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Mask-less asynchronous time-delay reservoir
computing using a passive photonic integrated

circuit
Mohab Abdalla, Raphael Cardoso, Paul Jimenez, Mauricio Gomes de Queiroz, Andreas Boes, Guanghui Ren,

Arnan Mitchell, Ian O’Connor, Fabio Pavanello

Abstract—Photonic time-delay reservoir computing schemes
usually employ an input mask as a means of performance
enhancement. However, input masking usually necessitates a
domain conversion, requiring a signal to be treated before
sending it to the reservoir. More recent implementations have
explored further ways of performance enhancement, whether
through operating in the asynchronous regime, or by using
post-filtering approaches. In this numerical study, we analyze
the task-independent performance of a passive integrated pho-
tonic reservoir, and show that it can achieve good results on
some benchmark tasks in the absence of an input mask. We
also consider the effects of post-filtering and operating in the
asynchronous regime through a parameter space exploration.
The proposed scheme enables ultra-fast processing speeds while
simultaneously reducing the associated power and complexity
costs of the associated electronics. We compare the obtained
results with the case of using a mask, and also with other schemes
from the literature, showing comparable performance on the
investigated tasks.

Index Terms—Reservoir computing, integrated photonics.

I. INTRODUCTION

RESERVOIR computing (RC) is a machine learning ap-
proach which exploits nonlinear dynamics to project data

onto higher dimensional spaces. This makes it possible to
separate multiple classes with simple linear classifiers, even
for tasks that would normally require larger and deeper neural
networks. Historically, the motivation was to circumvent the
problems of training large-scale artificial neural networks,
especially recurrent ones, implemented in software. Currently,
the interest has shifted more towards physical RC implemen-
tations which leverage the dynamics of physical systems to
do the computing, and which have been explored in various
domains such as electronics and photonics, among others [1].
Time delay reservoir computing (TDRC) extends RC to time-
multiplexing approaches through the use of delayed dynamical
systems [2] as time-multiplexed cyclic reservoir networks [3].
This reduces the physical nodes requirement down to a single
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node in feedback configuration, which simplifies hardware
implementation, but comes at the expense of computational
speed. The output of this node is sampled in time to yield
independent states which express different features of the
reservoir’s response to a given input, where the feedback
length is usually designed to match approximately the input
rate. To achieve high speed RC, it is important to choose
dynamical systems with a short enough timescale, but which
can still be captured by today’s electronic readouts. This is the
case with passive all-optical reservoirs [4], [5]. Photonics is
naturally well-suited for RC, owing to opportunities in speed,
efficiency, and parallelism [6]. This has led to increasing
interest in photonic RC implementations, whether in bulk [7],
[8], [9], [10], on-chip [4], [11], [12], [13], or hybrid schemes
[14], [15].
Recently, some interest has been directed towards the explo-
ration of the asynchronous regime [16], [17], [18], where the
delay time of the feedback loop is unconventionally chosen to
be neither equivalent nor close to that of the input rate. This
synchronicity convention stemmed from the initial approach of
viewing TDRC systems as the network equivalent of spatially
multiplexed reservoirs, with the nodes connected in a cyclic
fashion [3]. Another conventional preference has been the
use of an input masking protocol to prolong a reservoir’s
activity and thus improve performance, but which introduces
complications in practical cases as well as associated power
costs, in addition to a bottleneck for ultra-high speed signal
processing [19]. In this study, we tackle this problem by
dispensing with the input mask altogether, which allows the
bypassing of a possible optical/electronic/optical conversion at
the input, in case the signal to be fed to the reservoir is already
in the optical domain (for example in telecom applications
[20]). We use task-independent metrics alongside standard
benchmark tasks to judge the performance of an all-optical
integrated reservoir over its design space, with a specific focus
on the feedback time and applied phase shift. The considered
photonic reservoir has an ultrashort timescale governed by
the waveguide lengths. Thus the scheme is only limited by
the readout electronics’ RF bandwidth. [5]. We also take
into account the associated effects of the electronic readout
in our study, mainly the photodiode noise and filtering with
subsequent 12-bit quantization, to understand its implications
on the performance. Lastly, we show the correlation between
the performance on benchmark tasks and the different task-
independent metrics within the explored design space.
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II. METHODS

