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ABSTRACT

Cooling devices grounded in solid-state physics are promising candidates for integrated-chip nanocooling applications. These
devices are modeled by coupling the quantum non-equilibirum Green’s function for electrons with the heat equation (NEGF+H),
which allows to accurately describe the energetic and thermal properties. We propose a novel machine learning (ML) workflow
to accelerate the design optimization process of these cooling devices, alleviating the high computational demands of NEGF+H.
This methodology, trained with NEGF+H data, obtains the optimum heterostructure designs that provide the best trade-off
between the cooling power of the lattice (CP) and the electron temperature (Te). Using a vast search space of 1.18×10−5

different device configurations, we obtained a set of optimum devices with prediction relative errors lower than 4 % for CP and
1 % for Te. The ML workflow reduces the computational resources needed, from two days for a single NEGF+H simulation to
10 s to find the optimum designs.

Introduction
The drastic rise in chip power consumption, due to its miniaturization and high-density packaging, is a significant issue that
leads to local hot spots in nanoelectronic devices [1, 2]. These hot spots degrade the performance, reliability and lifetime
of the devices, making it crucial to manage and mitigate thermal effects effectively [3, 4]. Traditional techniques to reduce
this issue, such as liquid cooling [5] or fan-based systems [6], involve the cooling of the entire chip, a procedure recognized
for its substantial power consumption [7]. It is noteworthy that approximately 40 % of the energy utilized by data centers is
dedicated to cooling [8]. Then, the challenge of managing self-induced heat [9] entails the exploration of innovative cooling
solutions, as the ones grounded in solid-state physics [10, 11, 12]. In this context, this study focus on one of the most promising
solid-state cooling devices, the asymmetric double-barrier heterostructures based on semiconductors, which had been validated
as an effective integrated-chip cooling solution [13, 14]. To capture the physics involved in these heterostructures, and,
specifically, to evaluate the energy transfer between the semiconductor lattice and the conduction electrons, the performed
simulations self-consistently couple the quantum non-equilibrium Green’s function formalism for electrons with the heat
equation (NEGF+H) [15, 16]. To assess the amount of heat removed from the device, we calculate the cooling power (CP)
which is defined as the energy transfer between the lattice and the electrons via phonon absorption. In addition, a virtual probe
technique is used to calculate the electron temperature in the quantum well (Te) and the electrochemical potential inside the
device [17, 18]. The overall cooling performance in this work is evaluated as a trade-off between CP and Te, depending on the
targeted application.

However, the high computational requirements make it essential to address a critical aspect of the implementation of the
accurate NEGF+H methodology. Performing a simulation of one double-barrier heterostructure configuration can extend for a
couple of days when executed on a single CPU core. Hence, the optimization of these devices is challenging for several reasons:
i) the high computational resources required for each accurate NEGF+H simulation; ii) the number of design parameters
to optimize; iii) the non-linear dependence between the design parameters and the cooling performance. These challenges
highlight the need to explore complementary methods, such as those based on machine learning (ML), which can provide
trend information to accelerate the device design process. Drawing on the success of these ML-based techniques in other
nanoelectronic studies [19, 20, 21, 22], we present a novel methodology using two neural network (NN). This approach aims to



identify heterostructures with optimal cooling performance while minimizing computational cost. Therefore, the combination
of NEGF+H with the proposed ML-based methodology, not only accelerates nanoelectronic device design but also unveils
crucial insights for optimizing cooling performance, marking a significant advancement in the searching for an integrated-circuit
cooling solution.

The contents of this work are distributed as follows. Section shows the asymmetric double barrier heterostructure description
with the explanation of how these devices operate. Then, the section presents the main results of this work, starting with the
ML workflow and the validation against NEGF+H (section ), together with the structure optimization of the devices (section ).
The discussion is presented in section and the details of the methods used in this work are presented in section distributed in:
the NEGF+H simulation methodology (section ), dataset description and pre-processing (section ), ML methodology (section ),
and metrics definition (section ). Finally, after data (section ) and code (section ) availability, the main conclusions of this work
are summarized in section .

Device description
Although the workflow presented in this work can be applied globally to a large number of nanoelectronic or cooling devices
based on solid-state physics, as a proof of concept, we focus on the asymmetric double-barrier heterostructures.

