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IRES, Université Toulouse III, F-31062 Toulouse, France.

N. Combe∗

Centre d’Elaboration de Matériaux et d’Etudes Structurales, CNRS UPR 8011,
29 rue J. Marvig, BP 94347, 31055 Toulouse cedex 4, France and
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We experimentally investigate the motion of a pendulum on a turntable. The dynamics of this
conical pendulum experiment are very rich and can be studied both at the undergraduate and
graduate levels. At low rotational frequency of the turntable, we measure the Coriolis acceleration.
Increasing the rotational frequency, we experimentally demonstrate a supercritical pitchfork bifur-
cation: above a critical rotational frequency, the pendulum arm spontaneously rises up. Beyond
the characterization of the equilibrium pendulum angle, we evidence the so-called critical slowing
down corresponding to the increase of the pendulum period when approaching the critical rotational
frequency. Bifurcation and critical slowing down are key concepts in the study of critical phenom-
ena that are seldom illustrated experimentally. All our experimental measurements are in excellent
quantitative agreement with the theory we provide.

The conical pendulum1–4 is a classic experiment used
to illustrate Newton’s laws to undergraduate students. A
weight attached to the end of a string or rod is suspended
from a fixed point and rotates around the vertical axis
at rotational frequency Ω. In the simplest case, the pen-
dulum makes a constant angle θ with the vertical axis so
that the weight has a uniform circular path. The equa-
tions of motion can be derived either in the laboratory
reference frame, assumed to be inertial, or in the non-
inertial rotating reference frame, which then necessitates
introducing inertial forces. For more advanced students,
the same problem can be used to illustrate a pitchfork
bifurcation in nonlinear physics: the stable equilibrium
value of θ goes from zero to non-zero when the rotational
frequency Ω exceeds a critical value Ωc

5. These two anal-
yses of the conical pendulum focus on its equilibrium po-
sitions. In this manuscript, we propose to go further and
investigate both theoretically and experimentally the dy-
namics of the pendulum, i.e. oscillations around its equi-
librium position.

There are two types of conical pendulums with very
different dynamics, depending on how they are linked to
the suspension point. The first type employs a ball joint
as for the Foucault pendulum6. We instead use the pen-
dulums commonly found in undergraduate physics labo-
ratories with a coupling that constrains the pendulum to
swing in one plane. Our goal is to investigate the motion
of such a pendulum set on a turntable. We report in this
article two possible experiments that can be performed
with this setup.

• Measurement of the Coriolis acceleration for under-
graduate students

Using Newton’s laws in non-inertial frames of refer-
ence is usually difficult for undergraduate students.
While they usually have a good intuition of cen-
trifugal forces and sometimes of the Euler force,
their understanding of the Coriolis force is most
of the time limited to a mathematical formula. Its
experimental illustration is usually limited to phys-
ical phenomena that can hardly be perceived and
far away from every day life: the eastward deflec-
tion of a projectile in the northern hemisphere7,
the direction of rotation of cyclones8 or the Fou-
cault’s pendulum6. Indeed, tabletop experiments
demonstrating the Coriolis force involve specific
techniques that are usually difficult to implement
in undergraduate physics laboratories9–11.

• Pitchfork bifurcation and critical slowing down for
graduate students

At a pitchfork bifurcation, by varying a con-
trol parameter (the rotational frequency Ω of the
turntable in the present experiment), the system
evolves from having one single stable state to ex-
hibiting three equilibrium states, among which two
are stable and one is unstable12. Pitchfork bifur-
cations are highly relevant, for instance to under-
stand second order phase transitions using Lan-
dau’s theory,13 or, more generally, critical phenom-
ena14. Before the system reaches the bifurcation
point, its oscillation period increases as the system
is drawn closer to the bifurcation threshold: this
phenomenon is called the critical slowing down and
is usually taught in courses on critical phenomena
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for graduate students15,16. While several experi-
ments designed for undergraduate studies are avail-
able to illustrate pitchfork bifurcations5,17,18, criti-
cal slowing down is scarcely illustrated in graduate
physics courses19.