The performance of an RC scheme can be quantified in
a number of ways; the most obvious is by using standard
benchmark tasks. However, this constrains the evaluation to
these specific tasks and does not provide information about the
reservoir’s overall memory/nonlinearity capabilities. To give a
more comprehensive account of the RC performance, task-
independent metrics must be employed as well. The infor-
mation processing capacity (IPC) [21] is a task-independent
metric which has been used to quantify the performance of
a number of reservoirs in a number of dedicated studies
[22], [23], [24], [25]. However, when considering a large
design space (as in our case), IPC calculation would require
large computational time and resources. Instead, we opted
for a combination of other metrics which can reflect the
memory/nonlinearity abilities of a reservoir, while requiring
less computing resources.

A. Task-independent tests

The first metric considered is the linear memory capacity
[26], which showcases the ability to reconstruct past inputs us-
ing a weighted linear combination of the reservoir’s presently
probed states. An input sequence u of length 2000, drawn
from a uniform distribution ∈ [0, 0.5), is used to train the
model with linear regression to reconstruct k inputs into the
past. The performance is then evaluated with the square of the
Pearson correlation coefficient r2c :

MCk =
cov(u[n− k], yk[n])

2

var(u[n])var(yk[n]))
= r2c (u[n− k], yk[n]) (1)

where cov(.) is the covariance, var(.) is the variance, u[n] is
the input at the current step, u[n − k] is the input delayed
by k discrete steps, and yk[n] is the predicted stream (after
training). For this study, we calculate the total linear memory
capacity MCtot by summing up the first m = 100 terms.
Theoretically speaking, the sum includes the infinite past, i.e.
all the m ∈ [1,∞) are to be considered. A similar truncation
strategy to [27] is used, where we do not consider the terms
where MCk < 0.01.

MCtot =

m∑
k=1

MCk (2)

The second metric is the computational ability (CA), which is
a measure of RC nonlinearity strength or computation power.
It is calculated by performing two tests on the reservoir: the
kernel quality and the generalization tests [28], [29]. The ker-
nel quality test evaluates how the reservoir can map different
inputs to sufficiently different states. For this test, we construct
100 input streams, with each being a sequence of length 100,
drawn from an independent and identical distribution with
values ∈ [0, 0.5). All 20 nodes corresponding to the 100th
input are then collected to construct a 100×20 matrix (#input
streams×N ). The generalization test reflects how well the
reservoir can map the same input samples under different
initial conditions. Using the previously generated 100 different
input streams, we concatenate to each an identical sequence of
10 inputs, and we collect the node responses corresponding to

the 110th output sample to construct a 100×20 matrix. Using
singular value decomposition with the appropriate threshold
[30], the ranks of their corresponding matrices are then found.
The normalized CA is then calculated:

CA = (KQR−GR)/N (3)

where KQR is the kernel quality matrix rank (from the kernel
quality test), GR is the generalization matrix rank (from the
generalization test), and N is the number of nodes in the
reservoir. Thus, high KQR and low GR are desirable.

B. Benchmark tasks

Each realization over the entire design space was trained
on 3 benchmark tasks: NARMA-k, XOR-k, and the Santa Fe
dataset [31]. The NARMA-k task is given by:

y[n] = 0.3y[n− 1] + 0.05y[n− 1]

k∑
i=1

y[n− i]

+ 1.5u[n]u[n− k] + 0.1 (4)

where the input sequence u is drawn from a uniform distri-
bution ∈ [0, 0.5). The task is to predict y[n] given u[n]. The
performance on these tasks is evaluated by the normalized
mean square error (NMSE), which is given by:

NMSE =
1

nσ2
yt

n∑
i=1

(yt − yp)
2 (5)

where yt is the target (true) value and yp is the predicted value,
n is the number of data points, and σ2

yt
is the variance of the

sequence of true values. For the XOR task, the commonly
used bit error rate (BER) was also evaluated, which is given
by:

BER =
#incorrectly classified bits

length of test set
(6)

Training for all the benchmark tasks was done using ridge
regression, with the regularization term α = 10−4 to prevent
overfitting. For the linear memory capacity, linear regression
was employed since this task does not require a test set. For
the NARMA-k task, an input sequence of length 3500 was
used for training and 500 for testing. For the XOR=k task,
1000 bits were used for training and 3000 for testing. For the
Santa Fe task, the training sequence was 3000 samples, while
1000 were used for testing.