These heterostructures are designed to contain a GaAs quantum well (QW) separated by two barriers from the GaAs:Si
emitter and collector, whose electrostatic potential profile is shown in Fig. 1. The GaAs:Si emitter and collector have donor
concentrations of 1018 cm−3. The AlAs first barrier (b1) is defined by its length (Lb1), fixed to a constant value of 1 nm,
and its height (hb1), determined from the band offset between AlAs and the emitter. The QW GaAs is placed between
the two barriers defined by the QW length (LQW ). The second barrier (b2) is made of Alγ Ga1−γ As with varying fraction
of Al concentration (γ). The height of the b2 (hb2) is proportional to γ depending on the material band gap, defined as
Eg(Alγ Ga1−γ As)=Eg(GaAs)+1.247·γ for γ<0.45 [23]. The b2 is defined by the length (Lb2), being a thicker barrier to prevent
tunneling of electrons. Applying a bias (V ) between the two contacts leads to the resonant tunnelling injection of electrons
in the QW from the emitter, and subsequently, the extraction of electrons via thermionic emission above the b2. The design
parameters chosen for the optimization in this study are the LQW , γ , and Lb2, together with V .

V

W1

LQW Lb2

hb2∝𝛾

EFc

EFe

Eo

GaAs:Si AlAs GaAs Al𝛾Ga1-𝛾As GaAs:Si

W1=Eo-EFe

W2

W2=Eb2-Eo

Eb2

Lb1

hb1

Figure 1. Potential profile of the double-barrier heterostructure based on AlGaAs. Lb1, LQW , and Lb2, are the lengths of the
b1, QW, and the b2, respectively. The height of the first barrier (hb1) is determined from the band offset between AlAs and the
emitter, and the height of the second barrier (hb2) is proportional to γ , which is the fraction of aluminium in the alloy. V is the
bias between the Fermi energy of the emitter (EFe) and the Fermi level of the collector (EFc), V=EFe−EFc. W1 is the energy
interval between the QW ground state energy (E0) and EFe. The W2 is the energy interval between E0 and the conduction band
edge of the b2 (Eb2).

These design parameters, combined with the bias, determine the energetic properties of the devices by defining the activation
energies W1 and W2 shown in Fig 1. The first corresponds to the energy interval between the QW ground state energy (E0) and
the Fermi energy of the emitter (EFe), and the latter is equal to the energy interval between the E0 and the conduction band edge
of the b2 (Eb2). W1 and W2 are very relevant since they represent the energy required for an electron to be transmitted from
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the emitter to the collector. Cooling in this structure relies on two related effects, the evaporative cooling of electrons [13],
lowering the Te, and the absorption of phonons by the electrons [24], cooling the lattice, which is measured with the CP. These
two mechanisms are linked through the electron-phonon coupling [15].

Results
The selected cooling devices rooted in solid-state physics, the double-barrier heterostructures, are simulated using NEGF+H
(described in section ), which allows to accurately determine the electrical and thermal properties of the device. The search for
the optimal cooling device is highly computational demanding due to the large execution times required for these simulations (a
few days each), and the large number of combinations of design parameters that influence its performance. To speed up this
process, we propose a novel optimization workflow based on two ML models, which is agnostic and can be applied to the study
of different nanoelectronic devices.

Machine learning workflow and validation

Device intrinsic gaps
(W1, W2)

Design parameters
(Lb1, LQW, Lb2, γ)

Material energy gaps

PP0

PCA(PP0)

PP0 PCs
(x1,x2, x3, …, x16)

V

MLP1 PP-PP0 PCs
(y1,y2, y3, …, y11)

PCA-1 (PP-PP0)

PP

Cooling properties
(CP, Te)

PP-PP0 PP PCs
(x’1,x’2, …, x’19)

+PP0

MLP2

PCA (PP)

Figure 2. Machine learning procedure. From the combination of the design parameters (Lb1, LQW , Lb2, γ) and the material
energy gaps, the first solution of the potential profile (PP0) is constructed, and its features are reduced by applying the principal
component analysis (PCA(PP0)) to obtain the PP0 principal components (PCs). The PP0 PCs combined with the V are the
inputs of the first multi-layer perceptron (MLP1), which gives the difference between potential profile (PP) and PP0 (PP-PP0)
PCs as the output. The PP of the device is obtained by applying the inverse principal component analysis (PCA)
(PCA−1(PP-PP0) and adding the PP0. The inputs of the second multi-layer perceptron (MLP2) are the PP PCs obtained from
the application of PCA(PP) to the PP. Finally, the MLP2 provides, as output the information about the cooling properties (CP,
Te) and the device activation energies (W1, W2).

The presented methodology combines two ML-based models trained with data from simulations performed with the accurate
NEGF+H. This ML workflow is proposed to optimize the thermionic cooling heterostructures, significantly decreasing the
computational cost and speeding up the search process for the optimum device. As an intermediate step, this methodology
is capable of obtaining the electrostatic potential profile (PP) to make a realistic evaluation of the thermal and energetic
properties.This intermediate step provides additional information about the different device configurations and helps to improve
the subsequent prediction of the thermal and electrical properties of the devices.

