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CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS

HAOCHENG YANG1,2

Abstract. The motion of liquid jets plays an important role in physics and engineering,
and needs rigorous mathematical investigations. Recently, Huang-Karakhanyan proved
the first local well-posedness in Sobolev spaces for axisymmetric jets. In this paper, we
will extend this result to general jets, namely without any axisymmetry condition.
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1. Introduction

1.1. History of the problem. The study of liquid jets has a long history in physics.
It is until the beginning 19th century that researchers discovered that the singularity
(namely, break-up) of jets is regardless of any exterior forces (gravity, for example), and
should be due to surface tension, which is a nature of the fluid. In 1873, Plateau [54]
firstly observed that this instability is related to the area of jets. Soon in 1879, Rayleigh
[55] developed a linear stability method and explained this phenomenon from a theoretical
point of view. Meanwhile, other physical nature of jets were also widely studied. We refer
to [33] for more histories and results on physics.

In mathematics, the study of jets is concentrated on the steady case (system in-
dependent of time), especially the flow in nozzles. For the research on fixed infinitely
long nozzles, we refer to [19, 67, 66, 32]. In the case of semi-infinite nozzle (with half free
boundary), the early study using hodograph transformation and conformal mappings can
be found in [21, 35] and a stronger method via variational formulation is developed by
Alt, Caffarelli, and Friedman [25, 13, 12]. Recent progress on this topic can be found in
[27, 63, 47] and the references therein. Except for nozzle problem, there are also some
other results on stationary jets [38, 36].

For the system depending on time, some formal construction of special solutions is
established [44, 15]. The first study of the Cauchy problem has recently been given by
Huang-Karakhanyan [41], where the authors prove that the axisymmetric jets are locally
well-posed in Sobolev spaces. In [40], the same authors studied in detail the Dirichlet-to-
Neumann operator in the problem of Taylor-cone arising from break-up of jets. To our
knowledge, further mathematical research on jets, such as the formation of break-up, is
still blank. In this article, we will extend the well-posedness obtained in [41] to the case
without the axisymmetry condition.

1.2. Setting of the problem.

1.2.1. Cylinder-like jets. In this paper, we are interested in the 3D jets that are not
necessarily invariant by rotation. The shape of such jets can be characterized by

(1.1) Ω(t) = {(x, z) ∈ R2 × R : x = 0 or |x| < η(t, x/|x|, z)},

and its free boundary is given by

(1.2) Σ(t) = {(x, z) ∈ R2 × R : |x| = η(t, x/|x|, z)},

where η is a strictly positive function defined on R×T×R. From physical background of
the problem, we focus on two cases: steady interface with little perturbation and periodic
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interfaces. Rigorously, the following hypotheses on initial data η0 = η|t=0 will be made
in the whole paper:

∃C0, c0 > 0, such that c0 < η0 < C0;(H0)
(Perturbative case) ∃R > 0, such that η0 −R ∈ Hs(T× R), for some proper s;(H1)
(Periodic case) ∃L > 0, such that η0 is periodic in z of period L.(H1’)

In perturbative case, (H1) indicates that, when s > 1 and z → ±∞, η0(ω, z) tends
to R uniformly in ω, which can be formally preserved for all time due to the governing
equation (1.7), while (H1) and (H0) will hold for short time from our main result Theorem
1.1. In periodic case, one may check that (H1’) is preserved for all time by using the
fact that equations (1.3), (1.7), and (1.8) are invariant by translations in z-direction.
Therefore, η should be viewed as a function on R × T2 (for simplicity, we may take
L = 2π). In what follows, we focus on the perturbative case, while all the results hold
true in periodic case with normalizations eliminated.

We also assume that the fluid is inviscid, incompressible, and irrotational. Conse-
quently, the velocity field u satisfies Euler equation with divergence-free and rotation-free
conditions

(1.3)
{
∂tu+ u · ∇x,zu+∇x,yP = 0, in Ω(t),

divx,z u = 0, curlx,z u = 0, in Ω(t),

where P is the pressure driven only by surface tension.
1.2.2. Boundary conditions. In order to fully determine the motion of fluid and free
surface, we introduce two boundary conditions on Σ(t). The first one is the kinematic
boundary condition,
(1.4) n · γt = n · u, on Σ(t),

where, for all time t, n = n(t) is the outward unit normal direction to Σ(t) in R3 and
γ = γ(t) is the parametrization of Σ(t),

γ(t) : T× R → R3

(ω, z) 7→ (η(t, ω, z) cosω, η(t, ω, z) sinω, z) .

In coordinate (ω, z), n equals

(1.5) n =
1

l

(
er −

ηω
η
eω − ηzez

)
,

with
er = (cosω, sinω, 0), eω = (− sinω, cosω, 0), ez = (0, 0, 1),

and

(1.6) l =

√
1 +

(
ηω
η

)2

+ η2z .

As a result, (1.4) can be rewritten as

(1.7) ηt =

(
er −

ηω
η
eω − ηzez

)
· u|Σ.

The second boundary condition in need is the balance of forces on the free boundary
Σ:

(1.8) P |Σ = σ

(
H − 1

2R

)
,
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where σ > 0 is a constant and H is the mean curvature. The normalization 1/(2R) is
necessary in perturbative case, since the mean curvature

(1.9) H =
1

2

[
1

ηl
− ∂ω

η

(
ηω
ηl

)
− ∂z

(ηz
l

)]
tends to 1/(2R) as z → ±∞ under the hypothesis (H1) with s > 3. In periodic case,

this normalization can be omitted.

1.2.3. Impact of gravity. We emphasize that the effect of gravity is not important in the
Cauchy problem. In fact, under gravity force, P should be replaced by P + gz, where g
is the gravity acceleration. Let (ug, P g, ηg) be any solution to the system with gravity. A
simple calculus shows that

u(t, x, z) = ug(t, x, z − 1

2
gt2) + (0, 0, gt),

P (t, x, z) = P g(t, x, z − 1

2
gt2) + gz,

η(t, ω, z) = ηg(t, ω, z − 1

2
gt2),

is a solution to the problem (1.3), (1.7), and (1.8) without gravity. This transformation
between (u, P, η) and (ug, P g, ηg) is clearly invertible, meaning that the systems with and
without gravity are equivalent.

1.3. Craig-Sulem-Zakharov formulation. Unlike standard 3D Euler equation, (1.3)
is defined in a domain varying in time. To overcome this difficulty, we follow the idea
from Zakharov [68] and Craig-Sulem [30], which can reduce the problem to equations on
a fixed domain T× R (or T2 in periodic case).

To begin with, we observe that the irrotational and incompressible conditions guar-
antee the existence of harmonic scalar potential ϕ

(1.10) ∆x,zϕ = 0, ∇x,zϕ = u, in Ω(t).

In terms of ϕ, (1.3) can be written as

∇x,z

(
∂tϕ+

|∇x,zϕ|2

2
+ P

)
= 0,

which yields the Bernoulli’s equation

(1.11) ∂tϕ+
|∇x,zϕ|2

2
+ P = 0, in Ω(t).

Note that the right hand side should be a constant depending only on time, while, by
absorbing this constant in P , we may take it to be zero for simplicity.

Now, let us consider the trace ψ of ϕ at the free surface Σ(t), namely

(1.12) ψ(t, ω, z) = ϕ (η(t, ω, z) cosω, η(t, ω, z) sinω, z) .

By definition, ϕ can be uniquely determined by ψ (and η implicitly) via the following
linear elliptic equation

(1.13)
{

∆x,zϕ = 0, in Ω(t),

ϕ|Σ(t) = ψ.
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Consequently, the right hand side of (1.7) can be regarded as a function depending
linearly on ψ and implicitly on η, which gives rise to the (formal) definition of Dirichlet-
to-Neumann operator,

(1.14) G(η)ψ :=

(
er −

ηω
η
eω − ηzez

)
· ∇x,zϕ|r=η(ω,z)

It is easy to check that G(η) is linear, positive, and that ηG(η) is self-adjoint. A rigorous
study of this operator will be given in Section 2 and 3. In terms of the quantities below

N = BV ·
(
ηω
η
eω + ηzez

)
+

|V |2 − B2

2
,(1.15)

B = er · ∇x,zϕ|Σ,(1.16)
V = eω (eω · ∇x,zϕ) |Σ + ez (ez · ∇x,zϕ) |Σ.(1.17)

we have
ηt = G(η)ψ = B − V ·

(
ηω
η
eω + ηzez

)
,

and, from (1.11) and (1.8),
ψt =∂t (ϕ (t, η cosω, η sinω, z)) = ϕt|Σ + ηter · ∇x,zϕ|Σ

=−
(
|∇x,zϕ|2

2
+ P

)∣∣∣∣
Σ

+

(
B − V ·

(
ηω
η
eω + ηzez

))
B

=− |V |2 +B2

2
− σ

(
H − 1

2R

)
+

(
B − V ·

(
ηω
η
eω + ηzez

))
B

=− σ

(
H − 1

2R

)
−N.

In conclusion, the system (1.3), (1.7), and (1.8) is reformulated as the following
equations on T× R (or T2 in periodic case)

(1.18)
{
ηt = G(η)ψ,

ψt + σ
(
H − 1

2R

)
+N = 0.

1.4. Main results. The main result of this paper is that the system (1.18) is locally
well-posed in Sobolev spaces. More precisely,

Theorem 1.1. Let (η0 − R,ψ0) ∈ Hs+ 1
2 (T × R) ×Hs(T × R) with s > 3. Assume that

η0 satisfies the hypotheses (H0) and (H1), or (H0) and (H1’) for periodic case. Then
there exists T > 0, such that the system (1.18) with initial data (η0, ψ0) admits a unique
solution

(η −R,ψ) ∈ C
(
[0, T [;Hs+ 1

2 (T× R)×Hs(T× R)
)
.

Moreover, the hypotheses (H0), (H1) or (H1’) are preserved for all t ∈ [0, T [.

Moreover, we shall prove that the flow map is continuous in the sense of following
theorem:

Theorem 1.2. Under the hypotheses of Theorem 1.1, for all 0 < r � 1, we denote by
Bs (η0, ψ0; r) the collection of all (ζ̃0, ψ̃0) with

‖(η0 −R)− ζ̃0‖Hs+1
2 (T×R)

+ ‖ψ0 − ψ̃0‖Hs(T×R) < r,

which is a subset of Hs+ 1
2 (T× R)×Hs(T× R). Then there exists Tr > 0 (depending on

(η0, ψ0)), such that the system (1.18) with initial data in Bs (η0, ψ0; r) + (R, 0) admits a
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unique solution (η̃, ψ̃) on [0, Tr] with (η̃−R, ψ̃) ∈ C
(
[0, Tr[;H

s+ 1
2 (T× R)×Hs(T× R)

)
,

and the hypotheses (H0), (H1) or (H1’) are preserved for all t ∈ [0, Tr[.
Moreover, the flow map

(1.19)
F : Bs (η0, ψ0; r) → L∞([0, Tr[;H

s+ 1
2 (T× R)×Hs(T× R))

(ζ̃0, ψ̃0) 7→
(
η̃(t)−R, ψ̃(t)

)
.

is continuous.

These well-posedness results have attracted lots of attention for planar water-wave
[64, 65, 46, 14, 34, 43, 8, 3, 4] in recent years. And the same problem with different
geometric setting such as water drops [20, 28, 48, 60, 59, 58, 17] has also been widely
studied. [41] provides the first result on cylinder, and the theorems above extend it by
deleting the axisymmetric condition.

1.5. Idea of the proof. Formally speaking, we attempt to investigate the hyperbolic
nature of water-wave equation (1.3) with (1.7), (1.8), and reformulate the equivalent
system (1.18) as
(1.20) ∂tY + A(Y )Y = F (Y ),

where Y is a new variable defined as an elliptic operator acting on (η, ψ) and F (Y ) is a
(relatively) regular source term relying implicitly on Y . The high order linear operator
A(Y ) also depends implicitly on Y with

A(Y )∗ = −A(Y ).

Then classical methods for hyperbolic equations allow us to construct a series of approx-
imate solutions and prove their convergence to a solution to (1.20) via energy estimates.
With a similar argument, one may also show the uniqueness of the solution, which com-
pletes the well-posedness stated in Theorem 1.1.

