
HAL Id: hal-04740130
https://hal.science/hal-04740130v1

Preprint submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Normalization properties of λµ-calculus using
realizability semantics
Péter Battyányi, Karim Nour

To cite this version:
Péter Battyányi, Karim Nour. Normalization properties of λµ-calculus using realizability semantics.
2023. �hal-04740130�

https://hal.science/hal-04740130v1
https://hal.archives-ouvertes.fr

Normalization properties of λµ-calculus using
realizability semantics

Péter Battyányi∗ and Karim Nour†

November 7, 2023

Abstract

In this paper, we present a general realizability semantics for the simply
typed λµ-calculus. Then, based on this semantics, we derive both weak and
strong normalization results for two versions of the λµ-calculus equipped with
specific simplification rules. The novelty in our method, in addition to its
more systematic approach, lies in its applicability to a broader set of reduc-
tion rules. Furthermore, we have obtained a surprising characterization of the
typed λµ-terms with the help of our saturation properties.

Keywords and phrases: λµ-calculus ; classical logic ; strong normalization ;
weak normalization ; realizability semantics ; saturated set.

Subject code classifications : 03B40 ; 03B70 ; 03F05 ; 68Q42.

1 Introduction
The Curry-Howard isomorphism [13] has revealed the connection between the sim-
plification of abstract terms and the normalization of proofs in intuitionistic logical
theories. This insight has proven to be one of the most fruitful ideas in logic and
proof theory. It was understood in the 1990s that this correspondence can also be
extended to the realm of classical logic [10, 15]. Several systems have been intro-
duced to account for this correspondence, among which the most well-known are
probably Parigot’s λµ-calculus [18], Curien and Herbelin’s λµµ̃-calculus [5], Bar-
banera and Berardi’s λSym-calculus [1] and Rehof and Sørensen’s λ∆-calculus [23].
All of these systems enjoy the strong normalization property [20, 21, 1, 23]. All
of the mentioned proofs rely on the well-known reducibility technique or, in other
words, the method of realizability semantics credited to Girard and Tait [8]. Later
on, several other proofs making use of "combinatorial" arguments emerged for the
propositional parts of these calculi [6, 7, 2, 3].

Initially, Parigot’s system consisted of the β- and µ-reductions, along with some
simplifications rules called ρ and θ. The calculus is confluent [19, 22], and possesses
the subject reduction and strong normalization properties [19]. However, from
a practical standpoint, it has a major drawback, namely, the uniqueness of data
representation is not valid. There are normal terms of integer type that are not
∗Department of Computer Science, Faculty of Informatics, University of Debrecen, Kassai út

26, 4028 Debrecen, Hungary, battyanyi.peter@inf.unideb.hu
†Université Savoie Mont Blanc, CNRS, LAMA, LIMD, 73000 Chambéry, France,

karim.nour@univ-smb.fr

1

Church numerals. To address this issue, in this paper, we adopt one of the solutions
proposed by Parigot [19]: we introduce a new rule µ′, which is the symmetric
counterpart of µ and allows us to further simplify a Church numeral, and thus
getting closer to the form of a λ-calculus Church numeral. To obtain the value of
an integer-typed term in the λµ-calculus, i.e., the usual form of a Church numeral
in the λ-calculus, we require additional simplification rules, namely, the ρ, ε and
θ-rules [4].

The calculus equipped with the µ′-rule has the subject reduction property in the
simply typed version, but it lacks the Church-Rosser property. However, the µ′-rule
plays a crucial role in the presentation of the call-by-value λµ-calculus. It allows
a calculated value, acting as the functional part, to find its argument. De Groote
[12] successfully integrated µ′-reduction with the λµ-calculus while preserving con-
fluence. Furthermore, Py studied a call-by-value µ′-reduction in his thesis [22].
In particular, he demonstrated confluence and strong normalization properties for
both µ- and µ′-reductions. He also enriched the syntax with new operators, ensuring
that the subject reduction property was maintained, and providing computational
content to the quantifiers.

Nevertheless, µ′-reduction does not preserve types in a type system based on
second-order logic. Raffalli gave an example of a term of type A that can be reduced
(using the rule µ′) to any term of type B. His example was published in Py’s thesis
[22]. A solution to this problem, as proposed by Py, can involve giving algorithmic
content to the rules associated with the quantifier ∀ [22]. As part of our future
work, we plan to develop a realizability semantics that will enable us to establish
normalization results within this framework.

The calculus augmented with the µ′-rule does not possess the Church-Rosser
property. However, the µ′-rule plays a crucial role in the presentation of the call-
by-value λµ-calculus. It allows a calculated value, acting as the functional part,
to find its argument. De Groote [12] successfully integrated this rule with the λµ-
calculus while maintaining confluence. Py studied the call-by-value µ′-reduction in
his thesis [22]. In particular, he demonstrated confluence and strong normaliza-
tion properties for both µ- and µ′-reductions. He also enriched the syntax with
new operators, ensuring that the subject reduction property was maintained, and
providing computational content to the quantifiers.

The Parigot-style λµ-calculus, as originally defined, imposes severe restrictions
on the term formation rules. It introduces two sets of variables, the so-called intu-
itionistic, or β-variables, and the classical, or µ-variables. In addition to the usual
λ-abstraction and application, two new constructs appear: µ-application, where the
left hand side of the application is a µ-variable, and µ-abstraction, where a µ-prefix
is formed with a µ-variable. Originally, these two are interconnected by Parigot:
a µ-abstraction must always be followed by a µ-application in the term and, con-
versely, a µ-application must always be preceded by a µ-abstraction. However, it
turned out, that this syntax did not allow encoding a proof of the classical tautol-
ogy ¬¬A→ A without free variables of type ¬⊥ (similarly for some other classical
tautologies). Furthermore, another drawback emerged: in this syntax with many
reduction rules, Böhm’s theorem does not hold. In his thesis, Py [22] found two dis-
tinct closed normal terms, M and N , for which there is no term L, such that (L)M
reduces to the first projection λx.λy.x and (L)N reduces to the second projection
λx.λy.y. To remedy this situation, De Groote proposed a more flexible syntax in
which the restriction concerning µ-abstractions and µ-applications is resolved: he
split the rules for negation into two, one standing for the introduction and one for
the elimination of negation without imposing further restrictions on their applica-
bility. The proposed version allowed him to construct an abstract machine for the
λµ-calculus [11]. Additionally, Saurin [25] proved that De Groote’s version enjoys
the separation property.

2

Regarding the normalization properties, it was shown by the authors that the
Parigot-style simply typed λµ-calculus augmented with the rules µ′, ρ, ε, θ preserves
the strong normalization property [4]. However, the situation is completely different
when we turn to De Groote’s syntax. Although, it turns out that the simply typed
λµ-calculus in De Groote’s formalism preserves strong normalization if we only
consider βµµ′-reduction [6, 4]- and this is even true for the reduction µµ′ both in
the untyped and typed cases [6, 3]- if we add more rules to the existing ones, like ρ,
ε, this is no longer true. Specifically, the µµ′ρ-reduction is not strongly normalizing
and the µµ′ε-reduction is not weakly normalizing even in the typed case. It can be
shown that weak normalization is retained both for the untyped µµ′ρε-reduction
and for the typed βµµ′ρε-reduction [4].

However, the proofs of the results in [4] involve elaborate arguments and de-
tailed analyses of the behaviour of residuals of redexes. In this paper, we present
a semantical approach to these results. Proving normalization properties through
semantical interpretations has a long tradition dating back to the works of Tait and
Girard [27, 8]. In [20], Parigot proved the strong normalization property for the
second-order λµ-calculus equipped with the ρ- and θ-rules and without the µ′-rule.
He followed a reasoning that was a generalization of the Tait-Girard reducibility
method. Additionally, he formulated another proof for the strong normalization of
second-order classical propositional logic by extending the Gödel-Kolmogorov trans-
lation to second order λµ-calculus. In his paper [12], de Groote proved that the
strong normalization property holds for his version of the second-order λµ-calculus
together with rules ρ, θ and ε. He applied the Tait-Girard reducibility method for
the case of λµ-reduction and then he demonstrated that the ρ-, θ and ε-rules can
be postponed. Furthermore, Berardi and Barbanera also applied the reducibility
method for their calculus; however, their proof is even more complicated [1]. Due
to the presence of an involutive negation, i.e., an operator for which A = A⊥⊥

holds, the authors resorted to a very technical fixed-point operator to obtain the
candidates of reducibility for the terms.

In contrast to the papers mentioned above, our proof of the weak and strong
normalization properties is more centered around finding appropriate definitions of
reducibility candidates, by which the strong normalization of βµρθε-reduction and
the weak normalization of βµµ′ρθε-reduction follow in a relatively straightforward
manner. We emphasize that βµµ′ρθε-reduction is not strongly normalizing [4] so the
strongest result we can achieve in this context is the weak normalization property.

The paper is structured as follows: the next section is devoted to the relevant
notions and already known results concerning the simply-typed λµ-calculus. In
Section 3, we develop the tools needed for the subsequent sections: we define a
notion of saturation with the help of which we introduce the reducibility candidates
for the typed calculus. We conclude this section with the correctness theorem, which
asserts that our interpretation adheres to typability rules. Moreover, in contrast to
most of the realizability notions that have appeared in the literature thus far, our
definition of saturation yields the surprising result that the set of typable terms is
not only contained within the collection of saturated sets, but the two sets coincide.
Therefore, when we intend to prove a certain property for the typable terms, it is
enough to prove that the set of typable terms possessing that property is saturated.
By our result, it then follows that every typable term enjoys that property.

The novelty in our approach is that, instead of trying to prove that the auxiliary
rules can be postponed, which would not even be the case in the presence of µ′, we
modify the notion of saturation so that the verification of the necessary properties
can be guaranteed with respect to all of the rules of βµµ′ρθε-reduction in a single
process. We do not need permutation lemmas to achieve our goal when we consider
the λµ-calculus with all of the mentioned rules.