The ML workflow is shown in Fig. 2, whereas the design specifications are exhaustively described in section . In order
to improve the accuracy of the results and to reduce the complexity of the NN models, various data processing operations
were carried out, which are described below. The first step is to generate the first solution of the potential profile (PP0) from
the design parameters (Lb1, LQW , Lb2, γ) and the energy intervals of the different materials that form the heterostructure.
Subsequently, the principal component analysis (PCA) [25] is applied to reduce the features of the PP0, drastically decreasing
the number of significant features used in the first multi-layer perceptron (MLP1) NN. This feature reduction implies a decrease
of the computational complexity of MLP1. An extended PCA criterion is to set the number of principal components (PCs) to
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retain the 95 % of the cumulative variance [22], but in our case this criterion does not provide enough resolution for the perfect
reconstruction of the potential profile (the sharpness of the profile is essential to correlate electronic and thermal properties).
Then, to store the maximum amount of variance, the number of PCs is calculated to retain the 99.99 % of the cumulative
variance, thus reducing the number of features that reproduce the PP0 from 1200 to 16. The combination of the PP0 PCs
(x1,x2, ...,x16) with the applied bias (V ) constitute the input of the MLP1 NN described in section below.

The MLP1 model provides, as shown in Fig. 2, the difference between electrostatic potential profile (PP) for the applied bias
and PP0 (PP-PP0) PCs (y1,y2, ...,y11) as output. From the PP-PP0 PCs, the PP is reconstructed using the inverse transformation
of the PCA (PCA−1(PP-PP0)) and adding the PP0 (see Fig. 2). The training process for the MLP1 model takes just 11 min,
contrasting with the runtime of a couple of days (depending on the applied bias) required for one simulation with the NEGF+H
methodology. This highlights the remarkable reduction in computational time between these two approaches.

The features of the PP are then reduced with the above-mentioned PCA criteria, thus defining the PP with 19 features
(x′1,x

′
2, ...,x

′
19) instead of 1200. Note that, the number of PCs corresponding to PP are larger than for PP0 because of the higher

complexity of its shape (see Fig. 2). The PP PCs are the input of the second multi-layer perceptron (MLP2) whose specifications
are shown in section . The MLP2 gives as output the CP and the Te that assess the device’s performance in managing thermal
characteristics. Additionally, the W1 is predicted with the MLP2 and the W2 can be calculated from other variables, as seen in
Fig. 1:

W2 = Eb2 −E0, (1)

where E0=EFe+W1, therefore, W2 can be defined from known variables as EFe and Eb2 are extracted from the shape of the
predicted PP (see Fig. 1):

W2 = Eb2 −EFe −W1 (2)

The total training time for MLP2 amounts to just 1 min, emphasizing its efficiency in swiftly generating essential insights for
device optimization.

In Fig. 3, there are shown the outcomes of MLP1 due to the training and testing NN processes. It is noteworthy to observe
in the top figures a significant correlation for each point of the PP, denoted as E, between the NEGF+H simulations (x-axis)
and the predictions generated by MLP1 (y-axis). This correlation is illustrated in Figs. 3(a)-(b) for both the training (a) and
testing (b) subsets. The presented correlation in Figs. 3(a)-(b) highlights the accuracy of the PP predictions with our model. As
an example of the quality of the prediction, Figs. 3(c)-(d) present the comparison between the simulated (NEGF+H) and the
predicted (MLP1) PP for two randomly selected profiles, where the vertical axis is E and the horizontal axis is the distance
from the start of the emitter contact. This bottom figures correspond to two different PP from the training (Fig. 3(c)) and the
testing (Fig. 3(d)) subsets.

To assess the performance of MLP2, Fig. 4 shows the comparison between simulated and predicted CP (a)-(b), Te (c)-(d),
W1 (e)-(f), and W2 (g)-(h) for the training (left) and test (right) subsets. The correlations of all the outputs have coefficient
of determination (R2) (see definition in section ) higher than 0.9977, and 0.9876 for training and test subsets, respectively.
Considering the possible sources of error propagated by the prediction of W1 with MLP2, the PP with MLP1 and the extraction
of Eb2 and EFe from this PP, the R2 of 0.9928 highlights the good prediction of W2 values.

The performance metrics (RMSE, and R2 defined in section ) for each NN (MLP1 and MLP2) outputs are shown in the
Table 1. These RMSE and R2 values are a clear indicative of the prediction accuracy of the ML workflow when trying to predict
the energetic and thermal properties of this cooling heterostructures. As expected, due to possible features not included in the
training set selection, the accuracy of the subset test is slightly lower. Then, once the accuracy of the models has been proved,
it is important to take into account the clear advantage of using our ML procedure, the computational savings. Whereas one
single NEGF+H simulation takes a couple of days, the total training time for the two NN models (MLP1, and MLP2) is 12 min.

