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ABSTRACT
Photonic neural networks (PNNs) are gaining significant interest in the research community due to their potential for high parallelization, low
latency, and energy efficiency. PNNs compute using light, which leads to several differences in implementation when compared to electronics,
such as the need to represent input features in the photonic domain before feeding them into the network. In this encoding process, it is
common to combine multiple features into a single input to reduce the number of inputs and associated devices, leading to smaller and
more energy-efficient PNNs. Although this alters the network’s handling of input data, its impact on PNNs remains understudied. This
paper addresses this open question, investigating the effect of commonly used encoding strategies that combine features on the performance
and learning capabilities of PNNs. Here, using the concept of feature importance, we develop a mathematical methodology for analyzing
feature combination. Through this methodology, we demonstrate that encoding multiple features together in a single input determines their
relative importance, thus limiting the network’s ability to learn from the data. However, given some prior knowledge of the data, this can
also be leveraged for higher accuracy. By selecting an optimal encoding method, we achieve up to a 12.3% improvement in the accuracy of
PNNs trained on the Iris dataset compared to other encoding techniques, surpassing the performance of networks where features are not
combined. These findings highlight the importance of carefully choosing the encoding to the accuracy and decision-making strategies of
PNNs, particularly in size or power constrained applications.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0226172

I. INTRODUCTION

Artificial Intelligence (AI) systems gained widespread relevance
in recent years,1 finding diverse applications ranging from image
classification2 to speech recognition.3 These systems have tradition-
ally been implemented in electronic hardware, benefiting from the
steady performance improvements driven by the miniaturization
of electronic integrated circuits. However, with components now
shrinking to the atomic scale, the limitations of this platform become
apparent.4 At this size, for example, quantum effects may disrupt
functionality,5 and the heat from densely packed devices becomes
hard to dissipate.6 In response, new technologies are being explored
to enable further improvements in AI. These emerging technologies
are often not subject to the same constraints of their electronic

counterparts and, thus might offer more efficient alternatives for
certain applications.7

Photonic neural networks (PNNs) are hardware implementa-
tions of AI systems that perform computations on optical signals,
rather than on electronic ones. Using light, they are able to leverage
several of its properties to potentially enable high parallelization,
low latency, and reduced power consumption.8 For example, PNNs
have been demonstrated to perform sub-nanosecond image classi-
fication9 and to achieve up to 1012 multiply-accumulate operations
per second.10 However, transitioning from electronics to photonics
remains challenging. Practical applications of medium- to large-
scale systems are currently limited by the large physical footprint of
photonic circuits,11,12 their loss accumulation, and the high power
consumption of some of its electro-optic devices.13
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© Author(s) 2024

 16 O
ctober 2024 12:35:35

https://pubs.aip.org/aip/aml
https://doi.org/10.1063/5.0226172
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0226172
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0226172&domain=pdf&date_stamp=2024-September-4
https://doi.org/10.1063/5.0226172
https://orcid.org/0009-0001-5491-0806
https://orcid.org/0009-0002-2121-1918
https://orcid.org/0000-0001-6631-4000
https://orcid.org/0000-0002-7248-8493
https://orcid.org/0000-0001-6145-3327
https://orcid.org/0000-0002-6238-9600
https://orcid.org/0000-0001-6116-7339
https://orcid.org/0000-0002-6889-2012
mailto:mauricio.gomes@ec-lyon.fr
https://doi.org/10.1063/5.0226172


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

One way of alleviating these issues is by optimizing circuits,14,15

or carefully designing PNNs to minimize circuit size. A common
practice found in the literature involves taking advantage of the
complex representation of light (using amplitude and phase) to
represent multiple features in a single input, thus combining
multiple real-valued features into fewer complex-valued inputs. By
using fewer inputs, a circuit requires fewer components and a
smaller network, which leads to a reduction in the overall foot-
print. Such technique aligns well with the capabilities of photonic
circuits, which are able to process complex inputs through complex
transformations.16