In Section 4, we present a proof of the strong normalization of the simply-typed

3

λµ-calculus equipped with βµρθε-reduction. In Section 5, we take a step further
and augment the calculus under consideration with the µ′-rule. We demonstrate
that the set of terms having a normal form is saturated, which implies that the
βµµ′ρθε-reduction is weakly normalizing. We then conclude with a discussion on
future work.

2 The λµ-calculus
The λµ-calculus was introduced by Parigot [18] as a tool for encoding classical natu-
ral deduction with terms. In our paper, we restrict our attention to the simply typed
calculus, specifically, we are concerned with the representation of the implicational
fragment of classical propositional logic using natural deduction style proofs.

The λµ-calculus involves two sets of variables: one set consists of the original
λ-variables, often referred to as intuitionistic variables, while the other set com-
prises µ-variables, known as classical variables. Parigot’s calculus imposes certain
constraints on the rules for forming terms. Notably, a µ-abstraction must be imme-
diately followed by an application involving a µ-variable, and vice versa. However,
de Groote [11] introduced a modified version of the λµ-calculus, which offers more
flexibility in its syntax. In de Groote’s syntax, a µ-abstraction can be followed by
an arbitrary term (in the untyped version), not exclusively by a µ-application. For
the purpose of this paper, we exclusively focus on the de Groote-style calculus, and
the following definitions pertain only to this version.

Definition 2.1 (λµ-terms)

1. Let Vλ = {x, y, z, . . .} denote the set of λ-variables and Vµ = {α, β, γ, . . .}
denote the set of µ-variables, respectively. The λµ-term formation rules are
the following.

T := Vλ | λVλ.T | (T)T | [Vµ]T | µVµ.T

We decided to adopt Krivine’s notation for the applications, i.e., we write
(M)N instead of (M N) if we apply M to N .

2. In a λµ-term the λ and µ operators bind the variables. We therefore consider
terms modulo equivalence, which allows to rename the variables bound by a λ-
or a µ-abstraction.

3. For every λµ-term M , we define by induction on M the set fv(M) of free
µ-variables of M :
fv(x) = ∅, fv(λx.M) = fv(M), fv((M)N) = fv(M) ∪ fv((N), fv([α]M) =
fv(M) ∪ {α} and fv(µα.M) = fv(M) \ {α}.

Definition 2.2 (Type system) The types are built from a set VT of atomic types
and the constant ⊥ with the connective →. The type formation rules are the follow-
ing.

T := VT ∪ {⊥} | T→ T

In the definition below, Γ (resp. 4) denotes a (possibly empty) context, that is, a
finite set of declarations of the form x : A (resp. α : B) for a λ-variable x (resp. a
µ-variable α) and types A,B such that a λ-variable x (resp. a µ-variable α) occurs
at most once in an expression x : A (resp. α : A) of Γ (resp. of 4). The typing
rules are as follows.

Γ, x : A ` x : A,4
ax

4

Γ, x : A ` M : B,4
Γ ` λx.M : A→ B,4

→i
Γ ` M : A→ B,4 Γ ` N : A,4

Γ ` (M)N : B,4
→e

Γ ` M : A,α : A,4
Γ ` [α]M : ⊥, α : A,4

⊥i
Γ ` M : ⊥, α : A,4

Γ ` µα.M : A,4
⊥e

We say that the λµ-term M is typable with type A, if there is Γ,4 and a deriva-
tion tree such that the uppermost nodes of the tree are axioms and the bottom node
is Γ ` M : A,4. The presentation with two contexts (one on the left for the λ-
variables and one on the right for the µ-variables) allows us to avoid using negation
in types. However, when we correlate typability proofs with proofs in classical nat-
ural deduction, the context standing on the right corresponds to a set of hypothesis
consisting of negative formulas. Alternatively, we could have applied two contexts on
the left: one for the λ-variables and one for the µ-variables, represented by negated
types.

Observe that, in the typed λµ-calculus, not every term is accepted as well typed.
For example, we cannot write a λµ-term of the form ([α]M)N or µα.λx.M .

In the realm of λµ-terms, various reduction rules exist, with some being fun-
damental and corresponding to the elimination of logical cuts, while others are
introduced to eliminate specific subterms and are often referred to as simplification
rules. In this article, we focus on the rules essential for achieving a reasonable
representation of data, similar to the case of the λ-calculus. For a more compre-
hensive understanding of these rules, readers are encouraged to consult [4], where
we demonstrate that Church numerals are the only normal λµ-terms that have the
type of integers provided we consider the additional rules µ′, ρ, ε and θ.

Throughout this paper, we employ various types of substitutions. These substi-
tutions include necessary variable renaming to prevent the capture of free variables.
Below, we present the concept of µ-substitution, which plays a crucial role in defin-
ing µ-redex, as introduced in Definition 2.5.

Definition 2.3 (µ-substitution)

1. A µ-substitution σ is an expression of the form [α :=s N] where s ∈ {l, r},
α ∈ Vµ and N ∈ T .

2. Let σ be the µ-substitution [α :=s N] and M ∈ T . We define by induction the
λµ-term Mσ. We adopt the convention of renaming bound variables before
a substitution so that no variable collision occurs. Then we can assume that
the free variables of the λµ-term N and variable α are not bound by any µ-
abstraction in the λµ-term M .

• If M = x, then Mσ = x.

• If M = λx.M ′, then Mσ = λx.M ′σ.

• If M = (M1)M2, then Mσ = (M1σ)M2σ.

• If M = µβ.M ′, then Mσ = µβ.M ′σ.

• If M = [β]M ′ and β 6= α, then Mσ = [β]M ′σ.

• If M = [α]M ′ and s = r, then Mσ = [α](M ′σ)N .

• If M = [α]M ′ and s = l, then Mσ = [α](N)M ′σ.

We adopt the convention that substitution has higher precedence than applica-
tion and abstraction.

5

In order to define ε-reduction, we need the following notion.

Definition 2.4 (α-translation) Let M ∈ T and α ∈ Vµ. We define the α-
translation Mα of M by induction on M .

• If M = x, then Mα = x.

• If M = λx.M ′, then Mα = λx.M ′α.

• If M = (P)Q, then Mα = (Pα)Qα.

• If M = µβ.M ′, then Mα = µβ.M ′α.

• If M = [β]M ′ and β 6= α, then Mα = [β]M ′α.

• If M = [α]M ′, then Mα = M ′α.

Intuitively, Mα is the result of replacing every subterm [α]N in M with N .

We proceed by defining the specific redexes that are the focus of this paper,
along with the reductions they induce. Additionally, we provide a brief overview
of some of the important results in relation to the λµ-calculus. For a more in-
depth understanding of the requisite concepts and definitions, interested readers
are referred to the standard textbooks, such as [9] and [14].

Definition 2.5 (Redex)

1. A β-redex is a λµ-term of the form (λx.M)N and we call M [x := N] its
contractum. The λµ-term M [x := N] is obtained from M by replacing every
free occurrence of x in M by N . This substitution is sometimes referred to as
β-substitution.

2. A µ-redex is a λµ-term of the form (µα.M)N and we call µα.M [α :=r N] its
contractum. Intuitively, M [α :=r N] is obtained from M by replacing every
subterm in M of the form [α]P by [α](P)N .

3. A µ′-redex is a λµ-term of the form (N)µα.M and we call µα.M [α :=l N] its
contractum. Intuitively, M [α :=l N] is obtained from M by replacing every
subterm in M of the form [α]P by [α](N)P .

4. A ρ-redex is a λµ-term of the form [β]µα.M and we call M [α := β] its con-
tractum. The λµ-term M [α := β] is obtained from M by replacing every free
occurrence of α by β.

5. A θ-redex is a λµ-term of the form µα.[α]M where α 6∈ fv(M) and we call M
its contractum.

6. An ε-redex is a λµ-term of the form µα.µβ.M and we call µα.Mβ its contrac-
tum.

The six reductions outlined in Definition 2.5 find their justification in the cut
elimination rules of natural deduction within classical propositional logic. As a
consequence of these reductions, the calculus exhibits a type preservation property,
as demonstrated in Theorem 2.7, which is also known as the subject reduction
property.

Definition 2.6 (Reduction and normalization) Let R ⊆ {β, µ, µ′, ρ, θ, ε}.

1. Let M,M ′ ∈ T . We write M →R M ′, if M ′ is obtained from M by replacing
an r-redex in M , where r ∈ R, by its contractum. The reductions (on the
redexes) take the following forms (the θ-redex has an additional condition).

6

(λx.M)N →β M [x := N]
(µα.M)N →µ µα.M [α :=r N]
(N)µα.M →µ′ µα.M [α :=l N]
[β]µα.M →ρ M [α := β]
µα.[α]M →θ M if α 6∈ fv(M)
µα.µβ.M →ε µα.Mβ

2. We denote by �R the reflexive, transitive closure of →R. I.e., M �R M ′ iff
M →R M1 →R M2 → · · · →R Mk = M ′.

3. We denote by NFR the set of all λµ-terms in R-normal form, i.e., λµ-terms
that do not contain an r-redex for any r ∈ R.

4. A λµ-term M is said to be R-weakly normalizable if there exists M ′ ∈ NFR
such that M �R M ′. We denote by WNR the set of R-weakly normalizable
terms.

5. A λµ-term M is said to be R-strongly normalizable, if there exists no infi-
nite R-reduction paths starting from M . That is, any possible sequence of
reductions eventually leads to a normal term. We denote by SNR the set of
R-strongly normalizable terms.

We list here the most important results that we will use in our paper. For the
missing proofs, the reader is referred to [3, 4, 6, 22].

Theorem 2.7 The βµµ′ρθε-reduction preserves types, that is, if Γ ` M : A;4
and M �βµµ′ρθε M

′, then Γ `M ′ : A;4.