Model MLP1 MLP2
Magnitude PP [meV] CP [Wmm−2] Te [K] W1 [meV] W2 [meV]

Train RMSE 4.10 0.06 3.26 1.49 3.36
R2 0.9993 0.9986 0.9992 0.9991 0.9984

Test RMSE 7.26 0.10 6.12 3.13 4.34
R2 0.9895 0.9876 0.9909 0.9938 0.9928

Table 1. Train and Test root-mean-square error (RMSE) and coefficient of determination (R2) metrics for MLP1 and MLP2.
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Figure 3. The correlation for each point of the PP, denoted as E, between the NEGF+H simulations and MLP1 predictions is
depicted in the top figures for the training (a) and test (b). The Pearson’s coefficient (CC) equal to 1 shows the perfect
correlation line between prediction and simulation. An example of the reconstructed PP of MLP1 predictions in comparison to
NEGF+H simulations, for randomly selected profiles, is illustrated in the bottom figures from both the training subset (c) and
the test subset (d). The variable x is the distance from the start of the emitter contact.

Structure optimization
Once the ML procedure was correctly calibrated and validated, the next step is to perform the prediction of the energetic and
thermal properties of the asymmetric double-barrier heterostructure. To predict the optimum heterostructure, a search space
is generated from the simulated dataset boundaries: LQW between 3.2 and 7.2 nm, Lb2 between 50 and 200 nm, γ between
0.05 and 0.30, and V between 0.1 and 1.0 V. The dataset from NEGF+H simulations, composed by 630 different device
configurations, is increased 188 times generating for the ML predictions a search space of 1.18×105 configurations of design
parameters.

LQW and γ impact on electrostatic properties
To analyze the physical insights of the presented heterostructures, the relation between two crucial design parameters (LQW
and γ) and the electrostatic properties of the devices (W1 and W2) is studied. To simplify the multidimensional analysis, the
predicted data was filtered to select the best CP performance device depending on LQW and γ values.

In Fig. 5(a) a colour map for W1 is shown as a function of LQW and γ . It can be seen that increasing the LQW lowers W1
due to the decrease of E0. The relation between γ and W1 is not linear, with a maximum at γ∼0.15 and two local minimums at
γ∼0.05 and γ∼0.30. Note that, for γ>0.15 and LQW>4 nm, there is a region with negative W1 values because E0 is below
the EFe. In this figure, the highlighted contour levels for the main injection mechanisms of electrons in the QW correspond
to: the resonant tunnel injection W1=0 meV, the thermalization energy at room temperature W1=kBT∼26 meV, and the polar
optical phonon (LO phonon) absorption energy W1=35 meV [26]. Fig. 5(b) shows a schematic explanation for each injection
mechanism of electrons in the QW, depending on W1. One of these presented mechanisms, the LO phonon absorption in the
emitter, is the first contribution to the cooling process inside the device [13].

Fig. 6(a) shows a colour map representing the linear increase of W2 with LQW and γ . This linear grow is explained by
two reasons: (i) increasing LQW decreases E0 because the QW is widening; (ii) hb2 is directly proportional to γ (aluminium
concentration). Fig. 6(b) presents the mechanisms that lead to the cooling of the device via phonon absorption, and electron
thermionic emission from the QW. These mechanisms are the electron-phonon scattering, the electron thermal excitation at
room temperature of the electrons, and the tunnelling through the b2. Taking into account the cooling mechanisms for the
lattice, W2 will be the most relevant parameter to evaluate the cooling performance of the device (CP) and the temperature of
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Figure 4. Performance of MLP2 on training (left) and test (right) subsets for the output variables CP (a)-(b), Te (c)-(d), W1
(e)-(f), and W2 (g)-(h). The black line (CC=1) is the line of perfect correlation, and y-axis error bars correspond to the
root-mean-square error (RMSE).
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Figure 5. W1 dependence with design parameters LQW and γ (a). Diagram of the main mechanisms for electron tunnel
injection in the QW (b).
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Figure 6. W2 dependence with design parameters LQW and γ (a). Diagram of the main electron mechanisms for thermionic
emission from the QW (b).

the remaining electrons in the QW (Te).

Device optimization
The best performing device is determined by the impact of the activation energies on the cooling properties. It becomes clear
that the cooling is primarily influenced by W1, and W2 within the device. Furthermore, the sharpness of b2, defined by Lb2 and
V , facilitates tunnelling through b2, influencing the overall cooling efficiency of the system.

