δ

1
N maxi |

∑N(t)
j=1 ∇K(|Xn

i −Xn
j |, Rni , Rnj |)|

,
δ2

4D
,
0.1rmin

||β||L1

,
0.1rmin

2g

)
.

The numerical parameters used for the microscopic simulations are summarized in Table 1.

4.2 Numerical settings for the meso and macro models

For the mesoscopic and macroscopic models, we consider a spatial square domain Ω = [xmin, xmax]×
[ymin, ymax] ∈ R2 chosen sufficiently large so that the spatial support of the solution remains far
from the boundaries. The spatial domain is discretized into Nx × Nx regularly spaced points
with space step ∆x and the radial domain [rmin, rmax] is discretized into Nr regularly spaced
points with radial step ∆r.

We consider discretes times tn = n∆t for n ≥ 0 and introduce a Cartesian 3D mesh
consisting of the cells Cijk = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] × [rk−1/2, rk+1/2] which for
the sake of simplicity we consider of uniform size, i.e for which xi+1/2 − xi−1/2 = ∆x ∀i,
yj+1/2 − yj−1/2 = ∆y ∀j and rk+1/2 − rk−1/2 = ∆r ∀k.

Let u be a solution of the mesoscopic equation (27) or the macroscopic equation (6). Because
in the microscopic model the parameter α is chosen small, the non-local term of the mesoscopic
model can be considered local for the numerical simulations. Thus, both equation can be
rewritten under the form:

∂tu+ ∂r(g(r)u)− ∇x ·
(
u(t, r, x)∇x ξ

)
−D∆xu

= 21+
1
d β(2

1
d r)u(t, 2

1
d r, x)− β(r)u(t, r, x).

We define

ūi,j,k(t) ≈
1

∆x∆y∆r

∫∫∫

Ci,j,k

u(t, r, x)dxdydr

as the cell averages of the calculated solution. A general semi-discrete finite-volume scheme for
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these equations can be written in the form

dūi,j,k
dt

=−
F xi+1/2,j,k − F xi−1/2,j,k

∆x
−
F yi,j+1/2,k − F

y
i,j−1/2,k

∆y

− Gi,j,k+1/2 −Gi,j,k−1/2

∆r
+ 21+

1
d β(rk̃)ūi,j,k̃ − β(rk)ūi,j,k. (55)

and F xi+1/2,j,k, F
y
i,j+1/2,k, Gi,j,k+1/2 the upwind numerical fluxes at the interfaces in the x-, y-

and r- direction which approximate the continuous fluxes −u(t, r, x)∂xξ−D∂xu, −u(t, r, x)∂yξ−
D∂yu and g(r)u(t, r, x), respectively. To obtain formulae for numerical fluxes, we first construct
piecewise constant functions in each cell Ci,j,k:

ũ(r, x) = ūi,j,k, (r, x) ∈ Ci,j,k.
Equipped with this reconstructed ũi,j,k(r, x), the upwind fluxes are computed as

F xi+1/2,j,k = ui,j,kmax(0, vxi+1/2,j,k) + ui+1,j,kmin(0, vxi+1/2,j,k)−D
ui+1,j,k − ui,j,k

∆x

F yi,j+1/2,k = ui,j,kmax(0, vyi,j+1/2,k) + ui,j+1,kmin(0, vyi,j+1/2,k)−D
ui,j+1,k − ui,j,k

∆y

Gi,j,k+1/2 = gui,j,k,

where we have used the fact that the growth term is a positive constant g ≥ 0, and where

vxi+1/2,j,k = −ξi+1,j,k − ξi,j,k
∆x

vyi,j+1/2,k = −ξi,j+1,k − ξi,j,k
∆y

.

In the macroscopic model, ξi,j,k is a numerical approximation of
∫ rmax

rmin
Γ(rk, r

′)ũ(t, r′, xi, yj , s)dr′

at the point (xi, yj , rk) given by

ξi,j,k = ∆r
∑

ℓ

Γ(rk, rℓ)ūi,j,ℓ,

and in the mesoscopic model ξi,j,k is a numerical approximations of
∫ rmax

rmin
(Kε(rk, r

′, ·, ·) ∗x
ũ(t, r′, ·, ·))(xi, yj)dr′ at point (xi, yj , rk) given by

ξi,j,k = ∆r
∑

ℓ

∑

p,q

K(rk, rℓ, xp, yq)ūi−p+1,j−q+1,ℓ.

