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Summary 14 

● Asynchronous development of berries causes metabolic chimerism in usual samples. 15 
We thus revisited the developmental changes in the metabolome of the Vitis vinifera 16 
single berries from anthesis to over-ripening. 17 

● A dataset of 9,256 ions obtained by non-targeted ultra-performance liquid 18 
chromatography coupled to high-resolution mass spectrometry was submitted to an 19 
analysis workflow combining classification and dimension reduction tools, to reveal 20 
the dynamics of metabolite composition without phenological a priori. 21 

● This approach led to a metabolome-based definition of developmental stages, as well 22 
as the clustering of metabolites into 12 specific kinetic patterns. The single berry 23 
intrinsic metabolomic clock alleviates constitutive asynchronicity biases in the usual 24 
combination of phenological scales and observer clock. Such increase in temporal 25 
resolution enabled the identification of metabolite clusters annunciative of the onset 26 
of ripening since the herbaceous plateau. In particular, these clusters included 27 
transient lipidic changes and the start of ABA accumulation. We also highlighted a 28 
cluster of stilbenes that accumulate after sugar loading stops, during fruit shriveling. 29 

● This non-targeted approach enables a more precise and unbiased characterization of 30 
grapevine berry development through the metabolomic clock paradigm. The 31 
discovery of new metabolic milestones of berry development paves the way towards 32 
an unbiased assessment of berry physiological stages. 33 
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Introduction 44 

By providing both seed protection and dissemination to Angiosperms (Seymour et al., 45 

2013), the apparition of the fruit stands as a pivotal leap in the evolutionary history of plants 46 

and their related animal vectors. Fleshy fruits shift from an immature seed protective organ, 47 

in green stage, to a strongly attractive one during ripening, when mature seeds become 48 

resistant enough to be disseminated. This key transition includes typical metabolic shifts 49 

affecting both primary metabolites serving as major osmoticum, from organic acids to 50 

energy-rewarding soluble sugars, and secondary metabolites, from astringent and 51 

antinutritive tannins to attractive anthocyanins and aromas (Gillaspy et al., 1993). Most 52 

fleshy fruits undergo these developmental transformations regardless of their climacteric or 53 

non-climacteric status. However, by contrast with climacteric fruit which rapidly ripen when 54 

triggered by the ethylene hormone following long periods of post-harvest storage, non-55 

climacteric fruits do not store significant starch reserve during green stage, and are thus 56 

forced to ripen on the plant, in real time with phloem unloading of soluble sugars, making 57 

them particularly sensitive to environmental conditions during this period (Giovannoni, 2004). 58 

Among non-climacteric fruits, grapevine (Vitis vinifera) is one of the world’s most 59 

important, cultivated to produce table grapes, wine, juice and other products. Grape 60 

phenology was described in two main stages, following a double sigmoid growth curve 61 

(Coombe and Hale, 1973; CooMbe and McCarthy, 2000). The first one, also called green 62 

stage, starts with intense cell divisions and expansion, resulting from the vacuolar 63 

accumulation of malic and tartaric acids as major osmoticum (Ojeda et al., 1999; Terrier and 64 

Romieu, 2001). Condensed tannins are synthesized at the beginning of this stage (Ollé et 65 

al., 2011). These phenolic compounds are important for wine organoleptic qualities (Del-66 

Castillo-Alonso et al., 2021). The second stage, also called ripening, starts with an abrupt 67 

softening of the berries indicating the sudden induction of sugar accumulation. Such 68 

accumulation involves an accelerated phloem discharge that is accompanied by a significant 69 

respiration of malic acid (Coombe, 1992; Shahood et al., 2020). By the time sugars reach 70 

their peak, berry volume has doubled due to the parallel import of water. The berries then 71 

concentrate all solutes as they shrivel, but no longer import sugars (Castellarin et al., 2007a; 72 

Daviet et al., 2023; Savoi et al., 2021). The transition between green and ripening stages is 73 

commonly called “veraison” and refers to the start of anthocyanidins accumulation, 74 

responsible for the color change in red-skinned grape varieties (Lund and Bohlmann, 2006). 75 

By extension, this also indicates the softening and the initiation of sugar loading, slightly 76 

before color change, as elucidated on single berries (Bigard et al., 2019; Daviet et al., 2023). 77 
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Research on grape development is widely documented, but the division into distinct 78 

stages varies between studies (Bigard et al., 2019; Castellarin et al., 2007a; Rogiers et al., 79 

2017; Savoi et al., 2021; Shahood et al., 2020). Stage characterisation relies on the 80 

measurement of the main primary metabolites (such as sugars, malic and tartaric acids), 81 

berry coloration, softness and growth. Omics technologies have enhanced the exhaustivity 82 

of developmental characterization at both the transcriptomic (Cabral et al., 2023; Castellarin 83 

and Di Gaspero, 2007; Cramer et al., 2014; Goes da Silva et al., 2005; Savoi et al., 2021; 84 

Tornielli et al., 2023) and metabolomic (Bonada et al., 2013; Duan et al., 2019; Leng et al., 85 

2021; Nicolas et al., 2024; Ollé et al., 2011) levels. Furthermore, some studies have adopted 86 

an integrative approach that combines both transcriptomic and metabolomic analyses, 87 

leading to the identification of genes that could be activated at specific developmental stages 88 

and of molecules that could signal or mark stages beyond those defined by growth, primary 89 

metabolism and anthocyanins (Fasoli et al., 2018, 2012). However, most of these traits vary 90 

continuously during development, making the discretization of development beyond the two 91 

main stages somewhat arbitrary. 92 

Research on berry development usually focuses on successives sets of mixed 93 

berries in order to smooth their marked heterogeneity at the plot level. Indeed, the berries 94 

exhibit both intra and inter cluster developmental asynchrony, ripening both at different rates 95 

and dates (Daviet et al., 2023; Shahood et al., 2020). Classical grapevine phenological 96 

scales explicitly refers to the median of the population (Coombe, 1995; Lorenz et al., 1995), 97 

but it was only recently pointed out that smoothing asynchronous berries obviously 98 

generates developmental chimera fundamentally incompatible with the identification of 99 

physiological stages as pure metabolic units (Bigard et al., 2019; Shahood et al., 2020). 100 

