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Viewpoint

Progress and future directions for
seaweed holobiont research

Summary

In the marine environment, seaweeds (i.e. marine macroalgae)

provide a wide range of ecological services and economic benefits.

Like land plants, seaweeds do not provide these services in isolation,

rather they rely on their associated microbial communities, which

togetherwith the host form the seaweedholobiont.However, there

is a poor understanding of the mechanisms shaping these complex

seaweed–microbe interactions, and of the evolutionary processes

underlying these interactions. Here,we identify the current research

challenges and opportunities in the field of seaweed holobiont

biology. We argue that identifying the key microbial partners,

knowing how they are recruited, and understanding their specific

function and their relevance across all seaweed life history stages are

among the knowledge gaps that are particularly important to

address, especially in the context of the environmental challenges

threatening seaweeds. We further discuss future approaches to

study seaweed holobionts, and how we can apply the holobiont

concept to natural or engineered seaweed ecosystems.

Introduction

Seaweeds – including red, green, and brown macroalgae – are
photosynthetic multicellular organisms that grow in various
habitats, from intertidal zones to deep waters, and are essential
for the functioning of marine ecosystems. They produce oxygen
and organic matter that support the marine food web, and also
provide habitat, shelter, and food for a diverse range of marine
animals, including finfish, shellfish, crustaceans, and invertebrates
(e.g. Cotas et al., 2023). Seaweeds also enhance coastal protection
by reducing wave energy and erosion (Gao et al., 2021). They can
modulate biogeochemical cycles by absorbing nutrients and carbon
dioxide from the water column and releasing them back into the
atmosphere or sediment (Gao et al., 2021). Seaweeds can also
ameliorate ocean acidification and hypoxia by buffering pH and
oxygen levels (Xiao et al., 2021). As with land plants, seaweeds do
not function in isolation but are host to a wide range of
microorganisms (Egan et al., 2013; Cavalcanti et al., 2018). These
include both epi- and endosymbiotic prokaryotes and eukaryotes,
which together with the seaweed host make up an assemblage
referred to as a holobiont.

Although the holobiont concept is broadly accepted among
biologists, the interpretation of what constitutes a holobiont is
continually evolving and can vary greatly between research
disciplines (Skillings, 2016). Until now, most seaweed studies
defined the holobiont as the sum of all the living components
(microbes and host) and their interactions that make up one
ecological functional unit (Egan et al., 2013). This simple
definition has proven useful for uncovering the key roles
diverse microbial symbionts play in the health (e.g. Saha &
Weinberger, 2019; Li et al., 2022a) and functioning of
seaweeds (e.g. Wichard, 2015; Dittami et al., 2016), but is
limited because it does not discriminate between core and
transient symbionts, nor does it differentiate ecological
interactions from those that have an evolutionary dependence.

While a more refined definition of the seaweed holobiont is
required, the diversity of seaweeds and the diverse ecological niches
they inhabit, combinedwith their complex life histories (Lee, 2018;
see Box 1) make this a challenging task. Evidence to date suggests
seaweed holobionts are predominantly ecological units, but few
studies have explicitly assessed co-evolution between seaweeds and
theirmicrobial symbionts (Hollants et al., 2013b). Baseline data on
temporal and spatial differences in themicrobiome, across an alga’s
thallus over its lifetime and under different environmental
conditions, will contribute to our understanding of seaweed
holobionts, but obtaining these data will require a substantial
collaborative effort. Accurately defining the seaweed holobiont
therefore presents both challenges and opportunities. Here, we
highlight the progress made so far in our understanding of the
seaweed holobiont and identify areas of research that require urgent
attention. We further argue that understanding seaweeds as
holobionts has the potential to contribute towards sustainable
seaweed aquaculture and the development of innovative technol-
ogies to mitigate the impacts of anthropogenic stressors on natural
ecosystems.

Uncovering the microbial partners of the seaweed
holobiont

Seaweeds are colonised by a diverse group of microbes, including
bacteria, eukaryotes, archaea, and viruses. Associations range from
nonspecific epibioses, where thalli of seaweeds provide a surface for
the colonisation of biofilm-forming microbes, to more intimate
relationships, where the algal host and associated microbes (either
as epibionts or endosymbionts) are dependent on each other (Wahl
et al., 2012). The symbiotic relationships between seaweeds and
their microbial partners have garnered significant attention, with
research shedding light on the intricate dynamics and functional
significance of these associations (Hollants et al., 2013a; Egan
et al., 2013; Singh & Reddy, 2014; Wichard, 2015; Saha &

364 New Phytologist (2024) 244: 364–376 � 2024 The Author(s).
New Phytologist � 2024 New Phytologist Foundation.www.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Forum

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.20018&domain=pdf&date_stamp=2024-08-13


Weinberger, 2019; see also the Determining the function of
individual members of the seaweed holobiont section).