As mentionned earlier, we use a sufficiently large domain to ensure that the (finite) support
of the solution remains within the domain, and simply impose periodic (spatial) boundary
conditions. As for the radii, we consider zero-flux boundary conditions at rmin and rmax to
ensure mass conservation. This is accounted for by taking the fluxes at the interfaces in the
r-direction such that

Gi,j,Nr+1/2 = Gi,j,1/2 = 0.

Treatment of the fragmentation term. The second fragmentation term corresponds to the ap-
proximation of 1

∆x∆y∆r

∫∫∫
Ci,j,k

β(r)ũ(t, r, x)dxdr, where we have approximated
∫ rk+1/2

rk−1/2
β(r)dr ≈

∆rβ(rk). The integral 1
∆x∆y∆r

∫∫∫
Ci,j,k

β(
√
2r)ũ(t,

√
2r, x)dxdr from Equation (6) requires a

bit more attention. By performing a change of variable s =
√
2r, we have:

1

∆x∆y∆r

∫∫∫

Ci,j,k

β(
√
2r)ũ(t,

√
2r, x)dxdydr

=
1√

2∆x∆y∆r

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∫ √
2rk+1/2

√
2rk−1/2

β(r)ũ(t, r, x)dxdydr

≈ β(rk̃)ūi,j,k̃,
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where k̃ is the index of the grid in which
√
2rk lives, i.e for which

√
2rk ∈ [rk̃−1/2rk̃+1/2]. Notice

that more sophisticated methods could be envisionned to account for the different numerical
boxes that contain the boundaries

√
2rk−1/2 and

√
2rk+1/2 of the integral, but with our choice

of parameters, we find that this approximation is sufficient for our purpose.
Initial condition For both the mesoscopic and the macroscopic model, we consider the

continuum equivalent of the initial condition for the microscopic simulations, i.e a uniform
distribution in size and radius. To this aim, we consider the domain [−50, 50] × [−50, 50] ×
[rmin, rmax] and set

u0(0, x, r) =
1

πS2(rmax − rmin)
1lB(0,S)(x),

Ensuring that the initial mass is
∫∫∫

Ω×[rmin,rmax]
u0(0, x, r)dxdydr = 1 so that u0 corresponds

to the density distribution of the individual particles initially considered for the microscopic
simulations.

Finally, the semi-discrete scheme (55) is discretized in time by the forward Euler method
with non-uniform time steps ∆tn to account for the CFL condition. The adaptative time-step
is chosen such that:

∆tn = min

(
δmin(∆x,∆y)

∥F x[un]∥∞, ∥F y[un]∥∞
,
∆x∆y

2D
,

∆r

∥β∥L1

,
∆r

2g

)
.

The parameters used for simulations of the macroscopic model are be the same as the ones used
for the microcopic simulations, summarized in Table 1.

4.3 Results

In this section, we numerically explore the three (microscopic, mesoscopic and macroscopic)
models in different settings. In Section 4.3.1, we consider the case where particles grow in size
but do not divide, in Section 4.3.2 we activate the cell division process but without particle
growth, and finally Section 4.3.3 presents the results of the general model with all ingredients.
For comparing the different models, we look at different observables:

Total density. For the macroscopic model, we consider the density
(
ūi,j,k

)
1≤i≤Nx,1≤j≤Ny,1≤k≤Nr

of the model computed on the numerical grid points, and reconstruct the one from the micro-
scopic simulation according to:

ūNi,j,k =
1

N∆x∆y∆r
#ℓ{(i−1)∆x ≤ Xℓ ≤ i∆x, (j−1)∆y ≤ Yℓ ≤ j∆y, (k−1)∆r ≤ Rℓ ≤ k∆r}.

Spatial distribution. We denote uspatial the spatial distribution, obtained as the integral in
radii of the total density:

uspatial(x, t) =

∫
ũ(t, r, x)dr,

computed in the microscopic setting to

ūN,spatiali,j =
1

N∆x∆y
#ℓ{(i− 1)∆x ≤ Xℓ ≤ i∆x, (j − 1)∆y ≤ Yℓ ≤ j∆y}.