Fig. 7 presents the CP (a) and Te (b) dependence on W1, and W2. Fig. 7(a) shows that the devices reaching the highest CP
are clustered around the resonance injection point (W1∼0 meV), and the W2 values exceed the second phonon absorption in
the QW (W2>70 meV). Then, most of the thermionic emission occurs through b2 tunnelling. The benchmark criterion chosen
to filter the best-performing devices is CP≥5.6 Wmm−2.

In Fig. 7(b) the hatched area delimits the region where Te falls below the room temperature (Troom). A substantial number
of devices, characterized by W1>−50 meV and W2>25 meV, exhibit Te lower than Troom. Consequently, the benchmark
criterion utilized for selecting the best-performing devices is Te≤290 K.

These results show that CP and Te are not directly correlated due to their distinct underlying mechanisms: CP is influenced
by phonon absorption, while Te depends on the allowed energy levels in the QW.

Nevertheless, certain cases exhibit a favourable trade-off between both cooling performance magnitudes (CP≥5.6 Wmm−2,
and Te≤290 K). The details of these optimal devices are presented in Table 2. Additionally, we conducted subsequent NEGF+H
simulations for these devices to validate the obtained results that are also shown in the Table 2, together with the relative error
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Figure 7. Colour maps for CP (a) and Te (b) as a function of the activation energies W1 and W2. The red contour serves as a
benchmark criterion for the highest performance devices. The hatched area delimits the region where Te falls below the Troom.

(σr) between both values. The σr values (see section: Metrics) show the accuracy of the double multi-layer perceptron (MLP)
workflow to optimize the cooling heterostructures. Note that, all σr are lower than the 4 % when predicting the CP, and lower
than the 1 % for Te, demonstrating the precision of the model predictions.

LQW [nm] Lb2 [nm] γ Dev. V [V] CP [Wmm−2] Te [K]

3.2 50 0.30 (1)

0.7
Pred. 6.16 284.7
Val. 6.16 286.4
σr [%] 0.0 0.6

0.8
Pred. 6.40 287.0
Val. 6.65 285.6
σr [%] 3.7 0.5

3.6 50

0.28 (2) 0.7
Pred. 6.49 287.2
Val. 6.29 286.6
σr [%] 3.2 0.2

0.29 (3)

0.7
Pred. 6.45 285.0
Val. 6.48 288.0
σr [%] 0.5 1.0

0.8
Pred. 6.29 289.5
Val. 6.36 289.9
σr [%] 1.1 0.1

Table 2. Details of the three predicted optimal device configurations, validated through posterior NEGF+H simulations. The
relative error (σr) between the predicted and simulated properties is provided to compare the results.

Discussion
The presented ML workflow exhibits remarkable accuracy in predicting various critical parameters to optimize thermionic
cooling heterostructures. The high correlation coefficients and low RMSE observed in both MLP1 and MLP2 validate the
reliability of the predictions. This suggests that the ML models successfully capture the intricate relationships within the dataset,
enabling an accurate estimation of key device properties.

The efficiency demonstrated in optimizing thermionic cooling heterostructures implies that the ML approach could be
extended to tackle the complexities of advanced devices. The adaptability of the presented methodology, based in the relation
between the design parameters, the PP and the cooling properties, suggests its viability in addressing the challenges posed by
more complex nanoelectronic and cooling devices. This double NN workflow is agnostic and could be applied to a wide range
of different devices, as it is independent of the internal structure or physical system mechanisms. It operates by extracting the
relevant features of an analyzed system, and accelerates the search of the optimal solution for a set of input design parameters.
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In addition, the application of transfer learning techniques [27] were previously demonstrated to be effective to update and adapt
the trained models by adding new features to them [20]. The implementation of these techniques could be used to increase the
number of design parameters (length or height of the first barrier) or to evaluate more complex heterostructures such as the
quantum cascade cooler [28] (a greater number of potential barriers). In addition, as it is an agnostic tool depending on the
relationship between the design parameters and the potential profile, it could easily be applied to other types of material-based
cooling heterostructures or to semiconductor devices for other applications.

This approach, which combines ML with complex and accurate simulation techniques (NEGF+H), has demonstrated that is
capable to accelerate the development of a new-generation of circuit-integrated cooling devices.

Methods
In this section, the methods used in this work are presented. It includes: the NEGF+H simulation methodology (section ), the
dataset description (section ), the ML methodology (section ), and the definition of the metrics used in this work (section ).