C. Simulation setup

The considered photonic circuit [5], shown in Fig. 1, con-
sists of passive waveguides and 3-dB directional couplers on a
low-loss, integrated photonic platform, such as silicon nitride
(Si3N4) [32] or lithium niobate (LiNbO3) on insulator [33].
The circuit is modeled using the transfer matrix approach and
numerically solved with the following delayed coupled equa-
tions, which describe the temporal evolution of the electric
field everywhere in the system (Fig. 1).[

E1(t)
E2(t)

]
=

√
γc

[
−iκ r
r −iκ

] [
Ein(t)
Efb(t)

]
(7)
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Fig. 1. Passive photonic reservoir. Depending on the desired Lfb, the feedback
waveguide is either straight, with bends, or in a spiral configuration.

[
Eout1(t)
Eout2(t)

]
=

√
γc

[ √
γ1re

−iβL1 −√
γ2iκe

−i(βL2+Φ)

−√
γ1iκe

−iβL1
√
γ2re

−i(βL2+Φ)

]
×
[
E1(t− τ1)
E2(t− τ2)

]
(8)

Efb(t) =
√
γfbEout1(t− τfb) exp (−iβLfb) (9)

Eqs. 7-9 show the circuit model, where γc is the percentage
of optical power exiting from the coupler, γ1,2,fb = 10−AL/10

are the fractions of power after waveguide propagation for
a loss factor A [dB/m] and waveguide lengths L1,2,fb [m],
corresponding to the lengths of the upper MZI arm, bottom
MZI arm, and the feedback loop, respectively. Since we
are considering 50/50 couplers, the cross and through field
coupling coefficients are equivalent (κ = r). For waveguide
parameters, β = 2πneff/λ0 [m−1] is the propagation constant
of the guided mode with effective refractive index neff , τ1,2,fb
[s] are the delay times of the upper MZI arm, bottom MZI
arm, and feedback waveguide, respectively, and Φ [rad] is
the applied phase shift on the bottom arm. The application
of phase shift through e.g. the voltage on a heater allows
changing the reservoir’s dynamics through controlling both
the feedback strength and phase by adjusting the interference
at the directional couplers. For the electronic readout, the
photodetector is modeled by adding the associated noise com-
ponents of shot noise and thermal noise, and then low pass-
filtering the signal with the cutoff as the chosen photodetector
bandwidth. The signal is then converted to a voltage through a
transimpedence amplifier. Finally, the signal is binned to yield
the final output as if it were passed through a 12-bit analog-to-
digital converter (ADC), as would be found on most high-end
digital oscilloscopes. The photodetector noise is modeled by:

σ2
th = 4kBTfc/Rl (10)

σ2
sh = 2q(Ip + Id)fc (11)

σ2
tot = σ2

th + σ2
sh (12)

Ip = rpPopt (13)

Vp = RlIp (14)

where σ2
th is the thermal noise variance, σ2

sh is the shot noise
variance, σ2

tot is the total noise variance, kB is the Boltzmann
constant, T is the temperature, fc is the photodetector 3-dB

bandwidth (cutoff-frequency), Rl is the load resistance, q is
the electronic charge, Ip is the current proportional to the
input optical power Popt through responsivity rp, Id is the
dark current, and Vp is the voltage converted through load
resistance Rl. The voltage after passing through the ADC is
then quantized by

VQ = floor
(
Vp

∆q

)
×∆q (15)

where ∆q is the ADC quantization step, given by ∆q =
(VRefHi − VRefLo) /(2

Q−1), which depends on the considered
voltage range and number of bits of resolution Q of the ADC.

III. RESULTS AND DISCUSSION

We consider the passive all-optical integrated reservoir
scheme shown in Fig. 1 operating with 10 mW laser power
(λ = 1550 nm) at a fixed datarate of 10 GBit/s, which
corresponds to a synchronized delay time τ = 100 ps. The
reservoir output is then sampled at 200 GSa/s to yield 20
time-multiplexed nodes per input clock cycle. We sweep the
feedback time (50 values), in the form of the feedback waveg-
uide’s length, from 0.2τ (corresponding to approximately 3.0
mm on Si3N4 and 2.65 mm on LNOI) to 5τ (approximately
7.51 cm on Si3N4 and 6.62 cm on LNOI), and the applied
phase shift (49 values) on the bottom MZI arm from 0 to
2π. The performance is then recorded with the relevant metric
for each test/task. Further information about the simulation
parameters can be found in Table II in Appendix A.