Size distribution.
We denote usize the size distribution, obtained as the integral in space of the total density:

usize(r, t) =

∫∫
ũ(t, r, x)dxdy,

computed in the microscopic setting to

ūN,sizek =
1

N∆r
#ℓ{(k − 1)∆r ≤ Rℓ ≤ k∆r}.
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Radial density. As the particles are spreading radially, an efficient way to characterize the
dynamics is to compute a radial distribution

(
uN,radiali,k

)
1≤i≤Nx,1≤k≤Nr

, which gives the average

number of cells in rings of size ∆x:

uN,radiali,k =
1

N(2i− 1)π∆x2
#ℓ{(i− 1)∆x ≤

√
X2
ℓ + Y 2

ℓ ≤ i∆x, (k − 1)∆r ≤ Rℓ ≤ k∆r}.

In the macroscopic setting, this quantity will be referred to as uradiali,k =
∫∫

(i−1)∆x≤|x|≤i∆x ũ(t, rk, x)dx.

4.3.1 Case 1: No particle fragmentation, constant growth

In this section, we deactivate particle fragmentation and consider a constant growth rate with
g = 0.008. The other parameters are given in Table 1. In order to account for the stochasticity of
the particle system, we perform 6 simulations for each parameter set and average the densities.

In Fig.2, we show the solutions of the three models at times t = 4 (panel A) and t = 60
(panel B). In each panel, the first column shows the spatial density uspatial(x, y, t) computed on
the three models and plotted as function of the space variables x (abscissa) and y (ordinates).
The second column shows the radial density uradial(λ, r, t) as function of the radial variable λ
(abscissa) and size variable r (ordinates). In each column, the first line shows the solution of
the microscopic model for N = 100 particles, the second line for N = 2000 particles, the third
line the solution of the mesoscopic model and the fourth line the solution of the macroscopic
model. The figure on the top right represents the size density usize(r, t) as function of the
particle size variable r, while the bottom right panel shows the radial distribution uradial(λ, t)
as function of the radial variable λ. Blue curves are the macroscopic quantities, orange curves
the mesoscopic quantities, and the dotted lines the microscopic quantities (yellow for N = 100,
green for N = 500, light blue for N = 2000 and red for N = 4000).
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B. time t = 60

A. time t = 4

Figure 2: Numerical simulations without particle fragmentation and with constant growth, at
times t = 4 (panel A) and t = 60 (panel B). In each panel, the first column shows the spatial
density uspatial(x, y, t) plotted as function of the space variables x (abscissa) and y (ordinates).
The second column shows the radial density uradial(λ, r, t) as function of the radial variable λ
(abscissa) and size variable r (ordinates). In each column, the first line shows the solution of
the microscopic model for N = 100 particles, the second line for N = 2000 particles, the third
line the solution of the mesoscopic model and the fourth line the solution of the macroscopic
model. The figure on the top right represents the size density usize(r, t) as function of the
particle size variable r, while the bottom right panel shows the radial distribution uradial(λ, t)
as function of the radial variable λ. Blue curves are the macroscopic quantities, orange curves
the mesoscopic quantities, and the dotted lines the micro quantities (yellow for N = 100, green
for N = 500, light blue for N = 2000 and red for N = 4000).
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As one can observe in Fig. 2, we obtain a very good agreement between the simulations of the
three models both for the size distributions (top right panel) and for the radial distributions
(bottom right panel). Although there is a large variability in the simulations for N = 100
particles (yellow errorbar curves), the average density is already quite close to the macroscopic
quantities, and the agreement is even better for N = 2000 particles (light blue curves). As
expected, the particle radii concentrate at rmax = 1 because of the growth term, (second
column and top right figure in panel B) and we observe a radial spatial diffusion (first columns
in panels A and B).

In order to quantify the errors between the models, we plot in Fig. 3 the relative L1 errors
between the three quantities of interest.

Given a density ub(t, r, x), we compute three relative errors between ub compared with the
mesoscopic density umes defined as:

Etot =
∥umes − ub∥L1(Ω×[rmin,rmax])

∥umes∥L1(Ω×[rmin,rmax])

Espatial =
∥uspatialmes − uspatialb ∥L1(Ω)

∥uspatialmes ∥L1(Ω)

Esize =
∥usize − usizeb ∥L1([rmin,rmax])

∥usizemes∥L1([rmin,rmax])

In Fig. 3, dotted lines are obtained when ub is the microscopic density for N = 100 (blue
curves), N = 500 (orange curves) and N = 2000 (yellow curves), N = 4000 (purple curves)
while the continuous black line are obtained when ub is the density of the macroscopic model.
Note that in any case, we use the density of the mesoscopic model as reference for computing
the relative errors.