In the context of water-wave problem (1.18), there are several difficulties:

1. How to rewrite the nonlinear terms as A(Y )Y up to acceptible remainders ?
2. What is the dependence of A(Y ) in Y ? Or equivalently, how do G(η), N , and

H depend on (η, ψ) ?
3. Does the unique solution depend continuously on time and initial data ?

To solve these problems, we follow the idea of [9, 6] and apply the techniques of
paradifferential calculus. More precisely, we shall write all the nonlinear terms as parad-
ifferential operators acting on (η, ψ), where the implicit dependence in (η, ψ) will be
reflected in the symbols to be calculated explicitly.

1.5.1. Paralinearization of G(η). In order to write G(η) as a paradifferential operator
with symbol depending explicitly on η, from definition (1.14), one can see that the core
of this problem is to express normal derivative of potential ϕ as tangential ones, where
the implicit dependence on η is mainly hidden in Poisson’s equation (1.13). As in [9], we
will reformulate (1.13) as an elliptic equation on a fixed domain (see (2.22)), where the
Laplacian ∆g relies on metric g, or equivalently η. Then, by decomposing the Laplacian
in normal and tangential part, we can see that the difference of normal derivative of ϕ
and a tangential operator acting on ϕ is governed by a hyperbolic equation, implying the
desired paralinearization (3.52).

A major difficulty in this step is that the coefficients are smooth in η, which has
limited regularity. As a consequence, if one applies directly the calculus above, most of
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the remainders will have the same regularity as the principal terms. To deal with this
lack of regularity, we replace ψ by Alinhac’s good unknown U = ψ − TBη defined by
(3.19), which is inspired by paracomposition (see Appendix C.4 and [9]). Note that it is
possible to recover ψ from U and η.

1.5.2. Paralinearization of N , H. The treatment of N is easy since it can be expressed
as a smooth function of G(η)ψ, η, ψ, and their derivatives. The desired paralinearization
follows easily from classical formula (C.19). The same formula also works for mean
curvature H which is a smooth function of η and its derivatives.

1.5.3. Symmetrization. Given the paralinearizations above, we can rewrite the main
equation (1.18) as (3.68), which takes the form of (1.20) with

A(Y ) = TV · ∇̄+ L.

The first part TV · ∇̄ can be roughly viewed as transport V · ∇ with a Lipschitzian
vector V , and the classical arguments can be applied. The second part L is a matrix
of paradifferential operators and the symbol of each entry is homogeneous in Fourier
variable ξ. After simple linear transform, the matrix of symbols becomes anti-Hermitian
(see Section 4). To do the same symmetrization at operator level, it suffices to apply
symbolic calculus as in Section 4 of [6].

1.5.4. Cauchy problem. As mentioned above, we will first construct a series of approxi-
mate solutions governed by

(1.21) ∂tYϵ + Aϵ(Yϵ)Yϵ = F (Yϵ),

where Aϵ(Y ) is a mollification of A(Y ). Note that, in order to maintain the property
Aϵ(Y )∗ = −Aϵ(Y ), this mollifier cannot be taken as a simple localization in Fourier vari-
able. Instead, Aϵ(Y ) will be defined by inserting a well-chosen paradifferential operator
depending on η in A(Y ).

Another difficulty arsing from the convergence of approximate solutions Yϵ is that, to
compare Yϵ with another Yϵ′ , it is necessary to calculate the Lipschitz norm of F . We will
see in Section 3.5 that the core of this problem is to study the derivative-in-η of G(η)ψ,
which is known as shape derivative. A standard proof of this can be found in Section 3.3
of [45], which does not work here due to some difficulties from the geometric nature of
the cylinder. Inspired by [20], we first study the Hamiltonian formulation (Proposition
2.5) of the system (1.18), which then implies the desired shape derivative formula (2.42).

1.5.5. Continuity of the solution. It remains to check that the unique solution constructed
as the limit of approximate solutions is continuous in time and initial data. It is possible
to use the same strategy as in Section 6 of [6], while, in this paper, we will use another
method. In a recent paper [7], the authors prove a nonlinear interpolation theorem (see
Theorem 5.19), which can be briefly stated as: if the flow map satisfies the contraction
(5.50) and tame estimate (5.51), the solution will be continuous in time and initial data.
The former one follows easily from the energy estimate, while the tame estimate holds
due to the paradifferential calculus. In fact, all the estimates involving paradifferential
operators require the index of regularity to belong to an open interval. Then it is harmless
to replace these index by slightly smaller one, which gives the desired tame estimate.
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1.6. Plan of the paper. In Section 2, we will construct a proper change of variable to
pull the Poisson’s equation (1.13) back to a fixed domain and prove the elliptic regularity
with details left to Appendix B. Moreover, the Hamiltonian formulation will be given
and, as a result, we will deduce the shape derivative formula.

In Section 3, we first introduce the homogeneous symbols to be studied in this paper
and clarify the basic properties of paradifferential operator of these symbols (the general
theory will be reviewed in Appendix C). Then the paralinearization of G(η), N , and
H will be given as well as the paralinearization of the system (1.18). In the end of
this section, we will justify that all the remainders arising from the paralinearization are
Lipschitzian in (η, ψ).

With the symmetrization proved in Section 4, we are able to define the approximate
system in Section 5, where the energy estimate will also be proved. As a consequence,
we deduce the convergence of approximate solutions and the uniqueness of the solution,
whose continuity in time and initial data is left to the end of Section 5 via nonlinear
interpolation.

The Appendix A is devoted to a review of Sobolev spaces defined on domains with
smooth boundary which is used in the pull-back of the Poisson’s equation 1.13. And
Appendix D contains a direct (but complicated) variational calculus, which proves the
most important identity in the Hamiltonian formulation of (1.18).

1.7. Notations and conventions. In what follows, we list the notations and conven-
tions frequently used in the whole paper. And a list of symbols is available at the end of
this paper.

- Let W ∈ C∞
b be a fixed function (usually it is a constant). We denote by Hs

W the
set of functions f such that

‖f‖Hs
W

:= ‖f −W‖Hs < +∞,

where Hs is the Sobolev norm. For example, all η satisfying (H1) with R > 0 belong
to Hs

R(T × R). Furthermore, an operator L : Hs0
W0

→ Hs1
W1

is said to be linear when
(f −W0) 7→ (Lf −W1) is linear from Hs0 to Hs1 .

- We denote by D the open unit disk in 2D, namely {y ∈ R2 : |y| < 1}. Its boundary
is denoted as S, which will be identify as the 1D torus T.

- We say χ is a smooth truncation near K ⊂ Rd, if χ ∈ C∞
b (Rd) is supported in a

(usually small) neighborhood of K and is equal to 1 in a smaller neighborhood of K.
- All the large constants will be denoted as C or Cα if this constant depends on some

parameter α. Moreover, we write C(Q) for some quantity Q > 0 when C > 0 is a smooth
increasing function of Q.

- We use the Einstein summation convention: if an index appears twice, a summation
in this index should be added automatically. For simplicity, theses summations will not
be precised in the formulas.

- We use double integral
∫∫

for the integrals in domain Ω(t) (or its pull-back by
diffeomorphisms), and single integral

∫
for those on interface Σ(t) without precising the

region of integration.
- We say a linear operator T is of order m ∈ R, if it is bounded from Hs to Hs−m

for all s ∈ R. When an operator is of order m for all m ∈ R, it is said to be a smoothing
operator.

- For real number s, we write s+ for s+ ϵ, where ϵ > 0 is a small number, when the
exact value of ϵ is not important. Similarly, s− stands for s− ϵ with 0 < ϵ� 1.



CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS 9

2. Preliminaries

In Section 1.3, we have reformulated our problem as (1.18) on fixed domain T× R,
while the implicit dependence on the shape of fluid, or equivalently η, is hidden in the
definition of Dirichlet-to-Neumann operator G(η) and the non-linear term N . In order
to clarify this dependence, it is essential to rigorously investigate the relation between ψ
and ϕ, or equivalently the Poisson’s equation (1.13), where the main difficulty is that the
domain Ω(t) varies in time. To reduce the problem to a fixed domain, in axis-symmetric
case [41], the authors use an explicit change of variable :

[0, 1]× T× R → Ω(t), (ρ, θ, z) 7→ (ρη(t, z) cos(θ), ρη(t, z) sin(θ), z),

where the dependence on angular variable θ can be omitted due to the symmetricity.
In this way, one may rewrite the Poisson’s equation (1.13) as an elliptic equation on
[0, 1]× R,

(2.1)
{

∇ρ,z ·Q(η, ηz)∇ρ,zφ = 0, in [0, 1]× R,
φ|ρ=1 = ψ,

where Q is a smooth function of η, ηz that can be calculated explicitly. At ρ = 0,
there is no boundary condition directly from (1.13), while one may add the compatibility
condition ∂ρφ|ρ=0 = 0 to avoid singularity at the axis {ρ = 0} ⊂ Ω(t).

Clearly, this boundary condition is not reasonable in general case (with dependence
on angular variable). To overcome this difficulty, instead of looking for a generalized
boundary condition, we attempt to flatten Ω(t) in an alternative way so that no extra
boundary will be generated. In the study of water-drop, where Ω(t) is a perturbation of
unit ball, Beyer-Günther [20] introduce a diffeomorphism from unit ball to the water-drop
which equals identity near zero, up to multiple of positive constants. Inspired by this
work, we shall extend η defined on T×R to a positive function ζ = ζ(y, z) on D×R (see
(2.5)), such that in polar coordinate (y, z) = (ρθ, z), ζ equals η at ρ = 1 and behaves like
ρ near ρ = 0. In this way, the domain Ω(t) can be characterized by x = ζ(ρθ, z)θ, z = z,
and there is no singularity at ρ = 0 since x = ζ(ρθ, z)θ behaves like ρθ = y near y = 0
(see Proposition 2.2).

Via this change of coordinate, (1.13) can be reduced to an elliptic equation on D×R,
whose coefficients depend smoothly on η. The desired elliptic regularity (Proposition 2.3)
then follows from some classical arguments. As a corollary, we may obtain the high-order
estimates for Dirichlet-to-Neumann operator G(η) (Corollary 2.4).

Furthermore, this change of variable gives a rigorous meaning of the variational
calculus, which is required for Hamiltonian formulation (Proposition 2.5). In fact, from
the definition (2.29) of energy Hamiltonian H, it is clear that its variation in η can be
reduced to derivative-in-η of metric, which is a smooth function of η and its derivatives,
due to our construction of coordinate (x, z) = (ζ(y, z)y, z). Hence, in consideration of the
elliptic regularity (which guarantees all the integrands are integrable), all the derivatives-
in-η of potential and kinetic energy make sense.

As a result of Hamiltonian formulation (Proposition 2.5), we shall also deduce
the shape derivative formula (2.42), which provides a preliminary explanation of how
Dirichlet-to-Neumann operator G(η) depends on η (while more delicate results will be
given in Section 3 via paradifferential calculus).

Note that, in planar water-wave case (where free surface is homotopic to hyperplane),
it is easier to start by proving shape derivative formula (see Chapter 3 of [45] for instance),
which implies the Hamiltonian formulation. To use this method, it is essential to find
explicitly a harmonic extension of Bδη appearing in the right hand side of (2.42) so that
one could calculate G(η)(Bδ). However, this harmonic extension is not evident in our
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context, preventing us to repeat the argument for planar water-wave. That is why we
begin with the Hamiltonian formulation and then prove the shape derivative formula. As
a by-product, during the proof of Proposition 2.8, we shall see that the shape derivative
formula is somehow equivalent to the variation of kinetic energy in η, which is the core
of Hamiltonian formulation.

It is also worth mentioning the recent work by Baldi-Julin-Manna [17] on the study
of liquid water drop. The authors develop an alternative method based on differential
geometry to deal with the singularity at the origin. This method allows us to prove
directly the shape derivative formula with little interior information involved (i.e. one
can work solely on the boundary). And it could be expected to work well for jets and the
planar water-wave with rough bottom (for example, the case studied in [6]). Nevertheless,
these geometrical calculations require further justifications in low-regular context, which
may end up with more technical details. In the mean time, the equivalence between shape
derivative formula and Hamiltonian formulation is not revealed during the proof.

In this section, the hypotheses (H0) and (H1) (or (H1’)) play an important role,
while we will not precise them in each statement for simplicity.