Theorem 2.8 The µµ′-reduction is strongly normalizing for the untyped λµ-terms.

Theorem 2.9 The βµµ′-reduction is strongly normalizing for the typed λµ-terms.

Theorem 2.10 The µµ′ρθε-reduction is weakly normalizing for the untyped λµ-
terms.

Theorem 2.11 The βµµ′ρθε-reduction is weakly normalizing for the typed λµ-
terms.

In the sequel, let IH be an abbreviation for the phrase “the induction hypothesis”.

3 The semantics of the system
In this section, we define reducibility candidates for the λµ-calculus and prove
its correctness. First and foremost, we clarify what we mean by a saturated set.
We then identify a particular set, denoted as T, which we choose to be saturated.
Additionally, we define the properties required for a set to be saturated with respect
to T, referred to as being T-saturated.

Following this, we construct a model consisting of T-saturated sets and interpret
the types within this model. In previous works related to similar topics, a specific set
of terms was typically fixed from the outset, such as the set of strongly normalizable
terms. Subsequently, it was shown that this set satisfied the necessary properties.
In contrast, our approach involves identifying the properties of the set T that are
sufficient to establish a correctness theorem. Once these properties are defined, we
demonstrate that certain sets indeed possess these properties.

7

The conditions we impose on the set T are primarily derived from the typing
rules. Our aim is to ensure the fulfillment of the correctness theorem, as indicated
by Theorem 3.15. To achieve this, we establish three groups of conditions related
to saturation.

- The first group consists of three straightforward conditions that ensure sat-
uration concerning the constructors λ, µ, and [.]. These conditions contain
essential assumptions to maintain the typability of terms. While the first con-
dition does not pose complications in subsequent sections, the other two are
more delicate and require special attention.

- The second group consists of a single condition that is crucial for ensuring
that all variables are within the set T. This condition is essential for manag-
ing non-closed terms (terms containing free variables) and preserving specific
properties related to the constructor , which interprets the logical connector
→.

- The final two conditions are relatively standard in the literature and are used
in virtually all realizability semantics. They are crucial for managing the
typing rules associated with logical introduction rules. It will become appar-
ent later that these conditions, in particular, require that reductions must
contain at least the head reduction rules corresponding to β-reduction and
µ-reduction.

Due to certain technical difficulties, we made the choice to demand that the
set T exclusively contains typed terms. This choice was found to be justified, as
we were going to derive results that only made sense within a typed environment.
Consequently, we exercised caution in all our definitions to include only typed terms
within the set T.

The following definition introduces essential concepts, and Definition 3.2 outlines
the conditions under which a set is deemed saturated.

Definition 3.1 (Preliminary notions)

1. We denote the set of typable λµ-terms Tp, i.e.
Tp = {M ∈ T / ∃Γ,4, A, such that Γ `M : A;4}.

2. If L ⊆ T , we denote by L<ω the set of finite (possibly empty, denoted by ∅)
sequences of λµ-terms of L.

3. Let L ⊆ T . If N̄ = N1 . . . Nn ∈ L<ω, we write P̄ v N̄ if P̄ = N1 . . . Nk where
0 ≤ k ≤ n. Intuitively, P̄ is an initial subsequence of the sequence N̄ .

4. Let M ∈ T and P̄ ∈ T <ω, we define by induction the λµ-term (M)P̄ :
(M)∅ = M and, if P̄ = NQ̄, that is, P̄ is the sequence consisting of N ∈ T
followed by Q̄ ∈ T <ω, then (M)P̄ = ((M)N)Q̄.

Definition 3.2 (Saturated sets) Let T ⊆ Tp. We say that T is saturated if

(C1) : ∀M ∈ T, ∀x ∈ Vλ, λx.M ∈ T.

(C2) : ∀M ∈ T, ∀α ∈ Vµ, if µα.M ∈ Tp, then µα.M ∈ T.

(C3) : ∀M ∈ T, ∀α ∈ Vµ, if [α]M ∈ Tp, then [α]M ∈ T.

(C4) : ∀n ≥ 0, ∀N1, . . . , Nn ∈ T, ∀x ∈ Vλ, if (x)N1 . . . Nn ∈ Tp, then (x)N1 . . . Nn ∈
T.

8

(C5) : ∀M,N ∈ Tp, ∀P̄ ∈ T <ωp , if N ∈ T, (λx.M)NP̄ ∈ Tp and (M [x := N])P̄ ∈ T,
then (λx.M)NP̄ ∈ T.

(C6) : ∀M ∈ Tp, N ∈ T <ωp , if N̄ ∈ T<ω, (µα.M)N̄ ∈ Tp and µα.M [α :=r N̄] ∈ T,
then (µα.M)N̄ ∈ T.

Remark 3.3

1. The conditions (C1), (C2) and (C3) describe the requirements for saturation
concerning λ-, µ-abstraction and µ-application. We note that we must pay
special attention to ensuring that we stay within the realm of typable terms.
Consequently, additional conditions are needed to guarantee typability.

2. Condition (C4) implies that T contains λ-variables, which will prove to be
essential for demonstrating certain closure properties of T.

3. Condition (C5) states that T is saturated with respect to head β-reduction
when the original term is an application.

4. Condition (C6) is basically the same but concerns head µ-reduction. it is
worth noting that a somewhat different condition can be formulated in this
case since µ does not disappear during the reduction.

5. As we proceed, we will see that the stability properties of T outlined in the
above definition are indispensable to the correctness theorem.

Lemma 3.4 The set Tp is saturated.
Proof We can observe that the conditions of Definition 3.2 are trivially verified.

�

In this section, we are going to prove a surprising result which is the following:

The set Tp is the unique saturated set.

We will see in section 4 and 5 some applications of this powerful result.

Now, our goal is to define type interpretations by means of particular subsets
of T. To achieve this, it is essential to define our base sets that will serve as the
images of type constants, or at the very least, to establish their desired properties.
Additionally, we need to introduce an operation, denoted as , for interpreting the
arrow→ in types. However, we must exercise caution in our constructions to ensure
that we remain within the domain of typed terms.

The definition of provided below is quite standard and aligns with a common
concept in realizability semantics: the terms in K L are those which map the
terms of the set K into the set L. Furthermore, we need to define an implication
operator for subsets of finite sequences of terms and sets of terms. As we delve into
the proof of Theorem 3.15, it will become apparent that the second interpretation
of is essential for the correctness of the reducibility semantics within classical
logic.

Following the definition of the operator, we outline the conditions imposed
on subsets of T in Definition 3.6. These conditions are necessary for interpreting
types and ensuring that the underlying subsets of T remain saturated sets.

Definition 3.5 (The operator) Let T be a saturated set and consider K,L ⊆
T, and X ⊆ T<ω. We define two new subsets of T relative to T:

K T L = {M ∈ T / ∀N ∈ K, if (M)N ∈ Tp, then (M)N ∈ L},

X T T = {M ∈ T / ∀ N̄ ∈ X , ∀ P̄ v N̄ , if (M)P̄ ∈ Tp, then (M)P̄ ∈ T}.

9

Definition 3.6 (T-saturated sets) Let T be saturated and S ⊆ T. We call S a
T-saturated set or, in short, T-saturated if

(D1) : ∀M,N ∈ Tp, ∀P̄ ∈ T <ωp , if N ∈ T, (λx.M)NP̄ ∈ Tp and (M [x := N])P̄ ∈ S,
then (λx.M)NP̄ ∈ S.

(D2) : ∀n ≥ 0, ∀N1, . . . , Nn ∈ T, ∀x ∈ Vλ, if (x)N1 . . . Nn ∈ Tp, then (x)N1 . . . Nn ∈
S.

(D3) : ∃XS ⊆ T<ω, S = XS T T.

Remark 3.7

1. Condition (D1) indicates that S must be saturated concerning head β-reduction
when the original term is an application. The requirement that N ∈ T is es-
sential for this condition. However, we do not need a similar property for
saturation with respect to head µ-reduction.

2. Condition (D2) implies that, specifically, every λ-variable must belong to S.

3. Condition (D3) plays a crucial role in allowing us to formulate the correctness
theorem. It enables us to transition from an interpretation of a proof of
contradiction based on the assumption ¬A to an interpretation of a proof of
A.

4. Finally, if T is a saturated set, it is also considered T-saturated since T =
∅ T T.

The following remark can be seen as an easy exercise and will not be used in
the rest of the paper.

Remark 3.8 Let K,L be T-saturated, M ∈ L and x ∈ Vλ such that x is not
free in M , then, by (C1), λx.M ∈ T. We have ∀N ∈ K, if (λx.M)N ∈ Tp, then
M [x := N] = M ∈ L, thus, by (D1), (λx.M)N ∈ L. Therefore λx.M ∈ K T L.
This shows that we can create an infinite number of terms in K T L. We will see
in Lemma 3.10 that K T L contains every λ-variable.

In the sequel, we omit the subscript T and we simply write K L or X T,
respectively.

We can now introduce the concept of a T-model, which comprises the sets used
for interpreting types. Lemma 3.10 is of paramount importance as it guarantees
that the sets comprising a model maintain their property of being T-saturated.

Definition 3.9 (T-model) Let T be saturated. A T-model M is the smallest set
defined by the following inductive steps.

1. T ∈M.

2. Let (Si)i∈I be T-saturated sets. Then Si ∈M (i ∈ I).

3. Let U , V ∈ M. Then U V ∈ M.

In other words, let Si (i ∈ I) be T-saturated sets. Then M is a T-model if M is
the smallest set containing Si (i ∈ I), T and is closed under the constructor .

It will turn out (notably in Corollary 3.16) that, for the correctness theorem
to hold, it would be enough to consider models containing only the set T. At this
point, however, we do not know yet that Tp is the unique saturated set.