Single berry sampling and characterization have enabled to revisit the flow of water and 101 

primary metabolites in depth, to gather quantitative and molecular arguments on the origin of 102 

the sugar/acid relationship in grapes, and to shed light on the organization and energetics of 103 

the unloading of sugars in the berry. Only studies on single berries have made it possible to 104 

establish that softening, initiation of sugar storage, growth resumption and coloration 105 

mentioned above occur step by step in this order (Bigard et al., 2019; Savoi et al., 2021; 106 

Shahood et al., 2020), while they rather seemed to occur simultaneously on sets of mixed 107 

berries (Fasoli et al., 2018). 108 

Recently, new methods have been developed to analyze developmental processes 109 

using pipelines combining statistical methods to process omics data. For example, the use of 110 

unsupervised learning methods, based on dimension reduction and analysis of distances 111 

between samples, has already made it possible to define a new grape phenology scale 112 

based on transcriptomics (Tornielli et al., 2023). The present study combines multivariate 113 
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analyses with untargeted metabolomics on single berries to revisit and refine the 114 

phenological stages of grape development. We show that metabolome-wide analyses 115 

provide a better understanding of berry development, identifying new metabolites, markers 116 

of key steps of berry growth and ripening. 117 

Material and Methods 118 

Experimental design 119 

Single berries were sampled by Savoi et al. (2021) in the years 2018 and 2019 on 120 

Vitis vinifera cv. Syrah within the experimental vineyard Pierre Galet of Institut Agro 121 

Montpellier (France). Plants established in 2000, were grafted onto SO4 rootstock and 122 

irrigated to avoid severe water deprivation. Throughout the growth cycle, the plants received 123 

regular phytosanitary sprayings to limit fungus diseases. 124 

Berries were sampled in accordance with the double sigmoidal growth pattern, as 125 

identified through recurring photographic observations and quantification of sugars and 126 

organic acids (Savoi et al., 2021). This framework delineated eleven temporal waypoints in 127 

the developmental sequence, called « expert stages » for this study and encompassing the 128 

green growth phase (G1, G2, and G3), the green lag period (L4 and L5), the onset of 129 

ripening (characterized by the softening phase, S6 and S7), the ripening phase (R8, R9, and 130 

R10), culminating to the shriveling stage (Sh11) (Savoi et al., 2023). Systematic sampling 131 

was undertaken, with the green stage (from G1 to L4) being sampled in 2019, and ripening 132 

one (from L5 to Sh11) in 2018. The herbaceous plateau (L4 and L5), allowed to interconnect 133 

the two temporal domains. 134 

Berries were frozen without pedicel and seeds in liquid nitrogen, before being 135 

crushed using a stainless-steel ball mill (Retsch MM400, Verder Scientific, Inc., Newtown, 136 

US). Subsequently, the 153 frozen berry powders underwent a lyophilization for 72h 137 

(Cryotec pilot freeze-dryer, Cryotec, Lunel, France), before being analyzed by VIS-NIR 138 

reflectance spectroscopy using a LabSpec 2500 with an optical probe (Analytical Spectral 139 

Devices, Inc., Boulder, CO, US). These spectra allowed the curated selection of 125 140 

samples, using the Kennard-Stone algorithm (Kennard and Stone, 1969), to ensure parity in 141 

berry quantities among stages (Table 1). 142 

Metabolomic analyses using ultra high-performance liquid chromatography coupled 143 

to high-resolution mass spectrometry (UHPLC-HRMS) 144 

Metabolites were extracted using 20 µL methanol per mg of lyophilized sample, 145 

containing 5 µg/mL of chloramphenicol as an internal standard. The extract was sonicated 146 
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for 10 minutes, before centrifugation at 13000 g at 10°C for 10 minutes. Quality control 147 

sample (QC) was prepared by mixing an equal volume of each sample to evaluate the 148 

stability of the equipments (retention time and area) and the repeatability of metabolites 149 

detection in all of the samples. Supernatants were analyzed as described previously 150 

(Rodrigues et al., 2023), with some modifications. Metabolomic analyses were performed 151 

using a Vanquish Flex binary UHPLC system (Thermo Scientific, Waltham, MA) equipped 152 

with a diode array detector (DAD). Chromatographic separation was performed on a 153 

Nucleodur C18 HTec column (150 × 2 mm, 1.8 μm particle size; Macherey‐Nagel, Duren, 154 

Germany) maintained at 30°C. The mobile phase consisted of acetonitrile/formic acid (0.1%, 155 

v/v) (eluant A), and water/formic acid (0.1%, v/v) (eluant B), at a flow rate of 0.25 mL/min. 156 

The gradient elution program was as follows: 0 to 4 min, 80% to 70% B; 4 to 5 min, 70% to 157 

50% B; 5 to 6.5 min, 50% B isocratic; 6.5 to 8.5 min, 0% B; and 8.5 to 10 min, 0% B 158 

isocratic. The injected volume of sample was 1 μL. The UHPLC was coupled to an Exploris 159 

120 Q-Orbitrap MS system (Thermo Scientific, Waltham, MA) operated with a heated 160 

electrospray ionization source in positive and negative ion modes. The key parameters were 161 

as follows: spray voltage, + 3.5 and − 3.5 kV; sheath-gas flow rate, 40 arbitrary units (arb. 162 

unit); auxiliary-gas flow rate, 10 arb. unit; sweep-gas flow rate, 1 arb. unit; capillary 163 

temperature, 320°C; and auxiliary-gas-heater temperature, 300°C. The scan modes were full 164 

MS with a resolution of 60 000 fwhm (at m/z 200) and ddMS2 with a resolution of 60 000 165 

fwhm; the normalized collision energy was 30 V; and the scan range was m/z 85−1200. 166 

Internal mass calibration was operated using EASY-IC internal calibration source allowing 167 

single mass calibration for full mass range. Data acquisition and processing were carried out 168 

with Xcalibur 4.5 and Free Style 1.7 (Thermo Scientific, Waltham, MA), respectively. 169 