2.1. Change of coordinate. As explained above, we aim to construct a diffeomorphism
of the form

(2.2)
ι(t) : D× R → Ω(t) ⊂ R3

(y, z) 7→ (yζ(t, y, z), z)

with boundary correspondence, where ζ is an explicit extension of η. To begin with,
we fix a general extension η̃ of η to D × R, and construct ζ in a proper way so that the
mapping above is a bijective and thus a diffeomorphism. For simplicity, time variable t
will be omitted in this part since each step below is independent of time. The construction
of ζ has been given in [20] for water droplets (free surface homotopic to Sd). We will see
in the sequel that it also works for jets.

2.1.1. Extension of η. Let η be a function in Hs
R(T×R) with s > 2, satisfying (H0) and

(H1) (or (H1’)). Then we may define η̃, in polar coordinate (y, z) = (ρθ, z), as
(2.3) η̃(ρθ, z) := χ1(ρ)χ̂0((ρ− 1)〈Dθ,z〉) [η(θ, z)−R] + R,

where χ0, χ1 are smooth truncation near 0 and 1 respectively, χ0 is even and
∫
χ0 = 1.

It is easy to check that this extension satisfies the following properties:

Lemma 2.1. Let s > 2. The scalar function η̃ defined by (2.3) belongs to Hs+ 1
2

R (D× R)
with

(1) η̃|ρ=1 = η;
(2) ∂ρη̃ is uniformly continuous in D× R with ∂ρη̃|ρ=1 = 0;
(3) The linear application L0 : (η − R) 7→ (η̃ − R) is bounded from Hs(T × R) to

Hs+ 1
2 (R3), and from Cs−1(T× R) to Cs−1(R3);
(4) There exists 0 < δ � 1, such that, for all ρ ∈ [1 − δ, 1], η̃ > c0

2
and |∂ρη̃| < c0

4
.

Moreover, δ depends only on the Hs norm of η.
Recall that c0 is the constant appearing in (H0).

Proof. These claims are trivial except for the boundedness in Hölder space (from Cs−1(T×
R) to Cs−1(R3)). To prove this, we first show that the multiplier χ1(ρ)χ̂0((ρ− 1)〈Dθ,z〉)
is bounded from C0(T× R) to C0(R3). The kernel of this multiplier is given by

K(w,w′; ρ) =
1

(2π)2

∫
ei(w−w

′)·ξχ1(ρ)χ̂0((ρ− 1)〈ξ〉)dξ,
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where w = (θ, z), w′ = (θ′, z′), and ξ is the Fourier variable associated to (θ, z). A simple
calculus gives that

|K(w,w′; ρ)| ≲ χ1(ρ)|1− ρ|−2,

while

|(w − w′)K(w,w′; ρ)| =
∣∣∣∣ 1

(2π)2

∫
ei(w−w

′)·ξχ1(ρ)∂ξ (χ̂0((ρ− 1)〈ξ〉)) dξ
∣∣∣∣

≲χ1(ρ)|ρ− 1|
∣∣∣∣∫ χ̂′

0((ρ− 1)〈ξ〉) ξ
〈ξ〉

dξ

∣∣∣∣ ≲ χ1(ρ)|1− ρ|−1.

Similarly, one gains |1− ρ| from each product with (w − w′), and thus for all N � 1,

(2.4) |K(w,w′; ρ)| ≲ χ1(ρ)|1− ρ|−2

〈
w − w′

|1− ρ|

〉−N

,

which proves the boundedness of L0 from L∞(T × R) to L∞(R3). Provided that η ∈
C0(T × R), then continuity of η̃ = L0(η − R) + R on {ρ 6= 1} is obvious due to the
continuity of K in (w,w′; ρ) and the estimate (2.4) of K. To obtain the continuity at
{ρ = 1}, we notice that ∫

K(w,w′; ρ)dw′ = χ1(ρ),

which, together with (2.4), guarantees that η̃(ρ) → η as ρ→ 1, locally uniformly in (θ, z)
(see Section 1.2.4 of [37]).

For high order regularity, we observe that the derivatives in w = (θ, z) is commutative
with L0, i.e.

‖∂αwη̃‖L∞(R3) = ‖L0(∂
α
wη)‖L∞(R3) ≲ ‖∂αwη‖L∞(T×R), ∀α ∈ N2.

As for the derivatives in ρ, one can see from the definition (2.3) that each derivative in ρ
leads to a 〈Dw〉, reducing the problem to derivatives in w. In conclusion, we have proved
that L0 is bounded from Ck(T× R) to Ck(R3) for all k ∈ N and the case of non-integer
s follows from the interpolation between Hölder spaces (see Section 1.1.1 of [52]). □

Here, we have managed to define η̃ on R3, while we only consider its restriction in
D × R. Note that this construction is not unique and the next step is valid for any η̃
verifying Lemma 2.1.

2.1.2. Construction of ζ. Let χ ∈ C∞
c (R) be an even function decreasing on [0,+∞[,

supported in ]− 1, 1[, and equal to 1 on [−1 + δ, 1− δ] with 0 < δ � 1. Then we define
(2.5) ζ(rθ, z) := (1− χ)(ρ)η̃(ρθ, z) + ϵχ(ρ)Mη,

where 0 < ϵ � 1 is a constant depending on c0, C0 in (H0) and Mη ∈ R is the mean of
η. In perturbative case, when s > 2, (H1) implies that

Mη := lim
l→+∞

1

4πl

∫ l

−l

∫ 2π

0

η(θ, z)dθdz = R.

In the periodic case, Mη is the usual average of η on T2. Note that (H0) guarantees
c0 < Mη < C0.

Proposition 2.2. Let s > 2, δ be chosen as in (4) of Lemma 2.1, and ϵ = c0
4C0

. Then
the mapping ι defined by (2.2) is bijective with boundary correspondence ι(S × R) = Σ.
The Jacobian of ι is bounded from below by

(2.6) det J := det(∂αι
β) ⩾ c30

4C0

,
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where c0, C0 are constants in hypothesis (H0). Moreover, the linear application
L : (η −R) 7→ (ζ −Rϵ(ρ)) ,

is bounded from Hs(T×R) to Hs+ 1
2 (D×R), and from Cs−1(T×R) to Cs−1(D×R), with

Rϵ defined by
(2.7) Rϵ(ρ) := R− (1− ϵ)χ(ρ)R.

Proof. The boundedness of L is a direct consequence of Lemma 2.1. To prove the bi-
jectivity of ι, from the definition (2.2), it suffices to check that, in polar coordinate
(y, z) = (ρθ, z), ∂ρ(ρζ) > 0 for all 0 ⩽ ρ ⩽ 1. By definition (2.5) of ζ, we have

∂ρ(ρζ) = (1− χ)(ρ) (η̃ + ρ∂ρη̃)− ρχ′(ρ)(η̃ − ϵMη) + ϵχ(ρ)Mη.

The first term is positive since it is supported for 1 − δ ⩽ r ⩽ 1, where η̃ > c0/2 and
|ρ∂ρη̃| < c0/4 due to (4) of Lemma 2.1. The positivity of the second term follows from
the fact that ϵMη ⩽ ϵC0 = c0/4 and η̃ > c0/2 on Suppχ′ ⊂ [1 − δ, 1]. The last term is
trivially bounded from below by ϵχ(ρ)c0. To sum up, for all ρ ⩾ 0,

(2.8) ∂ρ(ρζ) ⩾
c0
4
(1− χ)(ρ)− c0

4
ρχ′(ρ) + ϵc0χ(ρ) ⩾

c20
4C0

.

Thus, by definition (2.2) of ι, the Jacobian of ι admits the lower bound det J = ζ∂ρ(ρζ) ⩾
c30/(4C0). □

For simplicity, in the sequel, we shall ignore the normalizations and say that ζ = Lη
is linear as in periodic case. As the extension η̃ defined by (2.3), ζ is well-defined in
Hs+ 1

2 (R3), up to C∞
b (R3) normalization, whose restriction in D × R will be studied.

Before entering the next section, we introduce some conventions and notations to be used
frequently in the following sections.

- We use Latin letters for the indices involving y ∈ R2 and Greek letters for those
related to (y, z) ∈ R3.

- We use u · v for the scalar product of vectors in Euclidean spaces, while uvT should
be understood as the matrix product. Besides, all the vectors are columns if there is no
further specifications.

- Let J = (aαβ) be the Jacobian matrix of ι defined by (2.2). It is easy to see that

(2.9) J =

(
J0 J1
0 1

)
=

(
ζ + y∇T

y ζ yζz
0 1

)
,

whose inverse is denoted by

(2.10) J−1 = (aαβ) =

(
J−1
0 −J−1

0 J1
0 1

)
.

- Let (gαβ) := JTJ be the metric tensor whose inverse is denoted by (gαβ) = J−1J−T .
We use g to represent the determinant of (gαβ), which is equal to
(2.11) g := det(gαβ) = (det J)2 = (det J0)

2 = [ζ (ζ + y · ∇yζ)]
2 = ζ2 (∂ρ(ρζ))

2 > 0.

Note that its restriction at ρ = 1 is η4 since ∂ρζ|ρ=1 = 0 due to our construction.
- We denote by ∇g the pull-back of ∇x,z by ι, namely

(2.12) ∇g = J−T∇y,z.

Moreover the pull-back of Laplacian ∆x,z reads

(2.13) ∆g =
1
√
g
∂α
(√

ggαβ∂β
)
,
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which is clearly uniform elliptic on D× R.
- Let ng be the pull-back of the conormal vector n defined by (1.5). One may check

that
(2.14) ng = J−TY,

where Y = (y1, y2, 0)
T .

- In polar coordinate (y, z) = (ρθ, z), the restriction of ∇g at {ρ = 1} is

(2.15) ∇g = eρ
1

η
∂ρ + eθ

(
1

η
∂θ −

ηθ
η2
∂ρ

)
+ ez

(
∂z −

ηz
η
∂ρ

)
,

where (eρ, eθ, ez) is the orthogonormal basis associated to polar variables (ρ, θ, z). More-
over, ng can be expressed as

(2.16) ng =
1

η

(
eρ −

ηθ
η
eθ − ηzez

)
,

while B, V,N defined in (1.16), (1.17), (1.15) read

B = B(ψ) =
1

η
φρ|ρ=1,(2.17)

V = V (ψ) =

[
1

η

(
φθ −

ηθ
η
φρ

)
eθ +

(
φz −

ηz
η
φρ

)
ez

]∣∣∣∣
ρ=1

,(2.18)

N = N(ψ) =BV ·
(
ηθ
η
eθ + ηzez

)
+

|V |2 − B2

2
,(2.19)

where φ = ϕ ◦ ι. As a result, the Dirichlet-to-Neumann operator defined by (1.14) can
be expressed as

(2.20) G(η)ψ = ηng · ∇gφ|ρ=1 = η(J−TY ) · ∇gφ
∣∣
r=1

= B − V ·
(
ηθ
η
, ηz

)
.

In addition, a simple calculation gives

(2.21)
(
eθ
∂θ
η

+ ez∂z

)
ψ = V +B

(
eθ
ηθ
η

+ ezηz

)
.

2.2. Elliptic regularity. In this section, we shall solve (1.13) via variational formulation
and illustrate the regularity of ϕ from those of (η, ψ) with the help of diffeomorphism
constructed in (2.2). As a consequence, a rigorous definition of the Dirichlet-to-Neumann
operator G(η), which is defined formally by (1.14), and some high order estimates will
also be established.

In the rest of this paper, we denote by φ the pull-back of ϕ by change of variable ι.
By definition (1.12) of ψ, it is clear that in polar coordinate (y, z) = (ρθ, z),

ψ(θ, z) = φ|ρ=1 = φ(θ, z).

From (1.13), φ is the solution to

(2.22)
{

∆gφ = 0,

φ|ρ=1 = ψ ∈ Hs0(T× R).