An essential ingredient that makes our experiment rel-
atively easy to implement is the use of on-board sen-
sors20. They allow for easy and precise measurements of
the 3D acceleration and of the 3D rotational frequency
of the pendulum. We can use sensors associated with
micro-controllers such as Arduino for example. However,
for ease of use, pedagogical attractiveness, and because
mobile devices and sensors have recently shown their rel-
evance for physics teaching21, we use a smartphone re-
motely controlled by the Phyphox app22. The smart-
phone serves as the pendulum’s bob23. The measure-
ments, transmitted by WiFi, are displayed in real time
on a computer screen and are then processed by a data
analysis software after the experiment.

The paper is organized as follows. After describing the
experiment in Sect. I, we model it and derive the equa-
tions of motion in Sect. II. In Sect. III we give some de-
tails on the operating principle and measurements of the
smartphone sensors. Then we report two of our experi-
ments: the accurate measure of the Coriolis acceleration
in Sect. IV and the experimental study of a pitchfork
bifurcation and of critical slowing down in Sect. V.

I. EXPERIMENTAL SETUP

A pendulum is placed on a turntable, a freely rotat-
ing plate(Fig. 1a). Any freely rotating plate can be
employed, but, in our setup, we used a spinning chair
from which the seat has been removed. The legs of the
chair (base of the turntable) are attached to the ground
and assumed to be part of the ground in the following.
The turntable can freely rotate around the vertical axis
(Oz). The pendulum support is rigidly attached to the
turntable so that at rest, the pendulum rod coincides
with (Oz). The pendulum itself is composed of a rod, a
smartphone and an extra weight used to adjust the oscil-
lation period. Both the extra weight and the smartphone
are rigidly attached to the end of the rod. In our case the
smartphone is inserted in an envelope that was taped to
the rod23. The pendulum is constrained to rotate in a os-
cillation plane perpendicular to the horizontal axis (Ox′)
(Fig. 1b) which direction is determined by the rotation
of the turntable. This latter constrain is a key feature of
our setup as it will be shown in Sect. III.

A typical experiment consists of first swinging the pen-
dulum (around (Ox′)) and then manually starting the ro-
tation of the turntable (around (Oz)). The experimental
set-up is then left to evolve by itself: during that time,
the smartphone sensors measure the acceleration and the
angular velocity vectors. Since the turntable slows down
relatively slowly compared to the pendulum, a single run

allows exploration of a large range of angular velocities
of the turntable, down to zero.
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FIG. 1. a) Picture of the experiment. b) Sketch of the exper-
iment. The frame of reference (R) and (R′) are respectively
rigidly fixed to the ground and to the turntable.

II. MODEL AND EQUATIONS OF MOTION

A. Model

The Earth frame of reference (R) is considered as
inertial since experiments last a few tens of seconds.
(Oxyz) defines the Cartesian coordinate system in (R)
and (~ex, ~ey, ~ez) is its associated orthonormal basis. The
frame of reference (R′) is attached to the turntable with
(Ox′y′z′) and (~ex′ , ~ey′ , ~ez′) its associated Cartesian co-
ordinate system and vector basis. (Ox′) is parallel to
the rotation axis of the pendulum arm oscillating in the

(Oy′z′) plane. Axes (Oz) and (Oz′) coincide. ~Ω stands
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for the rotation vector of (R′) (or of the turntable) with
respect to (R) (the ground). In (R′), we distinguish
(Fig. 1b):

• the immobile part Si of the set-up composed of the
turntable and the stem : we model Si by a solid
body of moment of inertia Is about the vertical
axis (Oz).

• the mobile part Sm of the set-up namely the pen-
dulum composed by the rod, the smartphone and
the weight: Sm is modeled by a point mass m at
point M at a distance l0 from the hanging point O
of the pendulum. Modeling Sm as a solid body and
taking into account its principal moments of iner-
tia is possible, but leads to tedious calculations and
unnecessarily complex expressions that complicate
the interpretation.

The mechanical system studied in this manuscript, re-
ferred as system below is composed of the two solid bod-
ies Si and Sm. The joints between the two bodies Si and
Sm and the one between the body Si and the ground
respectively constrain their motions to a pure rotation
along the axis ~ex′ and ~ez. In the modeling below, we
neglect the fluid friction with air and solid friction at
the pendulum mount and that of the spinning chair so
that both joints correspond to perfect hinge (or revolute)
joints.

The motion of the system which is deformable is de-
scribed using the two independent degrees of freedom θ,
the angle of the pendulum arm with respect to (Oz), and
the angle of rotation of the turntable ϕ of the axis ~ex′

with respect to the axis ~ex. We have therefore ~Ω = ϕ̇~ez,
where the dot denotes the time derivative.