Bacteria have received the most attention and are considered the
key microbial symbionts of seaweeds (Egan et al., 2013).
The current consensus is that bacterial communities vary
considerably depending on host-, geographic-, and environmental
factors, and along the thallus and over different life history stages
(e.g. Roth-Schulze et al., 2018; Lemay et al., 2021; Wood
et al., 2022; van der Loos et al., 2023a; Syukur et al., 2024). These
observations suggest that while similarities exist at high taxonomy
levels (e.g. phylum or order), not all seaweeds harbour a common

set of core bacterial species or even genera. However, most of our
understanding of these communities is based on individual
datasets, the majority of which have low spatial and/or temporal
resolution, making the identification of ‘core’ or even ‘common’
bacterial partners of seaweeds a challenge. Nevertheless, with the
increasing availability of microbiome data and improvements to
data analyses (Saha et al., 2020; Wood et al., 2022; Lu et al., 2023;
van der Loos et al., 2023b; Khan et al., 2024), opportunities to
re-examine these paradigms are arising. Indeed, common seaweed
symbiont genera are starting to emerge, such as those belonging to
the genusGranulosicoccus commonly observed in brown and green

Box 1 Diversity of macroalgal life cycles

Three different life cycles are generally distinguished in seaweeds, based on the ploidy levels of the life stages and their morphologies (Coelho et al., 2007;
Bogaert et al., 2013; Cock et al., 2014). A diplontic life cycle, where gametes fuse immediately to create a new diploid cell, like is the case for most animals
(e.g.Musmusculus), is found for certain green andbrownalgae, suchas Fucus spiralis andSargassum.Conversely, ifmeiosis follows syngamy, the zygote is
the only diploid cell. This haplontic cycle is common in microalgae, but rare in seaweeds. Many brown, green, and red seaweeds have a diplohaplontic life
cycle,withmitotic divisionsoccurring in thehaploidanddiploid stages. Landplants alsohaveadiplohaplontic life cycle,whereby the initial haploid cell (spore)
divides a few times (vascular plants, such asArabidopsis thaliana), or evendevelops into themost familiar formof the life cycle (mosses).Haploid anddiploid
stagesof seaweeds sometimesappear similar (isomorphic, like in thesea lettuce, i.e.Ulva) but canalsobeextremelydifferent (heteromorphic) as is thecase in
kelps (e.g. Saccharina latissima). Both haploid and diploid stages in these cycles can reproduce asexually. A ‘third generation’ (extra diploid stage) is often
observed in red seaweeds (e.g. Gracilaria sp.): the carposporophyte which grows from the fertilised egg cell and releases diploid spores (carpospores) that
become diploid tetrasporophytes. The role of the microbiome in the complex life cycles of seaweeds is likely important but currently underexplored.
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Fig. B1 Examples representing the diversity of diplontic and diplohaplontic (isomorphic or heteromorphic) life cycles. The diploid phase in the life cycle
is highlighted in green, and the haploid phase in purple. The occurrence of gametes and spores in the life cycle is indicated by a ‘G’ and ‘S’,
respectively.
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macroalgal microbiomes (Califano et al., 2020; Capistrant-Fossa
et al., 2021; Burgunter-Delamare et al., 2022;Weigel et al., 2022),
and members of the Planctomycetes belonging to Blastopirellula
and the uncultured lineage OM190, shared by some brown,
red andgreenmacroalgalmicrobiomes (Bengtsson&Øvre�as, 2010;
Kim et al., 2016;Wiegand et al., 2021). In other cases, bacterial taxa
including Alteromonas, Phaeobacter, and Hyphomonas are repeat-
edly observed across all major seaweed groups (Friedrich, 2012). In
addition, specific host–bacterial associations are likely to occur, for
example between siphonous green algae and the intracellular
endosymbionts, Candidatus Endobryopsis, that are proposed to
fulfil important defensive roles in their hosts (Hollants et al., 2013c;
Zan et al., 2019). In another example, genera of the marine
Flavobacteriaceae induce the morphogenesis of Ulva and Mono-
stroma in different ways depending on the recipient (Matsuo
et al., 2005; Spoerner et al., 2012; Alsufyani et al., 2020). It remains
to be determined whether these commonly observed taxa play
similar or complementary ecological functions that are important
for the holobiont, or if they are simply adapted to the seaweed
surface (e.g. as algal polysaccharides degraders).