Let Ψ ∈ Hs0+
1
2 (D× R) be an extension of ψ supported near ρ = 1. One may repeat the

procedure in previous sections (construction of η̃ from η) to obtain the desired Ψ. Then,
by writing φ = Φ′ + Ψ, the equation above can be restated as the following variational
problem

(2.23)
∫∫

∇gΦ
′ · ∇gH

√
gdydz = −

∫∫
∇gΨ · ∇gH

√
gdydz, ∀H ∈ H1

0 (D× R).
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Provided that η ∈ H
s+ 1

2
−

R (T×R) with s > 3
2
, we have ζ ∈ Hs+1−

Rϵ
(D×R) from Proposition

2.2 and thus gαβ, gαβ, g ∈ L∞(D × R). A classical argument by Lions–Lax–Milgram
theorem (see for example [23]) guarantees a unique solution Φ′ ∈ H1

0 (D × R) to the
variational problem (2.23), which yields φ ∈ H1(D×R). Moreover, by choosing H = Φ′,
we obtain the estimate

c1 inf
D×R

√
g‖Φ′‖2H1

0 (D×R) ⩽ C1 sup
D×R

√
g‖Φ′‖H1

0 (D×R)‖Ψ‖H1(D×R),

where 0 < c1 < C1 satisfies c1 < (gαβ) < C1. Under the hypothesis (H0), by using the
definition (gαβ) = J−1J−T with J defined by (2.9) and lower bound (2.6), we have

‖Φ′‖H1
0 (D×R) ⩽ C ′

1‖Ψ‖H1(D×R),

for some C ′
1 depending only on c0, C0 appearing in the hypothesis (H0).

Consequently, we are able to define G(η) by duality:

(2.24)
∫
G(η)ψhdθdz :=

∫∫
∇gφ · ∇gH

√
gdydz, ∀H ∈ H1(D× R), h = H|ρ=1.

An application of the trace theorem and duality of Sobolev spaces implies the following
estimate

(2.25) ‖G(η)ψ‖
H− 1

2 (T×R)
⩽ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖ψ‖

H
1
2 (T×R)

, ∀s > 3

2
.

In order to obtain high order estimates, we need to prove the regularity of the elliptic
equation (2.22) or its variational form (2.23).

Proposition 2.3. Let η ∈ H
s+ 1

2
−

R (T×R) and ψ ∈ Hs0(T×R) with s>3
2

and 1
2
⩽ s0 ⩽ s.

Then the unique solution φ = Φ′ +Ψ to (2.23) verifies

(2.26) ‖φ‖
Hs0+

1
2 (D×R)

⩽ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖ψ‖Hs0 (T×R),

where C > 0 is a smooth increasing function.

The proof of this proposition is classic and we leave it to Appendix B. As a corollary,
we are able to generalize the estimate (2.25) for high order Sobolev norms,

Corollary 2.4. Let η ∈ H
s+ 1

2
−

R (T× R) s > 3
2
. Then for all s0 ∈ [1

2
, s], we have

(2.27) ‖G(η)‖L(Hs0 (T×R);Hs0−1(T×R)) ⩽ C

(
‖η‖

H
s+1

2−
R

)
,

where C > 0 is a smooth increasing function.

2.3. Hamiltonian structure. In this section, we investigate the Hamiltonian structure
of (1.18). Recall that for standard water-wave equation where the interface is given by
{(x, y) ∈ Rd+1 : y = η(x)}, the Hamiltonian H is taken as the total energy, which is
preserved in time and can be written in terms of η and ψ (restriction of scalar potential),
and the Hamiltonian formulation reads{

ηt =
δH
δψ
,

ψt = − δH
δη
.

This formulation has been firstly discovered by Zakharov [68], while the case of two-phase
fluid is studied by Benjamin-Bridges [18]. For fluids with nonzero vorticity, Castro-Lannes
[26] formally prove the Hamiltonian equation for the triple (η, ψ, ω), where ψ can be
defined by projection and ω is the vorticity.
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In the case of sphere-like interface, Beyer-Günther [20] pointed out that one should
modify ψ by p = ηdψ, where d is the dimension of spherical interface ( perturbation of
unit sphere Sd). Inspired by this, we turn to the new variable (η, p) := (η, ηψ) satisfying

(2.28)
{
ηt = G(η)ψ,

−pt = −ψG(η)ψ + η
(
σ
(
H − 1

2R

)
+N

)
.

due to equation (1.18).
The total energy of the system (1.18) (or (2.28)) is

(2.29) H := Ek + Ep.

Here Ek is kinetic energy
(2.30)
Ek :=

1

2

∫∫
Ω(t)

|∇x,zϕ|2 dxdz =
1

2

∫∫
D×R

|∇gφ|2
√
gdydz =

1

2

∫
T×R

ψ (ηG(η))ψdθdz,

where the last equality follows from divergence theorem and ∆gφ = 0 (see (2.24)). Ep is
potential energy

(2.31) Ep :=
σ

2
A =

σ

2

∫
T×R

η
√1 +

(
ηθ
η

)2

+ η2z − 1

− |η −R|2

2R

 dθdz,
where A is the (normalized) area of interface Σ(t) and R is the constant from (H1). In
the periodic case, these normalization can be omitted.

By regarding H as a function on η and p = ηψ, we have the following Hamiltonian
formulation.

Proposition 2.5. Let 1 ⩽ s0 ⩽ s and s > 3
2
. For all η ∈ H

s+ 1
2

R (T×R), δη ∈ Hs+ 1
2 (T×R)

and p, δp ∈ Hs0(T× R), we have
d

dϵ

∣∣∣∣
ϵ=0

H(p+ ϵδp, η) =

∫
ηtδpdθdz,(2.32)

d

dϵ

∣∣∣∣
ϵ=0

H(p, η + ϵδη) =

∫
(−pt)δηdθdz,(2.33)

where ηt and −pt should be understood as the right hand side of (2.28).

Note that the results in previous sections imply that g, (gαβ), (gαβ) ∈ Cs− 3
2 (D × R)

and φ ∈ Hs0+
1
2 (D × R), so as their variations in p or η. These ensure that all the

integrands below are integrable.

2.3.1. Variation in p. We first prove (2.32). In this paragraph, we fix η and use the
notation

δQ :=
d

dϵ

∣∣∣∣
ϵ=0

Q(p+ ϵδp)

for any quantity depending on p. Since the potential energy (2.31) depends only on η,
the variation can be applied merely for kinetic energy (2.30),

δH = δEk =

∫∫
∇T
g φ∇gδφ

√
gdydz

=

∫∫ (√
gJ−1∇gφ

)
· ∇y,zδφdydz

=

∫
Y ·
(√

gJ−1∇gφ
)
δψdθdz,
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where Y = (y1, y2, 0)
T and the last equality follows from divergence theorem with δψ the

restriction of δφ. By (2.11) and (2.20), we have
Y ·
(√

gJ−1∇gφ
)
δψ = (J−TY ) · ∇gφη

2δψ = G(η)ψηδψ = G(η)ψδp,

Note that the last equality follows from ψ = p/η and the fact that η is fixed. This
completes the proof of (2.32).

2.3.2. Variation in η. Let us fix p and denote

δQ :=
d

dϵ

∣∣∣∣
ϵ=0

Q(η + ϵδη)

for any quantity depending on η. The variation of potential part Ep can be calculated
directly,

(2.34) δEp =
σ

2
δA = σ

∫
η

(
H − 1

2R

)
δηdθdz,

where H is the mean curvature defined in (1.9). For the kinetic part, we have

Lemma 2.6. Let 1 ⩽ s0 ⩽ s and s > 3
2
. For all η, δη ∈ Cs− 1

2 (T × R) and p, δp ∈
Hs0(T× R), we have

(2.35) δEk :=
d

dϵ

∣∣∣∣
ϵ=0

Ek(p, η + ϵδη) =

∫
(−ψG(η)ψ + ηN) δηdθdz.

Note that, by Sobolev embedding, (2.35) and (2.34) implies (2.33). Here we may
temporarily ignore the hypothesis (H1) since all the integrals below make sense whenever
η, δη (and ζ, δζ) have Lipschitz regularity, which is ensured by the condition η, δη ∈
Cs− 1

2 (T× R), s > 3
2
.

Proof. By definition (2.30) of kinetic energy Ek, we have
δEk =I1 + I2,(2.36)

I1 =
1

2

∫∫
∂αφδ(

√
ggαβ)∂βφdydz,(2.37)

I2 =

∫∫
∇gφ · ∇gδφ

√
gdydz.(2.38)

As before, by divergence theorem, I2 equals

(2.39) I2 =

∫
(G(η)ψ) ηδψdθdz = −

∫
ψ (G(η)ψ) δηdθdz,

where the last equality follows from δψ = δ(p/η) = −δηp/(η2) = −ψδη/η.

Remark 2.7. Our final goal is to establish the Hamiltonian formulation w.r.t. variable
(η, p). Therefore, during the calculation of variation in η above, the kinetic energy Ek,
which is a function of (η, ψ) due to definition (2.30), should be regarded as a function of
(η, p), namely

Ek = Ek

(
η,
p

η

)
=

1

2

∫
pG(η)

(
p

η

)
dx.

And the variation in η should be understood for fixed p,

δEk =
d

dϵ

∣∣∣∣
ϵ=0

1

2

∫
pG(η + ϵδη)

(
p

η + ϵδη

)
dx

However, in most parts of this paper, we are interested in variable (η, ψ) instead of
(p, ψ). Then, the derivative in η should be defined with fixed ψ instead of fixed p (in



CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS 17

such case, p = ηψ may vary in η). The main difference is that, when ψ is fixed, I2 is
automatically zero due to the first equality of (2.39). This is the case of shape derivative
to be studied in Section 2.4.

As for I1, a direct calculus gives that

(2.40)
1

2
δ(
√
ggαβ)∂αφ∂βφ =

1

2
∇T
y,z

(
J−1Y |∇gφ|2

√
gδζ
)
−∇T

y,z

(√
gJ−1∇gφ Y T∇gφδζ

)
+
√
g∆gφY · ∇gφδζ,

the proof of this is left to Lemma D.1. The technical identity above implies, via divergence
theorem and ∆gφ = 0, that

I1 =
1

2

∫
Y TJ−1Y |∇gφ|2 η2δηdθdz −

∫
Y TJ−1∇gφ Y T∇gφη

2δηdθdz.

Note that, at boundary ρ = 1, we have √
g = η2, as it has been noticed after (2.11). By

formula (2.10) of J−1, definition (2.9) of J0, and Y = (y, 0)T , we have,

Y TJ−1Y =
ζ
√
g
|y|2.

The expression (2.15) yields that, as ρ = 1,
|∇gφ|2 = B2 + |V |2, Y T∇gφ = B.

In addition, we have seen in (2.20) that the trace of Y TJ−1∇gφ is G(η)ψ/η. Consequently,

(2.41) I1 =
1

2

∫
η(B2 + |V |2)δηdθdz −

∫
ηG(η)ψBδηdθdz =

∫
ηNδηdθdz,

thanks to (2.17), (2.18), (2.19), and (2.20). □
In conclusion, the variational identity (2.33) follows from (2.34) and (2.35). Formally,

we may write (2.32) and (2.33) in classical form{
ηt =

δH
δp
,

pt = − δH
δη
.

As a consequence of this Hamiltonian formulation, the total energy H is preserved in
time. Note that for Cauchy problem, there is no difference between (η, ψ) and (η, p),
since (H0) together with η ∈ H

s+ 1
2

R (T × R), s > 3/2 guarantees that ψ ∈ Hs(T × R) if
and only if p ∈ Hs(T×R). In the rest of this paper, we shall still work on (η, ψ) for the
simplicity of notation.

2.4. Shape derivative. We have proved in Corollary 2.4 that G(η) is a 1-order operator
for any fixed η ∈ H

s+ 1
2

R (T× R) with s > 3
2
. In this section, we shall show that, for fixed

ψ, G(η)ψ is derivable w.r.t. η ∈ H
s+ 1

2
R (T × R) and this derivative can be calculated

explicitly, which is known as shape derivative.
In the case of planar water-wave (Σ as a perturbation of Rd), we refer to [45],

Section 3.3 for a detailed study of shape derivative. The axis-symmetric version (system
independent of θ) of shape derivative (2.42) is also proved in [41]. In these references,
the authors calculate directly the derivative in η of (2.20). The main difficulty of this
method is to represent G(η)(Bδη) in terms of η, φ, and δφ. To do so, one needs to apply
variational calculus for the elliptic equation (2.22) and then determine the harmonic
extension of Bδη, which cannot be obtained simply due to the (relatively complicated)
change of coordinate (2.2). Nevertheless, one will see in the proof of Proposition 2.8 that
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the variational calculus (2.35) of kinetic energy is equivalent to (2.42), where the former
one has already been proved in previous section without using shape derivative.