B. Equations of motion

The z-component Lz of the angular momentum of the
system about (Oz) is a constant of the motion since the
coupling connecting the turntable to the ground is as-
sumed to be frictionless. The moment of inertia of the
body Sm about (Oz) depends on θ: Ip(θ) = ml20 sin2 θ so
that, defining Itot(θ) = Is + Ip(θ) the total moment of
inertia of the system, the conservation of Lz = Itot(θ)Ω
reads:

dLz
dt

=
d

dt

[
(Is +ml20 sin2 θ)Ω

]
= 0, (1)

from which we deduce a first equation of motion:

(Is +ml20 sin2 θ)Ω̇ + 2ml20Ωθ̇ sin θ cos θ = 0. (2)

The oscillation of the pendulum arm characterized by θ
is thus coupled to the turntable’s angular frequency Ω.

The time derivative of the work-energy theorem ap-
plied to the system reads:

d

dt

[
1

2
ml20(θ̇2 + Ω2 sin2 θ) +

1

2
IsΩ

2

]
= Pint + Pext. (3)

The power Pint of internal forces cancels out due to the
fact that the coupling between the pendulum arm and
the stem is assumed to be frictionless. The power Pext

of external forces involves gravity, which is conservative,
and the power dissipated at the coupling between the
turntable and the ground, which is also assumed to be
frictionless. Hence, Pext reduces to the gravity contribu-
tion:

d

dt

[
1

2
ml20(θ̇2 + Ω2 sin2 θ) +

1

2
IsΩ

2

]
= −mgl0θ̇ sin θ.

(4)
Combining Eqs.(2) and (4), we finally get:

θ̈ + ω2
0

[
1− Ω2

ω2
0

cos θ

]
sin θ = 0 (5)

where ω0 =
√

g
l0

is the natural angular frequency of the

pendulum. Ωc = ω0 is a critical angular frequency, and
we will show in the next sub-section that it corresponds to
the bifurcation angular frequency of the system. Eq. (5)
is similar to the equation of motion of a conical pendu-
lum. However, as stated before, Ω is coupled to θ and
thus evolves with time. Eqs (2) and (5) are the equations
we use in the following to understand the motion of the
system.

C. The pitchfork bifurcation theory in a nutshell

The pitchfork bifurcation and the critical slowing down
can be understood by introducing an effective poten-
tial24. As shown in the experimental sections below, the
characteristic time of variation of Ω is about one order of
magnitude larger than the period of the pendulum. As
a consequence, we can assume Ω to be constant during
an oscillation period. Eq. (5) is then equivalent to the
motion equation of a particle of mass m and position θ
in an effective potential Eeff :

Eeff = mω2
0

(
(1− cos θ)− Ω2

2Ω2
c

sin2 θ

)
(6)

Incidentally for the system under consideration, the criti-
cal angular frequency Ωc governing the pitchfork bifurca-
tion is equal to ω0 characteristic of the pendulum angu-
lar frequency, which is not necessarily the case in general.
We therefore use both symbols in Eq. (6) to underline the
qualitative difference between these two physical quanti-
ties. Approximating Eeff in Eq. (6) by its fifth-order
Taylor expansion around 0, we get:

Eeff '
1

2
mω2

0

((
(1− Ω2

Ω2
c

)
θ2 − 1

12

(
(1− 4

Ω2

Ω2
c

)
θ4

)
Fig 2a shows Eeff as a function of θ.

For Ω ≤ Ωc, Eeff only displays one minimum θ = 0.
From the curvature of Eeff in θ = 0, we deduce the angu-
lar frequency ω of the pendulum swinging with a small
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amplitude around this minimum:

ω2 = ω2
0

(
1− Ω2

Ω2
c

)
for Ω ≤ Ωc. (7)

Hence, ω decreases as Ω increases and becomes zero at
Ω = Ωc, the critical rotational frequency. Conversely, the
pendulum oscillation period increases when approaching
Ωc. This effect is called critical slowing down14,25. Note
however that, while the oscillation period should diverge
at Ω = Ωc according to Eq. (7), the fourth order term
in Eq. (6) is then no longer negligible and the pendulum
oscillations become anharmonic in the vicinity of Ωc.