Eukaryotic symbionts are also prevalent in and on seaweed tissues.
Notable examples of endophytic eukaryotes are species of Ulvella,
commonly associated with a range of red and brown seaweeds
(Rinkel et al., 2012; Nielsen et al., 2013). While some species are
host-generalists and relatively easy to isolate in culture (e.g.
U. viridis), others are host specialists (e.g. U. operculata appears to
be confined to the red alga Chondrus crispus) and are more difficult
to isolate.However, the diversity and distribution of eukaryotes have
rarely been investigated in microbiome studies until very recently
(Bjorbækmo et al., 2023), and most of our knowledge of these
symbionts is based on their potential to cause harm, including
endophytes (e.g. gall-forming oomycetes, such as Eurychasma
dicksonii (Gachon et al., 2009)). Yet, the symbiotic association
between the Fucales Ascophyllum nodosum, Pelvetia canaliculata and
the fungal endosymbiont Mycophycias ascophylli (formerly Myco-
sphaerellaascophylli)wasdescribedoveracenturyago(Cotton,1907).
The symbiont M. ascophylli has been suggested to impact the host
development, fitness, and protection against desiccation (Garbary&
London, 1995). Other eukaryotic symbionts can have positive
impacts on seaweed development, for example endophytic fungi
(including members of the genera Lulworthia, Halorosellinia, and
Phaeosphaeria) residing within macroalgal tissues, can positively
influence the algal life cycle (Bjorbækmo et al., 2023), growth,
defence mechanisms, and the production of bioactive compounds
(Vallet et al., 2018). A recent study on kelp (Laminaria digitata and
Saccharina latissima) couldnot identify a commoncoreof fungal taxa
in either the endophyte or the epiphyte community (Tourneroche
et al., 2020), suggesting these kelp holobionts consist of a complex
and variable fungal communities. Furthermore, eukaryotic sym-
bionts can indirectly affect seaweeds by shaping their bacterial
microbiomeboth via antagonistic interactionswithbacterial partners
mediated by antibiotics and/or by attracting their own symbionts,
creating a ‘microbiome within microbiome’ situation (Kessler
et al., 2018; Saha &Weinberger, 2019).

Similarly, to the eukaryote component of the seaweed holobiont,
very little is known about the archaeal or viral members. To date,

archaea are rarely considered in macroalgal research, even though
some groups, such as the ammonia-oxidising archaea, are found on
red and brown macroalgae and on seagrass (Trias et al., 2012;
Berlinghof et al., 2024), where they may compete for ammonium
with bacterial ammonia oxidisers as well as with the host. To date,
metabarcoding studies have mostly focussed on the bacterial
component of the seaweedmicrobiome, even if generic primers also
exist for archaea (Parada et al., 2016). The presence and activity of
archaea should be further explored as they are known to be
widespread in coastal marine environments (DeLong, 1992). Viral
partners have also been largely unexplored. Beyond viral pathogens
that infect economically important seaweeds (Gachon et al., 2010)
and/or modulate population dynamics (McKeown et al., 2017),
only a handful of reports have described the viral communities of
seaweeds, including those that infect microbial members of the
holobiont (Beattie et al., 2018; Chiba et al., 2020; van der Loos
et al., 2023a).

Further research is needed to assess the diversity and
distribution of seaweed symbionts, especially for the nonbacterial
organisms. Future studies should attempt to discriminate
transient microbial members from those that interact (directly
or indirectly) with the host and those that are essential to
holobiont functions. However, this cannot be done without a
clearer understanding of the exact location (e.g. Ram�ırez-Puebla
et al., 2022) and functional role of individual players within the
seaweed holobiont.