  

Figure 3: L1 relative errors between the three quantities of interest as function of time without
particle fragmentation and with constant growth: Etot (left figure), Espatial (middle figure) and
Esize (right figure). Dotted lines are the relative errors between the meso and micro models
for N = 100 (blue curves), N = 500 (yellow curves), N = 2000 (yellow curves) and N = 4000
(purple curves). Black continuous lines are the relative errors between the meso and macro
models.

As one observes in Fig. 3, all the L1 relative errors between the micro and meso models
decrease as the number of particles N increases (compare blue, red, yellow and purple dotted
lines respectively). These results show that the microscopic model gets closer to the mesoscopic
model as N increases. It is noteworthy that the relative errors between the microscopic and
mesoscopic models increase in time both when comparing the spatial and the size distributions
(dotted lines in the middle and right panels of Fig. 3). This may be due to the fact that
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microscopic simulations are made with a finite number of particles while the mesoscopic model
is obtained in the limit of an infinite number of particles. As time goes, the average distance
between particles diminishes because of repulsion, leading to less effective repulsive interactions
in the microscopic setting compared to the mesoscopic one. These observations are supported
by the fact that the discrepancy between the micro and meso models is slower when increasing
the number of particles.

Moreover, we observe that the relative errors between the macroscopic and the mesoscopic
models are very small (black curves). This shows that the macroscopic model is a good approx-
imation of the mesoscopic model in this regime of parameters. The fact that the two models
are very close already for ε = 1 (where the meso model features non-local interactions while
the macroscopic model is in the limit of local interactions) hints to the fact that linear diffusion
dominates the non-local effects due to the repulsive interactions (non-linear diffusion term in the
macro model). These observations are supported by the fact that the relative error between the
two models decreases in time. Indeed, as time goes particles get farther from each other because
of repulsion, decreasing the repulsive interactions for the benefit of linear diffusion. Therefore,
it is expected that in time non-local effects vanish and we get a better agreement between the
mesoscopic and macroscopic dynamics. We send the interested reader to Appendix A, where
we illustrate the role of non-local interactions by using a smaller linear diffusion coefficient.

4.3.2 Case 2: No growth, particle division

In this section, we explore the case where particles undergo cell division but no growth. Because
of the choice of the fragmentation kernel β, we expect all particles to end with the minimal
radius rmin. We adopt the same visualization as in previous section and show in Fig. 4 the
simulation results for D = 0.01, no growth and cell division, and in Fig. 5 the evolution in time
of the relative errors between the three models.
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B. time t = 60

A. time t = 4

Figure 4: Numerical simulations with particle fragmentation and no growth, at times t = 4
(panel A) and t = 60 (panel B). In each panel, the first column shows the spatial density
uspatial(x, y, t) plotted as function of the space variables x (abscissa) and y (ordinates). The
second column shows the radial density uradial(λ, r, t) as function of the radial variable λ (ab-
scissa) and size variable r (ordinates). In each column, the first line shows the solution of the
microscopic model for N = 100 particles, the second line for N = 2000 particles, the third line
the solution of the mesoscopic model and the fourth line the solution of the macroscopic model.
The figure on the top right represents the size density usize(r, t) as function of the particle size
variable r, while the bottom right panel shows the radial distribution uradial(λ, t) as function of
the radial variable λ. Blue curves are the macroscopic quantities, orange curves the mesoscopic
quantities, and the dotted lines the micro quantities (yellow for N = 100, green for N = 500,
light blue for N = 2000 and red for N = 4000).
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Figure 5: L1 relative errors between the three quantities of interest as function of time with
particle fragmentation and without growth: Etot (left figure), Espatial (middle figure) and Esize
(right figure). Dotted lines are the relative errors between the meso and micro models for
N = 100 (blue curves), N = 500 (yellow curves), N = 2000 (yellow curves) and N = 4000
(purple curves). Black continuous lines are the relative errors between the meso and macro
models.

As one can observe, we again obtain a very good agreement between the micro, meso and
macro models, in the temporal evolution of the radius as well as of the spatial distributions.
The distribution in radii (top right panels of Fig. 4) evolves in steps, concentrating successively
to the attractive points rmax√

2
, rmax

2 , rmax

2
√
2
, rmax

4 , etc. From Fig. 5, we observe that the L1

relative error remains constant in time, which suggests that the fragmentation process leads to
a longer agreement between the micro and meso models compared to the growth process alone
(see previous section). These results can be due to the fact that the fragmentation process
creates particles, therefore keeps the number of interactions high, enabling the micro system to
spread efficiently. In all cases again, we note that the error decreases as the number of particles
N increases, suggesting that the mesoscopic model is a good approximation of the particle
dynamics as N increases.