However, the way we represent features in neural networks
(NNs) greatly influences the difficulty of the problems they solve.
For example, in tasks with radial symmetry centered around
the origin, opting for a polar coordinate system can emphasize
the relevant feature relationships necessary for accurately solving
the task, short-cutting the network’s need to learn it. This approach
can significantly reduce the computational complexity required for
achieving high accuracy. Moreover, the choice of feature represen-
tation also shapes the network’s approaches to solve tasks, as NNs
tend to rely on the most straightforward cues available within the
data.17 This highlights the need to understand which feature rela-
tionships are emphasized by the representation strategies used in
PNNs. By doing so, we can ensure that these networks not only
achieve high accuracy but also adopt desirable decision-making
strategies.

In this paper, we explore the role of feature representation in
the accuracy and decision-making strategies of PNNs. We investi-
gate the common practice of combining various features into a single
input, using eXplainable AI (XAI) methods to compare relative
importance of the combined features. To our knowledge, only one
work investigated such practice as a means of improving accuracy
in PNNs.18 However, the consequences of the feature combination
itself are still unknown, and different feature representations were
not explored. Our work tackles these open questions with a
mathematical analysis of feature combination focused on photonic
implementations, where networks and circuits are constrained

by size. We point out how different data representations and
hardware implementations can be exploited for higher accuracy
and lower complexity, as well as the shortcomings of the current
solutions.

The rest of this paper is structured as follows: in Secs. II and III,
we review the basics of photonic implementations of AI and feature
importance metrics. In Sec. IV, we calculate the relative importance
of features that share the same input. Sections V and VI discuss prac-
tical examples and simulations of artificial neural networks (ANNs)
and PNNs. Finally, Sec. VII concludes the discussions brought up in
this paper.

II. PHOTONIC NEURAL NETWORKS
In this section, we provide a review of ANNs and their photonic

implementations. We also address common strategies of represent-
ing features in light, which will be used in our further discussions in
Sec. IV.

A. Artificial neural networks
Artificial neural networks (ANNs), first proposed in the

1940s,19 are mathematical functions loosely inspired by how the
human brain processes information. These functions are known
to be universal approximators,20 hence their ability to handle
a wide variety of tasks. The network’s behavior, i.e., the way
it processes inputs, is determined by their connection strengths
(called “weights”) and non-linearities (referred to as “activation
functions”).21 Typically, these parameters are obtained through
training, approximating the ANN to a probability function asso-
ciated with the given task. For instance, in classification tasks,
ANNs are designed to assign a class to an input by approximating
a function that calculates the likelihood of belonging to each
class.22

Consider a fully connected, feed forward (FF) NN, consisting
of L layers and designed with N inputs and N outputs, as shown in
Fig. 1(a). The process by which a given layer l transforms its inputs
is described as

FIG. 1. (a) Representation of a generic neural network. An arbitrary layer l is highlighted. (b) Schematic of the photonic implementation of a neural network layer using meshes
of Mach–Zehnder interferometers (MZIs). (c) An MZI and its two phase shifters (ϕ, 2θ) are illustrated alongside the transfer matrix representation of the transformation it
performs over the field amplitude.
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z⃗ (l) =W (l) ⋅ y⃗ (l−1) + b⃗ (l), (1)

y⃗ (l) = σ (l)(z⃗ (l)). (2)

Initially, inputs are combined through weighted sums by a
weight matrix W(l) to obtain z(l). Then, the element-wise application
of an activation function σ(⋅) to z(l) introduces non-linearity and
yields the output of the layer, where y(0) is the input of the network
and y(L) the output. A bias b⃗ might be added before the activation
function to allow for the network to better adjust to the data. The
entire network, from the first to last layer, can be seen as a sequence
of such transformations, written as y⃗ (L) = f (y⃗ (0)).