Determining the functionof individualmembers of the
seaweed holobiont

Despite evidence highlighting the importance of microorganisms
for normal seaweed growth and development dating back over
50 years (Peders�en, 1968), our understanding of the mechanisms
and discrete functions of individual members of the seaweed
holobiont remains limited. Even if the importance of function
rather than taxonomy has long been highlighted in seaweed
holobiont research (Burke et al., 2011; Florez et al., 2017), our
understanding of microbial functions is predominantly based on a
few well-characterised bacterial associations. One of the
best-studied systems is the green algal genusUlva (Wichard, 2023),
in which certain bacterial symbionts produce zoospore settlement
and/or morphogenic cues required for macroalgal development.
Another green seaweed, Bryopsis, benefits from grazer-deterring
toxins produced by Flavobacterium living within its cytosol (Zan
et al., 2019). Several macroalgae, among which the invasive alga
Caulerpa taxifolia, benefit from associated nitrogen-fixing bacteria
that provide organic nitrogen to nutrient-depleted sediments,
thereby stimulating the turnover of organic matter and aiding the
proliferation of algal growth (Chisholm & Moulin, 2003; Tilstra
et al., 2017). Specific bacteria protect the red alga Delisea from
diseases (Li et al., 2022a) and strains of the brown seaweed
Ectocarpus siliculosus tolerate reduced salinity much better in the
presence of certain bacterial associates (Dittami et al., 2016).While
these examples illustrate the wide diversity of seaweed-bacterium
interactions (Fig. 1), the extent to which these functional
interactions apply to seaweeds at large is unknown. Even for these
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examples, yet-to-be-discovered interactions and metabolite
exchanges with other microbes are likely.

One of the central challenges in the coming years will be to expand
our knowledge of the functional contribution of microorganisms to
the full breadth of seaweed species. Given the broad phylogenetic
diversity of seaweeds and their associated microorganisms, we expect
that this expansion will go together with the discovery of new
intimate interactions between seaweeds and their associated micro-
biomes. In that context, the establishment of additional experimental
microbial-seaweed models in yet unexplored branches of the algal
phylogenetic diversity (Fig. 2) and the specific development and
integration of cutting-edge techniques (see the Near-future
approaches to study seaweed holobionts section) will be key steps
to further identify and validate essential functional interactions.

Investigating the source ofmicrobial partners andhow
relationships are maintained

Although it has long been theorised that beneficial symbionts
should be directly transmitted from parents to offsprings (vertical
transmission; Boucher et al., 1982), this view is rapidly evolving.
Indeed, environmentally (horizontally) acquired symbionts are
also common in many marine and terrestrial hosts, and both
transmission modes can be linked to stable mutualistic interac-
tions (Fisher et al., 2017). While vertical transmission has been
studied extensively in terrestrial systems, a recent meta-analysis
suggests that horizontal symbioses are more common in aquatic

systems (Russell, 2019). Horizontally acquired symbionts are
likely to have the capacity to swim and respond to chemotactic
cues and signals (Raina et al., 2019), especially as chemical
gradients develop more easily in aquatic environments
(Stocker, 2012).

Symbiont acquisition and maintenance have been poorly
studied in seaweeds, which often feature complex life cycles
(Box 1). Most of our understanding is based on observational
studies that suggest epiphytic microbial (predominantly bacterial)
diversity is host- and tissue-specific (Aires et al., 2016, 2023; Ihua
et al., 2020). The complex chemical exudates released by seaweeds
into their surroundings are thought to select for specificmicrobiota
(Wetzel & Penhale, 1979; Schmidt & Saha, 2021; Vallet
et al., 2021), an observation also true for microalgae (Shibl
et al., 2020;Roager et al., 2023). Since the communication between
individual components of the holobiont is driven by infochemicals
(Wichard & Beemelmanns, 2018; Saha et al., 2019; Schmidt &
Saha, 2021), these molecules may be important for initial
recruitment and homeostasis. However, except for a few discrete
examples (e.g. dimethylsulfoniopropionate (DMSP) and glycerol
inUlva mutabilis (Kessler et al., 2018), or DMSP and fucoxanthin
in Fucus vesiculosus (Saha et al., 2011, 2012), the signalling
molecules involved in seaweed holobionts remain unknown).

Horizontal transmission may not be the only mechanism for
symbiont acquisition in seaweeds, as some seaweed symbionts are
unlikely to respond to chemical gradients in seawater (e.g.
nonflagellated members of the Bacteroidota). Given the taxonomic