A. Dispensing with the input mask

An input masking protocol is generally used in TDRC
schemes to keep the reservoir continuously perturbed to de-
lay it from falling to a steady state, and thereby aiding in
improving the reservoir’s memory [34], [35]. However, there
are limitations imposed by the use of a mask in practice
(especially in photonic implementations) which call for alter-
native approaches [19]. Masks normally have to be prepared
electronically, which may necessitate a domain conversion at
the input, instead of allowing an incoming optical signal to be
directly processed by the reservoir. Moreover, for high speed
implementations in the GHz range, the input mask preparation
not only introduces an associated energy cost, but can also
put additional constraints on modulation speeds, especially on
the arbitrary waveform generator’s output samplerate, which
would be used to realize the mask. For example, a 10 GSa/s
input signal, when masked for a reservoir of 20 nodes, would
require a 200 GSa/s signal, which is not feasible.
One solution to avoid the input mask is by shortening the
feedback delay time τfb to fractions of the input clock cycle
τ . If the reservoir’s timescale is short enough - as in the case
of passive optical reservoirs - this would allow the same input
sample to interact with past version(s) of itself, such that the
system is kept continuously perturbed during the interval of
one input sample.
The effect produced can be explained in two complementary
ways:
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Fig. 2. Effect of τfb and Afb on the dynamics and effective dimensionality
of the reservoir. Blue dots represent the sampled nodes. τ is the delay time
synchronized to the input clock cycle (100 ps).

1) The input is interacting with itself and thus increases the
complexity, or ’richness’ of the output signal;

2) The shorter feedback lengths allow the reservoir to more
quickly ‘forget’ inputs further in the past, resulting in a
lower GR, which in turn increases CA.

It is especially important that the feedback losses Afb are
kept to a minimum, as this prolongs the reservoir’s activity
and delays the time taken to reach steady state (Fig. 2(a,c)).
As shown in Fig. 2(b,d,f), higher Afb results in many nodes
sharing the same state, which means that the nodes are not
linearly independent and thus reduces the effective dimension-
ality of the reservoir. Furthermore, the delay time also affects
the effective reservoir dimensionality, as longer delays (with
respect to input clock cycle) would increase the amount of
nodes that share the same state (Fig. 2(e)). One must also en-
sure that the node states are sufficiently distinguishable above
the system’s noise floor, which is primarily resulting from the
electronic readout and photodetector sensitivity. Furthermore,
signal filtering also affects the effective dimensionality of the
reservoir, especially if the timescale of the filtering is close
to the input clock cycle or slower. For this reason, it is of
interest in this study to dispense with the masking procedure
and observe how well the reservoir can solve some tasks when
fed the input signal directly, in the presence of the electronic
readout. As will be seen, a signal interacting with itself in the
sub-τ regime can provide the necessary computational power
to carry out some tasks with moderate memory requirements.

B. Task-independent performance

In Fig. 3, we show the performance of the reservoir with
different feedback lengths and under applied phase shift from

0 to 2π on MCtot, CA, and its constituent metrics GR and
KQR. Here, we consider all the outputs passing through a
photodetector with 40 GHz bandwidth and a 12-bit ADC. For
feedback times less than τ , it is observed that MCtot is low
in general, while CA is in general high. A closer look at the
constituent metrics of CA (Fig. 3(c,d)) shows that GR lowers
with decreasing feedback time, especially in the sub-τ region,
while also showing some dependence on the applied phase
shift. However, for KQR, the variation is smaller over the
entire design space, with an especially lower rank in the sub-τ
region. Since GR becomes considerably lower in this region,
the overall CA is highest. Less variation is observed in KQR
when compared to GR. These variations are phase-dependent
as the nonlinearity is effectively performed by the strength of
the interference between the fields at the couplers, which is
controlled by the phase shifter. Overall, these results show that
there is opportunity in scaling down the feedback length while
having enough memory and high CA to do some tasks in the
absence of input masking, as will be explored in the following
sections.