Thus, ANNs implement input–output mappings that can be
either real or complex. real-valued neural networks (RVNNs) are
characterized by real parameters and inputs, with f : RN ↦ RN .
In these networks, each layer scales and combines inputs before
non-linearly transforming them. Complex-valued neural networks
(CVNNs), on the other hand, operate in the complex domain,
meaning that both the input vector and the network’s parameters
are complex-valued and f : CN ↦ CN .23 In that case, each layer
has the ability to not only scale and combine but also rotate
inputs in the complex plane. This rotation, inherent to complex
algebra, makes CVNNs more suitable for tasks where phase infor-
mation is important, such as in audio processing24 or optical
communications.25

B. Photonic implementations
Photonic computing is emerging as a promising approach to

improve ANN implementations for specific applications by comput-
ing with light. This allows us to leverage its unique characteristics to
potentially enable faster and more energy-efficient AI systems. For
example, in the optical domain, linear transformations can be done
passively26 and information can be easily parallelized and processed
at high speeds.10

PNNs are implementations of ANNs through photonic inputs,
components, and transformations.27 Although no single photonic
component acts as an artificial neuron, a circuit can be designed to
perform the mathematical operations of an ANN. This is achieved
by using several components, such as waveguides, interferometers,
and modulators, which guide and manipulate light signals. These
circuits operate on complex signals and implement complex trans-
formations, meaning that PNNs can act as RVNNs and CVNNs,
depending on the task at hand.

Several PNN circuits were suggested and demonstrated experi-
mentally. They can be broadly categorized by how different inputs
are distinguished, whether through spatial, wavelength, or time
domains.28

In this study, we focus on PNNs that use spatial differenti-
ation of inputs. These networks assign a separate input to each
optical signal and implement weight matrix multiplications by mak-
ing different inputs interfere with each other. Most notably, this
is achieved by using meshes of Mach–Zehnder interferometers
(MZIs).26,29 The interference, and hence the specific mathematical
operation performed by the mesh, can be selected by adjusting the
phase shifters found in these devices. Activation functions, on the
other hand, can be implemented by using any of the devices and
circuits that exhibit optical non-linearity.30,31 The schematics of an

ANN implementation and an MZI are shown in Figs. 1(b) and 1(c),
respectively.

If PNNs use coherent light inputs, they can be represented in
the complex domain. In these networks, the ith input is charac-
terized by an amplitude Ai and phase ϕi. Thus, the input vector
can be expressed as y⃗ (0) = [A1eiϕ1 , . . . , AN eiϕN ]⊺ ∈ CN . Given the
two degrees of freedom available for each input, feature encoding
can be achieved using various methodologies. We divide common
approaches found in the literature into two distinct groups: real and
complex encoding.

Real encoding simplifies the input representation by encoding
data solely in the amplitude of the optical signals, maintaining a uni-
form initial phase across all inputs (in practice having ϕi = 0∀ i and
thus y⃗ (0) ∈ RN ). Several researchers employ this encoding method
for its compatibility with RVNNs used in electronic computers.8,32

It allows for an easy mapping of weights from electronically trained
networks to photonic transformations. In these networks, while the
nature of the transformations of individual MZIs is inherently com-
plex, the overall behavior can effectively be real-valued. Since no
phase information is used, only the amplitude of the outputs is
of interest, which simplifies the detection scheme. However, it is
important to ensure that different inputs experience the same phase
before reaching the network to maintain phase consistency, which
might not be simple to achieve experimentally.

In contrast, complex encoding uses both amplitude and phase
at the same time, having inputs that lie in the complex plane, that is
y⃗ (0) ∈ CN . The transformations in the PNN in this case are com-
plex, and thus, detection of both intensity and phase in the outputs
might be used, adding to the electronic complexity of the circuit. In
image classification tasks, for example, real-valued input images can
be transformed into Fourier space representation to obtain phase
and amplitude information,33–35 or have different sections mapped
to the real and imaginary parts of complex numbers,18,36 which
reduces by half the number of inputs.

The encoding choice for PNNs influences the network’s behav-
ior, the type of information that is detected at the output, and the
overall size of the circuit, as it may imply the use of additional
peripheral devices. Beyond hardware specifications, this choice
might also impact how features are processed within the network.
When two features share the same input, the network may process
them differently from the way they would be processed individually.
Understanding these dynamics is crucial for optimizing the PNN
performance.