Analyses were performed in both positive and negative ionization modes, thereby 170 

constituting dual data sets for each individual sample. 171 

UHPLC-HRMS raw data were processed using the Compound Discoverer 3.3 172 

software (Thermo Fisher Scientific, Waltham, MA, USA). Data processing for positive and 173 

negative modes were performed separately. QC samples were used to verify the 174 

repeatability of retention times and signal intensity throughout the data set. Untargeted 175 

metabolomics workflows were used for peaks detection, peaks groupement and alignment, 176 

and fill in missing peak data. Background compounds found in the blank samples, as well as 177 

known environmental contaminants related to plant protection products were filtered out from 178 

the data set. Peaks alignment parameters mainly included mass tolerance and retention time 179 

(RT), which were set at 5 ppm and at 0.1 min, respectively. Peaks detection was performed 180 

using a signal-to-noise ratio (S/N) of 2 and peak intensity thresholds at 10,000. Poorly 181 

repeatable ions were filtered out by keeping those with a peak rating greater or equal to 4 in 182 
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at least 4 samples and by keeping ions with a coefficient of variation (CV) ≤ 30% in all QC 183 

samples. Using these settings, 5123 and 4133 ions were obtained in positive and negative 184 

modes, respectively. Metabolomics data have been deposited to the EMBL-EBI 185 

MetaboLights database (DOI: 10.1093/nar/gkad1045, PMID:37971328) with the identifier 186 

MTBLS10572. 187 

Data analysis and classifications 188 

The high dimensional dataset documenting the evolution of the berry metabolome 189 

across the 11 expert documented phenological stages (MS data) was further processed to 190 

classify metabolites by similarities in their evolution, using a workflow based on several 191 

multivariate analyses (Fig. 1). 192 

Each peak surface was normalized by their sum of areas measured throughout berry 193 

development. Berry samples were classified using the K-means algorithm on the scaled 194 

metabolomic matrix to redefine developmental stages, based on variations in metabolite 195 

composition. The statistically relevant cluster number was determined using the average 196 

silhouette method (Govender and Sivakumar, 2020; Rousseeuw, 1987). The scaled 197 

metabolomic matrix was also submitted to a principal component analysis (PCA). The 198 

successive samples, projected onto the first three principal components (PC), were spread 199 

on a series of linear trajectories separated by abrupt directional changes. Linear regressions 200 

were calculated on all possible planes, before selecting the best ones based on their 201 

coefficient of determination. The curvilinear distance was then calculated, following an 202 

orthogonal projection of each sample on the respective lines, and tracing the progression of 203 

samples in the interconnected regressions. Such distance enabled the definition of a 204 

continuous metabolomic clock. 205 

Developmentally invariant metabolites were filtered out using the Kruskall-Wallis test 206 

with a false discovery rate of 0.01. Subsequently, the metabolites were clustered according 207 

to their similarities in developmental profiles, using the K-means algorithm and the average 208 

silhouette method. A PCA on the metabolites within each cluster yielded the specific profile 209 

of its representative “eigen-metabolite”. Their developmental patterns were finally plotted 210 

with respect to the newly defined metabolomic clock. Finally, the filtered MS data were 211 

processed with the t-distributed stochastic neighbor embedding (t-SNE) method, yielding a 212 

three-dimensional projection of the metabolites. t-SNE was performed using a perplexity 213 

parameter of 30 over 1,000 iterations. This approach was designed to preserve the local 214 

structures of the data, providing a more accurate and faithful representation than that 215 

obtained by PCA, and to validate the use of the K-means method against the actual 216 

distribution of the data (Hebra et al., 2021; Olivon et al., 2018; Sorkun et al., 2022). 217 
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Identification of key metabolites 218 

 Metabolites presenting the highest correlation with the eigen-metabolite (correlation 219 

> 0.8) were selected for identification in each cluster showing interesting dynamics. Ion and 220 

metabolite annotations were based on expert analysis of molecular formulae, mass spectra 221 

and MS/MS fragmentation patterns in comparison with authentic standards when available 222 

and with data from MassBank (https://massbank.eu/MassBank/)), mzCloud 223 

(https://www.mzcloud.org/) and Chem-Spider (http://www.chemspider.com/) using the 224 

Compound Discoverer 3.3 software. Standards for metabolite identification were purchased 225 

from Sigma-Aldrich (Saint-Quentin Fallavier, France) and Extrasynthese (Lyon, France). 226 

Identification confidence levels (ICL) established by Schymanski et al. (2014) were applied 227 

to score identifications. 228 

Results 229 

De novo deciphering of grape developmental stages based on single berry 230 

metabolomics 231 

A total of 9,256 ions were detected in the 125 berry samples. The 11 expert stages 232 

relied on observations of growth stages, accumulation of primary metabolites (sugars, 233 

tartaric and malic acids and potassium) and the softening date. In contrast, the K-means 234 

blind analysis of metabolomic data allowed to distinguish 18 developmental stages (Table 2), 235 

henceforth coined “metabolomic stages”. The intrinsic chemical profile of the fruits enabled 236 

to break down expert stages into sub categories, offering a more accurate view of berry 237 

developmental cycle from early to late stages. For example, the expert stage L4, which 238 

brings together transitional samples between the first and second part of the green phase 239 

(Fig. 2a), was subdivided into 5 distinct metabolomic stages (Table 2), while the L5, G1 and 240 

R9 expert stages precisely matched single metabolomic stages (Fig. 2a). Reciprocally, 241 

metabolic stages could also include samples from different expert stages, frequently 242 

contiguous, but not only (Table 2, Fig. S1). 243 

In parallel, a "metabolomic clock" has been established by applying linear 244 

regressions on PCA-projected sample trajectories, calculating the distances between 245 

samples. The 3D PCA projection, where PC 1 to 3 accounted for respectively 27.9%, 12% 246 

and 5.5% of the dataset variance, allowed the assessment of the distribution of berries and 247 

its comparison with expert stages annotations (Fig. 2a). The dispersion around the 3D curve 248 

decreased from green stage to softening, and became almost non-existent thereafter. 249 

According to this projection, the grape development followed 5 main successive trajectories 250 

delimited by abrupt changes in direction during L4, S6, R8 and end R9. The “early green 251 
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stage” (spanning G1 to G3 and some L4 samples) and the “herbaceous plateau stage”, also 252 

known as the latent stage (encompassing certain L4 berries and all L5 ones), are distinctly 253 

demarcated on the PC2/3 plane. Notably, PC3 clearly distinguished the L4, L5 and S6 254 

expert stages subsequent to sudden changes in berry composition. This segment of the 255 