10

Lemma 3.10 LetM be a T-model. If S ∈ M, then S is T-saturated.
Proof Let S ∈ M, whereM is a T-model. We verify the three points of Defini-
tion 3.6 one by one by induction on the minimal number of steps in construction
of S. If S = T or S = Si, then the statement clearly holds. Assume S = U V for
some U ,V ∈ M. First of all, by Definition 3.5, we have S ⊆ T.

(D1) Let M,N ∈ Tp and P̄ ∈ T <ωp such that N ∈ T, (λx.M)NP̄ ∈ Tp and (M [x :=

N])P̄ ∈ S. We will prove that (λx.M)NP̄ ∈ U V. First, we have (M [x :=
N])P̄ ∈ S ⊆ T (by virtue of Definition 3.5), then, by (C5), (λx.M)NP̄ ∈ T.
Let Q ∈ U such that (λx.M)NP̄Q ∈ Tp, then (M [x := N])P̄Q ∈ Tp. Since
we have (M [x := N])P̄ ∈ T and (M [x := N])P̄ ∈ U V, thus (M [x :=
N])P̄Q ∈ V and, by IH, (λx.M)NP̄Q ∈ V. Therefore (λx.M)NP̄ ∈ S.

(D2) Let N1, . . . , Nn ∈ T and x ∈ Vλ such that (x)N1 . . . Nn ∈ Tp. We will prove
that (x)N1 . . . Nn ∈ U V. First, by (C4), (x)N1 . . . Nn ∈ T. Assume
N ∈ U and (x)N1 . . . NnN ∈ Tp, then, by IH, N ∈ T and (x)N1 . . . NnN ∈ V.
Therefore (x)N1 . . . Nn ∈ S.

(D3) Let XV ⊆ T<ω such that V = XV T. By IH such an XV exists. Let
UXV = {NN̄ /N ∈ U and N̄ ∈ XV}. We will verify S = UXV T. First, we
have UXV ⊆ T<ω.

– Let M ∈ S and P̄ = NQ̄ where N ∈ U and Q̄ ∈ XV . Let R̄ v P̄ such
that (M)R̄ ∈ Tp. If R̄ = ∅, then (M)R̄ = M ∈ T. If not, R̄ = NS̄ where
S̄ v Q̄. Since (M)N ∈ Tp, (M)N ∈ V ⊆ T and since (M)NS̄ ∈ Tp and
S̄ v Q̄ ∈ XV , (M)NS̄ ∈ T. Therefore S ⊆ UXV T.

– Let M ∈ UXV T and N ∈ U such that (M)N ∈ Tp, then (M)N ∈ T,
since N v NQ̄ ∈ UXV . Let P̄ v N̄ ∈ XV such that (M)NP̄ ∈ Tp, then
NP̄ v NN̄ , thus (M)NP̄ ∈ T. Hence, (M)N ∈ XV T = V. Therefore
UXV T ⊆ S.

�

We have now reached a pivotal concept in grasping the essence of this kind
of reducibility candidates. When attempting to model the equation A = ¬¬A,
rather than relying on fixed-point operators, we embrace the realizability seman-
tics proposed by Parigot. Specifically, he addressed the challenge of deriving the
interpretation of A from that of ¬¬A by ensuring that every element S withinM
can be represented as S⊥ T for some set S⊥. Intuitively, we can consider S⊥,
referred to as the orthogonal of S, as the interpretation of the negation of a type.
This concept enables us to effectively incorporate classical logic without the need
for fixed-point operators.

For the properties we aim to establish, it is vital that the empty list be included
in the orthogonal set of the interpretation of each type. Therefore, we incorporate
it into S⊥ in the subsequent definition.

Definition 3.11 (Weakest precondition) Let M be a T-model, and S ∈ M.
We write

S⊥ =
(⋃
{X ⊆ T<ω / S = X T}

)
∪ {∅}.

The next lemma demonstrates that S⊥ T coincides with S, hence, S⊥ does
indeed describe the weakest condition under which can ensure this property.

Lemma 3.12 LetM be a T-model, and S ∈ M. We have S = S⊥ T.
Proof

11

• Assume M ∈ S and P̄ v N̄ ∈ S⊥ such that (M)P̄ ∈ Tp.

– If N̄ = ∅, then P̄ = ∅ and (M)P̄ = M ∈ S ⊆ T.
– If N̄ ∈ X0 for some X0 with S = X0 T, we have, by definition,

(M)P̄ ∈ T.

• Let X0 ⊆ T<ω such that S = X0 T. Since X0 ⊆ S⊥, then S⊥ T ⊆ X0
T = S.

�

We can now interpret the types in a T-model. Note that the interpretation of
the type ⊥ will be the whole set T.

Definition 3.13 (Interpretation of types) LetM be a T-model. AnM-inter-
pretation I is a function X 7→ I(X) from the set of atomic types VT toM which we
extend for any type formula as follows: I(⊥) = T and I(A→ B) = I(A) I(B).

We are now prepared to state and prove the generalized correctness theorem.
This theorem establishes a connection between the concept of typability and inter-
pretation within a model. In simple terms, it asserts that any λµ-term M of type
A belongs to the interpretation of A in any model. Furthermore, given that the
interpretation of any type is contained in T, it follows that the λµ-term M will
also be in T. Consequently, a well-chosen set T enables us to uncover properties of
typable terms in relation to a specific reduction.

Definition 3.14 (Simultaneous substitution) LetM,M1, . . . ,Mn ∈ T , N̄1, . . .
, N̄m ∈ T <ω, and σ be the simultaneous substitution [(xi := Mi)1≤i≤n; (αj :=r

N̄j)1≤j≤m], which is not an object of the syntax. Then Mσ is obtained from the
λµ-term M by replacing each xi by Mi and replacing inductively each subterm of
the form [αj]U in M by [αj](U)N̄j. Here is a formal definition of Mσ

• If M = x and x 6= xi, then, Mσ = x.

• If M = xi, then Mσ = Mi.

• If M = λx.U , then we can assume that x is a new λ-variable and Mσ =
λx.Uσ.

• If M = (U)V , then Mσ = (Uσ)V σ.

• If M = µα.U , then we can assume that α is a new µ-variable and Mσ =
µα.Uσ.

• If M = [α]U and α 6= αj, then Mσ = [α]Uσ.

• If M = [αj]U , then Mσ = [αj](Uσ)N̄j.

It is worth noting that the statement of the following theorem comes with a set of
substantial assumptions. Notably, we incorporate initial subsequences of sequences
into I(Bj)

⊥, and we also require that Mσ be typable. A thorough examination of
the proof of the theorem reveals that these assumptions are indispensable for the
current approach.

Theorem 3.15 (General correctness theorem)
LetM be a T-model, I anM-interpretation,
Γ = {xi : Ai}1≤i≤n, 4 = {αj : Bj}1≤j≤m,
Mi ∈ I(Ai) for all 1 ≤ i ≤ n, P̄j v N̄j ∈ (I(Bj))

⊥ for all 1 ≤ j ≤ m and
σ = [(xi := Mi)1≤i≤n; (αj :=r P̄j)1≤j≤m].
If Γ `M : A ; ∆ and Mσ ∈ Tp , then Mσ ∈ I(A).

12

Proof By induction on the derivation, we consider the last rule used.

ax : In this case, M = xi, A = Ai, Γ ` xi : Ai; ∆ and Mσ = σ(xi) = Mi ∈ Tp .
By hypothesis, M = Mi ∈ I(Ai) = I(A).

→i: In this case, M = λx.N and A = B → C, Γ, x : B ` N : C; ∆ and Mσ =
λx.Nσ ∈ Tp. Since x ∈ I(B) and Nσ = Nσ′ where σ′ = σ + [x := x], we
obtain, by IH, Nσ ∈ I(C) ⊆ T, then (C1) involves Mσ ∈ T. Let P ∈ I(B)
such that (Mσ)P ∈ Tp. We have (Mσ)P →β Nσ

′′ where σ′′ = σ + [x := P],
then Nσ′′ ∈ Tp. By IH, Nσ′′ ∈ I(C) and P ∈ T, then, by (D1), (Mσ)P ∈
I(C). Therefore Mσ ∈ I(B) I(C) = I(A).

→e: In this case, M = (N)P , Γ ` P : A;4, Γ ` N : B → A;4, and Mσ =
(Nσ)Pσ ∈ Tp. Then Nσ,Pσ ∈ Tp and, by IH, Nσ ∈ I(B) I(A) and
Pσ ∈ I(B). This means Mσ = (Nσ)Pσ ∈ I(A).

⊥i : In this case, M = µα.N , Γ ` N : ⊥; α : A,∆′ and Mσ = µα.Nσ ∈ Tp. Since
∅ ∈ I(A)⊥ and Nσ = Nσ′ where σ′ = σ + [α :=r ∅], we obtain, by IH,
Nσ ∈ I(⊥) = T. Let ∅ 6= P̄ v N̄ ∈ I(A)⊥ such that (Mσ)P̄ ∈ Tp. We have
(Mσ)P̄ �µ µα.Nσ

′′ where σ′′ = σ + [α :=r P̄], then µα.Nσ′′, Nσ′′ ∈ Tp. By
IH, Nσ′′ ∈ T = I(⊥) and, by (C2), µα.Nσ′′ = µα.Nσ[α :=r P̄] ∈ T, hence,
by (C6), (Mσ)P̄ ∈ T. Therefore Mσ = µα.Nσ ∈ I(A).

⊥e : In this case, M = [αj]N , A = ⊥, Γ ` N : Bj ; ∆ and let P̄j v N̄j ∈ I(Bj)
⊥

be such that Mσ = [αj](Nσ)P̄j ∈ Tp. Then Nσ, (Nσ)P̄j ∈ Tp and, by IH,
Nσ ∈ I(Bj) and, since P̄j v N̄j ∈ I(Bj)

⊥, then (Nσ)P̄j ∈ T. Therefore, by
(C3), Mσ = [αj](Nσ)P̄j ∈ T = I(⊥).