4.3.3 Case 3: Growth, particle division

Finally, we look at the simulations activating both the growth and fragmentation. As previously,
we show in Figs. 6-7 the simulation results for D = 0.01 with growth and cell division for t = 4,
t = 20 (Fig. 6) and t = 60 (Fig. 7).
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B. time t = 20

A. time t = 4

Figure 6: Numerical simulations with particle fragmentation and growth, at times t = 4 (panel
A) and t = 20 (panel B). In each panel, the first column shows the spatial density uspatial(x, y, t)
plotted as function of the space variables x (abscissa) and y (ordinates). The second column
shows the radial density uradial(λ, r, t) as function of the radial variable λ (abscissa) and size
variable r (ordinates). In each column, the first line shows the solution of the microscopic model
for N = 100 particles, the second line for N = 2000 particles, the third line the solution of
the mesoscopic model and the fourth line the solution of the macroscopic model. The figure
on the top right represents the size density usize(r, t) as function of the particle size variable r,
while the bottom right panel shows the radial distribution uradial(λ, t) as function of the radial
variable λ. Blue curves are the macroscopic quantities, orange curves the mesoscopic quantities,
and the dotted lines the micro quantities (yellow for N = 100, green for N = 500, light blue
for N = 2000 and red for N = 4000).
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B. Errors

A. time t = 60

Figure 7: Panel A: Numerical simulations with particle fragmentation and growth at time
t = 60. Panel B: L1 relative errors between the three quantities of interest as function of time:
Etot (left figure), Espatial (middle figure) and Esize (right figure). Dotted lines are the relative
errors between the meso and micro models for N = 100 (blue curves), N = 500 (yellow curves),
N = 2000 (yellow curves) and N = 4000 (purple curves). Black continuous lines are the relative
errors between the meso and macro models.

Note that with both growth and fragmentation, the number of particles increases expo-
nentially and so does the computation time. Because of computational efficiency, we stop the
simulations when the number of particles exceeds 10000 in the microscopic setting, correspond-
ing to time t ≈ 64 for N = 2000 and t ≈ 36 for N = 4000. From Figs. 6, we observe a
good agreement between both models at early times of the simulations. The radii distribution
reaches the expected profile at t = 20, but after some time the mesoscopic and macroscopic
models produce mass faster than the microscopic dynamics (top right figure of Fig. 7 panel A
and right figure in panel B). Again, these results are reminiscent of our previous observations.
The mesoscopic and macroscopic models are obtained in the limit of infinite number of particles
while the microscopic simulations are done with a finite number of particles. The errors in the
initial condition are amplified by the growth fragmentation process.

Altogether, these numerical results suggest that the micro and macro models are in very good
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agreement at least at early times of the growth fragmentation process, and that the agreement
gets better as the number of particles in the microscopic setting N increases. This suggest that
the macroscopic model is a good approximation of the underlying macroscopic dynamics, that
enables to overcome the problem of large computational cost raised by the microscopic model.

5 Conclusion and perspectives

In this article, following the biological motivation of a more realistic mechanical model [16] on
the modeling side and the theoretical study of the localization limit for a discrete multispecies
model on the mathematical side [15], we proposed a size and space stochastic individual-based
model. We studied its asymptotics in two successive regimes: a mean-field limit, when the num-
ber of cells tends to infinity, then a localization limit, when the size of the interaction domain
between cells vanishes. For this last limit, we split the difficulties and proved a convergence
result in the case without growth and division: the study of the full non-conservative equation
is left for future work. Due to the lack of compactness of the equation in the size variable - at
least in the absence of growth - we also required a strictly positive diffusion term and some reg-
ularity of the interaction potential. We have also explored the connections between the models
numerically in the cases for which we do not yet have a theoretical result, including growth
and division, and also with a vanishing diffusion coefficient. At first sight, the macroscopic
model may appear more relevant for biology than the mesoscopic limit, since in most real life
applications living cells only interact with a small number of neighbors. However, being derived
from the mesoscopic limit, the model contains the fact that there is interaction with an infinite
number of neighbors - though these interactions tend to localize. Up to our knowledge, the
direct derivation of an adequate macroscopic model from a microscopic one remains an open
problem.
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A Numerical simulations