For Ω ≥ Ωc, the effective potential energy Eeff has
two minima (Fig. 2a). The equilibrium angle θ = 0 is
unstable and the pendulum arm spontaneously rises to a
non-zero equilibrium angle θeq given by4:

cos θeq =
Ω2
c

Ω2
for Ω ≥ Ωc. (8)

The evolution of the equilibrium angle θeq as a function of
the rotational frequency Ω is represented in a bifurcation
diagram (Fig 2b) revealing the shape of a pitchfork.
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FIG. 2. a) Effective potential Eeff as a function of the pen-
dulum angle θ for Ω < Ωc (solid red line with circle symbols),
Ω = Ωc (solid black line with square symbols) and Ω > Ωc

(solid blue line with triangle symbols). b) Bifurcation dia-
gram representing the equilibrium angles θeq as a function of
the rotational frequency Ω. Solid and dashed lines respec-
tively denote stable and unstable equilibrium angles.

III. SMARTPHONE ACCELERATION AND
ANGULAR VELOCITY

Mechanical sensors in smartphones are based on mi-
cro electromechanical systems (MEMS) attached to the
smartphone body whose edges define the cartesian coor-
dinate system (xs, ys, zs). By construction, the axis zs
is perpendicular to the smartphone screen. In our ex-
periments, we simultaneously use the 3 components of
the acceleration (axs , ays , azs) and of the angular veloc-
ity (ωxs , ωys , ωzs) which are measured with respect to the
inertial frame of reference (R)20,26,27.

The smartphone must be carefully positioned on the
pendulum rod and oriented to facilitate further data anal-
ysis. We taped to the rod the envelope in which the
smartphone is tightly inserted so that when the total sys-
tem is at rest, the ys-axis of the smartphone is vertical
and coincides with the turntable rotation axis Oz, the
xs-axis lies in the oscillation plane (Oy′z′) and the zs
axis is parallel to the pendulum rotation axis Ox′ (see
Fig. 1).The accuracy of this setting can be controlled by
measuring the acceleration vector from the MEMs in the
smartphone (including gravity) when the total system is
at rest. With this choice of orientations, the pendulum
angular velocity θ̇ and the turntable rotational frequency
Ω deduce from the measurements of the gyrometer fol-
lowing:

θ̇ = ωzs and Ω =
√
ω2
xs

+ ω2
ys . (9)

The accelerations of the sensor positioned at point M28

in both frames of reference (R) and (R′) are related by:

~a(M)|(R) = ~a(M)|(R′) + ~aie + ~aic (10)

with the co-moving acceleration29

~aie =
d~Ω

dt
× ~OM + ~Ω× (~Ω× ~OM)

= −l0 sin θΩ̇ ~ex′ − l0Ω2 sin θ ~ey′ (11)

and the Coriolis acceleration

~aic = 2~Ω× ~v(M)|(R′)

= −2l0Ωθ̇ cos θ ~ex′ . (12)

The projection of Eq. (10) along (Ox′) (equivalent to the
zs axis) is:

~a(M)|(R) . ~ex′ = azs = −l0 sin θΩ̇− 2l0Ωθ̇ cos θ (13)

since ~a(M)|(R′) has no component along that axis.

As stated before and shown in Sect IV, the characteris-
tic time of variation of Ω is about one order of magnitude
larger than the period of the pendulum. We therefore
neglect the first term in Eq. 13 (Euler acceleration) and
keep only the second one (Coriolis acceleration).30 To
this approximation, azs (Eq. (13)) measures the Coriolis
acceleration.
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In Sect. V A we will study the bifurcation of the sys-
tem near the critical point. We thus need to obtain the
equilibrium angle θeq from sensors measurements. In our
experiment, Phyphox cannot directly provide an inclina-
tion measurement while recording the acceleration and
angular velocity. To overcome this difficulty, we found
the following solution to extract θeq. The gravity field,
actually measured by the accelerometers, sets the verti-
cal direction with respect to which θ is defined and may
be retrieved from axs and ays . Indeed, on the one hand
we have:

axs
= ~a(M)|(R) . ~exs

− ~g. ~exs
, (14)

ays = ~a(M)|(R) . ~eys − ~g. ~eys . (15)

and on the other hand:

~a(M)|(R) . ~exs
= l0θ̈ − l0Ω2 sin θ cos θ, (16)