Fig. 1 Conceptual diagram showing multiple functions provided by microbial partners in the seaweed holobiont along its life cycle (represented by the
purple arrows), from reproductive stage (spore release and settlement), morphogenesis and growth to physiological adaptative responses upon biotic
(protection from pathogens and fouling) and abiotic stress. The black arrows indicate nutrient, metabolite, or cue fluxes between microbial partners and
the algal host.
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Fig. 2 Taxonomy tree representing the diversity of marine multicellular orders in Rhodophyta (red branches), Chlorophyta (green branches), and
Heterokontophyta (brown branches) and showing associated resources (number of sequenced genomes, genetic tools, and availability of symbiont
models), cultivated and economically and ecologically important species (Cai et al., 2021). Only orders with > 30 described species in AlgaeBase are
displayed (search on 20 February 2024; Guiry & Guiry, 2023). The number of available genomes was taken from Borg et al. (2023) for red algae and
GenBank for green and brown algae (search on 20 February 2024). For brown algae, we also counted the genomes available in Phaeoexplorer (https://
phaeoexplorer.sb-roscoff.fr/home/). Photo credits of some emblematic macroalgal models: Chondrus crispus © Jonas Collen/Station Biologique de Roscoff
(SBR); Ectocarpus siliculosus © Delphine Scornet/SBR; Saccharina latissima © Sylvie Rousvoal/SBR; Delisea pulchra © Suhelen Egan; Ulva compressa ©
Ulrich &Wichard (2024); Fucus © Aschwin Engelen.
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and ecological breath of seaweeds and their symbionts, both
horizontal and vertical transmissions must occur. Indeed, a recent
study suggests seaweeds use diverse symbiont transmission strategies
with varying degrees of parental inheritance (Syukur et al., 2024).
Characterising the molecular and ecological mechanisms under-
pinning seaweed–bacteria interactions will therefore go hand in hand
with the understanding of when andwheremicrobial symbiontsmay
be recruited (Lambert et al., 2017; Raina et al., 2022; Clerc
et al., 2023). For this purpose, the use of high-resolution mass
spectrometry-based techniques, combined with target metabolite
localisation (Parrot et al., 2019) and the development of dedicated
behavioural assays targeting the responding symbionts (Raina
et al., 2022) on algal holobiont models, is needed to isolate and
identify signalling molecules mediating seaweed–microbe interac-
tions. In addition, more studies are required that draw on the theory
and experimental approaches developed during the long history of
seaweed-community ecology, including manipulative experiments
that follow succession dynamics of microbial symbionts, ideally
across all life cycle stages and multiple generations.

Near-future approaches to study seaweed holobionts

Earlier approaches for studying seaweed holobionts largely focused
on the identification of microbial taxa associated with the host,
mostly using cultivation-based approaches and 16S rRNAgene and
ITS amplicon sequencing. To enhance the reproducibility of the
results, these studies were commonly conducted using seaweed
species grown under controlled conditions (e.g. stressed vs control,
or different life history stages). These approaches provide insights
into the associated microbial communities and how certain growth
conditions may shape them. However, methodological challenges
remain and can be broadly grouped into three categories: (a)
complexity (in determining causality, i.e., which component of a
holobiont is related to a specific function?); (b) translatability (i.e. is
knowledge gained from experiments under laboratory conditions
relevant to the environment?); and (c) generalisability (i.e. can
knowledge gained from a single seaweed holobiont be applied to
other conspecifics, geographic locations, or other related species?).

New tools and techniques in holobiont culturing, genetics,
chemistry, biology, and data science, combined with multi-omics
approaches, manipulative experiments, and the expansion of suitable
model systems will undoubtedly allow us to better understand
seaweed holobionts. For example, recent advances in metagenomics
have enabled the reconstruction of high-quality genomes from
seaweed bacterial symbionts (Weigel et al., 2022; Lu et al., 2023)
allowing coupling of functional potential with phylogenetic
inference. Similarly, genome editing tools (e.g. CRISPR-Cas9) have
been developed lately formicrobial communities (Rubin et al., 2022)
and model seaweed hosts (Fig. 2) and will be important for
understanding the mechanisms of seaweed–microbe interactions.
Metabolomics is an emerging approach enabling the qualitative,
quantitative, and spatial analysis of metabolites in a sample at a given
time (Johnson et al., 2016; Parrot et al., 2019). However, as for other
-omic methods, annotation of metabolomes from nonmodel
organisms remains a substantial challenge. Recently, combining
metabolomic approaches with the use of MS/MS-based molecular