III. FEATURE IMPORTANCE
In this section, we look to the field of XAI for methods of evalu-

ating feature importance in ANNs, to later study the impact of com-
bining features in PNNs. We focus on gradient-based techniques,
particularly sensitivity analysis.

ANNs, especially those with several layers, are highly non-
linear models that use numerous parameters. The network’s com-
plexity often leads them to be regarded as opaque or “black-box”
systems, since their decision-making processes are difficult to grasp
intuitively. That is, while we can mathematically describe how a
given output is obtained, it is difficult to specify “why” with an
intuitive explanation.
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Nonetheless, being able to explain the decision-making strate-
gies of a model has a number of practical applications. Clear expla-
nations can, for instance, enhance our understanding of a problem
or be used to demonstrate fair treatment. In photonics research,
XAI is currently used to explain the inverse design of circuits37

or to aid in the description of physical models.38 The concept of
“explainability” is still subject of an ongoing debate39,40 and, conse-
quently, a variety of methods have been proposed to attain it.41,42

Highlighting which input features are considered as important to
an ANN is a common way to explain its outputs. Several methods
estimate such feature importance, of which we emphasize sensitivity
analysis.

Sensitivity analysis quantifies feature importance by examining
how sensitive the output of the model is to small variations in each
feature.43–45 The underlying principle is that if small changes in an
input lead to significant changes in the output, then that input is
likely to be important for the network, i.e., it contributes to the pre-
diction of this output. In such case, the importance of the ith input,
y (0)i , to the cth output of the network, y (L)c , is denoted by Ri→c,

Ri→c =
RRRRRRRRRRR

∂y (L)c

∂y (0)i

RRRRRRRRRRR
. (3)

Gradient-based explanations are frequently used in image clas-
sification tasks to generate saliency maps46 and also show fair per-
formance in matching feature importance in simulated data.47 Over
time, other methods built up on sensitivity analysis, addressing some
of its drawbacks by suggesting additional forms of estimating feature
importance.48 For example, adding Gaussian noise to the input and
averaging their resulting gradients helps in generating more consis-
tent saliency maps.49 These techniques are often easy to implement,
given that the necessary partial derivatives can be computed through
back-propagation.

IV. ANALYTICAL DERIVATION OF RELATIVE
IMPORTANCE

Here, we use the concepts elaborated in previous sections to
investigate how the importance of features is shaped in PNNs. Ini-
tially, we employ the sensitivity analysis shown in Sec. III to obtain
the importance of an arbitrary feature encoded in one input. Then,
we introduce the concept of encoding functions to describe the dif-
ferent feature encoding processes and representations in photonics,
given in Sec. II.

Consider a set of features X = {x1, . . . , xn} ∈ R. Assume that
we want all the elements in X to be used by our model. However,
due to either a prohibitively large quantity of features or size restric-
tions on our network, we also wish to use a number of inputs that
is less than the number of elements in X . To achieve both objec-
tives, we combine features into complex inputs, as shown in Sec. II.
In this context, we calculate the relative importance of such com-
bined features, to understand what relationships are highlighted by
our inputs.

Our first objective is to obtain the importance of an arbitrary
feature, say x j ∈ X , with respect to an arbitrary output of the model.
This feature is represented only in input y (0)i , and its importance is

assessed in relation to the cth output of the network. Applying the
chain rule to Eq. (3), we write this importance Rj→c as

Rj→c =
RRRRRRRRRRR

∂y (L)c

∂xj

RRRRRRRRRRR
=
RRRRRRRRRRR

∂y (L)c

∂y (0)i

∂y (0)i
∂xj

RRRRRRRRRRR
. (4)

The partial derivative ∂y (0)i /∂x j of Eq. (4) relates to the way
xj is represented in the input. The process of creating an input
from elements of X is what we term feature encoding. An input
y (0)i obtained from the feature xj is hence written as y (0)i = gi(x j),
where gi is the encoding function for the ith input. Considering the
encoding process as such, we can write

Rj→c =
RRRRRRRRRRR

∂y (L)c

∂y (0)i

∂gi(xj)
∂xj

RRRRRRRRRRR
. (5)

It should be noted how the importance depends on both the
network, represented in the derivative from output to input, and the
feature encoding process, given the presence of the encoding func-
tion. The modulus operation ensures that the importance is always
positive and real-valued. Here, we assume the network to be deriv-
able in the vicinity of the current input, which might not be the case
for some CVNN architectures.