C. Benchmark task: NARMA-k

In this section, we consider the performance on the nonlin-
ear autoregressive moving average (NARMA-k) benchmark
task. This task requires both memory and nonlinearity. By
varying the maximum number of memory steps k, we chal-
lenge the reservoirs in the design space with different mem-
ory/nonlinearity requirements. Furthermore, we also consider
the temporal XOR-k task (u[n]⊕ u[n− k]) and the Santa Fe
chaotic laser prediction, which are not displayed here for the
sake of brevity, but which are taken into account in sections
III-D and III-F. For all NARMA-k, a thresholding trend can
be observed for a feedback time longer than the most distant
memory. This is due to the absence of interaction between
the first input and earlier inputs into the past, which are
essentially skipped. Since the NARMA-k task considers the
aggregate of previous inputs (Eq. 4), it depends on the total
memory until the chosen k. This is observed in Fig. 3 where,
beyond a certain feedback time, some earlier components
of the memory are missing and thus lead to significantly
worse performance. This sensitivity to earlier k reduces as k
increases (as more terms are being aggregated). Additionally,
for k’s which are further back in time, their attenuated power
in the circuit becomes more sensitive to readout noise which is
the reason this task does not achieve a low enough NMSE for
k higher than 5. In the sub-τ region, it can be seen that a low
NMSE can be achieved for all reported NARMA-k, however
with differing trends due to the different memory/nonlinearity
requirements from the RC system. Furthermore, upon closer
examination, there seems to be a striking resemblance in
pattern between both NARMA-4 and NARMA-5, and CA and
GR results in Fig. 3(b,c). This is explored further in the section
on correlation (section III-F). The effect of reservoir size on
the performance of this benchmark task is also investigated in
the supplementary material.
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Fig. 3. Results on task-independent tests for different feedback delay τfb: (a) MCtot, (b) CA, (c) GR, and (d) KQR.

Fig. 4. Performance over the design space on the NARMA-k benchmark task. Small τfb achieve excellent performance, especially for lower k.
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D. Performance comparison

In this section, we compare the obtained results on the
mask-less protocol with results simulating the same archi-
tecture considering a pseudo-randomly generated mask from
an i.i.d. ∈ (0, 1], which is synchronized to the 20 nodes of
the reservoir. Here, the same mask is considered for all the
reported tasks. Even though in practice it would be difficult
to generate such a mask due to limitations on the RF signal
generation equipment (as discussed in section III-A), it is still
interesting from the point of view of a numerical study to
assess how the performance compares to a masked scheme.
Additionally, we also compare to results reported in the liter-
ature for some RC schemes, including integrated TDRC [36],
[11], [15], [12], integrated spatial-multiplexed RC [37], and
bulk [38]. Similar to section III-C, we scanned the parameter
space in the length-phase space and considered a fixed high-
speed 40 GHz photodetector with a subsequent 12-bit ADC.
The best performance on the considered tasks is reported in
Table I. For the NARMA−k task, it can be seen that the
mask-less performance is close to the masked performance,
and is also better than the simulated performance of the RC
scheme in [38] except for NARMA-5. Since the test set of
the XOR task is 3000 bits, the BER resolution is 3.33×10−4.
Therefore, we have also included the NMSE between brackets
to observe the performance variations between XOR-1 and
XOR-2 which both yield BER = 0.0. It can be seen that the
unmasked performance is good up to XOR-3, beyond which
the masked scheme outperforms it. However, the mask-less
BER is still close to the state of the art performance [37],
[12]. For the Santa Fe task, we can observe no significant
difference between the optimal NMSE for the masked and
mask-less scheme. Compared to state of the art, the mask-less
scheme achieves better performance than [11] and performs
worse than the simulated scheme in [15].
Furthermore, it can be seen in Table I that our scheme can
provide a large enough MCtot compared to state of the art
integrated photonic TDRC schemes, and the optimal MCtot

improves by 1 when using the masked scheme. For the
majority of tasks considered here, the performance obtained
for the unmasked reservoir is comparable to that of the
masked reservoir, and even sometimes slightly outperforms
it. However, for tasks which require a larger memory, the
mask indeed provides a considerable improvement, e.g. in
NARMA-5 and XOR-4,5. When comparing to examples from
the literature, it is important to consider the different factors
involved. For example, the number of nodes, training and
test dataset lengths, regularization parameter(s), and post-
processing are almost different in every case, which makes it
difficult to have a completely fair comparison. Nevertheless,
it is shown that the mask-less scheme achieves results that
are within the vicinity of state of the art performance, and
comparable to those obtained from applying the mask on the
proposed scheme.