�

We can now state and prove the main result of this section.

Corollary 3.16 For every saturated set T we have T = Tp, i.e., Tp is the unique
saturated set.
Proof It suffices to check that if Γ ` M : A,4 and T is a saturated set, then
M ∈ T. Assume Γ = {xi : Ai}1≤i≤n and 4 = {αj : Bj}1≤j≤m. Let M be the T-
model containing only the set T and I theM-interpretation defined by I(X) = T
for all X ∈ P. Since xi ∈ I(Ai) for all 1 ≤ i ≤ n and ∅ ∈ I(Bj))

⊥ for all
1 ≤ j ≤ m, then, by the general correctness lemma and since M ∈ Tp, M =
M [(xi := xi)1≤i≤n; (αj :=r ∅)1≤r≤j] ∈ I(A) ⊆ T. �

It is important to note that we rely on Theorem 3.15 to derive the preceding
result. In other words, arriving at this result directly, without first establishing the
interpretations of types and then applying the multiple hypotheses of this theorem,
appears to be unfeasible.

This result underscores its significance. Essentially, it implies that the set of
typable λµ-terms is the only set of terms meeting the requirements of a saturated
set. In other words, when aiming to demonstrate that typable λµ-terms possess a
particular property, it suffices to consider the set of λµ-terms with that property
and then establish that this set is indeed saturated.

In Sections 4 and 5, we will explore applications of this result.

4 Strong normalization property of βµρεθ-reduction
In this section, we demonstrate that the βµ-reduction enjoys the strong normaliza-
tion property when augmented with the rules ρ, ε, and θ i.e., all the mentioned rules

13

except for µ′. This result is not novel; Parigot proved it for his original calculus
and de Groote subsequently confirmed it for his version. What distinguishes our
approach here is the methodology employed. Instead of verifying strong normal-
ization for a smaller set of rules and subsequently applying commutation rules, we
use the result of the previous section. Specifically, we consider all of our reduction
rules and choose our base set as the set of typable terms strongly normalizable with
respect to all of the considered rules. We then verify that this set possesses all of
the properties required for it to be considered saturated.

Hence, we define R = {β, µ, ρ, θ, ε} and choose T = SNR ∩ Tp. Our aim is to
verify that T is saturated. By Corollary 3.16, this establishes that every typable
term is strongly normalizable with respect to βµρθε-reduction. In the subsequent
discussions, we use the abbreviation M [α :=r N] for M [α := N], as we do not
consider µ′-reduction in this case. We then verify the fulfillment of the conditions
outlined in Definition 3.2.

First of all, we state a few easy lemmas.

Lemma 4.1 Let M , N ∈ T and α, β, γ ∈ Vµ such that α 6= β, γ. Then (M [β :=
γ])α = Mα[β := γ], (M [x := N])α = Mα[x := Nα], (M [β := N])α = Mα[β := Nα],
and (Mα)β = (Mβ)α.
Proof All the cases follow by a straightforward induction on M . �

Lemma 4.2 Let M ∈ T and α, β ∈ Vµ. Then M →R N iff M [α := β] →R
N [α := β].
Proof By induction on M . �

Lemma 4.3 Let M ∈ T and α, β ∈ Vµ. Then M ∈ NFR iff M [α := β] ∈ NFR.
Proof Follows from the previous lemma. �

Now we turn to verifying the properties listed in Definition 3.2.

Lemma 4.4 (Condition (C1)) Let M ∈ T and x ∈ Vλ. Then λx.M ∈ T.
Proof Straightforward. �

Before proving the condition (C2), we point out that it is inevitable that we
work in the typed framework. Indeed, it is easy to find an example of a λµ-term
M ∈ SNR but µα.M 6∈ SNR. Namely, let M = µβ.(λx.(x)x)[β]λx.(x)x, then we
have M ∈ NFR but µα.M →ε µα.Mβ = µα.(λx.(x)x)λx.(x)x 6∈ WNR. More
generally, the following remark will be valid throughout the section.

If we choose T as above, we can observe that none of the conditions of Lemma
3.2 will necessitate a typed framework, except for the condition (C2). However, in
adherence to the formulation of Definition 3.2, we include typability assumptions
in the respective lemmas. Only the verification of condition (C2) for T will depend
on typability assumptions.

Lemma 4.5 (Condition (C2)) Let M ∈ T and α ∈ Vµ such that µα.M ∈ Tp.
Then µα.M ∈ T.
Proof We prove the lemma with the help of Lemmas 4.6 and 4.8. �

14

Lemma 4.6 Let M ∈ Tp and assume Mα →R U for some α ∈ Vµ. Then ∃ V
such that M →R V and Vα = U .
Proof Let M ∈ Tp and assume Mα →R U .

• If M is a variable, there is nothing to prove.

• If M = λx.N , we can apply IH.

• Assume M = [β]N .

– If β 6= α, then Mα = [β]Nα. If U = [β]W with Nα →R W , then we
can apply IH. Otherwise, N = µγ.P , and, applying Lemma 4.1, [β]Nα =
[β]µγ.Pα →ρ Pα[γ := β] = (P [γ := β])α. We let M →ρ P [γ := β] = V .

– If β = α, then Mα = ([α]N)α = Nα. In this case we use IH.

• Assume M = µγ.N .

– If U = µγ.W such that Nα →R W , then we can apply IH.
– If N = µδ.P , then, by Lemma 4.1, Mα = µγµδ.Pα →ε µγ.(Pα)δ =
µγ.(Pδ)α and we let M →ε µγ.Pδ = V .

– If N = [γ]P , γ /∈ fv(P), Ma = µγ.[γ]Pα →θ Pα and we have M →θ P =
V .

• If M = (N)P , then Mα = (Nα)Pα. If U = (Q)R such that Nα →R Q or
Pα →R R, then we can apply IH. Hence, we may assume thatMα is the redex
reduced. We distinguish the various cases according to the structure of N .

– N cannot be a variable, since then Mα is not a redex.
– If N = [γ]N ′, then N has type ⊥, hence this case is impossible.
– If N = λx.N ′, then M →β N

′[x := P], and, by applying Lemma 4.1,
Mα = (λx.N ′α)Pα →β N ′α[x := Pα] = (N ′[x := P])α, and the result
follows.

– If N = µγ.N ′, then M →µ µγ.N
′[γ := P], and, by Lemma 4.1, Mα =

(µγ.N ′α)Pα →µ µγ.N ′α[γ := Pα] = (µγ.N ′[γ := P])α, and the result
follows.

– The case N = (N1)N2 is impossible, since then Mα is not a redex.
�

Definition 4.7 (Strong normalization) We say that a term M is strongly nor-
malizable, in notation M ∈ SNR, if every reduction sequence starting from M
terminates. Since the reduction tree is locally finite, then, by König’s lemma,
this is equivalent to asserting that the lengths of the reduction sequences starting
from M is bounded from above. Let us denote the length of the longest reduc-
tion sequence of M by η(M). Observe that, if M →R M ′, then η(M) > η(M ′).
Then M ∈ SNR iff, for every M →R N , we have N ∈ SNR. Moreover,
η(M) = max{η(N) |M →R N}+ 1.

Lemma 4.8 Let M ∈ Tp and α ∈ Vµ. If M ∈ SNR, then Mα ∈ SNR and
η(Mα) ≤ η(M).
Proof Let M ∈ SNR and assume Mα →R U . We reason by induction on η(M).
By the previous lemma, ∃ V such that M →R V and Vα = U . Then η(V) < η(M),
hence, we can apply IH to V . We obtain the bound for η(Mα) if we take into account
the inequality η(U) + 1 ≤ η(V) + 1 ≤ η(M), which follows from the previous fact
and IH. �

15

We can now turn to the proof of Lemma 4.5.

Proof of Lemma 4.2.
Let M ∈ T and α ∈ Vµ such that µα.M ∈ Tp. We assume by lexicographic
induction with respect to (η(M), cxty(M)) that M ∈ SNR implies µα.M ∈ SNR.
Let µα.M →R N . We claim that N ∈ SNR. We examine the three cases possible.

• If N = µα.M ′ with M →R M ′, then η(M ′) < η(M) and, by IH, N ∈ SNR.

• If M = µβ.P and µα.M →ε µα.Pβ = N , then P ∈ SNR, η(Pβ) ≤ η(P) ≤
η(M) and cxty(P) < cxty(M), thus, by IH, N ∈ SNR.

• If M = [α]N , α /∈ fv(N) and µα.M →θ N , then N ∈ SNR.

�

Lemma 4.9 (Condition (C3)) Let M ∈ T and α ∈ Vµ such that [α]M ∈ Tp.
Then [α]M ∈ T.
Proof Let M ∈ T and α ∈ Vµ such that [α]M ∈ Tp. We will prove, by induction
on η(M), that [α]M ∈ SNR. Let [α]M →R N . It suffices to check that N ∈ SNR.
We examine two cases.

• If N = [α]M ′ with M →R M ′, then η(M ′) < η(M) and, by IH, N ∈ SNR.

• IfM = µβ.P and µα.M →ρ P [β := α] = N , then P ∈ SNR, thus, by Lemma
4.3, N ∈ SNR.

�

Condition (C4) proves to be trivial due to the fact that we have omitted the
µ′-reduction, that is, the symmetric counterpart of µ.

Lemma 4.10 (Condition (C4)) Let n ≥ 0, N1, . . . , Nn ∈ T and x ∈ Vλ. Then
(x)N1 . . . Nn ∈ Tp involves (x)N1 . . . Nn ∈ T.

Proof We argue by induction on
n∑
k=1

η(Nk). Indeed, (x)N1 . . . Nn →R U implies

U = (x)U1 . . . Un, where Ni →R Ui for one index 1 ≤ i ≤ n and Nj = Uj if
1 ≤ j ≤ n and i 6= j. By this, the result follows. �

The lemma below contains an easy property of the reduction.