Next, we examine the scenario where two arbitrary features,
xj and xk, are represented using a single input y (0)i , comparing their
relevance. We define the relative importance between xj and xk to
the cth output, Rj,k→c as the following ratio:

Rj,k→c =
Rj→c

Rk→c
=
RRRRRRRRRRRRR

∂gi(xj ,xk)

∂xj

∂gi(xj ,xk)

∂xk

RRRRRRRRRRRRR
. (6)

We see that the component of Eq. (4) related to the network
is canceled, leaving only the derivatives of the encoding function.
Thus, Rj,k→c is solely determined by the way features are encoded
into yi, and hence, it is independent of the considered output. To
simplify the notation, we drop the subscript indicating the output
for the rest of this paper. One of the consequences of Eq. (6) is that
the encoding function chosen to combine xj and xk defines how these
features are perceived by the model relative to one another.

Although encoding functions are a method of pre-processing
features, in the context of PNNs, they can also be implemented in
hardware. The incorporation of encoding functions in the circuit is
particularly interesting for low-latency applications, as the speed at
which inputs are transformed and combined would be limited only
by the reconfigurability of the driving electronics. We now explore
two types of complex encoding functions to see how they dictate
relative feature importance. We also point out how they could be
implemented in hardware.

A. Exponential encoding
Since we are dealing with complex-valued inputs, one intuitive

way to encode two features xj and xk into a single input would be to
encode xj in its amplitude and xk in its phase. This encoding function
can be written as

g(xj , xk) = xjeixk. (7)
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FIG. 2. Panels (a) and (b) show photonic circuits that implement encoding functions. By modulating the phase shifters to the indicated value, one can achieve functions similar
to exponential encoding (a) or linear encoding (b). (c) Importance of a feature xj when rp = ∣xj ∣, which is equal to moving P alongside the xj axis. (d) Mean accuracy of 100
ANNs trained with several encoding functions. “Independent” refers to the situation where features are not combined and “engineered” to the implementation of Eq. (16).

The relative importance between these two features is calcu-
lated as

Rj,k→c = ∣
eixk

ixjeixk
∣ = 1
∣xj ∣

. (8)

In this case, the relative importance between the two features is
dynamic, establishing an amplitude-dependent relation between the
importance of amplitude and phase.

A hardware version of an exponential encoding function is
shown in Fig. 2(a), where a balanced MZI and a phase shifter are
used to modulate the amplitude and phase of an input, respec-
tively. The encodings and importance are not exactly the same
since this amplitude modulation scheme is mediated by a sine func-
tion, it implements g(xj, xk) = i sin(xj)exp(xki). Here, Eq. (7) can be
achieved short of a global phase shift by mapping xj to arcsin(xj).

B. Linear encoding
Another way to combine two features is by encoding one in the

real part and the other in the imaginary part of a complex input. This
can be represented by the function,

g(xj , xk) = xj + ixk. (9)

Here, we find their relative importance to be

Rj,k =
1
∣i∣ = 1, (10)

thus indicating that both features will be considered to have the
same importance for the network. Since they are independent from
the weights of the network, their relative importance cannot be
unlearned, i.e., it cannot be modified by further training. This
might pose problems when the chosen encoding leads to relative
importance that do not match the data.