E. Effect of post-filtering

In this section, we consider the effect of post-filtering
at the readout. Filtering has been recently investigated [39]

TABLE I
PERFORMANCE COMPARISON OF PROPOSED RC VS. EXISTING SCHEMES

Task Masked Mask-less State of the Art
NARMA-2 9.37× 10−3 6.69× 10−3 5× 10−2 [38]∗

NARMA-3 1.73×10−2 3.75× 10−3 6× 10−2 [38]∗

NARMA-4 6.42×10−2 7.95× 10−2 0.12 [38]∗

NARMA-5 9.93×10−2 0.149 0.14 [38]∗

XOR-1 0.0 (7.49× 10−5) 0.0 (1.72× 10−5) 10−3[37] 10−0.7[12]

XOR-2 0.0 (7.51× 10−3) 0.0 (1.26× 10−2) 2× 10−3[37] 10−0.9[12]

XOR-3 0.0 (4.68× 10−3) 6.67× 10−4 (0.10) 2× 10−2[37] 10−2.6[12]†

XOR-4 0.0 (5.39× 10−3) 3.20× 10−2 (0.22) 7× 10−2[37] — [12]

XOR-5 0.0 (5.19× 10−3) 2.30× 10−2 (0.19) — [37] — [12]

Santa Fe 0.102 0.108 0.135 [11], 4× 10−2 [15]

MCtot 10.06 9.06 ∼1.0 [15]‡, 1.5 [36], 6.0 [11]

Nodes 20 20
124 [36], 16 [37], 35 [38]

23 [15], 23 [11], 5 [12]

For the XOR task BER is reported, NMSE is between brackets.
Simulation results [15], [37], [38], experimental results [11], [12], [36].
— means unreported.
∗ NMSE calculated from the reported Pearson correlation (rc) scores as NMSE=
1− r2c .
† Post-processing involved.
‡ Ref.[15] reports MCtot = 2 without external feedback, but the authors consider
also the term MC0.

as a means of performance improvement for optoelectronic
reservoirs. This is of particular interest for passive photonic
reservoirs as the readout imprints features on the final output
signal which need to be considered. Here, we sweep the
photodetector’s bandwidth (20 points), ranging from 2 GHz
to 40 GHz, while considering the task-independent metrics
and the NARMA-k task. The results are not independent of
the applied phase shift. However, for visualization purposes
we choose one value of phase shift, and plot the results with
respect to feedback time. The results on MCtot, as shown in
Fig. 5 (a), show an overall increasing trend with increasing
bandwidth. In Fig. 5 (b), there is a consistently high CA
in the sub-τ region from 5 GHz and above. Thus, for tasks
that require less MCtot and more CA, one could in principle
scale down the reservoir while being less constrained by
readout electronics. Furthermore, for some longer feedback
lengths, it seems that lower bandwidth post-filtering improves
CA largely by aiding in lowering (improving) GR, while for
some cases increasing (improving) KQR. For the most part,
however, KQR increases quasi-monotonically with increasing
bandwidth, similar to Fig. 5 (a). Also, it can be seen that
smaller τfb are more tolerant to lower bandwidths in terms
of CA. We also consider the NARMA-k benchmark task, and
report the behavior under different photodetector bandwidths,
as shown in Fig. 6. For NARMA-2 and NARMA-3, excellent
performance is obtainable in the sub-τ region, where there is
a large degree of tolerance for lower bandwidths. On the other
hand, NARMA-4 and NARMA-5 seem to benefit more from
the slower dynamics of longer delay lines. We conclude that
the output readout affects the dimensionality of the reservoir,
mostly reducing the effective number of nodes through a
combination of noise and linear filtering, which could essen-
tially drown some of the independent features which become
insufficiently distinguishable after passing through the output
electronics. Thus, shorter feedback lengths, which provide
stronger and more frequent dynamics, seem to be particularly
robust to the readout’s considered effects.
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Fig. 5. Performance on the task-independent tests, with respect to photodetector bandwidth and feedback time τfb.