~a(M)|(R) . ~eys = l0θ̇
2 + l0Ω2 sin2 θ. (17)

Projecting on the vertical axis (Oz) and combining
these equations we get:

sin θaxs + cos θays = g + l0θ̈ cos θ + l0θ̇
2 sin θ. (18)

.
When the equilibrium is reached both θ̇ and θ̈ are zero

such that:

θeq = arccos

 g√
a2
xs

+ a2
ys

+ arctan

(
axs

ays

)
. (19)

IV. QUANTITATIVE ANALYSIS OF THE
CORIOLIS ACCELERATION

A. Angular velocity variations

Let θ0 denote the initial pendulum oscillation ampli-
tude. The measurement of the Coriolis acceleration is
done with small oscillation amplitudes θ0 � 1 and in the
sub-critical regime Ω < Ωc. Typically, for our pendulum
ω0 = Ωc ≈ 5 rad.s−1. We choose the initial conditions
such that θ0 ≈ 0.25 rad and Ω ≈ 1.5 rad.s−1.

Fig. 3a, b and c show the pendulum angular veloc-
ity θ̇, the turntable rotational frequency Ω and the z-
component of the acceleration azs as a function of time.
The two first quantities are deduced from the smartphone
gyrometer measurements using Eq. 9. The amplitudes of
θ̇ and Ω decrease with time due to the frictions at the
hinge joints that have not been taken into account in
the theoretical analysis of Sect. II. Friction at the joint
between the stem and the rod of the pendulum is respon-
sible for the decrease of the amplitude of the pendulum
angular velocity θ̇ while friction at the joint between the
turntable and the ground is responsible for the decrease
of turntable rotational frequency Ω. On the acquisition
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FIG. 3. (color online) a) and b) Pendulum angular velocity θ̇
and turntable rotational frequency Ω as a function of time. c)
Acceleration azs measured by the smartphone as a function
of time. d) Power spectral density of the subtraction of Ω
from its linear regression.

timescale, the dissipation effects are weaker on the pen-
dulum angular velocity amplitude than on the turntable
rotational frequency. In 15 oscillation periods of the pen-
dulum (' 25 s), the rotation frequency Ω decreases by
a factor of 2: these different timescales justify that the
co-moving acceleration can be neglected in Eq. 13 and
that azs can be identified with the Coriolis acceleration

−2l0Ωθ̇ cos θ.

In the small amplitude regime θ0 � 1, cos θ ≈ 1 in
Eq. 12 so that we plot in Fig. 4 azs as a function of Ωθ̇.
From a linear regression, we get an estimate of the dis-
tance between the acceleration sensor and the pendulum

axis lfit
0 = 37.24±0.03 cm. A direct measurement, with a

ruler gives lruler
0 = 38.0±0.4 cm. The relative difference

between lfit
0 and lruler

0 is about 2% and can be explained
by the different approximations introduced in the model.
To further verify the excellent agreement of the measure-
ments with the model, it is also possible to compare the

temporal evolutions of azs and −2lfit
0 Ωθ̇: the difference

is hardly visible to the naked eye and is therefore not
shown in Fig. 3c.

A quantitative discussion of uncertainties is difficult:
smartphone sensor specifications are available but they
are not useful because the detailed description of the soft-
ware treatment of the raw data is usually not known31.
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FIG. 4. (color online) Acceleration azs (black circle) as a func-

tion of Ωθ̇ and its linear regression (orange line with triangle
symbols).

The use of sensors dedicated to experimental physics
driven by a micro-controller could in principle allow to
circumvent this problem and to better control the mea-
surement chain: the experimental set-up and the data
collection would however be more complex and presum-
ably inappropriate for a teaching course.

Despite the absence of uncertainties estimations, our
experimental set-up yields an excellent agreement be-
tween model and measurements, allowing students to
measure the Coriolis acceleration and to show its depen-
dence on both on Ω and θ̇.