Lemma 4.11 Let M , U , N be given such that M →R U . Then M [x := N] →R
U [x := N].
Proof By induction on M .

�

We reveal two observations in the next lemma before verifying the condition
(C5).

Lemma 4.12

1. Let M [x := N] ∈ SNR for some terms M , N and variable x ∈ Vλ. Then
M ∈ SNR.

2. Let M [α := N] ∈ SNR for some terms M , N and variable α ∈ Vµ. Then
M ∈ SNR.

Proof We deal only with Point 1, the other case being similar. Let M →R U .
We prove that U ∈ SNR. We argue by induction on η(M [x := N]). From the
assumption M →R U , we deduce M [x := N] →R U [x := N] by the previous
lemma. Since M [x := N] ∈ SNR, we have U [x := N] ∈ SNR and η(U [x := N]) <
η(M [x := N]), which, by IH, gives the result. �

16

Lemma 4.13 (Condition (C5)) Let (M [x := N])P̄ ∈ T, N ∈ T and (λx.M)NP̄ ∈
Tp. Then (λx.M)NP̄ ∈ T.
Proof Firstly, we observe that (M [x := N])P̄ ∈ SNR implies M , P̄ ∈ SNR.
We proceed by induction on η(M) + η(N) + η(P̄) where η(P̄) is the sum of the ηs
of the terms of the sequence P̄ . Let (λx.M)NP̄ →R Q. We examine two cases.

• If Q = (λx.M ′)N ′P̄ ′ with M →R M ′ or N →R N ′ or P̄ →R P̄ ′, then we can
apply IH.

• If Q = (M [x := N])P̄ , we have the result by assumption.
�

Lemma 4.14 (Condition (C6)) Let µα.M [α := N̄] ∈ T, N̄ ∈ T<ω and (µα.M)N̄ ∈
Tp. Then (µα.M)N̄ ∈ T.
Proof We observe that, by Lemma 4.12, µα.M [α := N̄] ∈ SNR implies M ∈
SNR. We note that, if N̄ = N1N2 . . . Nn, then M [α := N̄] = M [α := N1][α :=
N2] . . . [α := Nn]. Therefore, we need to prove that, if (µα.M [α := N])P̄ ∈ SNR
with N ∈ SNR and P̄ ∈ SN<ω

R , then (µα.M)NP̄ ∈ SNR. We proceed by induc-
tion on η(M) + η(N) + η(P̄) where η(P̄) is the sum of the ηs of the terms of the
sequence P̄ . Let (µα.M)NP̄ →R Q. We examine two cases.

• If Q = (µα.M ′)N ′P̄ ′ with M →R M ′ or N →R N ′ or P̄ →R P̄ ′, then we can
apply IH.

• If Q = (µα.M [α := N])P̄ , we have the result.
�

We are now in a position to state the main result of this section.

Theorem 4.15 T is a saturated set.
Proof We put together Lemmas 4.4, 4.5, 4.9, 4.10, 4.13 and 4.14. �

Corollary 4.16 If M ∈ Tp, then M ∈ SN βµρθε.
Proof We apply Corollary 3.16 and Theorem 4.15. �

5 Weak normalization property of βµµ′ρεθ-reduction
In this section, we prove that βµρεθ-reduction augmented with the µ′–rule has the
weak normalization property. In [4], we provided a syntactic proof of this result.
However, that proof was notably complex, involving the strong normalization of
β-reduction within a typed framework and the weak normalization of the other re-
ductions within an untyped framework. The most challenging part was devising
an algorithm to combine the two normalization results to establish the weak nor-
malization of the set of all reductions. The proof presented here takes a different
approach. It relies on the results of Section 3 by choosing a suitable set that satisfies
all the properties required for the saturation. We observe that condition (C4) is the
most difficult one to establish, and, interestingly, it will be formulated and verified
within the untyped context. While this proof for the weak normalization property
is elegant and concise, it lacks the constructive aspect found in the previous proof
[4], and as a result, we are unable to extract a concrete normalization algorithm.

Additionally, it is worth noting that, except for verifying condition (C2) for T′,
none of the other properties require typability assumptions. While the formulations

17

of the lemmas mention typability assumptions to align with Definition 3.2, we will
present proofs that do not rely on types for conditions with the exception of (C2).

We first show in the next two lemmas that, for the proof of the weak normaliza-
tion property of βµµ′ρεθ-reduction, it is sufficient to verify that βµµ′ρε-reduction
enjoys weak normalization. This is because we can add θ-reduction to the set of
reductions without compromising the weak normalization property.

Lemma 5.1 Let us suppose M ∈ NFβµµ′ρε and M �θ N for some M , N ∈ T .
Then N ∈ NFβµµ′ρε and, if N starts with λ (with µ, resp.), then M also starts
with λ (with µ, resp.).
Proof By induction on M . It suffices to check the property for one-step of
reduction.

• If M = λx.M ′, the result is trivial.

• IfM = µα.M ′ and N = µα.N ′ whereM ′ →θ N
′, then, by IH, N ′ ∈ NFβµµ′ρε

and N ′ does not start with µ. Thus N ∈ NFβµµ′ρε and the second property
is obviously verified.

• If M = µα.[α]M ′, α 6∈ fv(M ′) and N = M ′, then M ′ ∈ NFβµµ′ρε and the
second property is obviously verified.

• If M = [α]M ′, then N = [α]N ′ where M ′ →θ N ′. Then, by IH, N ′ ∈
NFβµµ′ρε and N ′ does not start with µ. Hence, N ∈ NFβµµ′ρε.

• If M = (M1)M2, N = (M ′1)M2 and M1 →θ M
′
1, then M ′1,M2 ∈ NFβµµ′ρε

and M ′1 does not start with µ or λ. Hence, N ∈ NFβµµ′ρε.

• If M = (M1)M2, N = (M1)M ′2 and M2 →θ M
′
2, then M1,M

′
2 ∈ NFβµµ′ρε

and M ′2 does not start with µ. Hence, N ∈ NFβµµ′ρε.
�

Lemma 5.2 The θ-reduction strongly normalizes.
Proof We observe that θ-reduction decreases the size of the terms. �

Theorem 5.3 WN βµµ′ρε ⊆ WN βµµ′ρεθ holds true.
Proof If M ∈ WN βµµ′ρε, then ∃ M ′ such that M �βµµ′ρε M ′ and M ′ ∈
NFβµµ′ρε. Thus, by Lemmas 5.1 and 5.2, ∃ N ∈ NFβµµ′ρεθ such that M ′ �θ N .

�

Let us now recall the example of our paper [4] which shows that with the re-
duction µ′ we lose the strong normalization property. Let M = (µβ.U)U where
U = µα.[α][α]x, then x : ⊥ ` M : ⊥ and there are M1, M2, M3 such that
M →µ′ M1 →µ M2 →ρ M3 →θ M , which means M 6∈ SN βµµ′ρεθ. Hence, we can-
not hope to prove the strong normalizability of {β, µ, µ′, ρ, ε}-reduction. Instead, we
intend to show that {β, µ, µ′, ρ, ε}-reduction enjoys the weak normalization prop-
erty.

In what follows, we let R′ = {β, µ, µ′, ρ, ε} and T′ = WNR′ ∩ Tp. Our aim is
to verify that T′ is saturated, from which, by Corollary 3.16, it follows that every
typable term is weakly normalizable. We verify the conditions of Definition 3.2 one
by one below. Beforehand, we deal with some lemmas that will be needed in the
proofs. Lemma 5.5 is similar to Lemma 4.3.

Lemma 5.4 Let M ∈ T and α, β ∈ Vµ. Then M →R′ N iff M [α := β] →R′

N [α := β].
Proof By induction on M . �

18

Lemma 5.5 LetM ∈ T and α, β ∈ Vµ. ThenM ∈ NFR′ iffM [α := β] ∈ NFR′ .
Proof Follows from the previous lemma. �

Lemma 5.6 Let M ∈ Tp and α ∈ Vµ. If M ∈ NFR′ , then Mα ∈ NFR′ . More-
over, the following statements hold.

1. If Mα starts with µ, then M starts with µ.

2. If Mα starts with λ, then M starts with λ or [.].
Proof By induction on M . We detail only the more interesting cases.

• If M = [β]M ′ and β 6= α, then M ′ does not start with µ, Mα = [β]M ′α and,
by IH,M ′α ∈ NFR′ andM ′α does not start with µ. Hence, we have the result.

• If M = [α]M ′, then M ′ does not start with µ, and Mα = M ′α. By IH,
M ′α ∈ NFR′ and M ′α does not start with µ. Obviously, if Mα starts with λ,
then M starts with [.].

• If M = (P)Q, then P,Q do not start with µ, P does not start with λ and
Mα = (Pα)Qα. By IH, Pα, Qα ∈ NFR′ and Pα, Qα do not start with µ. If
Pα starts with λ, then P starts either with λ or with [.]. Since M ∈ NFR′ , P
cannot start with λ and, since M ∈ Tp, P cannot start with [.], either. Hence,
Mα ∈ NFR′

�

Remark 5.7 In the lemma above we obviously need the assumption that M be
typable. Otherwise, let M = ([α]λx.P)Q. Then M ∈ NFR′ , but Mα = (λx.P)Q /∈
NFR′ .

The next lemma is intuitive and has the consequence that we are not able to
create a µ, λ or [.] by a µ- or µ′-substitution or by replacing a µ-variable with
another one.

Lemma 5.8 Let M,N ∈ T , α ∈ Vµ and s ∈ {r, l}.