Fig. 6. Performance on NARMA-k benchmark task. For some delay times τfb, post-filtering assists in lowering the NMSE.
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Fig. 7. Correlation matrix between different tasks, XOR-k, NARMA-k (NAR-k), Santa Fe (SF), and the task independent metrics.

F. Correlation between different tasks
The relation between task-specific performance and task-

independent metrics has also been a topic of recent interest
[40]. In this section, we shed light on the relation between
different tasks through observing the correlation between the
reservoir’s performance on different tasks over the chosen
design space, where we consider the varying feedback length
and applied phase shift, and a fixed photodetector bandwidth
of 40 GHz. We employ the Pearson correlation coefficient (rc)
to identify linear relations between the performance on various
tasks/metrics over the design space. We take into consideration
all the presented tasks thus-far, namely the temporal bitwise
XOR-k task (with k from 1 to 4 bits into the past), the
NARMA-k task (with k from 2 to 5 inputs in the past), the
Santa Fe chaotic laser prediction, as well as MCtot, CA, and
its constituent metrics (GR, KQR). In this case, for the XOR
task, we also employ the NMSE as BER does not yield results
falling within a normal distribution. When 0 < rc ≤ 1, a
positive correlation exists, and when −1 < rc < 0 it is a
negative correlation. A strong positive correlation indicates
that two tasks perform similarly well (or similarly poorly) over
the design space, while a strong negative correlation would
mean that the tasks require opposite configurations. If a strong
positive correlation exists between two tasks, we can infer that
it is highly likely that the system can be configured in such a
way to solve those two tasks at the same time, i.e. the tasks
can be solved with the same hyperparameter configuration of
the reservoir.
A strong positive correlation is observed between XOR
tasks and NARMA tasks for some k. For example,
rc(xor2,narma2) = 0.88, which suggests that they can benefit
from sharing the same hyperparameter configuration within
this design space, even though they are different families of
tasks. The same applies to other cases: r(xor2,narma3) =
0.73, rc(narma2,narma3) = 0.88 and rc(xor2, xor3) = 0.72.

These same tasks also exhibit a strong positive correlation
with CA (the two quantities CA and NMSE improve in
opposite directions). Looking at CA’s constituent metrics, it
is observed that this is mainly due to the stronger correlation
with GR, as the correlation with KQR is generally weak with
all benchmark tasks. This is due to the small variations in
KQR over the explored design space, which was explained in
section III-B, and is the reason why CA itself does not show
a strong linear relation with KQR. Similarly, for the Santa Fe
task, weak relations are established due to minimal variation
of NMSE over the design space. Beyond the sub-τ region,
MCtot does not change considerably, and hence the average
or weak correlations with other tasks/metrics. Therefore, for
this scheme, CA is a more telling metric of the reservoir’s
performance on the different tasks than MCtot, especially
considering the fact that GR is in itself a test of memory.
In fact, the individual memory components MCk can give a
better picture on how much the reservoir can remember for
tasks that target specific inputs into the past, such as XOR-k.
For other RC schemes, which can have more variations of the
nonlinearity, a stronger correlation with KQR over the design
space would be expected. In any case, the correlation matrix
not only shows inherent relations between different tasks over
that space, but is also a useful tool to judge a reservoir’s ability
to solve multiple desired tasks on the same signal.

IV. CONCLUSION

In this work we have explored the potential for mask-
less photonic TDRC using an all-optical, passive, integrated
architecture. For applications with an already-incoming op-
tical signal, dispensing with the mask enables bypassing the
usual domain conversion(s) at the input layer. In addition to
reductions in associated energy and complexity costs, this
enables the processing of higher signal bitrates Bm as the mask
normally requires N × Bm of signal generation/modulation
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bandwidth, thus restricting either the size of the reservoir
or the overall speed of the system. We have explored this
within the chosen design space of the minimum complexity
architecture, focusing on the feedback length, and the applied
phase shift which can be freely tuned post-fabrication. The
best obtained results show small differences between masked
and mask-less performance for tasks with moderate memory
requirements. Additionally, we considered the effects of post-
filtering and showed that in the sub-τ region, some tasks can
be performed even with considerably strong linear filtering,
which degrades the linear independence of the sampled nodes.
Furthermore, we have shown the correlation between the
reservoir performance on the considered tasks as as a way to
understand the relation between the performance on different
benchmark tasks and the task-independent metrics within the
chosen design space. This would allow further optimization of
the reservoir design to handle multiple tasks using the same
configuration. This could be useful for other reservoir imple-
mentations and serve as a practical tool to aid in design of
multitasking RC. Future studies may consider nonlinear effects
of the considered platform, along with relevant parameters
such as varying the signal-to-noise ratio (SNR), waveguide
losses, input wavelength, MZI arm lengths, and coupling ratio
of the splitters, which would influence the dynamics of the
proposed reservoir and the effective (usable) number of nodes.
Moreover, the number of nodes required for certain tasks may
be less than what is considered here, which means that they
can operate at faster input clock cycles (e.g. tasks showing
tolerance to lower bandwidth post-filtering). Finally, other
metrics such as IPC may be applied to quantify the reservoir
performance and provide insight into the computational power
of the intensity-conversion nonlinearity used here and in
similar passive photonic RC schemes.