B. Back action on the turntable

A close inspection of Fig. 3b reveals small oscilla-
tions of the angular frequency Ω in addition to its quasi-
linear decrease in time. These oscillations come from the
variation of the total moment of inertia of the system
Itot = Is + ml20 sin2 θ as the pendulum swings. These
oscillations occur at a frequency 2ω, as can be demon-
strated using perturbation theory. At first order, the
pendulum motion is harmonic: θ(t) = θ0cos(ωt). Using
the conservation of the angular momentum component
of the system Lz = Itot(θ)Ω, we get in the small angle
approximation:

Ω(t) =
Lz

Is +ml20θ
2
0 cos2(ωt)

=
Lz

Is + 1
2ml

2
0θ

2
0(1 + cos(2ωt))

. (20)

The pendulum oscillation frequency measured in Fig 3a
is 0.7 Hz and in agreement with Eq. (20), the spectrum
of Ω(t) indeed exhibits a peak at 1.4 Hz as confirmed
in Fig 3d where, for sake of clarity, we have subtracted

the linear trend of Ω(t) in order to compute the power
spectral density. However, there is an almost equally
intense peak at 0.7 Hz that is not predicted by our model.
We believe that this is due to a slight misorientation of
the smartphone. Indeed, if the zs axis does not perfectly
coincide with (Ox′), a small component of θ̇ ~ex′ projects
on the xs and ys axes giving rise to a 0.7 Hz term in the

time evolution of Ω =
√
ω2
xs

+ ω2
ys . Hence, the pendulum

swings affect the rotation of the turntable.

V. PITCHFORK BIFURCATION AND
CRITICAL SLOWING DOWN

A. Pitchfork bifurcation diagram

In this section, we experimentally measure the bifur-
cation diagram, i.e the equilibrium angle θeq of the pen-
dulum as a function of the rotational frequency Ω of the
turntable4. Since it is very difficult to impose rotational
frequency Ω without any pendulum swing, we add a solid
friction in order to damp the pendulum oscillations in
typically 10 s32. With the pendulum at rest, we grad-
ually increase Ω by pulling on a string wound around
the turntable. When we cross the critical point Ωc, the
pendulum moves suddenly away from θeq = 0 and set-
tles after a few oscillations to a non-zero angle. We then
start the data acquisition. Since Ω is slowly decreasing
due to friction between the turntable and the ground, the
system then successively investigates regimes above and
below the bifurcation. We then use Eq. 19 to compute
θeq and then plot it as a function of Ω (Fig. 5a).

For this experiment, we have used a slightly different
pendulum with ω0 ≈ 3.55 rad.s−1. Using Eq. 8, a non-
linear fit of θeq as a function of Ω above the bifurcation
threshold provides a measurement of Ωc ≈ 3.5 rad.s−1 in
agreement within a few percent with the natural angu-
lar frequency ω0 of the pendulum. Moreover, above the
threshold, Eq. 8 predicts a linear dependence of cos θeq on

1/Ω2 with slope Ω2
c Fig. 5b. We get Ωfit

c = 3.565 rad.s−1

using a linear regression (orange line). This value is con-
sistent, again within a few percent, with the previous
determination.

B. Critical slowing down

In this section, we study the critical slowing-down us-
ing a system with ω0 = 4.92 rad.s−1 similar to the one
used in Sect. IV i.e. released from the artificial friction
used in Sect. V A. We use the same launching procedure
and measurements protocol as in Sect. V A with initial
conditions Ω ∼ 7 rad.s−1. Figs. 6a and b show the pen-
dulum angular velocity θ̇ and the turntable rotational
frequency Ω as a function of time.

We analyze numerically θ̇ to detect its zero-crossing
times from which we compute the instantaneous period



7

0 1 2 3 4 5

Ω(rad s
-1

)

0

0,5

1

θ e
q
(r

a
d
)

0 0,05 0,1 0,15

1/Ω2 
 (rad

-2
 s

2
)

0

0,5

1

c
o
s(

θ e
q
)

Ω
c

a)

b)

FIG. 5. (color online) a) Equilibrium angle of the pendulum
as a function of Ω (black line) compared to the theoretical
prediction (Eq. 8) (orange line with triangle symbols). b)
Cosine of the equilibrium angle of the pendulum as a function
of 1/Ω2 (black line) and its linear regression (orange line with
triangle symbols).

T of the pendulum23 (Fig.6 c). The period is clearly
diverging at time tc = 19 s, evidencing the presence of a
bifurcation and of a critical slowing down. We measure
in Fig. 6b Ωc = Ω(tc) = 4.9 rad.s−1 which agrees within
less than a percent with the natural angular frequency
ω0 = 4.92 rad.s−1 of the pendulum that we used for this
experiment.