Proposition 2.8. Let s > 3
2

and 1 ⩽ s0 ⩽ s. Then for all fixed ψ ∈ Hs0, the map

H
s+ 1

2
R (T× R) → Hs0−1(T× R)

η 7→ G(η)ψ

is C1 in the sense that, for all δη ∈ Hs+ 1
2 (T× R) or δη ∈ Cs+ 1

2 (T× R),

(2.42) d

dϵ

∣∣∣∣
ϵ=0

G(η + ϵδη)ψ = −G(η)(Bδη)−∇θ,z ·
((

V θ

η
eθ + V zez

)
δη

)
− Bδη

η
,

where V θ, V z are defined by orthogonal decomposition V = (V θ, V z) = V θeθ + V zez.
Recall that the second term on the right hand side should be understood as

∇θ,z ·
((

V θ

η
eθ + V zez

)
δη

)
= ∂θ

(
V θ

η
δη

)
+ ∂z (V

zδη) .

Proof. As in previous section, δ denotes the derivative in η. To begin with, we write
(2.42) into integrated form, namely, for all f ∈ C∞

c (T× R),∫
ηδ (G(η)ψ) fdθdz

= −
∫
ηG(η)(Bδη)fdθdz −

∫
η∇θ,z ·

((
V θ

η
eθ + V zez

)
δη

)
fdθdz −

∫
Bδηfdθdz

= −
∫
BηG(η)fδηdθdz −

∫
Bfδηdθdz +

∫ (
V θeθ + V zez

)
·
(
eθ
∂θ
η

+ ez∂z

)
(ηf)δηdθdz

= −
∫
BG(η)fηδηdθdz −

∫
G(η)ψfδηdθdz +

∫ (
V θ fθ

η
+ V zfz

)
ηδηdθdz.

Let F be the harmonic extension of f , namely ∆gF = 0 and F |ρ=1 = f . Since f is
regular, F is well-defined as well as B(f) and V (f). By applying (2.20) and (2.21), we
may write the equality above as∫

ηδ (G(η)ψ) fdθdz +

∫
G(η)ψfδηdθdz

=

∫ (
B(ψ)V (f) ·

(
ηθ
η
, ηz

)
+B(f)V (ψ)

(
ηθ
η
, ηz

)
− B(ψ)B(f) + V (ψ) · V (f)

)
ηδηdθdz,

from which, one can see that the desired result (2.42) is equivalent to: for all f ∈
C∞
c (T× R),

(2.43)

δ

(∫
ηG(η)ψfdθdz

)
=

∫ (
B(ψ)V (f) ·

(
ηθ
η
, ηz

)
+B(f)V (ψ)

(
ηθ
η
, ηz

)
− B(ψ)B(f) + V (ψ) · V (f)

)
ηδηdθdz.

When ψ belongs to the same class C∞
c (T × R) as f , due to the fact that both sides are

symmetric quadratic form of (ψ, f), it suffices to check the case ψ = f . According to
(2.30), the left hand side becomes

δ

(∫
ηG(η)ψψdθdz

)
= 2δEk.



CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS 19

Note that, unlike in the proof of Proposition 2.5, ψ is required to be fixed, instead of p.
Thus the terms involving δψ are automatically zero. By applying the same calculation
as in Lemma 2.6, we can conclude that

2δEk = 2(I1 + I2) = 2

∫
ηNδηdθdz,

where I1, I2 are defined in (2.37) and (2.38) with I2 = 0 as explained above. From (2.19),
when ψ = f , the right hand side of (2.43) equals

2

∫ (
BV ·

(
ηθ
η
, ηz

)
+

|V |2 − B2

2

)
ηδηdθdz = 2

∫
ηNδηdθdz.

Till now, we have proved (2.42) for ψ ∈ C∞
c (T × R). Since C∞

c (T × R) is dense in
Hs0(T× R), it remains to check that the left hand side of (2.42) satisfies

(2.44)
∥∥∥∥ ddϵ

∣∣∣∣
ϵ=0

G(η + ϵδη)ψ

∥∥∥∥
Hs0−1

⩽ C

(
‖η‖

H
s+1

2
R

, ‖δη‖
Cs− 1

2

)
‖ψ‖Hs0−1 .

To prove this, we apply the variation in η to the equation (2.22),{
∆gδφ = − 1√

g
∂α
(
δ
(√

ggαβ
)
∂βφ

)
,

δφ|ρ=1 = 0.

Recall that δ should be understood as the derivative in ϵ at ϵ = 0. It follows immediately
from (2.9)-(2.11) that δ

(√
ggαβ

)
is a smooth function of ζ and ∇y,zζ, depending linearly

in δη and ∇y,zδη. Consequently, φ ∈ Hs0+
1
2 (D× R) implies that∥∥∥∥ 1

√
g
∂α
(
δ
(√

ggαβ
)
∂βφ

)∥∥∥∥
Hs0−

3
2 (D×R)

⩽ C

(
‖η‖

H
s+1

2
R (T×R)

, ‖δη‖
Cs− 1

2 (T×R)

)
‖φ‖

Hs0+
1
2 (D×R)

.

In fact, δ
(√

ggαβ
)

can be written in terms of F1(ζ,∇ρ,θ,zζ)δζ and F2(ζ,∇ρ,θ,zζ)∇ρ,θ,zδζ,
where F1 and F2 are smooth functions with F1(0) = F2(0) = 0. Since ζ ∈ Hs+1

Rϵ
(D × R)

with Rϵ defined by (2.7), due to Proposition 2.2 and the assumption η ∈ H
s+ 1

2
R (T×R), the

coefficients before δζ and ∇ρ,θ,zδζ belong to Hs(D × R), up to some C∞
b normalizations

(see Proposition C.22). In the mean time, when δη ∈ H
s+ 1

2
R (T×R), δζ ∈ Hs+1

W (D×R) and
∇ρ,θ,zδζ ∈ Hs

W ′(D×R) for some W,W ′ ∈ C∞
b (D×R) due to Proposition 2.2, which also

guarantees that, as δη ∈ Cs+ 1
2 (T × R), δζ ∈ Cs+ 1

2 (D × R) and ∇ρ,θ,zδζ ∈ Cs− 1
2 (D × R).

Therefore, the desired inequality follows from the estimate of products (Proposition C.8).
As a consequence, an application of elliptic regularity (B.2) gives that

(2.45) ‖δφ‖
Hs0+

1
2 (D×R)

⩽ C

(
‖η‖

H
s+1

2
R (T×R)

, ‖δη‖
Cs− 1

2 (T×R)

)
‖ψ‖Hs0 (T×R).

By expression (2.20), the variation of
G(η)ψ = ζY αgαβ∂βφ|ρ=1

is composed by two parts, the variation in coefficients (depending only on ζ) and in φ,
namely,

δ (G(η)ψ) = δ
(
ζY αgαβ∂βφ

)∣∣
ρ=1

=
(
δ(ζY αgαβ)∂βφ

)∣∣
ρ=1

+
(
ζY αgαβ∂βδφ

)∣∣
ρ=1

We can deduce from (2.45) that ∂βδφ|ρ=1 ∈ Hs0−1(T × R), while, up to C∞
b (D × R)

normalizations, ζY αgαβ has Hs(D×R) regularity, the trace at ρ = 1 of which belongs to
Hs− 1

2 (T × R). By applying Corollary C.9, we are able to conclude that the second part
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(variation in φ) lies in Hs0−1(T× R). As for the first part, we observe that ζY αgαβ can
be written as a smooth function of ζ, ∇y,zζ, and Y , i.e.

ζY αgαβ = G(ζ,∇y,zζ, Y ),

for some smooth function G. The the variation in η reads
δ
(
ζY αgαβ

)
= ∂1G(ζ,∇y,zζ, Y )δζ + ∂2G(ζ,∇y,zζ, Y )∇y,zδζ,

whose trace at ρ = 0 belongs to Hs− 1
2 (T × R), thanks to the same argument as above.

Then, by Corollary C.9, its product with ∂βφ|ρ=1 ∈ Hs0−1(T×R) remains in Hs0−1(T×R),
which completes the proof. □

In the formula (2.42), the left hand side belongs to Hs0−1(T×R) while the first two
terms on the right hand side are only in Hs0−2(T × R). This indicates that there exists
an implicit cancellation between these terms. In fact, by choosing δη = 1 ∈ Cs+ 1

2 (T×R),
we can deduce from B/η ∈ Hs0−1(T × R), which is a consequence of Corollary C.9 and
C.22, that

Proposition 2.9. Let s > 3
2

and 1 ⩽ s0 < s. Then for all η ∈ H
s+ 1

2
R (T × R) and

ψ ∈ Hs0(T× R), we have

(2.46)
∥∥∥∥G(η)B +

(
eθ∂θ
η

+ ez∂z

)
· V
∥∥∥∥
Hs0−1(T×R)

⩽ C

(
‖η‖

H
s+1

2
R (T×R)

)
‖ψ‖Hs0 (T×R),

where C > 0 is an increasing smooth function.

Proof. It remains to check that∥∥∥∥(eθ∂θη + ez∂z

)
· V −∇θ,z ·

(
V θ

η
eθ + V zez

)∥∥∥∥
Hs0−1(T×R)

⩽ C

(
‖η‖

H
s+1

2
R (T×R)

)
‖ψ‖Hs0 (T×R),

which is equivalent to∥∥∂θη−1V θ
∥∥
Hs0−1(T×R) ⩽ C

(
‖η‖

H
s+1

2
R (T×R)

)
‖ψ‖Hs0 (T×R).

We have seen that η ∈ H
s+ 1

2
R (T × R), which implies ∂θη−1 ∈ H

s− 1
2

R−1 (T × R), thanks to
Proposition C.22. Since V θ ∈ Hs0−1, the desired result follows from Corollary C.9. □

3. Paralinearization of the system

This section is devoted to an explicit formulation of Dirichlet-to-Neumann operator
G(η) as paradifferential operator, up to some remainder of lower order. And, as a result,
we shall write the system (1.18) in paralinear form. Namely, all the nonlinear terms will be
replaced by paradifferential operators acting on (η, ψ), up to proper regular remainders.
And the symbol of these paradifferential operators is a smooth function of η and its
derivatives and homogeneous in Fourier variable ξ. We shall follow the strategy used in
[9] and [6] (see also [5]).

To achieve this, we first observe that, by (2.20),

(3.1)
G(η)ψ =

1

η

(
1 +

(
ηθ
η

)2

+ η2z

)
∂ρφ|ρ=1 −

ηθ
η

φθ|ρ=1

η
− ηzφz|ρ=1

=
1

η

(
1 +

(
ηθ
η

)2

+ η2z

)
∂ρφ|ρ=1 −

ηθ
η

ψθ
η

− ηzψz,
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where the only implicit term is ∂ρφ|ρ=1, which is linear in ψ and depends implicitly on
η. In order to represent normal derivative ∂ρ|ρ=1 as tangential ones, we follow the idea
in [9] and return to the Poisson’s equation (2.22). Formally speaking, we shall rewrite
Laplacian ∆g as

∆g = A0(∂ρ + A′
1)(∂ρ − A1) + remainders,

where A0, A1, and A′
1 are elliptic operators involving only tangential derivatives. This

decomposition will be proved in Lemma 3.14, while the tangential operators should be
understood as paradifferential operator since the coefficients are smooth functions of η
and its derivatives and thus have limited regularity. As a result, the Poisson’s equation
(2.22) ensures that v := (∂ρ − A1)φ solves the parabolic equation

(∂ρ + A′
1)v = regular terms,

whose smoothing effect leads to a higher regularity of v|ρ=1 than φ (or ψ). Consequently,
one may replace ∂ρ|ρ=1 by A1|ρ=1 and then deduce the paralinearization of (3.1) (see
Proposition 3.17).

With paralinear formula (3.52) of G(η)ψ, we are able to write the nonlinear terms
in (1.18) in a similar form. In fact, these terms (quadratic term N and mean curvature
H) can be represented as a function of η, ψ, and G(η)ψ, together with their derivatives.
Hence, one may simply apply the paralinear formula (C.19) and the paralinearization of
G(η)ψ, which will be proved in Section 3.4.

In the end of this section, we shall check that all the remainders appearing in the
normalization of the system are Lipschitzian w.r.t. (η, ψ) in proper functional spaces.
This is essential to prove convergence of approximate solution and uniqueness of the
solution (which will be studied in Section 5.3).