NEGF+H simulation methodology
To investigate the electron and heat transport in these semiconductor heterostructures, we use an in-house built simulation
software [29] that couples self-consistently the non-equilibrium Green’s function formalism for electrons [30, 31] with heat
and Poisson equations (NEGF+H) [32]. This methodology is able to reproduce key aspects of the physics, taking into account
thermal, and quantum effects, and the electron transport formalism.

This method relies on the self-consistent calculation of the retarded Green’s function at energy E and transverse wavevector
kt that reads:

Gr
kt
= [(E −U)I −Hkt −Σ

r
L,kt

−Σ
r
R,kt

−Σ
r
S,kt

]−1, (3)

where U is the electrostatic potential energy, I is the identity matrix, and Hkt is the effective mass Hamiltonian. Σr
L(R),kt

are
the self-energies for the left (L) and right (R) semi-infinite device contacts [33], Σr

S,kt
is the self-energy calculated within

the self-consistent Born approximation (SCBA) [34, 35, 36] that accounts for the interaction between electrons and both the
acoustic phonons and polar optical phonons.

The lesser/greater Green’s functions are then obtained using the following identities:

G≶
kt
= Gr

kt
(Σ≶

L,kt
+Σ

≶
R,kt

+Σ
≶
S,kt

)Gr†
kt
, (4)

Σ
r =

1
2
[Σ>−Σ

<], (5)

where the total scattering energy for a given transverse mode kt can be decomposed into

Σ
≶
S,kt

= Σ
≶
AC,kt

+Σ
≶
POP,kt

, (6)

where Σ
≶
AC,kt

is the self-energy for acoustic phonons calculated within the elastic assumption at position j along the transport
axis that can be expressed as [37, 38]

Σ
≶
AC( j, j;E) = ∑

k′t

π(2nk′t +1)
Ξ2kBTAC( j)

ρu2
s

G≶
k′t
( j, j;E), (7)

where Ξ is the deformation potential, ρ is the mass density, us is the sound velocity and TAC is the temperature of acoustic
phonons. We assume interactions with acoustic phonons to be local, and therefore only consider the diagonal part of the Green’s
function [39].

The scattering self-energy for polar optical-phonons (Σ≶
POP,kt

) is defined in equation (8) and we use the diagonal expression
that have been proposed in previous work by Moussavou et al. to effectively describe their long range interactions [40]. For a
given wavevector kt , we have :

Σ
≶
POP,kt

( j, j;E) =
λM2

2πS ∑
k′t

[
(nL( j)+1)G≶

k′t
( j, j;E ± h̄ωLO)+(nL( j))G≶

k′t
( j, j;E ∓ h̄ωLO))

]

×
∫

π

π/Lt

π(2nk′t +1)√
(kt − k′tcosθ)2 +(k′tsinθ)2

dθ , (8)
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where nL( j) = (e(h̄ωLO)/(kBTPOP) − 1)−1 with h̄ωLO the LO phonon energy and TPOP their temperature, M is the Fröhlich
factor, θ is the angle between kt and k′t . λ is a scaling factor correcting for the reduced strength emerging from the diagonal
approximation. The value λ = 8 used in this paper has been obtained using the physically-based analytical model developed
in [40].

Obtaining the Green’s function then yields many physical properties such as the electron current density spectrum (in
AeV−1m−2) J j→ j+1 from position j to j+1:

J j→ j+1(E) =
e
h̄ ∑

kt

2nkt +1
S

[H j, j+1G<
kt , j+1, j(E)−G<

kt , j, j+1(E)H j+1, j], (9)

where H j, j+1 corresponds to the nearest-neighbour hopping term in the discretized tight-binding-like Hamiltonian. From this
expression we can deduce the electronic energy current [41]:

JE
j→ j+1 =

∫
EJ j→ j+1(E)dE, (10)

whose first derivative corresponds to the cooling power density (in Wm−3):

Q j =−∇ j · JE (11)

Q j defines the energy transfers between the lattice and the electrons and serves as a source term allowing us to couple electron
transport equations and heat equation. Finally, integrating the negative part of Q j over direction of transport yields the cooling
power (CP), representing the amount of heat removed from the device.