1. If M [α :=s N] starts with λ (resp. µ, [.]), then M also starts with λ (resp. µ,
[.]).

2. If M [α := β] starts with λ (resp. µ, [.]), then M also starts with λ (resp. µ,
[.]).

Proof By induction on M . �

Lemma 5.9 (Condition (C1)) Let us suppose M ∈ T′. Then λx.M ∈ T′.
Proof Obvious. �

Lemma 5.10 (Condition (C2)) Let M ∈ T′ and α ∈ Vµ. If µα.M ∈ Tp, then
µα.M ∈ T′.
Proof We consider a normalization of M i.e. M � N ∈ NFR′ . We take the
reduction sequence µα.M � µα.N obtained thereof. We distinguish the different
cases.

• If N does not start with µ, then µα.N ∈ NFR′ (note that θ /∈ R′), thus
µα.M ∈ WNR′ .

• If N = µβ.P , then P does not start with µ. By Lemma 5.6, we have µα.M �
µα.µβ.P →ε µα.Pβ ∈ NFR′ . Hence, µα.M ∈ WNR′ .

�

19

We demonstrate the fact that the assumption µα.M ∈ Tp is needed in the lemma
above by giving a simple example. Let M = µβ.([β]λy.(y)δ)δ, where δ = λx.(x)x.
Then M ∈ NFR′ and µα.M →ε µα.Mβ = µα.(λy.(y)δ)δ →β µα.(δ)δ. Hence,
µα.M /∈ WNR′ .

Lemma 5.11 (Condition (C3)) Let M ∈ T′ and α ∈ Vµ. If [α]M ∈ Tp, then
[α]M ∈ T′.
Proof We consider a normalization of M i.e. M � N ∈ NFR′ . Then we take
the reduction sequence [α]M � [α]N obtained thereof. We distinguish the different
cases.

• If N does not start with µ, then [α]N ∈ NFR′ . Thus [α]M ∈ WNR′ .

• If N = µβ.P , then, by Lemma 5.5, we have [α]M � [α]µβ.P →ρ P [β := α] ∈
NFR′ , then [α]M ∈ WNR′ .

�

Next, we are going to prove the condition (C4) for T′.

Lemma 5.12 (Condition (C4)) Let n ≥ 0, N1, . . . , Nn ∈ T′ and x ∈ Vλ, then
(x)N1 . . . Nn ∈ T′.

We prove the lemma with the help of several auxiliary lemmas. Our intuition is
that, when we are given a term (x)N1 . . . Nn with N1, . . . , Nn ∈ WN , then we move
from left to right until we find the first 1 ≤ i ≤ n such that Ni = µγ.N ′i for some N ′i .
We normalize the term (x)N1 . . . Ni, and, after obtaining the normal form µγ.N ′′i ,
we proceed with normalizing (µγ.N ′′i)Ni+1 . . . Nn. The normalization strategy is a
little tricky at that point, however. When the next term Ni+1 does not start with a
µ, then we perform a µ-reduction for the redex (µγ.N ′′i)Ni+1. On the other hand, if
Ni+1 = µγi+1.N

′
i+1, then we continue with a µ′-reduction concerning the µ′-redex

(µγ.N ′′i)µγi+1.N
′
i+1. We continue in this way for the remaining components of the

application. First of all, we introduce some necessary notions.

Definition 5.13 (α-clean property) Let M ∈ Tp and α ∈ Vµ. We say that M
is α-clean if, for every subterm [α]U of M , U does not start with λ.

Intuitively, α-clean terms do not create new β-redexes when a µ-substitution is
considered with respect to α.

To establish condition (C4), we rely on some technical lemmas (Lemmas 5.14,
5.15, and 5.16) to attain a weak normalization result. As we have seen in the above
explanation, we need to normalize the result of a µ-substitution of a normal λµ-term
into another normal λµ-term. The difficulty in such normalization arises from the
possibility of encountering β-redexes. The α-clean condition aims to prevent these
occurrences. We achieve this normalization result in two steps. First, we normalize
without the µ′-reduction (without the µ-reduction, resp.) and we describe precisely
the remaining µ′-redexes (µ-redexes, resp.). Then, we handle the final normalization
by eliminating these redexes.

Lemma 5.14

1. Let M , N ∈ NFR′ such that M is α-clean. Then M [α :=r N] ∈ NFβµρε
is α-clean and the µ′-redexes of M [α :=r N] are of the form [α](U)N if
N = µβ.N ′. In particular, if N 6= µβ.N ′, then M [α :=r N] ∈ NFR′ as well.

2. Let M , N ∈ NFR′ such that N 6= λx.N ′ for some N ′. Then M [α :=l

N] ∈ NFβµ′ρε and the µ-redexes of M [α :=l N] are of the form [α](N)U if
N = µβ.N ′. In particular, if N 6= µβ.N ′, then M [α :=l N] ∈ NFR′ as well.

20

Proof Both points can be proved by induction on M .

1. • In case of M = λx.M ′, we apply the induction hypothesis.

• If M = µβ.M ′, then M ′ does not start with µ and M [α :=r N] =
µβ.M ′[α :=r N]. By Lemma 5.8, M ′[α :=r N] does not start with µ and
we apply IH on M ′ to obtain the result.

• If M = (M1)M2, then M1 does not start with µ or λ, M2 does not start
with µ and M [α :=r N] = (M1[α :=r N])M2[α :=r N]. By Lemma 5.8,
M1[α :=r N] does not start with µ or λ, M2[α :=r N] does not start
with µ and, applying IH on M1, M2, we obtain the result.

• If M = [β]M ′ and β 6= α, then M ′ does not start with µ and M [α :=r

N] = [β]M ′[α :=r N]. By Lemma 5.8, M ′[α :=r N] does not start with
µ and the result follows from IH.

• If M = [α]M ′, then M ′ does not start with µ and M [α :=r N] =
[α](M ′[α :=r N])N . Since M is α-clean, M ′ does not start with λ and,
by Lemma 5.8, M ′[α :=r N] does not start with µ or λ. By applying IH,
we see that [α](M1[α :=r N])N ∈ NFβµρε is α-clean and the µ′-redexes
are of the desired form.

2. • In case of M = λx.M ′, M = µβ.M ′, M = (M1)M2 and M = [β]M ′

(α 6= β), we apply, as in Point 1, IH.

• If M = [α]M ′, then M ′ does not start with µ and M [α :=l N] =
[α](N)M ′[α :=l N]. By Lemma 5.8, M ′[α :=r N] does not start with
µ. By virtue of IH and since N does not start with λ, we see that
[α](N)M1[α :=l N] ∈ NFβµ′ρε and the µ-redexes are of the desired
form.

�

Lemma 5.15 Let M,N ∈ NFR′ such that M 6= λx.M ′ and, if M = µα.M ′, then
M is α-clean. Then N [γ :=l M]�µρ P ∈ NFR′ and P is γ-clean. Moreover, if N
does not start with µ, then the same is true for P .
Proof The proof proceeds by induction on N .

• If N = λx.N ′, then the assertion is straightforward.

• If N = [β]N ′ (β 6= γ). Then N ′ does not start with µ. By IH, N ′[γ :=l

M]�µρ P
′ ∈ NFR′ and P ′ does not start with µ. Hence, [β]P ′ ∈ NFR′ .

• If N = [γ]N ′, then N [γ :=l M] = [γ](M)N ′[γ :=l M] and N ′ does not start
with µ. Hence by Lemma 5.8, N ′[γ :=l M] does not start with µ either.
By IH, N ′[γ :=l M] �µρ P

′ ∈ NFR′ and P ′ does not start with µ. If M
does not start with µ, then we are ready. Otherwise, assume M = µα.M ′.
Then M ′ does not start with µ and M is α-clean. In this case, N [γ :=l

M] = [γ](µα.M ′)N ′[γ :=l M]→µ [γ]µα.M ′[α :=r N
′[γ :=l M]]→ρ M

′[α :=r

N ′[γ :=l M]][α := γ] �µρ P ∈ NFR′ by applying Lemmas 5.14 and 5.5 and
IH. From Lemma 5.8, it follows that P does not start with µ and, by IH, P
is γ-clean.

• N = µβ.N ′. Then we can apply IH.

• N = (N1)N2. Then N1 does not start with λ or µ and N2 does not start with
µ. By using IH, we obtain the result.

�

21

Lemma 5.16 Let P,Q ∈ NFR′ and α ∈ Vµ. Then the following statements hold.

1. Let P = µα.P ′ such that P is α-clean. Assume Q does not start with µ. Then
∃ R for which (P)Q→µ µα.R ∈ NFR′ and R is α-clean.

2. Let Q = µγ.Q′. Assume P 6= λx.P ′ and, if P = µα.P ′, then P is α-clean.
Then ∃ R for which (P)Q�µµ′ρ µγ.R ∈ NFR′ and R is γ-clean.

Proof Let P , Q be as in the lemma. We verify the two statements of the lemma.

1. Assume P = µα.P ′ such that P is α-clean and Q does not start with µ. Then
we apply Lemma 5.14 to (µα.P ′)Q→µ µα.P

′[α :=r Q] to obtain the result.

2. We apply the previous lemma to (P)Q→µ′ µγ.Q′[γ :=l P].
�

Proof of Lemma 5.12 Let us assume we are given terms N1, . . . , Nn ∈ WNR′ ,
where x ∈ Vλ. We shall assume n > 0, as, otherwise, the statement is trivial.
Let 1 ≤ i ≤ n be the first index such that Ni = µγ.N ′1. We apply µ′-reductions
to (x)N1 . . . Ni−1 µγiN

′
i to obtain µγi.N

′
i [γi :=l (x)N1 . . . Ni−1] = µγi.N

′. Then,
according to the lemma above, µγi.N ′ is γi-clean and, by Lemma 5.14, µγi.N ′ ∈
NFR′ . The remaining term to normalize is (µγi.N

′)Ni+1 . . . Nn. We prove by in-
duction on i that (µγi.N

′)Ni+1 . . . Nn ∈ WNR′ . Assume Ni+1 does not start with
µ. Then Point 1 of Lemma 5.16 applies, and we obtain (µγi.N

′)Ni+1 →µ µγi.N
′′

such that µγi.N ′′ is γi-clean and µγi.N ′′ ∈ NFR′ . By IH, (µγi.N
′′)Ni+2 . . . Nn ∈

WNR′ . On the other hand, suppose Ni+1 = µγi+1.N
′
i+1. Applying Point 2 of

Lemma 5.16 to (µγi.N
′)µγi+1.N

′
i+1, we obtain µγi+1.R ∈ NFR′ such that R is

γi+1-clean and we conclude that (µγi+1.R)Ni+2 . . . Nn ∈ WNR′ . �

We can turn to the conditions (C5) and (C6).