To go beyond, we compute the oscillation instanta-
neous angular frequency ω = 2π

T and compare it to Eq. 7

that predicts an affine relationship between ω2 and Ω2

(Fig. 7) with slope −1 (dashed line) for Ω ≤ Ωc. The
agreement at low rotational frequencies is good but de-
grades approaching the bifurcation threshold. There, the
approximations we have made, noticeably the harmonic
one, break down. Moreover, near the threshold, all ex-
perimental imperfections, such as the smartphone mis-
orientation or the mispositionning of the pendulum, are
magnified. Far enough from the bifurcation in the sub-
critical regime (Ω / 4 rad.s−1 in this case), we observe
a quantitative agreement of the measurements with the
model.

C. Rotational frequency variations

Similarly to Sect. IV, we can analyze the back action
of the pendulum oscillations on the rotational frequency
of the turntable. We extract from the Ω time series two
samples denoted on Fig. 6b. They correspond to times
0 < t < 13 s and 44 < t < 76 s, respectively below and
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FIG. 6. (color online) a) and b) Pendulum angular velocity

θ̇ and turntable rotational frequency Ω as a function of time.
The dashed line features the occurrence of the bifurcation.
The spectral analysis in d) is performed on the time ranges
denoted by the double arrows. c) Period T of the pendulum
as a function of time. d) Power spectral density of the sub-
traction of Ω from its linear regression for 0 < t < 13 s (solid
blue line with circle symbols) and for 44 < t < 76 s (solid
magenta line with square symbols).
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FIG. 7. (color online) Square of the pendulum angular ve-
locities ω2 (red solid line) and sub-critical prediction (dashed
solid line) Eq. 7 as a function of Ω2.

above the threshold (tc = 19 s). Fig. 6d shows the Fourier
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transform of these two samples. Because the sample du-
ration is reduced, the peaks are relatively broad and the
result is less pronounced than that of Fig 3d. Below the
bifurcation (magenta with square symbols), we observe
two peaks at 0.64 Hz and 1.24 Hz, while above the bifur-
cation (blue with circle symbols), we observe only a single
broad peak at about 0.75 Hz. Using the same perturba-
tive approach as in Sect. IV, we have in the supercritical
regime Ω > Ωc, at first order, θ(t) = θeq+θ0 cos(ωt) with
θ0 � θeq. A Taylor expansion of Itot then yields:

Itot = Is +ml20 sin2 θ(t)

' Is +ml20
[
sin2 θeq + θ0 cos(ωt) sin 2θeq

]
which gives just one peak at angular frequency ω in agree-
ment with the observation. The presence of two peaks at
0.64 Hz and 1.24 Hz below the threshold is explained in
the same way as in Sect. IV B.

VI. CONCLUSION AND OUTLOOK

We have characterized the motion of a pendulum set
on a turntable by recording the accelerations and angular
velocities with a smartphone attached to the pendulum
arm. This simple setup has turned out to be really valu-
able:

• It allows a quantitative experimental measurement
of the Coriolis acceleration according to the model
that we provide. Undergraduate students are thus

able to better grasp the difficult concept of inertial
force.

• At a more advanced level, the quantitative analysis
of the critical slowing down below a pitchfork bifur-
cation experimentally illustrates the deep but often
abstract concepts of courses on critical phenomena.

Contrary to previously reported systems evidencing the
same physic phenomena, our setup is fairly easy to im-
plement in any undergraduate physics lab, without even
needing to purchase additional equipment in most cases.
This experiment has been carried out by all of our stu-
dents who plan a career in undergraduate physics teach-
ing: their main difficulties were to assimilate the model
and its resolution and to clearly understand what the
smartphone sensors measured.

These experiments could be improved by using spe-
cific sensors dedicated to experimental physics in order
to perform uncertainty analysis. To go beyond, an ex-
amination of the supercritical regime Ω > Ωc in Fig. 7
could be considered: experimental measurements could
be compared to numerical simulations of Eqs.(2) and (5)

to experimentally deduce the ratio
ml20
Is

. The comparison
of this ratio with the experiment would however require
to properly model the system using a solid-body pendu-
lum.

Appendix A: Material

The pendulum that has been used for these exper-
iments is Nova-Physics ref. MOP05033. The smart-
phone is a Samsung Galaxy A5 with an accelerometer
and gyrometer K6DS3TR provided by STM. Finally, the
turntable is derived from a spinning chair formerly sold
by Leybold.
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