PCA plot is sparsely populated, indicating a potential lack of samples from this stealthy 256 

stage. The ripening period itself is subdivided into three trajectories: an “early ripening” 257 

group composed of soft and green berries (S6 S7), however these samples harvested a few 258 

days apart largely overlap. The subsequent trajectory included R8, R9, and one berry from 259 

the Sh11 stage, with a large evolution on PC2. The final trajectory, encompassing R10 and 260 

the remaining Sh11 berries, represented the post phloem arrest stage (Savoi et al., 2021) as 261 

shown in Fig. 2a. Fig. 2b shows that expert stages are less resolutive than metabolic clock, 262 

particularly for stages G2, G3 and L4. In contrast, expert stages G1, L5, S6, S7, R10 and 263 

Sh11 group berries in a narrower range of metabolomic time. When comparing days after 264 

flowering (DAF) and the metabolomic clock (in Fig. 2c), a fast evolution can be observed 265 

inside the L4 expert stage and at the end of maturation. The 50 % flowering date is 266 

measured at the scale of the whole cluster and not for each single berry, so it does not take 267 

asynchrony into account. It is also important to note that the two sampling seasons (G1 to L4 268 

for 2019 and L5 to Sh11 for 2018, Table 1) do not appear to be sharply separated on the 269 

PCA and graphical representations of Fig. 2. Altogether, these results clearly show that the 270 

metabolomic synchronization of berries outperforms the most severe sorting procedures 271 

based on observer sampling time, relative growth and primary metabolites. 272 

Clustering of the untargeted metabolites using K-means 273 

Clustering single berry metabolites according to their relative amounts in the extracts 274 

of 125 single berries revealed 12 major developmental patterns, labeled A to L. These 275 

profiles showed 3 major trends: clusters of metabolites that decreased along development 276 

(Fig. 3, profiles A to D), those showing a peak at certain stages (Fig. 4, profiles E to I) and 277 

finally, clusters with a metabolite content that increased along berry development (Fig. 5, 278 

profiles J to L). 279 

The decreasing profiles A, B and C (Fig. 3) comprised 161, 405 and 1339 280 

metabolites respectively, that could be efficiently summarized with a single PC explaining 281 

more than 50% of the intra-cluster variance. In contrast, profile D is distinguished by a larger 282 

number of metabolites (1,630), but its PC1 captured a smaller proportion of the total 283 

variance (25%). It suggests that this cluster may include more heterogeneous developmental 284 

profiles, as underlined by the distribution of correlations between individual metabolite 285 

profiles and that of the corresponding eigen-metabolite (Fig. S2). The decline of profile A 286 
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was particularly fast and occurred in the very early green stage, during the G1 and G2 expert 287 

stages. Metabolites in profile B decreased continuously through the green stage, from G1 to 288 

L4. Profile C exhibited a more gradual decrease over time, starting from a peak at the 289 

beginning of the early green stage and declining until the shriveling stage. In contrast, profile 290 

D displayed an unusual pattern with a slight decrease during the entire green phase (from 291 

the early green stage to the herbaceous plateau) followed by a sharper decline starting at 292 

the softening stage and continuing to the shriveling stage. 293 

Figure 4 shows the profiles exhibiting accumulation peaks at different times during 294 

berry development. Among these, G and H profiles displayed particularly transient peaks. 295 

These profiles contained 146 and 87 metabolites respectively, and could be efficiently 296 

summarized with a single PC that explained more than 60% of their variation. Interestingly, 297 

the peak in the G profile coincided with the herbaceous plateau phase (L4 and L5), 298 

commonly described as a state of metabolic homeostasis. In contrast, profiles E, F and I 299 

showed a more gradual accumulation dynamic extending over several stages. These profiles 300 

included a higher number of metabolites, 747, 1,296 and 596 respectively, and a lower 301 

percentage of variance explained by their first PC by comparison with profiles G and H (Fig. 302 

4, Fig. S2). Profile E showed significant accumulation during the early green stage, peaking 303 

at the G3 stage and then gradually decreasing. Interestingly, this peak occurred exactly 304 

when profile A reached its minimum. Profile F showed a peak during the herbaceous plateau 305 

stage (expert stages L4 and L5), marking a transition between the early green stage and the 306 

beginning of the ripening. The G profile exhibited a much more abrupt peak compared to 307 

profiles E and F, with particular points reaching their maximum at the beginning of the 308 

herbaceous plateau stage and then decreasing at the beginning of the softening stage, 309 

specifically between stages L4 and S6. The H profile was characterized by an even more 310 

pronounced peak, starting at the end of the herbaceous plateau stage (L5) and reaching its 311 

maximum during the softening stage (S6 and S7), marking the beginning of grape ripening. 312 

At the same time, the I profile also reached its maximum, but with a more gradual increase 313 

and decrease, starting at the end of the early green stage (between G3 and L4) and ending 314 

at the completion of berry development (Sh11). 315 

Clusters profiles with an ascending shape starting at the S6 expert stage 316 

encompassed metabolites specifically accumulated during the berry ripening phase (Fig. 5). 317 

Profile J began to accumulate from the start of the softening stage (S6), reaching a peak at 318 

the end of the ripening stage, before decreasing during the shriveling stage. Profile K started 319 

to increase at the end of the softening stage, from expert stage R8, and reached its 320 

maximum at the end of shriveling (expert stage Sh11). Profile J stands out for its large 321 

number of metabolites, with 1,297 compounds, and a PC1 that explains only 31% of their 322 
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variance. On the other hand, profiles K and L contained a smaller number of metabolites, 323 

827 and 72 respectively, and a larger part of their variability was explained by their first PC. 324 

The L profile in particular included the largest proportion of metabolites with a correlation of 325 

at least 0.8 with the eigen-metabolite (Fig. S2). This profile showed a late pattern of 326 

accumulation, after phloem arrest and during shriveling (expert stages R10 and Sh11). 327 