Inside this section, we always assume that (η, ψ) ∈ H
s+ 1

2
R × Hs with s > 3, which

is the regularity required in the main theorem 1.1. One should pay attention to the fact
that, thanks to the paradifferential calculus (reviewed in Appendix C), all the estimates
to be proved are tame, in the sense that they can be written as

Q ⩽ K

(
‖η‖

H
s+1

2
R

+ ‖ψ‖Hs

)
,

whereQ stands for quantities to be studied, and the constantK = K

(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
depends only on ‖η‖

H
s+1

2−
R

, ‖ψ‖Hs− instead of ‖η‖
H

s+1
2

R

, ‖ψ‖Hs . In Section 5, this obser-
vation will lead to the tame estimate (5.51), implying the continuity of the solution to
(1.18) in time and initial data via a nonlinear interpolation (Theorem 5.19).

To simplify the computations, instead of the change of variable r = ρζ(ρθ, z), ω =
θ, z = z defined in Section 2, where (x, z) = (rω, z) is the polar coordinate, we shall use
the same change of variable as in [41],

(3.2) r = ρ̄η(θ̄, z̄), ω = θ̄, z = z̄.

Recall that this change of variable is easy to calculate and behaves well near the interface
r = η, while singularities exists at r = 0, which is out of concern in this section. By
definition, the relation between (ρ̄, θ̄, z̄) and the variable (ρ, θ, z) studied in previous
section is given by

(3.3) (ρ̄, θ̄, z̄) = ῑ(ρ, θ, z) :=

(
ρζ(ρθ, z)

η(θ, z)
, θ, z

)
.



22 CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS

We denote by φ̄ the potential ϕ in coordinate (ρ̄, θ̄, z̄) (equivalently, φ̄ ◦ ῑ = φ). It can be
checked that φ̄ has the same regularity as φ when ρ̄ is close to 1. The proof of lemma
below is left to the end of Appendix B.4.
Lemma 3.1. Let s > 3 and δ > 0 be small enough. If ψ ∈ Hs0(T× R) with 3

2
< s0 ⩽ s

and η ∈ H
s+ 1

2
R (T× R), the potential φ̄ in new coordinate (ρ̄, θ̄, z̄) satisfies

(3.4) ‖∂lρ̄φ̄‖C0([1−δ,1];Hs0−l(T×R)) ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 , l = 0, 1, 2, 3.

From now on, we will no more use the coordinate introduced in Section 2 and, for
simplicity of notation, we omit the bar over (ρ̄, θ̄, z̄) and φ̄. Moreover, all the functions to
be studied should be regarded as functions defined on T×R with parameter ρ ∈ [1−δ, 1].
By definition (3.2), the potential φ satisfies

(3.5)
{
Lφ :=

(
α∂2ρ + β · ∇θ,z∂ρ + γ∂ρ +

1
ρ2η2

∂2θ + ∂2z

)
φ = 0, ∀1− δ ⩽ ρ ⩽ 1,

φ|ρ=1 = ψ.

where

α =
1

η2

(
1 +

(
ηθ
η

)2

+ ρ2η2z

)
,(3.6)

β =

(
−2ηθ
ρη3

,−2ρηz
η

)
,(3.7)

γ =− 1

ρη

(
ηθ
η2

)
θ

− ρη

(
ηz
η2

)
z

+
1

ρη2
.(3.8)

Note that by construction (2.5) of ζ, we have ∂ρφ|ρ=1 = ∂ρ̄φ̄|ρ̄=1. Thus, the formula (3.1)
for Dirichlet-to-Neumann operator as well as formulation (2.17), (2.18), (2.19) of B, V,N
remain unchanged. Before entering the next part, we introduce the following estimates
for α, β, and γ, which will be frequently used in this section.

Lemma 3.2. Let η ∈ H
s+ 1

2
−

R with s > 3. Then we have

(3.9) ‖α‖
C0

ρH
s− 1

2−
R−2

+ ‖β‖
C0

ρH
s− 1

2− + ‖γ‖
C0

ρH
s− 1

2−
ρ−1R−2

⩽ C

(
‖η‖

H
s+1

2−
R

)
‖η‖

H
s+1

2−
R

.

The proof of this Lemma is no more than an application of Proposition C.22.
3.1. Preliminaries in paradifferential calculus. During the whole paper, the in-
volved paradifferential operators have symbol homogeneous in Fourier variable ξ and
depending smoothly in η and its derivatives (see Definition 3.3 below). In this case, the
general theory of paradifferential calculus reviewed in Appendix C can be refined with
simpler formulas, which are collected in this section. Note that most of these technical
results have been presented in Section 4.1 of [6], where one may find detailed proofs.
Definition 3.3. Given m ∈ R, we denote by Σm the collection of symbols on T×R that
take the form
(3.10) a(w, ξ) = a(m)(w, ξ) + a(m−1)(w, ξ),

where a(m) and a(m−1) takes the form
a(m)(w, ξ) =F (η,∇θ,zη; ξ),

a(m−1)(w, ξ) =
∑
|α|⩽2

Gα(η,∇θ,zη; ξ)∂
α
θ,zη
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Here F,Gα are smooth functions and homogeneous of degree m,m− 1 in ξ, respectively.
Under the assumption that η ∈ H

s+ 1
2

R with s > 3 (true in the rest of this paper), we
have a(m) ∈ Γm3/2+ and a(m−1) ∈ Γm−1

1/2+ (see Definition C.14). In the sequel, we shall regard
a ∈ Σm as an element in Γm3/2+ + Γm−1

1/2+.

As a convention, we shall write all the equations in polar coordinate (y, z) = (ρθ, z)
and denote the Fourier variable associated to w = (θ, z) ∈ T×R as ξ = (ξθ, ξz) ∈ R2 (see
Section C.1 for Fourier variables on torus). Furthermore, all the estimates in this section
are uniform in time, the dependence on which will be omitted for simplicity.

For symbols a, b ∈ Σm, we write
Ta ≈ Tb

if Ta − Tb is of order m − 3
2
−, i.e. maps Hs to Hs−m+ 3

2
+ for all s ∈ R, with operator

norm controlled by C
(
‖η‖

H
7
2+

R

)
. Then an application of Proposition C.18 gives that

Proposition 3.4. Let η ∈ H
s+ 1

2
−

R with s > 3. For symbols a = a(m) + a(m−1) ∈ Σm and
b = b(m

′) + b(m
′−1) ∈ Σm′ with m,m′ ∈ R, we have

TaTb ≈ Ta♯b,(3.11)
T ∗
a ≈ Ta∗ ,(3.12)

where

a♯b =a(m)b(m
′) +

(
∂ξa

(m) ·Dwb
(m′) + a(m)b(m

′−1) + a(m−1)b(m
′)
)
∈ Σm+m′

,(3.13)

a∗ =a(m) +
(
Dw · ∂ξa(m) + a(m−1)

)
∈ Σm.(3.14)

Recall that we have regarded Σm as a subclass of Γm3/2++Γm−1
1/2+. Thus the parameter

ρ in Proposition C.18 should be taken as 3/2+ or 1/2+. Moreover, all the involved
operator norms can actually be controlled by a positive smooth increasing function of
‖η‖

H
s+1

2−
R

. For simplicity, we shall not precise these in the sequel.
As a consequence, we are able to calculate the symbol of commutator,

Corollary 3.5. Let η ∈ H
s+ 1

2
−

R with s > 3. For symbols a = a(m) + a(m−1) ∈ Σm and
b = b(m

′) + b(m
′−1) ∈ Σm′ with m,m′ ∈ R, their commutator [Ta, Tb] is of order at most

m+m′ − 1. More precisely, [Ta, Tb] ≈ T−i{a(m),b(m
′)}, where {·, ·} is Poisson bracket,

{a, b} := ∂ξa
(m) · ∂wb(m

′) − ∂wa
(m) · ∂ξb(m

′) ∈ Γm+m′−1
1/2+ .

Definition 3.6. Let symbol a = a(m) + a(m−1) ∈ Σm with m ∈ R. We say that a is
elliptic, if there exists 0 < c < C such that

c|ξ|m ⩽ Re a(m)(w, ξ) ⩽ C|ξ|m, ∀w ∈ T× R, ξ 6= 0,

Proposition 3.7. Let η ∈ H
s+ 1

2
−

R with s > 3. For any elliptic symbol a ∈ Σm with
m ∈ R, we can construct another elliptic symbol ã ∈ Σ−m such that
(3.15) TaTã ≈ TãTa ≈ id.

Proof. It suffices to take ã(−m)a(m) = 1 and ã(−m−1) as the solution to

∂ξa
(m) ·Dw

1

a(m)
+ a(m)ã(−m−1) + a(m−1)ã(−m) = 0.
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The ellipticity of ã is obvious from this definition. The desired estimate (3.15) can be
checked directly from Proposition 3.4. More precisely, we have TaTã ∼ Ta♯ã where

a♯ã =a(m)ã(m) +
(
∂ξa

(m) ·Dwã
(−m) + a(m)ã(−m−1) + a(m−1)ã(−m)

)
=1 +

(
∂ξa

(m) ·Dw
1

a(m)
+ a(m)ã(−m−1) + a(m−1)ã(−m)

)
= 1.

Therefore, TaTã ≈ T1, which equals identity up to a smoothing operator. The proof of
TãTa ≈ id is similar. It suffices to observe that

∂ξã
(−m)·Dwa

(m) = ∂ξ
1

a(m)
·Dwa

(m) =
i∂ξa

(m) · ∂wa(m)

(a(m))
2 = ∂ξa

(m)·Dw
1

a(m)
= ∂ξa

(m)·Dwã
(−m),

which implies ã♯a = a♯ã = 1. □

Proposition 3.8. Let η ∈ H2+
R . For any elliptic symbol a ∈ Σm with m ∈ R, we have

the following estimate,

(3.16) ‖u‖Hr ⩽ C
(
‖η‖H2+

R

)
(‖Tau‖Hr−m + ‖u‖L2) , ∀r ∈ R,

where C > 0 is a smooth increasing function and the L2-norm of u can be replaced with
any other Sobolev norms.

If η ∈ H
s+ 1

2
−

R with s > 3, (3.16) is a consequence of Proposition 3.7. For the refined
version η ∈ H2+

R , we refer to Proposition 4.6 of [6].

Proposition 3.9. Let η ∈ H
s+ 1

2
−

R with s > 3. For any a = a(m) + a(m−1) ∈ Σm with
m ∈ R and Im a(m) = 0, we have the following equivalence,

(3.17) Ta ≈ T ∗
a ⇔ (Ta − T ∗

a ) is of order (m− 1−) ⇔ Im a(m−1) = −1

2
∂w · ∂ξa(m).

Proof. The first assertion implying the second is easy. By Proposition 3.4, we have
T ∗
a ≈ Ta∗ , ensuring that Ta − T ∗

a is of order (m− 3/2−) and thus of order (m− 1−).
To show that the second assertion implies the third one, we observe that, since

T ∗
a ≈ Ta∗ , Ta−a∗ is also of order (m − 1−). Moreover, a, a∗ belong to the class Σm,

meaning that a− a∗ is the sum of a symbol homogeneous in ξ of degree m and another
one of degree m − 1. Once the order of Ta−a∗ is strictly smaller than m − 1, both
components vanish and consequently a = a∗, while, due to the expression (3.14) of a∗,

a− a∗ = a(m) − a(m) −Dw · ∂ξa(m) + a(m−1) − a(m−1) = i∂w · ∂ξa(m) + 2i Im a(m−1),

which gives the third assertion.
If the third assertion holds true, the calculation above ensures that a = a∗ and the

first assertion follows from T ∗
a ≈ Ta∗ = Ta. □

3.2. Paralinearization of normal derivative and good unknown. In this part, we
shall separate Poisson’s equation (2.22) in normal and tangential directions near boundary
ρ = 1 and deduce that ∂ρφ|ρ=1 equals some one order tangential operator acting on ψ,
up to some remainders. To do so, we use the strategy in [9] (see also [6]) where the
authors apply paradifferential calculus in tangential direction and reduce the problem
to a paralinear parabolic equation which yields the regularity of remainders. The main
result of this section is
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Proposition 3.10. Let (η, ψ) ∈ H
s+ 1

2
R × Hs0 with s > 3 and 3

2
< s0 ⩽ s. Then there

exists τ ∈ Σ1 such that

(3.18) ‖∂ρφ|ρ=1 − TτU‖Hs0+
1
2
⩽ C

(
‖η‖

H
s+1

2−
R

)(
‖ψ‖Hs0 + ‖η‖

H
s+1

2
R

‖ψ‖Hs0−

)
,

where
(3.19) U := ψ − TBη ∈ Hs0(T× R).