An encoding function similar to that of Eq. (9) implemented in
hardware, is shown in Fig. 2(b). There, two MZIs are used as ampli-
tude modulators, while one of their outputs has its phase shifted
by π/2 to encode the respective input in the imaginary axis. In that
case, g(xj, xk) = i[sin(xj) + sin(xk)i]. Equation (9) can be achieved
short of a global phase shift by mapping xj and xk to arcsin(xj) and
arcsin(xk).

V. ON THE IMPACT OF ENCODING FUNCTIONS
TO ANNs

In this section, we address the practical implications of the dis-
cussions brought up in Sec. IV. Here, our objective is to demonstrate
how a well-engineered encoding function can significantly improve
the accuracy of an ANN on a test task. We begin by defining such a
task and studying the relative feature importance found in a solution
to it. Later, we create an encoding function that reproduces these
importances on trained ANNs, finally comparing its use against
others.

Consider a simple classification problem with a known solu-
tion in the real domain: determining whether points lie inside or
outside an n-sphere. An n-sphere is the generalization of a circle
to n + 1 dimensions, similar to how hyperplanes generalize planes.
It is defined by a set of points S(n) that are equidistant from a cen-
tral point c0 = (c1, . . . , cn+1) by a radius r0. The distance of a point
P = (x1, . . . , xn+1) to c0 is

rp(x1, . . . , xn+1) =
¿
ÁÁÀn+1

∑
i=1
(xi − ci)2. (11)

Naturally, P is considered outside of the n-sphere if rp exceeds
r0 and inside otherwise. In this context, a mathematical model that
outputs a probability of P being outside of S(n) can be constructed
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using a logistic function. The logistic function σ(x) = 1/(1 + e−x)
is bounded between 0 and 1 with a smooth sigmoid transition
and is typically used in binary classification problems. Given the
coordinates of P, this model can be expressed as

y = f (x1, . . . , xn+1) = σ(rp − r0). (12)

Here, y represents the probability that rp > r0 given the coordi-
nates of P. When y = 0.5, Eq. (12) delineates the boundary defined
by S(n), allowing for accurate classification of points based on this
threshold.

Since Eq. (12) can be used to accurately classify any point P, we
conjecture that its relative feature importances are desirable to other
models that wish to do it as well. Thus, we examine the sensitivity
of y to an arbitrary feature xj, which can be calculated according to
Eq. (4) as

Rj = ∣
∂y
∂xj
∣

= ∣σ(rp − r0)(1 − σ(rp − r0))
xj − cj

rp
∣∀ rp ≠ 0. (13)

As shown in Fig. 2(c), the importance of a feature peaks when it
is at the boundary of the n-sphere. Exactly at that point, small vari-
ations in xj cause the largest deviations of the probability of P being
outside of S(n). The relative feature importance between two features
xj and xk is

Rj,k = ∣
xj − cj

xk − ck
∣. (14)

Now assume that, as in Sec. IV, we are constrained by size and
thus wish to combine different features to reduce the number of
inputs. However, for this particular example (and by design), we
have prior knowledge of the relative importance of features before
combining them. Taking advantage of this, we propose an encoding
function g(xj, xk) that achieves the desired reduction in dimention-
ality while preserving the relationships given by Eq. (14). Given that
after combining features, their relative importance should follow
Eq. (6), we can obtain one such g(xj, xk) by solving the following
system of partial derivatives:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∂g(xj , xk)
∂xj

∣ = ∣xj − cj ∣,

∣∂g(xj , xk)
∂xk

∣ = ∣xk − ck∣.
(15)

This system can lead to one of many solutions of the form

g(xj , xk) =
1
2
(x2

j + x2
k) − cjxj − ckxk + C, (16)

where C is a constant.
In the same manner, we can obtain other functions that

express different relative importance. A constant Rj,k = 1, for
instance, is achieved by using g(x j , xk) = (x j + xk)n ∀ n ∈ R. Alter-
natively, g(x j , xk) = (x j × xk)n ∀ n ∈ R leads to Rj,k = ∣xk/xj∣, which
is the inverse of Eq. (14) when cj and ck are zero. To compare

the use of these encoding functions, we trained several ANNs,
benchmarking them on networks that do not combining inputs
(called “independent” here). We are particularly interested in the
performance of Eq. (16), which we call “engineered” encoding
function. The description of the training procedures is in the
following.