networks has led to the annotation of specific metabolites of the
Taonia atomaria surface metabolome, such as sesquiterpenes at
the apical region or DMSP at the basal parts. These differences in
surface chemistry have been correlated to the variations of the
surface microbiota along the same thallus (Paix et al., 2020). As the
metabolome can originate from both the seaweed and its associated
microbiota, this technique can provide important information on the
putative molecular interactions within the holobiont. Some
holo-metabolomes have already been studied, including that of
Fucus (Rickert et al., 2016; Parrot et al., 2019), Taonia atomaria
(Othmani et al., 2016; Paix et al., 2019, 2020, 2021), and several
species ofUlva (Fort et al., 2019; Vallet et al., 2021;Ghaderiardakani
et al., 2022). The coupling of meta-omics and environmental data
using modelling of interaction networks (e.g. Paix et al., 2021) will
provide new functional understanding of seaweed holobionts. These
rapid technological and computational advances provide a higher
resolution that will undoubtedly improve our understanding of
seaweed holobionts. However, without carefully designed and
controlled manipulative experiments, outputs from these advanced
methodologieswill be limited in their ability to establish causality. To
date most seaweed manipulative studies have focused on altering
environmental conditions and assessing broad-scale changes to the
host microbiota under laboratory conditions (e.g. Qiu et al., 2019;
Morrissey et al., 2021; Gonzalez et al., 2024; see the Seaweed
holobionts under environmental stress section), with fewer studies
directly manipulating microbial community members (but see Saha
&Weinberger, 2019;Nappi et al., 2023; Delva et al., 2023;Deutsch
et al., 2023;Ma et al., 2023). Future research efforts will need to focus
on directly assessing causality in the field and determining the extent
to which observations made in laboratory or mesocosm settings can
be translated to the natural environment. Encouragingly, field
manipulation of seaweed microbiota has recently been achieved for
both subtidal (Longford et al., 2019) and intertidal seaweeds
(McGrath et al., 2024).

Once causality is established, the next challenge will be to
develop suitable genetic tools that can be applied to bacterial
symbionts and the eukaryotic partners of seaweeds (e.g. endophytic
algae, fungi, and oomycetes) to study specific gene functions via the
construction of gene knockout or overexpression mutants. Such
mechanistic studies will be important to understand the underlying
relationships between specific microorganisms and their seaweed
hosts. In this context, seaweedmodel organisms, such asEctocarpus,
Chondrus, and Ulva (Fig. 2), will continue to play crucial roles in
advancing our understanding of development, physiology, and
various other aspects of seaweed biology (Fig. 1, Wichard
et al., 2015; Coelho & Cock, 2020; Borg et al., 2023).

Seaweed holobionts under environmental stress

Global climate change poses a severe challenge to the seaweed
holobiont. Water temperature is the main driver determining
geographic differentiation of co-occurring microorganisms, and
abrupt regime shifts may therefore occur due to increased ocean
warming (Capistrant-Fossa et al., 2021; Martin et al., 2021).
Coastal rocky shores, where most seaweeds reside, are exposed to
local urbanisation pressures, such as increased pollution and habitat
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destruction. Whereas excess nutrients due to urban run-off can
result in green and golden seaweed tides (Smetacek & Zin-
gone, 2013), nutrients along with pollutants can alter the algal
microbiome, reduce biodiversity, and limit the availability of
suitable habitats for other seaweeds (Paix et al., 2021; Mancuso
et al., 2023).

These stressors can disturb beneficial symbiotic relationships by
altering the microbial community to include higher proportions of
bacteria with pathogenic potential, inducing algal physiological
responses with a direct impact on symbiosis, and/or diminishing the
chemical defence of the seaweed host (Case et al., 2011; Qiu
et al., 2019; Ghaderiardakani et al., 2020, 2022). Epibacterial
communities can thus dramatically shift as pathogens invade, during
which the beneficial bacteria decline, with a marked increase in
microbes that confer functions of algal degradation andpathogenicity
(Campbell et al., 2011; Fernandes et al., 2012; Zozaya-Vald�es
et al., 2017; Liu et al., 2020; Kopprio et al., 2021). These disruptions
can lead to the occurrence of various diseases (Longford et al., 2019;
Egan et al., 2020; Ling et al., 2022; Li et al., 2022a) evidenced in both
wild (e.g. Delisea pulchra and Ecklonia radiata) and farmed (e.g.
Saccharina japonica and Ulva rigida) populations (Campbell
et al., 2011; Marzinelli et al., 2015; Kumar et al., 2016; Qiu
et al., 2019; Califano et al., 2020; Mur�ua et al., 2023).