Finally, the t-SNE method provides an alternative to PCA for metabolites visualization 328 

(Fig. 6). The metabolites separated into two main branches on the 3D graph, reflecting their 329 

evolution over time. Early green stage specific patterns (A, B, C and D in shades of blue) are 330 

at the upper end of the t-SNE, while dynamics varying during ripening and shriveling stages 331 

(J, K and L in shades of red) are at the lower left end of the graph. The dynamics showing 332 

accumulation peaks between the early green stage and the ripening stage are in the central 333 

part. Transient dynamics observed in clusters A, E, F, G, H, I, J, and L indicate abrupt 334 

variations at specific points in berry development, facilitating accurate estimation of 335 

developmental stages. In addition, some of these clusters, such as A, H and I, are 336 

particularly distinct and clearly separated from the others. 337 

Metabolite annotation in selected clusters 338 

Among the 12 metabolite clusters, those with the most transient dynamics were 339 

chosen for annotation of their metabolites. Profiles A, C (Fig. 3), E, F, H, I (Fig. 4), J, K and L 340 

(Fig. 5) were therefore selected, focusing on particularly well classified ions, i.e. having a 341 

correlation greater or equal to 0.8 with their respective eigen-metabolites. The total number 342 

of selected ions was 2,586, and ranged from 60 to 606 for L and C clusters, respectively. 343 

Expert analysis of MS and MS/MS data in the 10 selected clusters resulted in the annotation 344 

of 483 of the 2,586 ions (Table S1), which could be attributed to a total of 117 metabolites, 345 

listed in Table S2, together with their molecular families. Thus, 19 % of all selected ions 346 

could be annotated, this proportion ranging from 7 % (cluster E) to 83 % (cluster L) (Fig. S3, 347 

Table S1). 348 

Cluster A was mainly composed of monomers and small polymers of gallate ester 349 

tannins (Fig. S4), including confirmed compounds by molecular standard (ICL 1 on the 350 

Schymanski et al. (2014) scale) such as epicatechin gallate (ECG) and epigallocatechin 351 

gallate (EGCG). Although condensed tannins were predominant in cluster C, particularly 352 

procyanidins of types A, B, and C, a few type A procyanidins were also detected in cluster A. 353 

Cluster C also contained various flavonoids, including glycosylated derivatives of chalcone 354 

and kaempferol, as well as their dihydro-derivatives (ICL 4). Additionally, quercetin 355 

glucuronide (ICL 2) was identified in this cluster, along with phenolic acids coupled with 356 

tartaric acid, including caftaric, coutaric, and fertaric acids (ICL 1). Malic and citric acids were 357 
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detected in cluster F (ICL 1). Cluster H encompassed C18 and C20 lipids, notably linolenic 358 

acid (C18), confirmed by molecular standard (ICL 1), and its potential derivatives, noted as 359 

ICL 2 and 3. Aspartic acid was identified in cluster I (ICL 1), along with polyol sugars and 360 

hexose (ICL 2). Cluster J included an anthocyanin, cyanidin glucoside (ICL 1), flavonoids 361 

such as derivatives of isorhamnetin and syringetin (ICL 3), the glycosylated form of abscisic 362 

acid (ABA-glucoside), as well as glycosylated and esterified coumaric acid and sugar 363 

polymers (ICL 1 and 2). Cluster K contained several flavonoids, including derivatives of 364 

isorhamnetin and kaempferol (ICL 1 for glycosylated forms and ICL 3 for other derivatives), 365 

as well as anthocyanins like myricetin (ICL 2) and malvidin (ICL 1), and contained ABA-366 

glucoside (ICL 2) and proline (ICL 1). Given that ABA-glucosides were present in both 367 

clusters J and K, The profile of free ABA was searched for among metabolites with a 368 

correlation lower than 0.8 with the eigen-metabolite. Indeed, the free form of ABA had a 369 

correlation of 0.75 with the eigen-metabolite of cluster I (Table S1). Finally, based on the 370 

annotation of the vast majority of its ions (83%), the metabolites in group L belonged almost 371 

exclusively to the stilbene family, including isomeric forms and derivatives of resveratrol and 372 

piceid (ICL 1), as well as viniferin glucoside (ICL 1). 373 

Discussion 374 

Present work provides a new perspective on grapevine berry development based 375 

solely on its solute composition to establish an internal metabolomic clock. By employing a 376 

novel strategy that combines single berry sampling, untargeted metabolomics, multivariate 377 

analyses and expert annotation, we provide a much detailed description of the phenological 378 

sequence that undergoes grapevine fruit. This approach revealed potentially important 379 

groups of metabolites in fruit development. Furthermore, the integration of clustering coupled 380 

with t-SNE, applied independently from observer time, led to a more precise and incisive 381 

understanding of the grape ripening process. 382 

Single berry metabolomics reveals an internal clock regulating grape development 383 

The blind statistical analysis of metabolites at single berry level highlighted transient 384 

metabolic shifts, which would have been smoothed by averaging asynchronous berries as 385 

usually carried out (Bigard et al., 2019; Shahood et al., 2020; Zamboni et al., 2010). In 386 

addition, the main solutes that exhibit monotonous changes during green stage or ripening, 387 

such as malic acid and sugars, do not allow these phases to be divided into transient stages. 388 

We have shown that relying only on variations in fruit intrinsic composition led to a more 389 

accurate synchronization of berries than sorting by growth or primary metabolites. The use 390 

of PCA to get insights on sample distribution during fruit development has already revealed a 391 

common "U" shape pattern throughout the literature, but uncontrolled variations in the real 392 
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age pyramid of berries inside each sample scatters the data and prevents to detect 393 

discontinuities (Dai et al., 2013; Tornielli et al., 2023). Without prior filtering of the data 394 

except invariant metabolites, sub periods in the green and ripening stages were clearly 395 

resolved on the first 3 PCs, being discriminated by very sudden changes in sample direction 396 

vectors, which are necessarily smoothed in average samples. The t-SNE method confirmed 397 

the robustness of using metabolites to characterize grape development, organizing them 398 

within a developmental continuum. This technique also highlighted isolated groups (clusters 399 

A, H, and I) which, although distinct, remained integrated within the developmental flow. 400 