A dataset of 1000 points in four dimensions was created, where
each coordinate value was randomly chosen between −2 and 2. The
points were labeled as either inside or outside of a three-sphere S(3)

of radius 1, centered at the origin c0 = (0, 0, 0, 0), according to their
position. In order to obtain a balanced dataset, we generated the
same amount of points inside and outside the sphere. The networks
trained to solve this task were composed of an input layer containing
either two or four neurons (depending on the combination of fea-
tures or not), a hidden layer of six neurons, and an output layer with
a single neuron. A logistic activation function σ was used for every
layer. Each encoding function was used to train 100 different net-
works, thus accounting for the random initialization of weights and
random shuffling of the dataset prior to training. The networks were
trained on 70% of the available data for 100 epochs with a learning
rate of 0.001 and tested on the remaining data.

The results of these experiments are shown in Fig. 2(d). We
notice that some representations can render the task harder to solve,
while others maintain, to some extent, the accuracy achieved by the
use of independent inputs. The engineered encoding function in
Eq. (16) outperformed all others. With this example, we show that
the way we combine features plays a role in the accuracy of ANNs.
Given prior knowledge on how features relate to one another, which
may come from domain-specific knowledge or from inspecting the
data (noticing symmetries or class distributions, for example), we
could estimate relative feature importance and obtain an encod-
ing function that aligns with them. Combining features with said
encoding function could improve the network performance.

VI. APPLICATION OF ENCODING FUNCTIONS IN PNNs
In this section, we retake the subject of this study and explore

the use of different encoding functions in PNNs trained on the Iris
dataset,50 a standard benchmark for classification algorithms. Our
goal is to show how carefully chosen encoding functions might lead
to higher accuracies in PNNs. To this end, we compare the per-
formance of several encoding functions by means of simulations of
PNNs, which differ significantly from the ANNs of Sec. V in terms
of their complex-valued inputs and transformations.

The Iris flower classification task involves categorizing three
different Iris species (Setosa, Versicolour, and Virginica) based on
four features: the lengths and widths of sepals and petals. The
dataset, consisting of 150 labeled data points, has considerable class
overlaps, such that no single feature alone can distinguish all the
species, making this an ideal candidate for our experiments. Visu-
alizations of feature distributions and class overlaps are shown in
Fig. 3(a).

Our experimental design involves training PNNs by combining
features in pairs, as shown in Fig. 3(b). We assess their performance
by averaging the accuracy of 100 trained PNNs, benchmarking
them against a PNN that does not combine features. This sample
size was chosen to allow for convergence in the average values
obtained for accuracy, given the variability in the training process.
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FIG. 3. (a) Class distribution of normalized features of the Iris dataset. (b) Schematic of the process of combining features utilized in the training of PNNs.

The architecture of the PNNs consists of a single hidden layer with
six neurons. Depending on the configuration, the number of input
neurons varies between 3 (when combining features) and 5 (when
using independent inputs), where one input acts as a bias for both
configurations. The output layer has three neurons, matching the
number of classes. All the configurations use the same underlying
circuit, where NN layers are implemented using meshes of MZIs
with trainable phase shifters, as shown in Fig. 1(b). Every layer is fol-
lowed by a softplus activation function, which can be implemented
in integrated photonic circuits.51 Although its hardware implemen-
tation would change both the modulus and the phase of the signals,
we model it by applying softplus(x) = log(1 + exp(x)) solely to the
modulus of the complex numbers.33 This approach allows us to sim-
ulate the gain and activation behavior while simplifying the model
by avoiding additional phase changes. These phase changes can
make the simulation and training more challenging and are less

critical to the primary function of the softplus activation in this
context.