As a post-processing step, we calculate using the Büttiker probe method [42, 43, 44] Te( j) and µe( j), the local electronic
temperature and electrochemical potential [45]. This method relies on weakly coupling the device to a simulated probe defined
by the following self-energy:

Σ
>( j, j;E) =−i[1− fFD(E,µp( j),Tp( j))]× i

[
G>( j, j;E)−G<( j, j;E)

2π

]
νcoup (12)

Σ
<( j, j;E) = i fFD(E,µp( j),Tp( j))× i

[
G>( j, j;E)−G<( j, j;E)

2π

]
νcoup (13)

where fFD(E,µp( j),Tp( j)) is the Fermi-Dirac distribution of the probe depending on the electrochemical potential µp( j) and
the electronic temperature Tp( j). i{[G>

j, j(E)−G<
j, j(E)]/2π}] is the local density of states, common to the probe and the device,

and νcoup is the energy independent coupling strength between the probe and the system.
By connecting the probe to the device, a net electron and energy current is produced. It can be calculated as follows, using

the previously determined Green’s functions of the device:

Iγ
p( j)≡

∫
∞

0

(
E
e

)γ

[Σ>( j, j;E)G<( j, j;E)−G>( j, j;E)Σ<( j, j;E)]dE (14)

in which γ = 0 or 1 for the electron or energy current, respectively.
The principle is now to find [Tp; µp] such that I0

p and I1
p vanish. The probe is then in a local equilibrium with the device,

itself arbitrarily out-of-equilibrium. The temperature and chemical potential of the probe are therefore accurate measurements
of the device thermodynamic properties.

In order to find the vanishing conditions of the currents in each point of the device, we solve the two coupled non-linear
equations (14) using a Newton-Raphson algorithm [46].

Dataset description and pre-processing
The dataset used for this work is the result of the NEGF+H simulator combined with the Büttiker probes explained in section .
The simulated dataset includes the design parameters of the device (Lb1, LQW , Lb2, γ), the V , the calculated PP, the activation
energies (W1, W2), and the thermal properties (CP, Te). To generate a representative dataset, the simulated devices were
selected to generate an equidistant four-dimensional mesh in the hypercube composed by four variables: LQW , Lb2, γ , and V .
Note that, Lb1 is assumed to be constant. In these conditions, the dataset comprises 630 mesh points. Before performing any
pre-processing step, we calculate the PP0 from the design parameters and the material energy gaps, which is also stored into the
dataset.
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To use the data from simulations in the ML workflow, a pre-processing is carried out. The dataset (630) is divided in a
two-step process into subsets. In the first step, an 80/20 % random split is employed to create a primary training set and a
testing set (126). Subsequently, the training set from the initial split is further divided in the second step, using an 80/20 %
random split, resulting in the final training subset (403) and a validation subset (101). The split ratio is extremely dependant
on the number of hyperparameters used in the neural networks and on the characteristics of the dataset (size of the dataset,
representativity of relevant features on the dataset), and this parameter then needs to be optimized. In our case this optimization
was carried by probe-essay initial tests. The first test consisted of a 90/10 % split, which resulted in the overfitting of the NNs
as the dataset was not too large to use this percentage. The second test had the opposite response, when applying the 70/30 %
split (common for small datasets) it was found that the NNs were not capable to capture the effect of all the desired features.
Hence, the two-step 80/20 % approach ensures a robust model training, while providing subsets for fine-tuning and evaluation,
enhancing the reliability of our results.

As the dataset is composed by variables ranging in different order of magnitudes, it is important to normalize each variable
to avoid divergences in the loss function optimization process. The scaling of our dataset has been done with the Scikit-learn
function MinMaxScaler [47]. This tool normalizes the data to the maximum and minimum values (x′max and x′min) of each
variable (x′) in a selected range [rmin, rmax], as follows:

x =
x′− x′min

x′max − x′min
· (rmax − rmin)+ rmin (15)

We assume a range between rmin = 0 and rmax = 1. The scaling object from MinMaxScaler is fitted to the training subset.
Then, the validation and test subsets are transformed with the fitted scaling object. With this procedure, we ensure that the
distributions of the test and validation subset are not collected in the training subset.

Machine learning methodology
To build both NNs we used the Pytorch 1.13.1 [48] and the Scikit-learn 1.0.2 [47] libraries, with Ray Tune 2.2.0 [49] for the
hyperparameter optimization, on Python 3.8. The process analyzed in this work is a non-linear regression problem, therefore,
the architecture chosen is the MLP [50]. The activation functions used in each perceptron for both MLPs is the hyperbolic
tangent [51]. The batch size for the train and validation subsets is 64, and the selected loss function is the mean-square error
(MSE).