In seaweeds, positive physiological responses and microbiome
stability of rhodoliths exposed to high pCO2 conditions have been
observed (Cavalcanti et al., 2018), indicating the potential role of
microorganisms in host resilience to ocean acidification induced by
climate change. Ocean warming can result in negative impacts on
seaweed health and is often correlated with significant changes to
the host microbiota (D€usedau et al., 2023); however, unlike other
environmental stressors, recent studies suggest that microbially
mediated protection from heat stress is unlikely (Delva et al., 2023;
Gonzalez et al., 2024). Some seaweeds are highly responsive to
additional nutrient loading, bioaccumulating metals (Gubelit
et al., 2016) and have the capacity to reduce the environmental
concentration of polluting endocrine disruptors (Hardegen
et al., 2023). In other cases, the interaction between seaweeds and
their microbiota is likely key to metal detoxification and nutrient
cycling (Morrissey et al., 2021). Environmental stress may also
impact the beneficial traits provided by bacterial symbionts, for
example the provision of essential algal growth and
morphogenesis-promoting factors (AGMPFs; Ghaderiardakani
et al., 2020, 2022). A study of algal longitudinal growth revealed
that certain alga–bacterium interactions that promote algal growth
were temperature sensitive. Although some bacteria can produce
these growth factors in response to stress, others cannot (Hmani
et al., 2024) and may switch from beneficial to detrimental
behaviour (Seyedsayamdost et al., 2011). Taken together, these
observations suggest that while themicrobiome has the potential to
aid in the adaptation of seaweeds to future environmental
conditions (Ghaderiardakani et al., 2020), the extent of the benefit
is likely specific to context and host.

While single-stressor studies are important, it is crucial to
consider the combined (additive, synergistic, and/or antagonistic)
effects of multiple environmental drivers on seaweed holobionts.
For instance, nutrient enrichment significantly influences the

taxonomic and functional structure of the Caulerpa microbiome,
but the lowest recovery of bacterial communities, that is return to
the original state (before disruption), is observed when the
holobiont is exposed to combined nutrient and temperature stress,
relative to controls (Morrissey et al., 2021). As microbiota and host
dynamics are intimately connected to environmental parameters,
arguably the biggest challenge for the field is establishing causality.
Only through carefully designed manipulation experiments, under
controlled laboratory or mesocosm conditions followed by
appropriate field studies (see the Near-future approaches to study
seaweed holobionts section), canwe understand the extent towhich
the microbial partners of the seaweed holobiont buffer environ-
mental stress. Here, transplant experiments can also provide
valuable insights into the importance of native microbiota for
environmental adaptation. For example, Campbell et al. (2015)
found the microbiota of transplanted individuals of Phyllospora
comosa were not habitat specific but were strongly influenced by
local conditions in which they were transplanted and to a lesser
extent their genotype. Similar observations have been made for
seagrass, where transplanting resulted in a high microbiota
turnover, a feature suggested to provide a mechanism by which
the host can rapidly adapt to changing conditions (Adamczyk
et al., 2022). A detailed understanding of how seaweeds and their
microbiomes respond to environmental change will lead to better
mitigation strategies to protect seaweeds under future environ-
mental and engineered scenarios. While Anthropocene impacts on
holobionts have until now focused predominantly on negative
outcomes (i.e. disease), microbial symbionts may also provide a
mechanism for holobiont stress adaptation and environmental
resilience (Li et al., 2022b;Allsup et al., 2023;Voolstra et al., 2024).

Manipulation of seaweed microbiomes

Microbiome manipulation to enhance growth, protect against
disease, and buffer organisms from environmental stress is gaining
interest across a range of engineered and natural systems (Gouda
et al., 2018; El-Saadony et al., 2021; Peixoto et al., 2022; Sorbara&
Pamer, 2022; Voolstra et al., 2024). Recently, seaweed beneficial
microorganisms (SBMs; Li et al., 2023) that mitigate bleaching
disease occurrence under laboratory conditions have been
identified (Saha & Weinberger, 2019; Li et al., 2022a; Ma
et al., 2023). Osborne et al. (2023) also found key bacterial taxa
correlated with increased biomass of mature sporophytes of
cultivated Macrocystis pyrifera (Osborne et al., 2023). In addition,
AGMPFs detected in land-based integrated multitrophic aqua-
culture facilities are thought to directly benefit Ulva production
(Ghaderiardakani et al., 2019, 2020). In these experiments and
long-term cultivation in the laboratory, a stable microbiome is
naturally formed that contains beneficial bacteria at a higher
proportion than in the open water (Califano et al., 2020;
Ghaderiardakani et al., 2022; Nguyen et al., 2023; van der Loos
et al., 2023a). These studies support the idea that seaweed diseases,
development, and productivity can be controlled by microbiome
manipulation with SBMs or their products.