Profiles are consistent across harvest years 401 

The kinetics of the two sampling years were linked by the lag phase, during which 402 

berry growth pauses and which is widely accepted as quite stable during grape development 403 

(Coombe, 1976; Matthews et al., 1987; Thomas et al., 2008). Examination of the PCA and 404 

representative dynamics revealed a remarkable consistency: the change of vintage did not 405 

seem to affect the evolution of the samples. Indeed, the L5 group was not impacted by the 406 

sampling year and was equidistant from the other stages (L4 and S6). This continuity was 407 

also obvious on representative dynamics, particularly in profiles B, C, D, I, K and L (Fig. S4). 408 

These results validated our sampling procedure and underlined a certain robustness over 409 

two vintages. 410 

Metabolic clusters reveal transient shifts in berry physiology  411 

Blind, dynamic-based classification of grape metabolites resulted in 12 distinct 412 

developmental clusters. Among these, 10 showed relatively transient dynamics, enabling us 413 

to trace the developmental history of grapevine berry and propose a metabolic map, which 414 

highlights some metabolites and pathways as milestones of grape development (Fig. 7). 415 

Catechins monomers are phenolic compounds produced via the flavonoid 416 

biosynthesis pathway, but their polymerisation in condensed tannins remains elusive (Yu et 417 

al., 2023). The conversion of phenylalanine into p-coumaroyl-CoA is considered as the first 418 

step in the phenylpropanoid pathway. The latter is then converted into flavonoids, including 419 

tannins, by chalcone synthase (CHS), or into stilbenes by stilbene synthase (STS) (Flamini 420 

et al., 2013; Rienth et al., 2021, Fig. 7). Profile A and C showed that the monomers and 421 

small proanthocyanidin (PA) polymers (EC, EGC, etc., from monomers to hexamers), rapidly 422 

decreased after anthesis. This decline coincided precisely with the period when higher 423 

molecular weight PAs began to accumulate, suggesting small polymers might be rate-424 

limiting intermediaries (Kennedy et al., 2001, 2000; Ollé et al., 2011). Puzzlingly, profile A, 425 

encompassing many galloylated PA derivatives (Fig. S3), decreased before the non-426 
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galloylated ones in cluster C. Further work is needed to understand if the faster decrease of 427 

galloylated forms reflects (i) an increased in gallate/shikimate competition subsequent to an 428 

acceleration of the PA branch, (ii) an improved NADPH reducing power, or (iii) a sequential 429 

expression of specialized SDH/ isogenes (Tahara et al., 2020).  430 

Linolenic acid, found in the H cluster announcing the onset of ripening at softening, is 431 

a precursor of jasmonic acid, a phytohormone involved in various developmental processes 432 

(Singh et al., 2022). It also serves as a precursor to diverse volatile compounds determinant 433 

for fruit aroma and defense mechanisms (Li et al., 2021; Rienth et al., 2021; Schwab et al., 434 

2008). Its accumulation should mark increased membrane phospholipid turnover 435 

immediately before the onset of ripening, where its peroxidation takes place (Pilati et al., 436 

2014). 437 

The accumulation profiles of metabolites belonging to clusters J, K and L are 438 

consistent with their involvement in successive ripening-associated biological processes. 439 

During ripening, a second growth phase is set on due to a significant accumulation of water 440 

and solutes, mainly glucose and fructose, originating from sucrose translocated by phloem 441 

mass flow (Daviet et al., 2023). When the berries reach their maximum volume, phloem 442 

unloading in berries ceases, leading to a loss of water and volume known as the shriveling 443 

or over-ripening (Griesser et al., 2024; Rogiers et al., 2017; Savoi et al., 2021). The fruits 444 

then undergo constitutive water stress, which influences their metabolic composition. 445 

ABA as a key player of the ripening process 446 

Cluster I started with the herbaceous plateau (L4) and peaked at the softening 447 

coloring transition (S7/R8). This cluster is marked by the accumulation of abscisic acid (ABA) 448 

in its free form, the level of which began to rise at the end of the herbaceous plateau, before 449 

peaking at the softening stage (Fig. S5). ABA is a phytohormone regulating plant growth and 450 

development. It plays multiple roles including tolerance to desiccation (Fujii and Zhu, 2009). 451 

ABA has been shown to promote color changes in non-climacteric fruits like strawberries 452 

(Batista-Silva et al., 2018; Jia et al., 2011; Jiang and Joyce, 2003). Analysis of grapevine 453 

berry development has highlighted ABA as an early indicator (if not a trigger) of veraison and 454 

berry coloration (Pilati et al., 2017), particularly by positively regulating the phenylpropanoid 455 

biosynthesis pathway (Chaves et al., 2010; Giribaldi et al., 2010; Kuhn et al., 2014; 456 

Lacampagne et al., 2010; Sun et al., 2010; Wheeler et al., 2009). This regulatory role of ABA 457 

is also evident in other non-climacteric fruits, such as strawberries (Jia et al., 2011), where 458 

ABA levels continue to increase from the beginning of ripening until the end of fruit 459 

development. In contrast, in grapevine berries, ABA peaks during the initial color change of 460 

the berries but then declines as the ripening phase progresses (Davies et al., 1997; Fortes et 461 
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al., 2015; Pilati et al., 2017; Villalobos-González et al., 2016). Present single berry results 462 

largely refined these views, showing that ABA starts to accumulate before softening, acting 463 

as a trigger rather than a consequence of ripening, and maintains a high level throughout the 464 

entire phase of active phloem unloading, before shriveling (Fig. S5). If ABA belonged to 465 

cluster I, its glucose ester derivative (ABA-GE) accumulated later, and was found in cluster 466 