The circuits were simulated using the Photontorch Python
package.52 The simulations were performed under ideal conditions,
excluding noise and component imperfections. They were trained
for 300 epochs on 70% of the dataset, reserving the remaining
30% for testing. The dataset was divided into five shuffled batches
per epoch to enhance training stability. A softmax function was
used to convert the output light intensity values into class prob-
abilities.22 Weight updates were performed using a cross-entropy
loss function combined with stochastic gradient descent. The initial
learning rate was set at 0.01 and adjusted at learning plateaus. While
higher accuracies may be achieved by further optimizing the training
process to each specific case, we opted for a constant training pro-
cedure across all circuits to isolate the effects of different encoding
functions.

FIG. 4. (a) Accuracy of PNNs for different encoding functions. “Independent” represents the accuracy of a PNN trained without combining features. (b) Average training loss
of the trained PNNs per epoch. The color scheme is the same as the one defined in panel (a).
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Here, we investigate the use of the encoding functions detailed
in Sec. II: linear and exponential encoding. Given the anisotropic
nature of the Iris classification task, unlike the n-sphere problem,
we also consider which features to combine. To explore the impacts
of this choice on the obtained accuracy, we use two combination
strategies for features: grouping by the lengths and widths (l/w)
or by petal and sepal information (p/s). We benchmarked the
performance of PNNs using different encoding functions and
groupings of features to the independent case, where features were
not combined.

The results of these experiments, shown in Fig. 4, are
summarized as follows: exponential encoding exhibited the lowest
performance, falling up to 11% in mean accuracy compared to the
independent benchmark. In contrast, linear encoding, commonly
used in the photonics community,18,33–36 was able to match the
performance of the independent case. The difference between the
best and worst performing encoding functions was 12.3%. These
results highlight that both the manner in which features are com-
bined and the combination of features itself play significant roles
in the final accuracy of PNNs. When comparing different feature
groupings, we found that (l/w) consistently performed worse than
(p/s), demonstrating that the choice of which features to combine
can also impact accuracy for some tasks.

These findings are supported by heuristics found in the data. A
closer inspection of Fig. 3(a) reveals that petal length and petal width
together are highly discriminative of the different classes. These
features separate different species in a similar fashion, as evidenced
by the distribution of classes along the diagonal of the plot, suggest-
ing that they may have similar importance. Thus, the combination
(p/s) with linear encoding would combine petal length and width
with an equal relative importance, expressing such relationships.

VII. CONCLUSIONS
Combining features into single inputs in PNNs can lead to

reduced number of inputs and associated devices as well as enable
the use of smaller and more energy efficient NNs. These bene-
fits would help render some circuits more feasible to be simulated,
fabricated, tested, or deployed. However, this method of feature
combination imposes predefined relationships among the features
that may not necessarily reflect the nature of data or task at hand.
Nonetheless, selecting or designing encoding functions based on an
understanding of the dataset or from domain-specific knowledge
can lead to improved accuracy. We have illustrated this first on an
ideal simple example and then for simulated PNNs.

In the scenarios shown here, as it is seen in the literature,
features are combined into a single input. As an alternative, we
could distribute features across many inputs, circumventing the
discussions brought up here and making it possible to learn other
relative feature importance. For instance, principal component anal-
ysis (PCA) can be used for dimensionality reduction, distributing
features across many inputs simultaneously.32 Expanding on this
concept, a learnable encoding function that uses every feature
available would be a fully connected layer of NN,35 which is more
complex and less efficient than what is explored in our work. In addi-
tion, the approach used here could be applied directly at a hardware
level, using integrated photonics and CMOS-compatible platforms
for volume production.

Here, the discussions highlight that there is no neutral way
of using this feature combination strategy in PNNs. Combining
features in this manner will necessarily emphasize certain feature
relationships. Sometimes, a PNN might achieve good performance
metrics despite combinations that are not ideal. However, even if
high accuracy is achieved, these combinations can also introduce
or amplify biases in the model outputs, depending on the specific
features and their encoded interactions. Rather than leaving this to
chance, we suggest to carefully assess how to encode features given
the nature of the problem and data.
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