APPENDIX A
SIMULATION PARAMETERS

TABLE II
PARAMETERS OF THE OPTICAL AND ELECTRONIC SIMULATIONS

Parameter Value Description
τfb scanned over [20 ps;500 ps] Feedback time
τ 100 ps Synchronized delay time
Lfb τfb × c/ng Feedback length
Φ scanned over [0;2π] Applied phase shift
Bm 10 GBit/s Input rate
fs 200 GSa/s Sampling rate (electronic)
N fs/Bm = 20 Number of nodes
∆t 1.6 ps Simulation timestep (optical)
λ0 1550 nm Laser wavelength
ng 1.996 Group index of Si3N4

γc 0.966 Pout/Pin of directional coupler
κ

√
0.5 Cross coefficient of coupler

r
√
0.5 Through coefficient of coupler

A(fb) 20 dB/m (Feedback) waveguide loss
Pin 10 mW Input laser power (amplitude)
rp 0.8 Photodetector responsivity
Id 2 nA Photodetector dark current
Rl 100 Ω Load resistance
fc scanned over [2 GHz;40 GHz] Photodetector bandwidth
Q 12 bits ADC bits of resolution

VRefHi 1.2 V ADC upper bound
VRefLo 0.0 V ADC lower bound

APPENDIX B
EFFECT OF ENOB

ADCs in oscilloscopes typically have a lower effective num-
ber of bits (ENOB) than their designed resolution, especially
when operating at high frequencies. Therefore, it is interesting
to see how the proposed RC scheme would perform with such
low ENOB. We consider how the scheme performs in the sub-
τ region, showing the optimum values obtained for some of the
tasks presented earlier in the work under the harsh conditions
of a single oscilloscope acquisition, which is equivalent of
greatly reducing the considered SNR in this work. Thus, we
consider the cases of 5-8 bits of ADC resolution to mimic the
effect of a lower ENOB. For XOR-k tasks we report the lowest
achieved BER, while for NARMA-k and Santa Fe tasks we
report the lowest achieved NMSE.

TABLE III
PERFORMANCE ON LOWER ENOB

Task 5 bits 6 bits 7 bits 8 bits
XOR-1 0.0 0.0 0.0 0.0
XOR-2 8.3×10−3 6.6×10−4 0.0 0.0

NARMA-2 0.13 0.08 0.05 0.04
NARMA-3 0.29 0.21 0.16 0.12

SF 0.46 0.27 0.22 0.17

While this heavily degrades the signal quality, the proposed
scheme can still solve the above tasks effectively, albeit with
less accuracy. This degradation can be easily mitigated by
averaging multiple signal acquisitions, which is usually done
in practice and can improve the ENOB by multiple effective
bits of precision, in accordance with the number of signals
acquired and averaged. An important consideration here would
be the signal stability during the total acquisition time of the
multiple signals to be averaged. This is done in practice by
using a temperature controller to keep the photonic circuit
thermally stable during the total acquisition time. However,
when considering real-time processing, one limitation is that
averaging over multiple acquisitions would decrease the over-
all throughput of the system. Higher input optical powers
would also further improve the SNR and minimize the needed
amplification after detection, reducing their associated noise.
Under these considerations, the simulation results obtained in
this work should approximate the experimental performance.
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[40] T. Hülser, F. Köster, K. Lüdge, and L. Jaurigue, “Deriving task specific
performance from the information processing capacity of a reservoir
computer,” Nanophotonics, 3 2022.

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2024.3434538

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