K. ABA-GE has been considered as a storage form of ABA or a final inactive product of its 467 

catabolism (Zeevaart, 1999). Hydrolysis of ABA-GE by specialized glucosidases has been 468 

shown to lead to a rapid increase in free ABA concentrations in response to osmotic stress 469 

in Arabidopsis thaliana (Xu et al., 2012). Moreover, the ABA catabolite phaseic acid was 470 

associated with cluster J (correlation of 0.69), suggesting that active ABA catabolism is 471 

responsible for the rapid decrease of free ABA at the very end of ripening (Fig. S5). Cluster J 472 

also contained a large number of sugar-derived ions, consistent with the accumulation profile 473 

of glucose and fructose as major osmoticum in ripening berries, starting at S6. To our 474 

knowledge, this is the first evidence that the sugar accumulation process precisely starts at 475 

the peak of ABA concentration (cluster I). ABA has been shown to activate the transcription 476 

of a cascade of enzyme and transporter genes playing key roles in sugar metabolism and 477 

accumulation during berry ripening (Bennett et al., 2023; Pan et al., 2005). Altogether, the 478 

rapid shift of the veraison-associated active ABA pool to inactive ABA forms such as ABA-479 

GE and phaseic acid suggests that fine temporal tuning of ABA concentration is critical to a 480 

proper coordination of the ripening process. 481 

Flavonol and proline dynamics during ripening as indicators of constitutive stress 482 

Noticeably, the sequential accumulation of anthocyanins and flavonols such as 483 

kaempferol, quercetin, isorhamnetin and myricetin derivatives, as well as malvidin and 484 

cyanidin derivatives in clusters J and K, reflects the decline of dihydroflavonols, such as 485 

dihydrokaempferol, in cluster C. This developmental shift in flavonol profiles follows the 486 

biosynthetic pathway and aligns with the expression profiles of the genes encoding 487 

dihydroflavonol-4-reductase and late genes of the anthocyanin regulated by MybA1 488 

(Cutanda-Perez et al., 2009; Massonnet et al., 2017). 489 

Cluster K shows a massive, but late accumulation of proline, already known to over-490 

accumulate when both berry growth and net protein accumulation have ceased (Stines et al., 491 

1999). The levels of delta-1-pyrroline-5-carboxylate synthetase mRNA and protein, a key 492 

regulatory enzyme in proline biosynthesis, do not seem to be affected by ripening (Deluc et 493 

al., 2009; Stines et al., 1999). Present results revealed that proline didn’t start to accumulate 494 

before late ripening (R8), and largely escaped the peak of free ABA, which in addition clearly 495 

vanished after phloem arrest, while proline accumulation persisted. This very poor 496 
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coincidental timing between ABA and proline in single berries apparently contradicts the 497 

hypothesis that ABA would simply trigger proline biosynthesis in grapevines submitted to 498 

water deficit (Deluc et al., 2009). Finally, most metabolites associated to cluster L, which are 499 

characterized by a sharp accumulation at the very end of the ripening process, have been 500 

identified as stilbenes, including trans-resveratrol, trans- and cis-piceid and viniferins (Table 501 

S2). This cluster appeared therefore remarkably homogeneous, as all its annotated 502 

compounds, representing 83% of all ions, were derived from stilbenes (Table S1, Fig. S3). 503 

Stilbene biosynthesis has been associated with a wide array of biotic and abiotic stresses in 504 

grapevine (Chong et al., 2009). In grapes, stilbene metabolism has been shown to respond 505 

to water deficit, albeit with different responses depending on varieties (Deluc et al., 2011). In 506 

addition, transcriptomic analysis of berries subjected to post-harvest withering has shown a 507 

massive induction of the stilbene synthase gene family (Vannozzi et al., 2012). In the context 508 

of berry development, the present work shows that stilbenes can be considered as metabolic 509 

markers of the water stress associated to the cessation of phloem sap flow and wilting 510 

occuring at over-maturation stage. 511 

Dealing with complex accumulation profiles 512 

K-means clustering, while useful for grouping data by similarity, may keep complex 513 

metabolic profiles hidden, resulting in misclassification of physiologically important 514 

metabolites. For example, by contrast with proline which also derives from glutamate, 515 

gamma-aminobutyric acid (GABA), the key intermediary of the GABA shunt in plants (Ansari 516 

et al., 2021), was found progressively accumulated during the green phase, followed by a 517 

sudden disappearance preceding softening, and a sharp increase at the end of maturation 518 

(Fig. S6). The recent identification of GABA as an inhibitor of the malate channel ALMT1 519 

(Long et al., 2020), may provide a functional link between GABA abrupt decrease and the 520 

trigger of the typical reversal of malate accumulation during the green stage/ripening 521 

transition. Then, GABA being reversibly accumulated in mature berries submitted to O2 522 

deprivation (Tesnière et al., 1994), its terminal accumulation is symptomatic of increased 523 

anaerobiosis in the fruit core at this stage (Xiao et al., 2018). Such a particular profile led to 524 

its misclassification in cluster E, albeit with a correlation of 0.62 to the cluster eigen-525 

metabolite (Fig. S6). Similarly, tryptophan, a precursor of the phenylpropanoid pathway (Fig. 526 

7), had a distinct profile with a moderated peak at veraison but an overall decreasing trend. 527 

This led to its placement in cluster D with a correlation of 0.64. To address this issue, 528 

increasing the number of clusters in K-means could allow for a finer classification of 529 

metabolites with specific trends. Furthermore, the use of more sophisticated grouping 530 

methodologies, for example by combining a Gaussian mixture model (Polanski et al., 2015) 531 

with the uniform or tree manifold approximation and projection (UMAP, TMAP) dimension 532 
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reduction methods (Ebbels et al., 2023; Olivon et al., 2018), could allow better adaptation to 533 

these atypical profiles. This potential has already been partially explored in this study using t-534 

SNE. 535 

Conclusion 536 

This study provides a detailed analysis of grapevine berry development through an 537 

untargeted metabolomic profiling, identifying 12 distinct metabolite clusters that map the 538 

fruit's phenological stages. Utilizing single berry sampling and multivariate analyses, we 539 

highlighted abrupt metabolic changes and the key roles of many metabolites. These results 540 

improve our understanding of the grape's internal metabolic clock, offering the possibility of 541 

optimizing the harvesting of berries according to their internal developmental clock, thanks in 542 

particular to high-throughput and non-destructive phenotyping methods, opening the way to 543 

new applications in breeding. Additionally, this research paves the way for studying the 544 

physiology of non-climacteric fruits, allowing for more effective identification of key 545 

developmental regulators, such as the gene networks involved in the onset of ripening. This 546 

enhanced understanding could provide deeper insights into the molecular mechanisms 547 

underlying plant acclimatization to abiotic stresses. 548 
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Tables and Figures 888 