Unlike probiotics that serve as feed supplements for animals, or
plant growth-promoting bacteria (PGPM) as soil supplements, an
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effective application of SBM will require the development of new
approaches. One possibility is to directly apply the biologically
active agent(s). For example, AGMPF-producing bacteria can
already be replaced by specific compounds, such as thallusin.
Complete chemical synthesis of thallusin is possible (Dhiman
et al., 2022) and in situ methods for its detection have been
developed (Ulrich et al., 2022), paving the way for thallusin to be
used in commercial-scale Ulva production. A second option is to
apply SBMs in seaweed hatcheries, such that the benefits last during
the entire cultivation or out-planting period, as has been reported in
the PGPMs with strong rhizosphere colonisation properties
(Amaya-G�omez et al., 2020; Allsup et al., 2023). However, the
realisation of large-scalemicrobiomemanipulation of seaweedswill
require a better understanding of the in situ stability of
microbiomes, the interactions between introduced SBM and other
holobiont members, and the environmental conditions that
maintain SBM across the entire life history of individual seaweeds
(Osborne et al., 2023; Syukur et al., 2024). This information will
not only be key for the practical application of SBMbut will also be
important to ensure future in situ applications do not cause
unintentional environmental consequences or pose a broader
biosecurity risk.

While still in the early stages of development, microbiome
manipulation and engineering are rapidly gaining momentum as
novel biotechnological tools for aquaculture and marine restora-
tion projects (Perry et al., 2020; Peixoto et al., 2022; Li et al., 2023;
Delgadillo-Ordo~nez et al., 2024). Therefore, in addition to filling
the scientific knowledge gaps described above, early and frequent
engagement with all stakeholders (e.g. scientists, environmental
managers, and industry end users) will be necessary to ensure the
effective, sustainable, and responsible application of SBM in future
(Li et al., 2023; Wichard, 2023).

Conclusion and future directions

A holistic approach to studying seaweed holobionts involves
collaboration, standardisation, integration across scales, and a
combination of exploratory and mechanistic studies using both
systems biology and reductionist methodologies. Such a strategy is
essential for advancing our understanding of these complex
ecosystems.

To understand host-bacteria interactions, future omics-based
studies should focus on functional, acclimation, and adaptation
processes, and also consider microbial acquisition, their dynamics,
and the different roles they may play during the life cycle. All these
approaches are relevant for understanding the fitness of the seaweed
holobiont in a changing environment and for economic purposes.
Identifying candidate functional traits can be achieved with
integrated omics approaches including transcriptomics, metabo-
lomics, and proteomics. Following those exploratory studies,
mechanistic studies may examine the biological pathways by which
specific infochemicals (e.g. signal molecules) interact with specific
receptors. Therefore, methodically well-developed seaweed model
systems are advantageous and recommended. Genetic manipula-
tion will allow us to disentangle the underlying chemically
mediated interactions between the symbionts and their

environment. This decisive step will bring seaweed research in line
with the advances in terrestrial systems for example the plantmodel
Arabidopsis (Poupin et al., 2023). Model organisms should be
selected and prioritised based on their economic and ecological
importance, and further complemented by underexplored phylo-
genetic groups (Fig. 2). To achieve these ambitious goals,
collaborative efforts, standardised sampling, cultivation, and
sharing of metadata will be essential prerequisites. Great examples
of community-building initiatives that aim to follow standardised
methodologies include the Earth Microbiome Project
(https://earthmicrobiome.org/), Gordon and Betty Moore Foun-
dation Symbiosis in Aquatic Systems Initiative (McKenna
et al., 2021), the Tara Oceans project (Sunagawa et al., 2020),
and EU-COST Action Networks (https://www.cost.eu/).

Importantly, ecologists and environmental engineers need to
fully consider aspects of microbial functioning in
seaweed-dominated ecosystems, and their cascading effects on
ecosystem function, including nutrient cycling (Pita et al., 2018).
For example, Fucus vesiculosus secretes large amounts of fucoidan
polysaccharides in the surrounding seawater, up to 0.3% of their
biomass per day. Degradation of these seaweed polysaccharides
requires complex enzymatic processing that is predominantly
driven by microorganisms (Sichert et al., 2020; Buck-Wiese
et al., 2023). Thus, as the fate of organic carbon in
seaweed-dominated ecosystems is largely dependent on
alga-microbe interactions, understanding how a changing climate,
expanding seaweed aquaculture, and artificial microbiome manip-
ulation of seaweeds impact broader ecosystem functions, including
global carbon fluxes, needs further investigation.
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