The MLP1 structure consists of an input layer with 17 perceptrons representing the PCs of the PP0 [52] combined with
the bias voltage (V ), two hidden layers with 42 and 34 perceptrons, and an output layer with 11 perceptrons. This output layer
represents the PCs of the difference between PP and PP0 (PP-PP0 PCs) which allows to obtain the PP-PP0 curve. PP-PP0 as
the output of the MLP allows working with a continuous and derivable function (see Fig. 2). This implies a reduction of the
noise produced by the backpropagation process in the MLP1 optimization. In addition, the number of PCs needed to reproduce
PP-PP0 is smaller than for PP, improving the accuracy of our non-linear regression model as the number of input perceptrons
(17) is larger than the number of output perceptrons (11). The optimization algorithm used in the minimization of the loss
function for the MLP1 is the stochastic gradient descent (SGD) with momentum 0.9 [53]. Also, an adaptive learning rate
scheduler technique [54] is applied to avoid the local minimums when using this optimization algorithm. With the described
structure and the mentioned post-processing, the MLP1 has the capability to predict the PP from the PP0 (an analogy of solving
NEGF+H).

The MLP2 is designed with an input layer of 19 perceptrons representing the PCs of the PP, two hidden layers both with
15 perceptrons, and an output layer with 3 perceptrons representing the output thermal parameters CP, Te, and the energy
interval W1. For MLP2 the optimization algorithm used is the adaptive moment estimation (Adam) [55]. Note that, the W2
(W2) can be extracted from W1 and the PP of the device.

To a better understanding of the input and outputs of the double NN procedure, section includes a step-by-step explanation
of the ML workflow shown in Fig. 2.

Metrics
To evaluate and compare the accuracy of the model predictions, we have considered two performance metrics, the coefficient of
determination (R2) and the root-mean-square error (RMSE).

R2 provides information about the quality of the model predictions, being a statistical measure of the correlation between
the simulated data and the predicted one. The R2 is defined as:

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 (16)
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where yi is the i-th simulated value, ŷi the i-th model prediction, ȳ = n−1
∑

n
i=1 yi the mean of the simulated values and n the

number of evaluated points. As can be seen, the shorter the gap between the simulation and prediction, the nearest the R2 value
will be to 1.

RMSE is used to evaluate the quality of the regression model (in the units of the studied variable) and it is defined as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (17)

As the gap between simulation and prediction narrows, the RMSE also decreases, indicating that models with the lowest RMSE
values exhibit superior accuracy.

Finally, the relative error (σr) used to validate the prediction of the best configurations against the NEGF+H results, is
defined as follows:

σr =

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (18)

This metric is a relative percentage, and therefore, values closer to 0 correspond with more accurate predictions.

Data availability
Part of the simulated dataset for training both neural network models and predicting the optimal asymmetric double-barrier
semiconductor based heterostructures is available in the following Zenodo repository: https://doi.org/10.5281/
zenodo.11032095.

Code availability
The code used for the presented ML workflow is also available at [56].

Conclusions
The presented workflow, based in two NN models trained with data from NEGF+H simulations, demonstrates its effectiveness
in optimizing cooling devices based on solid-state physics as the thermionic cooling heterostructures. By significantly reducing
computational costs and accelerating the search for optimal device configurations, the presented ML-based workflow could
be a good complement to traditional simulation techniques as the NEGF+H. An additional advantage lies in the capability
of our approach to derive the potential profile (PP), providing insights into the physics of the devices and enabling a realistic
evaluation of thermal and energetic properties.

Evaluation metrics, including the RMSE and R2, confirm the high accuracy of both multi-layer perceptron models (MLP1
and MLP2). The correlations between simulated and predicted values for PP, cooling power (CP), electron temperature in the
quantum well (Te), and the activation energies (W1, and W2), are robust, emphasizing the reliability of our machine learning
workflow.

Moving beyond the assessment of MLP1 and MLP2, the methodology’s efficiency is demonstrated by the fast training
times (11 min and 1 min, respectively) compared to traditional NEGF+H simulations (couple of days for a single simulation).
With the calibrated and validated ML procedure, a wide search space is created for predicting optimal device configurations,
expanding the input simulated dataset from 630 to 1.18×105 different design parameter configurations.

The impact of QW length (LQW ) and fraction of Al concentration (γ) on W1 and W2 is analyzed, revealing insights into
device performance. W1 exhibits a linear relationship with LQW and nonlinear with γ , offering information on electron injection
in the quantum well (QW). W2 linearly increases with LQW and γ . These activation energies serve as critical indicators for
optimizing device operation and understanding cooling mechanisms in the QW: the electron-phonon scattering and the electron
thermionic emission.

Additionally, the thermal characteristics of the optimal devices were confirmed through subsequent simulations using
NEGF+H methodology. The obtained results show relative errors below the 4 % for the CP, and below the 1 % for the Te.

In conclusion, our machine learning methodology demonstrates exceptional accuracy, efficiency, and utility in optimizing
thermionic cooling heterostructures. The ability to swiftly predict device properties and explore a vast search space, convert
this approach in a valuable tool for advancing the design and the performance of complex devices like these semiconductor
heterostructures.
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