A.1 No growth no fragmentation

In this section, we focus on the role of spatial interactions, by desactivating the growth and
fragmentation processes. In Fig. 8, we adot the same visualization as in the numerical section
of the main paper, and we show the results of the micro meso and macro models with diffusion
coefficient D = 0.01 at time t = 60 (panel A) and the relative L1-errors using the mesoscopic
model as reference as previously (panel B).
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B. Errors

A. time t = 60

Figure 8: Panel A: Numerical simulations without particle fragmentation and without growth
at time t = 60. Panel B: L1 relative errors between the three quantities of interest as function
of time: Etot (left figure), Espatial (middle figure) and Esize (right figure). Dotted lines are the
relative errors between the meso and micro models for N = 100 (blue curves), N = 500 (yellow
curves) and N = 2000 (yellow curves). Black continuous lines are the relative errors between
the meso and macro models.

Fig. 8 panel A shows that the spatial distribution of particles spreads radially from the
center (left column of panel A), as expected since the interaction kernel is spatially isotropic.
Interestingly for a fixed population of cells, we observe a size-dependent spatial spreading
(middle column of panel A). Indeed, small cells seem to concentrate in the middle of the
domain while larger cells seem to diffuse farer from the center. This is due to our choice for the
repulsion kernel K. Indeed, by choosing γ(r) = r in (54), the repulsion interaction intensity
between particles of sizes r and s is α(r, s) = rs, meaning that pairs of large particles will
interact stronger than pairs of small particles, leading to larger diffusion. Note that because
the interaction kernel K is of the form of spatial Gaussian functions of variance (r+ s)2, it also
involves that larger particles will interact farer than small particles, and therefore with more
particles in their vicinity. This can also lead to a larger spreading of large particles compared
to small particles. Note however that this last effect can only be visible in the micro and meso

39



setting, since they account for the non-locality of the interaction. Indeed in the localization
limit (i.e for the macro model), the Gaussian functions integrate to 1 and as a result, the
interaction strength between particles of sizes r and s is only controlled by γ(r)γ(s).

Coming back to Fig. 4 panel B, we observe that the micro, meso and macro models are in
good agreement, and that the relative L1-error between the micro and the meso model decreases
as N increases (compare the dotted lines of Fig. 8 panel B). One observes again that the spatial
relative error between both models increases in time, as for the case with growth only (section
4.3.1). These results confirm that the discrepancies between the micro and meso models are
mostly controled by spatial interactions. As time goes, particles get farer from each other in
the microscopic setting, disminishing the number of interactions and leading to less agreement
with the mesoscopic model featuring an infinite number of particles.

A.2 No growth no fragmentation - no diffusion

Here, we go a step further on the analysis of the role of nonlinear interactions in the link between
the three models. To this aim, we perform simulations without growth, without fragmentation,
and set the linear diffusion coefficient D = 0. We adopt the same representation as previously
and show in Fig. 9 panel A the solution of the three models and in panel B the relative L1-errors
using the mesoscopic model as reference.
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B. Errors

A. time t = 60

Figure 9: Panel A: Numerical simulations without particle fragmentation, without growth and
for D = 0, at time t = 60. Panel B: L1 relative errors between the three quantities of interest
as function of time: Etot (left figure), Espatial (middle figure) and Esize (right figure). Dotted
lines are the relative errors between the meso and micro models for N = 100 (blue curves),
N = 500 (yellow curves) and N = 2000 (yellow curves). Black continuous lines are the relative
errors between the meso and macro models.

As one can see in Fig. 9, the size sorting effect previously observed is even stronger when
linear diffusion is deactivated (compare with Fig. 8). These are expected results since linear
diffusion tends to smoothen the solution. With nonlinear diffusion only, we observe a concen-
tration of cells in rings located on the boundary of the solution spatial support (see bottom
right figure of panel A) for the micro and meso models, while the radial density of the macro
model remains monotically decreasing from the center.

As one can observe in Fig. 9 panel B, the relative error between the meso and macro models
is larger with nonlinear diffusion only compared to the case with linear diffusion (compare
continuous black lines of Fig. 9 with Fig. 8 panel B). Altogether, these results illustrate the
effects of nonlocal interactions and highlight the essential smoothening role of linear diffusion.

41