Lemma 5.17 (Condition (C5)) Let M,N ∈ Tp, N ∈ T′ and P̄ ∈ Tp<ω. If
(M [x := N])P̄ ∈ T′ and (λx.M)NP̄ ∈ Tp , then (λx.M)NP̄ ∈ T′.
Proof Indeed, we have (λx.M)NP̄ →β (M [x := N])P̄ ∈ WNR′ . �

Lemma 5.18 (Condition (C6)) LetM,N ∈ Tp and N̄ ∈ (T′)<ω. If µα.M [α :=r

N̄] ∈ T′ and (µα.M)N̄ ∈ Tp, then (µα.M)N̄ ∈ T′.
Proof Indeed, we have (µα.M)N̄ �µ µα.M [α :=r N̄] ∈ WNR′ . �

We are now in a position to state and prove the main theorem of this section.

Theorem 5.19 T′ is a saturated set.
Proof We use Lemmas 5.9, 5.10, 5.11, 5.12, 5.17 and 5.18. �

Theorem 5.20 If M ∈ Tp, then M ∈ WN βµµ′ρεθ.
Proof We apply Corollary 3.16 and Theorems 5.3 and 5.19. �

Remark 5.21 As a final remark, we would emphasize that the weak normaliza-
tion property follows for the typable terms without any additional effort. Notably,
verifying that the set WN βµρεθ ∩ Tp is saturated is easy, as condition (C3) be-
comes trivial with the absence of the µ′-rule. Thus, if M is a typable λµ-term, then
M ∈ WN βµρεθ.

22

6 Future work
• We have proven normalization results (both strong and weak) for sets of re-

duction rules in the simply typed λµ-calculus. We believe that this method is
sufficiently general to allow us to establish analogous results when we intro-
duce additional reductions. For instance, we can consider the following new
typing rule:

[α][β]M →δ [β]Mα (β 6= α)

and
[α][α]M →δ Mα

We can investigate the normalization properties (both weak and strong) of a
set of rules that includes this new reduction rule δ. We are confident that our
method is well-suited for such investigations.

• We have already mentioned that the reduction rule µ′ does not preserve types
during reduction in a typed system based on second-order logic, and, that
Raffalli provided an example of a term of type A that can be reduced (using
the rule µ′) to a term of type B, where B can be any type. This result
appeared in Py’s thesis [22]. To address this problem, the main idea is to
give algorithmic content to the rules associated with the quantifier ∀. Py has
already accomplished this in the previously cited work. In light of this, our
aim is to expand the method of reducibility candidates in a way that allows us
to establish normalization results within a typed framework for second-order
logic.

References
[1] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical pro-

gram extraction, In: M. Hagiya and J.C. Mitchell (editors), Proceedings of
theoretical aspects of computer software, TACS ’94., Lecture Notes in Com-
puter Science (789), pp. 495-515, Springer Verlag, 1994.

[2] Battyányi, P., and Nour, K. Strong normalization of λSymProp- and λµµ̃
∗- calculi,

Logical Methods in Computer Science, vol. 13 (3:34), pp. 1-22, 2017, https:
//doi.org/10.23638/LMCS-13(3:34)2017.

[3] Battyányi, P., and Nour, K. Normalization proofs for the un-typed µµ′-calculus,
Special Issue: LICMA’19 Lebanese International Conference on Mathematics
and Applications., AIMS Mathematics, 5(4), pp. 3702-3713, 2020, https://
doi.org/10.3934/math.2020239.

[4] Battyányi, P., and Nour, K. Normalization in the simply typed λµµ′ρθε-
calculus. Mathematical Structures in Computer Science, 32(8), pp. 1066-1098,
2022, https://doi.org/10.1017/S096012952200041X.

[5] Curien, P.-L., and Herbelin, H. The duality of computation, In: M. Odersky,
P. Wadler (editors), Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’00, pp. 233-243, ACM Press,
2000.

[6] David, R., and Nour, K. Arithmetical proofs of strong normalization results for
the symmetric λµµ′-calculus, In: P. Urzyczyn (editor), Typed Lambda Calculi
and Applications, TLCA ’05, Lecture Notes in Computer Science (3461), pp.
162-178, Springer Verlag, 2005.

23

https://doi.org/10.23638/LMCS-13(3:34)2017
https://doi.org/10.23638/LMCS-13(3:34)2017
https://doi.org/10.3934/math.2020239
https://doi.org/10.3934/math.2020239
https://doi.org/10.1017/S096012952200041X

[7] David, R., and Nour, K. Arithmetical proofs of strong normalization results
for symmetric lambda calculi, Fundamenta Informaticae, 77(4), pp. 489-510,
2007.

[8] Girard, J.-Y. Interpreétation fonctionnelle et élimination des coupures de
l’arithmeétique d’ordre supeérieur, PhD thesis (in French), Universiteé Paris
Diderot, Paris 7, 1972.

[9] Girard, J.-Y., Lafont, Y., and Taylor, P. Proofs and Types, Cambridge Univer-
sity Press, 1989.

[10] Griffin, T. A formulae-as-type notion of control, In: F. E. Allen (editor),
Conference Record of the Seventeenth Annual ACM Symposium on Principles
of Programming Languages, POPL ’90, ACM Press, 1990.

[11] de Groote, P. An environment machine for the λµ-calculus, Mathematical
Structures in Computer Science 8, pp. 637-669, 1998.

[12] de Groote, P. On the relation between the λµ-calculus and the syntactic theory
of sequential control, In: F. Pfenning (editor), 5th International Conference on
Logic Programming and Automated Reasoning, LPAR ’94, Lecture Notes in
Artificial Intelligence (822), pp. 31-43, Springer Verlag, 1994.

[13] Howard, W. A. The formulae-as-types notion of construction, In: Curry, H.,
Hindley, J. R., and Seldin, J. P. (eds.), To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pp. 479-490, Academic Press, 1980.

[14] Krivine, J.-L. Lambda-calculus types and models, Ellis Horwood, 1993.

[15] Murthy, C. R. An evaluation semantics for classical proofs, In: Proceedings
of the sixth annual IEEE symposium on logic in computer science, pp. 96-107,
1991.

[16] Nour, K. and Saber, K. A completeness result for the simply typed lambda-mu
calculus, Annals of Pure and Applied Logic, 161, pp. 109-118, 2009.

[17] Nour, K., and Ziadeh, M. A revised completeness result for the simply typed λµ-
calculus using realizability semantics, Logical Methods in Computer Science,
13(3:13), pp. 1-13, 2017, https://doi.org/10.23638/LMCS-13(3:13)2017.

[18] Parigot, M. λµ-calculus: an algorithmic interpretation of classical natural
deduction, In: A. Voronkov (editor), Logic Programming and Automated Rea-
soning, Lecture Notes in Computer Science (624), Springer Verlag, Berlin, pp.
190-201, 1992.

[19] Parigot, M. Classical proofs as programs, In: G. Gottlob, A. Leitsch, and D.
Mundici (eds.), Proc. of 3rd Kurt Godel Colloquium, KGC’93, Lecture Notes
in Computer Science (713), pp. 263-276, Springer-Verlag, 1993.

[20] Parigot, M. Proofs of strong normalization for second order classical natural
deduction, Journal of Symbolic Logic (62), pp. 1461-1479, 1997.

[21] Polonovski, E. Strong normalization of λµµ̃-calculus with explicit substitutions,
In: Walukiewicz, I. (ed.), Foundations of Software Science and Computation
Structures, 7th International Conference, FOSSACS 2004, Lecture Notes in
Computer Science (2987), pp. 423-437, Springer Verlag, 2004.

[22] Py, W. Confluence en λµ-calcul, PhD thesis, University of Chambéry, 1998.

24

https://doi.org/10.23638/LMCS-13(3:13)2017

[23] Rehof, N. J., and Sørensen, M. H. The λ∆-calculus, In: M. Hagiya, J. C.
Mitchell (editors), Theoretical Aspects of Computer Software, Lecture Notes
in Computer Science (789), pp. 516-542, Springer Verlag, 1994.

[24] Saurin, A. On the Relations between the Syntactic Theories of λµ-calculi,
In: M. Kaminski, S. Martini (editors), 17th EACSL Annual Conference on
Computer Science Logic, Lecture Notes in Computer Science (5213), pp. 154-
168, Springer Verlag, 2008.

[25] A. Saurin. Böhm theorem and Böhm trees for the Lambda-mu-calculus, Theo-
retical Computer Science 435, pp. 106-138, 2012, https://doi.org/10.1016/
j.tcs.2012.02.027.

[26] Sørensen, M. H., and Urzyczyn, P. Lectures on the Curry-Howard Isomorphism,
Elsevier Science, 2006.

[27] Tait, W.W., Intensional interpretation of functionals of finite type I, J. Sym-
bolic Logic 32, pp. 198-212, 1967.

25

https://doi.org/10.1016/j.tcs.2012.02.027
https://doi.org/10.1016/j.tcs.2012.02.027

	Introduction
	The -calculus
	The semantics of the system
	Strong normalization property of -reduction
	Weak normalization property of '-reduction
	Future work