Figures 889 

Figure 1. Metabolomic data analysis workflow. The 11 expert stages were defined before 890 

our study by Savoi et al. (2023). The workflow starts with raw metabolomic data, each of the 891 

9,256 detected ions surfaces is initially scaled by its sum over berry development. The 892 

normalized data underwent a classification of the samples by the K-means algorithm, in 893 

order to identify new metabolomic stages independently from expert stages and observer 894 

time. In parallel, the normalized data were submitted to a principal component analysis 895 

(PCA). Single berry molecular clock was calculated from the curvilinear distance of samples 896 

projected on successive linear regressions, selecting the best principal component (PC) 897 

plane for each one. These newly identified stages and clock were then compared to the 898 

expert stages. 653 invariant ions were then filtered out using a Kruskal-Wallis test with a 899 

false discovery rate of 0.01. The 8,603 remaining ions were then grouped together using K-900 

means on the metabolites, followed by a PCA for each metabolite cluster, enabling the 901 

representative dynamics (or “eigen-metabolite”) to be shown. Finally, a t-distributed 902 

stochastic neighbor embedding (t-SNE) representation allowed more direct insights on the 903 

data structure. 904 
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Figure 2. Comparative analysis of berry developmental stages: expert classification 905 

single berry metabolic clock and days after flowering (DAF), color-coded by expert 906 

stages. (a) 3D principal component analysis (PCA) plot displaying berries colored according 907 

to expert-defined phenological stages (G = green, L = lag, S = softening, R = ripening, Sh = 908 

shriveling). Each color represents a different stage, illustrating the separation and distribution 909 

of berries within the multi-dimensional space defined by the first three principal components 910 

(PC) of the dataset. (b) Scatter plot showing a side-by-side comparison of the metabolomic 911 

clock (y-axis) against the expert-defined stages (x-axis). Data points are color-coded by the 912 

expert stages. The metabolomic clock was determined by calculating the distances between 913 

samples across successives linear regressions of PCA-projected samples trajectories in a, 914 

providing a continuous scale that contrasts with the discrete categorization of the expert 915 

stages. (c) Comparison of the metabolomic clock (x-axis) and days after flowering (DAF) (y-916 

axis) and colored by expert stages. 917 

Figure 3. Representative profiles of metabolite clusters decreasing throughout 918 

grapevine berry development. n indicates the number of metabolites within each cluster. 919 

Each point is a single berry. The y axis represents the first principal component (PC1) from 920 

the cluster principal component analysis (PCA) and the x axis is the metabolomic clock. For 921 

expert stages description see Table 1. 922 

Figure 4. Representative profiles of metabolites that accumulate as a peak at specific 923 

stages of the berry development. n indicates the number of metabolites within each 924 

cluster. Each point is a single berry. The y axis represents the first principal component 925 

(PC1) from the cluster principal component analysis (PCA) and the x axis is the metabolomic 926 

clock. For expert stages description see Table 1. 927 

Figure 5. Clusters representative profiles of metabolites showing an accumulation 928 

trend during the ripening phase. n value indicates the number of metabolites within each 929 

cluster. Each point is a single berry. The y axis represents the first principal component 930 

(PC1) from the cluster principal component analysis (PCA) and the x axis is the metabolomic 931 

clock. For expert stages description see Table 1. 932 

Figure 6. 3D t-distributed stochastic neighbor embedding (t-SNE) representation of 933 

the untargeted metabolites. Each point represents a metabolite, colored by its K-means 934 

cluster with its representative pattern over the metabolomic clock (see details in Fig. 2, 3 and 935 

4). Patterns A through D include metabolites consumed in the early green stage. Between E 936 

and I, there are noticeable peaks in metabolite accumulation, signaling the stepwise 937 

transition from green phase to ripening. Finally, patterns J to L depict the accumulation of 938 
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metabolites toward the end of the berries’ development. In the 3D t-SNE visualization, these 939 

three cluster groups appear to be organized into three distinct branches. 940 

Figure 7. Biosynthesis pathways of the identified metabolites and their accumulation 941 

profile through the grapevine fruit development. Each point represents a metabolite, 942 

colored by its K-means cluster with its representative pattern over the metabolomic clock 943 

(see details in Fig. S5). Metabolites in gray correspond to molecular standards; most of 944 

these molecules have a correlation with the eigen-metabolite of their cluster of less than 0.8 945 

(see dynamics in Fig. S6). Chalcone, epicatechin, gallocatechin, and epigallocatechin have 946 

been identified in their derivative, fragment, or polymerized forms. Due to the multiple 947 

profiles associated with each fragment/derivative/polymer, we have chosen not to display 948 

them in this figure (see details in Fig. S5). (KEGG Pathway database 949 

(https://www.genome.jp/kegg/pathway.html), Ali et al., 2010; Castellarin et al., 2007b; Dong 950 

and Lin, 2021; Clifford et al., 2017; Petrussa et al., 2013; Tang YuHan et al., 2018; Yang et 951 

al., 2020). 952 

 953 

Tables 954 

Table 1. Repartition of the 125 samples analyzed by UHPLC. 955 

 
Green Ripening Over-ripening 

Growth Lag Softening Colouring Shrivelling 

Expert stages G1 G2 G3 L4 L5 S6 S7 R8 R9 R10 Sh11 

Year of sampling 2019 2019 2019 2019 2018 2018 2018 2018 2018 2018 2018 

Harvested 
samples 4 26 28 19 8 9 9 11 14 12 13 

Sample selected 4 14 14 17 8 9 9 11 14 12 13 

 956 

Table 2. Relationship between expert stages and K-means determined metabolomic 957 

stages. Each cluster represents a stage where berries exhibit similar metabolomic 958 

characteristics, G = green phase, L = lag phase, S = softening, R = ripening and Sh = 959 

shriveling. 960 

Expert 

stages 
G1 G2 G3 L4 L5 S6 S7 R8 R9 R10 Sh11 

K-means 
stages 

1 
1,2,3

,4 
4,5 

5,6,7,

8,9 
10 

11,12

,13 
12,13 14,15 15 

16,17,

18 
15,17,

18  

 961 
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