Moreover, τ = A|ρ=0, where A(ρ) = A(1)(ρ) + A(0)(ρ) is defined by (3.33) and (3.35)
below.

Note that, under the assumption of Proposition 3.18, due to Proposition C.8 and
Lemma 3.16, the new variable U satisfies

(3.20) ‖U‖Hs0 ⩽ ‖ψ‖Hs0 + ‖TBη‖Hs0 ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 , ∀s > 3,

3

2
< s0 ⩽ s.

As indicated in [9], the use of U instead of ψ is essential, which will be explained
briefly below. Let us consider the paralinearized version of Laplacian operator L appear-
ing in (3.5),
(3.21) P := Tα∂

2
ρ + Tiβ·ξ+γ∂ρ − Tρ−2η−2ξ2θ+ξ

2
z
.

One may expect that, Pφ − Lφ is much more regular than ψ, which is true if the
coefficients α, β, γ, η−2 are smooth. However, under the assumption of Proposition 3.10,
these coefficients have only Sobolev regularity and then the paraproducts T∂2ρφα, T∇θ,z∂ρφ·β
appearing in the remainders lie in C0

ρH
s0− 1

2 , which is not enough to conclude (3.18) (we
need C0

ρH
s0− 1

2
+). This lack of regularity is actually a consequence of paracomposition, the

general theory of which is sketched in Appendix C.4. Let χ represent the diffeomorphism
from (ρ, θ, z) ∈ [1−δ, 1]×T×R to (x, z) ∈ Ω(t) and X∗ be the paracomposition operator
associated to χ. A formal application of Proposition C.24 gives that

0 = X∗∆x,zϕ = TaX
∗ϕ+R,

where the symbol a is the pull-back of symbol of Laplacian operator and remainder R has
the desired regularity (see Lemma 3.11 below). Note that ∆x,z should be understood as
the paralinearized Laplacian operator differing from ∆x,z only in low frequency. There-
fore, this difference only generates smooth remainders and can be omitted. Formally, one
may identify Ta as P defined by (3.21), since Laplacian ∆x,z is a differential operator. To
sum up, we have PX∗ϕ ∈ C0

ρH
s0− 1

2
+. Meanwhile, by Proposition C.23, up to remainders,

the term X∗ϕ equal
X∗ϕ = φ− Tϕ′◦χχ = φ− Tη−1∂ρφρη,

which suggests us to turn to Alinhac’s good unknown
(3.22) Φ := φ− Tη−1∂ρφρη,

whose trace at ρ = 1 is equal to U defined by (3.19).

Lemma 3.11. Let (η, ψ) ∈ H
s+ 1

2
R ×Hs0 with s > 3 and 3

2
< s0 ⩽ s. Then

(3.23) PΦ = r1.

where Φ is defined by (3.22) and r1 satisfies

(3.24) ‖r1‖C0
ρH

s0−
1
2+ϵ ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .
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During the proof of Lemma 3.11, we shall use the equivalence: for u, v defined on
[1− δ]× T× R,

(3.25) u ∼ v ⇔ ‖u− v‖
C0

ρH
s0−

1
2+ϵ ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ,

with 0 < ϵ� 1 to be determined later.
To begin with, we check that

Lemma 3.12. Under the hypothesis of Lemma 3.11, we have,

(3.26) PΦ ∼ −T∂2ρφα− T∇w∂ρφ · β − T∂ρφγ − PTη−1∂ρφρη,

in the sense of (3.25). Recall that w stands for the couple of variable (θ, z).

Proof. By definition (3.22) of the good unknown Φ, we have

PΦ =Pφ− PTη−1∂ρφρη

=Tα∂
2
ρφ+ Tiβ·ξ+γ∂ρφ− Tρ−2η−2ξ2θ+ξ

2
z
φ− PTη−1∂ρφρη

=Tα∂
2
ρφ+ Tβ · ∇w∂ρφ+ Tγ∂ρφ+ Tρ−2η−2∂2θφ+ ∂2zφ− PTη−1∂ρφρη + (−Tξ2zφ− ∂2zφ)

=Lφ− T∂2ρφα− T∇w∂ρφ · β − T∂ρφγ − T∂2θφρ
−2η−2 − PTη−1∂ρφρη

−R(∂2ρφ, α)−R(∇w∂ρφ, β)−R(∂ρφ, γ)−R(∂2θφ, ρ
−2η−2) + (−Tξ2zφ− ∂2zφ)

∼Lφ− T∂2ρφα− T∇w∂ρφ · β − T∂ρφγ − PTη−1∂ρφρη

=− T∂2ρφα− T∇w∂ρφ · β − T∂ρφγ − PTη−1∂ρφρη.

Recall that L is the Laplacian in coordinate (ρ, θ, z) defined in (3.5). To check this
equivalence, we first observe that, thanks to Lemma 3.1, ∇2

ρ,wφ ∈ C0
ρH

s0−2− and ∂ρφ ∈
C0
ρH

s0−1−. By Proposition C.8, Remark C.6, and estimate (3.9), we have the following
estimates:

‖T∂2θφρ
−2η−2‖

C0
ρH

s0−
1
2+ϵ + ‖R(∂2θφ, ρ−2η−2)‖

C0
ρH

s0−
1
2+ϵ

⩽ ‖T∂2θφ(η
−2 −R−2)‖

C0
ρH

s0−
1
2+ϵ + ‖R(∂2θφ, η−2)‖

C0
ρH

s0−
1
2+ϵ

≲
(
‖η−2‖

H
max( 52 ,s0−

1
2 )+ϵ+

R−2

+ 1

)
‖∂2θφ‖C0

ρH
s0−2− ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ;

‖R(∂2ρφ, α) + R(∇w∂ρφ, β)‖C0
ρH

s0−
1
2+ϵ

≲
(
‖α‖

C0
ρH

5
2+ϵ+

R−2

+ 1

)
‖∂2ρφ‖C0

ρH
s0−2− + ‖β‖

C0
ρH

5
2+ϵ+‖∇w∂ρφ‖C0

ρH
s0−2−

⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ;

‖R(∂ρφ, γ)‖C0
ρH

s0−
1
2+ϵ ≲

(
‖γ‖

C0
ρH

3
2+ϵ+

ρ−1R−2

+ 1

)
‖∂ρφ‖C0

ρH
s0−1− ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

As for the remaining term −Tξ2zφ − ∂2zφ, we observe that, since the symbol of ∂2z equals
−ξ2z , the difference −Tξ2z − ∂2z is a smoothing operator. Namely, for all M � 1, we have

‖ − Tξ2zφ− ∂2zφ‖C0Hs0−
1
2+ϵ ≲ ‖φ‖C0

ρH
−M ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

□
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Let us proceed with the proof of Lemma 3.11. We observe that r1 = PΦ is linear in
ψ. Therefore, an interpolation argument allows us to reduce to the endpoints s0 = 3

2
+ δ

and s0 = s. If s0 = 3
2
+ δ with δ > 0 fixed and small enough, the regularity of φ reads

∇2
ρ,wφ ∈ C0

ρH
− 1

2
+δ and ∂ρφ ∈ C0

ρH
1
2
+δ (see Lemma 3.1). As a result, by Proposition C.8

and (3.9), we have
‖T∂2ρφα + T∇w∂ρφ · β + T∂ρφγ‖C0

ρH
1+δ+ϵ

≲ ‖∂2ρφ‖C0
ρH

− 1
2+δ‖α‖

C0
ρH

5
2+ϵ

R−2

+ ‖∇w∂ρφ‖C0
ρH

− 1
2+δ‖β‖C0

ρH
5
2+ϵ + ‖∂ρφ‖C0

ρH
1
2+δ‖γ‖

C0
ρH

3
2+ϵ

ρ−1R−2

≲ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖

H
3
2+δ .

Meanwhile, Proposition C.8 and Corollary C.9 give

‖Tη−1∂ρφρη‖C0
ρH

3+δ+ϵ ≲ ‖η−1∂ρφ‖C0
ρH

1
2+δ‖ρη‖

C0
ρH

7
2+ϵ

R

≲ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖

H
3
2+δ .

Since P is an operator of order 2, we can conclude
PΦ ∼ −T∂2ρφα− T∇w∂ρφ · β − T∂ρφγ − PTη−1∂ρφρη ∼ 0.

Note that the extra term Tη−1∂ρφρη from Alinhac’s good unknown is useless in this case
s0 = 3/2+δ, while it will be crucial in the case s0 = s. In fact, when s0 = s, the estimates
above are no more correct. For example, we can only prove T∂2ρφα ∈ C0

ρH
s− 1

2 = C0
ρH

s0− 1
2

instead of C0
ρH

s0− 1
2
+ϵ.

From now on, we take s0 = s and check that the extra term PTη−1∂ρφρη is able to
cancel the low regular components of T∂2ρφα, T∇w∂ρφ · β, and T∂ρφγ. To begin with, by
definition (3.21) of P ,
PTη−1∂ρφρη = Tα∂

2
ρTη−1∂ρφρη + Tiβ·ξ∂ρTη−1∂ρφρη + Tγ∂ρTη−1∂ρφρη − Tρ−2η−2ξ2θ+ξ

2
z
Tη−1∂ρφρη,

and we will separately study each terms on the right hand side. As a corollary of the
following estimates, we are able to deduce that
(3.27)

PΦ ∼− T∂2ρφα− T∇w∂ρφ · β − T∂ρφγ − Tβ · Tη−1∂2ρφ
ρ∇wη − Tβ · Tη−1∂ρφ∇wη

− 2ρ−1Tη−2T∂θ(η−1∂ρφ)ηθ − ρ−1Tη−2Tη−1∂ρφηθθ − 2ρT∂z(η−1∂ρφ)ηz − ρTη−1∂ρφηzz,

when s0 = s.

Lemma 3.13. Under the hypotheses of Lemma 3.11, we have the following equivalences:
Tα∂

2
ρTη−1∂ρφρη ∼0,(3.28)

Tiβ·ξ∂ρTη−1∂ρφρη ∼Tβ · Tη−1∂2ρφ
ρ∇wη + Tβ · Tη−1∂ρφ∇wη,(3.29)

Tγ∂ρTη−1∂ρφρη ∼0,(3.30)
−Tρ−2η−2ξ2θ+ξ

2
z
Tη−1∂ρφρη ∼2ρ−1Tη−2T∂θ(η−1∂ρφ)ηθ + ρ−1Tη−2Tη−1∂ρφηθθ(3.31)

+ 2ρT∂z(η−1∂ρφ)ηz + ρTη−1∂ρφηzz,

in the sense of (3.25) with s0 = s.

Proof. As before, we observe that η−1∂ρφ ∈ C0
ρH

s−1 and thus Tη−1∂ρφρη ∈ C0
ρH

s+ 1
2 . To

prove the first equivalence (3.28), we apply Proposition C.8, Corollary C.9, together with
(3.9) and obtain
‖Tα∂2ρTη−1∂ρφρη‖C0

ρH
s− 1

2+ϵ = ‖TαTη−1∂3ρφ
ρη + 2TαTη−1∂2ρφ

η‖
C0

ρH
s− 1

2+ϵ
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≲
(
‖α‖C0

ρH
1+

R−2
+ 1
)(

‖Tη−1∂3ρφ
η‖

C0
ρH

s− 1
2+ϵ + ‖Tη−1∂2ρφ

η‖
C0

ρH
s− 1

2+ϵ

)
⩽C

(
‖η‖

H
s+1

2−
R

)(
‖η−1∂3ρφ‖C0

ρH
s−3−‖η‖

H
max( 72 ,s− 1

2 )+ϵ+

R

+ ‖η−1∂2ρφ‖C0
ρH

s−2−‖η‖
H

max( 52 ,s− 1
2 )+ϵ+

R

)
⩽C

(
‖η‖

H
s+1

2−
R

)(
‖η−1∂3ρφ‖C0

ρH
s−3− + ‖η−1∂2ρφ‖C0

ρH
s−2−

)
⩽C

(
‖η‖

H
s+1

2−
R

)(
‖η−1‖

H
max(1+,s−2)

R−1
+ 1
)(

‖∂3ρφ‖C0
ρH

s−3− + ‖∂2ρφ‖C0
ρH

s−2−

)
⩽C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs .

Recall that ∂3ρφ ∈ C0
ρH

s−3 thanks to (3.4). The term Tiβ·ξ∂ρTη−1∂ρφρη in the second
equivalence (3.29) can be written as

Tβ · T∇w(η−1∂2ρφ)ρη + Tβ · Tη−1∂2ρφ
ρ∇wη + Tβ · T∇w(η−1∂ρφ)η + Tβ · Tη−1∂ρφ∇wη,

with
‖Tβ · T∇w(η−1∂2ρφ)ρη + Tβ · T∇w(η−1∂ρφ)η‖C0

ρH
s− 1

2+ϵ

≲‖β‖C0
ρH

1+‖T∇w(η−1∂2ρφ)ρη + T∇w(η−1∂ρφ)η‖C0
ρH

s− 1
2+ϵ

⩽C
(
‖η‖

H
s+1

2−
R

)(
‖∇w

(
η−1∂2ρφ

)
‖C0

ρH
s−3− + ‖∇w

(
η−1∂ρφ

)
‖C0

ρH
s−2−

)
‖η‖

C0
ρH

max( 72 ,s− 1
2 )+ϵ+

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs ,

which proves (3.29). The third equivalence (3.30) is due to the estimate
‖Tγ∂ρTη−1∂ρφρη‖C0

ρH
s− 1

2+ϵ = ‖TγTη−1∂2ρφ
ρη + TγTη−1∂ρφη‖C0

ρH
s− 1

2+ϵ

≲
(
‖γ‖C0

ρH
1+

ρ−1R−2
+ 1
)
‖Tη−1∂2ρφ

ρη + Tη−1∂ρφη‖C0
ρH

s− 1
2+ϵ ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs ,

where one may apply Proposition C.22 to deal with η−1. The last equivalence can be
treated as follow,
−Tρ−2η−2ξ2θ

Tη−1∂ρφρη =ρ−1Tη−2T∂2θ (η−1∂ρφ)η + 2ρ−1Tη−2T∂θ(η−1∂ρφ)ηθ + ρ−1Tη−2Tη−1∂ρφηθθ,

−Tξ2zTη−1∂ρφρη =ρT∂2z (η−1∂ρφ)η + 2ρT∂z(η−1∂ρφ)ηz + ρTη−1∂ρφηzz

+
(
−Tξ2z − ∂2z

)
Tη−1∂ρφρη,

where similar estimates as above can be derived:
‖ρ−1Tη−2T∂2θ (η−1∂ρφ)η‖C0

ρH
s− 1

2+ϵ ≲
(
‖η−2‖H1+

R−2
+ 1
)
‖∂2θ

(
η−1∂ρφ

)
‖C0

ρH
s−3−‖η‖

H
max( 72 ,s− 1

2 )+ϵ+

R

⩽C
(
‖η‖

H
s+1

2−
R

)
‖η−1∂ρφ‖C0

ρH
s−1− ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs ,

and
‖ρT∂2z (η−1∂ρφ)η‖C0

ρH
s− 1

2+ϵ ≲‖∂2z
(
η−1∂ρφ

)
‖C0

ρH
s−3−‖η‖

H
max( 72 ,s− 1

2 )+ϵ+

R

⩽C
(
‖η‖

H
s+1

2−
R

)
‖η−1∂ρφ‖C0

ρH
s−1− ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs .

The desired result (3.31) follows from
(
−Tξ2z − ∂2z

)
Tη−1∂ρφρη ∼ 0 since

(
−Tξ2z − ∂2z

)
is a

smoothing operator. □
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Proof of Lemma 3.11. Till now, we have managed to prove that, in the sense of (3.25),
PΦ ∼ 0

when s0 = 3
2
+ δ with 0 < δ � 1, and moreover, when s0 = s, (3.27) holds. It remains to

check that the right hand side of (3.27) is equivalent to zero, namely
− T∂2ρφα− T∇w∂ρφ · β − T∂ρφγ − Tβ · Tη−1∂2ρφ

ρ∇wη − Tβ · Tη−1∂ρφ∇wη

− 2ρ−1Tη−2T∂θ(η−1∂ρφ)ηθ − ρ−1Tη−2Tη−1∂ρφηθθ − 2ρT∂z(η−1∂ρφ)ηz − ρTη−1∂ρφηzz ∼ 0.

Firstly, we claim that
−T∂2ρφα− Tβ · Tη−1∂2ρφ

ρ∇wη ∼ 0.

In fact, by symbolic calculus (Proposition 3.4) and commutator estimate (Corollary C.19),
we have

Tβ · Tη−1∂2ρφ
ρ∇wη ∼Tη−1∂2ρφ

Tβ · ρ∇wη ∼ T∂2ρφTη−1Tβ · ρ∇wη

∼T∂2ρφTη−1β · ρ∇wη,

where we use the fact that β, η−1 ∈ C0
ρH

s− 1
2 ⊂ Γ0

0+ and ∂2ρφ ∈ C0
ρH

s−2 ⊂ Γ0
0+. As a

consequence, in each step above, the error can be written as a (0−)-order operator acting
on ∇wη, which lies in C0

ρH
s− 1

2
+. Meanwhile, by definition (3.6) of α,

T∂2ρφα ∼ T∂2ρφ
(
η−4η2θ + ρ2η−2η2z

)
∼ T∂2ρφ (T2η−4ηθηθ + T2ρ2η−2ηzηz) = T∂2ρφT−ρη−1β · ∇wη,

where the first equivalence is due to

‖T∂2ρφη
−2‖

C0
ρH

s− 1
2+ϵ ≲ ‖∂2ρφ‖C0

ρH
s−2−‖η−2‖

H
max( 52 ,s− 1

2 )+ϵ+

R−2

≲ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs ,

and the second equivalence is a consequence of Corollary C.21.
Now our problem is reduced to

PΦ ∼− T∇w∂ρφ · β − T∂ρφγ − Tβ · Tη−1∂ρφ∇wη

− 2ρ−1Tη−2T∂θ(η−1∂ρφ)ηθ − ρ−1Tη−2Tη−1∂ρφηθθ − 2ρT∂z(η−1∂ρφ)ηz − ρTη−1∂ρφηzz.

We observe that
2ρ−1Tη−2T∂θ(η−1∂ρφ)ηθ =2ρ−1Tη−2T∂θ(η−1)∂ρφηθ + 2ρ−1Tη−2Tη−1∂θ∂ρφηθ

∼2ρ−1Tη−2T∂ρφT∂θ(η−1)ηθ + 2ρ−1Tη−2T∂θ∂ρφTη−1ηθ

∼2ρ−1T∂ρφTη−2T∂θ(η−1)ηθ + 2ρ−1T∂θ∂ρφTη−2Tη−1ηθ

∼2ρ−1T∂ρφTη−2∂θ(η−1)ηθ + 2ρ−1T∂θ∂ρφTη−3ηθ

These equivalences are consequences of symbolic calculus (Proposition C.18 and Corollary
C.19) and commutator estimate (Corollary C.19), as well as the fact that all the involved
symbols belong to C0

ρH
s−2− ⊂ Γ0

1/2+, which guarantees that the error in each step takes
the form of Tηθ with T linear and of order −1

2
−. Moreover, an application of Proposition

C.8 gives
‖Tη−3ηθ − η−3ηθ‖Hs− 1

2+ ⩽‖Tηθη−3 +R(η−3, ηθ)‖Hs− 1
2+

≲‖ηθ‖H1+‖η−3‖
H

s− 1
2+ϵ

R−3

≲ C

(
‖η‖

H
s+1

2−
R

)
,

and thus
2ρ−1Tη−2T∂θ(η−1∂ρφ)ηθ ∼ 2ρ−1T∂ρφTη−2∂θ(η−1)ηθ + 2ρ−1T∂θ∂ρφ

(
η−3ηθ

)
.
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Similarly, we have
2ρT∂z(η−1∂ρφ)ηz ∼ 2ρT∂ρφT∂z(η−1)ηz + 2ρT∂z∂ρφ

(
η−1ηz

)
.

By observing that
T∇w∂ρφ · β = −2ρ−1T∂θ∂ρφη

−3ηθ − 2ρT∂z∂ρφη
−1ηz,

we can further reduce our problem to
PΦ ∼− T∂ρφγ − Tβ · Tη−1∂ρφ∇wη

− 2ρ−1T∂ρφTη−2∂θ(η−1)ηθ − ρ−1Tη−2Tη−1∂ρφηθθ − 2ρT∂ρφT∂z(η−1)ηz − ρTη−1∂ρφηzz

∼− T∂ρφγ − T∂ρφTη−1β · ∇wη

− 2ρ−1T∂ρφTη−2∂θ(η−1)ηθ − ρ−1T∂ρφTη−3ηθθ − 2ρT∂ρφT∂z(η−1)ηz − ρT∂ρφTη−1ηzz,

due to symbolic calculus (Proposition C.18 and Corollary C.19). From definition (3.7)
and (3.8) of β and γ, respectively, it is easy to calculate that

−γ =− η−1β · ∇wη + ρ−1η−3ηθθ + ρη−1ηzz + ρ−1η−2,

η−1β =
(
2ρ−1η−2∂θ(η

−1), 2ρ∂z(η
−1)
)
.

As a result,
PΦ ∼− ρ−1T∂ρφη

−2 + T∂ρφ
(
η−1β · ∇wη − 2Tη−1β · ∇wη

)
+ ρ−1T∂ρφ

(
η−3ηθθ − Tη−3ηθθ

)
+ ρT∂ρφ

(
η−1ηzz − Tη−1ηzz

)
,

the right hand side of which is equivalent to zero in the sense of (3.25), due to the
estimates

‖T∂ρφη−2‖
Hs− 1

2+ϵ ≲‖∂ρφ‖H1+‖η−2‖
H

s− 1
2+ϵ

R−2

⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs ,

‖T∂ρφ
(
η−3ηθθ − Tη−3ηθθ

)
‖
Hs− 1

2+ϵ ⩽‖T∂ρφTηθθη−3‖
Hs− 1

2+ϵ + ‖T∂ρφR(η−3, ηθθ)‖Hs− 1
2+ϵ

≲‖∂ρφ‖H1+‖ηθθ‖H1+‖η−3‖
H

s− 1
2+ϵ

R−3

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs ,

‖T∂ρφ
(
η−1ηzz − Tη−1ηzz

)
‖
Hs− 1

2+ϵ ⩽‖T∂ρφTηzzη−1‖
Hs− 1

2+ϵ + ‖T∂ρφR(η−1, ηzz)‖Hs− 1
2+ϵ

≲‖∂ρφ‖H1+‖ηzz‖H1+‖η−1‖
H

s− 1
2+ϵ

R−1

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs ,

as well as
‖T∂ρφ

(
η−1β · ∇wη − 2Tη−1β · ∇wη

)
‖
Hs− 1

2+ϵ

≲‖∂ρφ‖H1+‖η−1β · ∇wη − 2Tη−1β · ∇wη‖Hs− 1
2+ϵ

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs

(
‖η−4η2θ − 2Tη−4ηθηθ‖Hs− 1

2+ϵ + ‖η−2η2z − 2Tη−2ηzηz‖Hs− 1
2+ϵ

)
⩽C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs ,

which is a consequence of Corollary C.21. □
Now we are in a position to separate the normal and tangential derivatives.
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Lemma 3.14. Let η ∈ H
s+ 1

2
R with s > 3. There exists elliptic symbols a,A ∈ Σ1, such

that

(3.32) P = Tα(∂ρ + Ta)(∂ρ − TA) + R0 +R1∂ρ,

where R0 is of order 1
2
−, and R1 is of order −1

2
−, satisfying

‖R0‖L(Ht;Ht− 1
2+)

+ ‖R1‖L(Ht;Ht+1
2+)

⩽ C

(
‖η‖

H
s+1

2−
R

)
, ∀t ∈ R.

Moreover, a = a(1) + a(0) and A = A(1) + A(0) can be computed explicitly,

A(1) =
1

2α

√
4α

(
ξ2θ
ρ2η2

+ ξ2z

)
− (β · ξ)2 − iβ · ξ

2α
,(3.33)

a(1) =
1

2α

√
4α

(
ξ2θ
ρ2η2

+ ξ2z

)
− (β · ξ)2 + iβ · ξ

2α
,(3.34)

and

A(0) =− 1

A(1) + a(1)

(
A(1)γ

α
+ ∂ρA

(1) + ∂ξa
(1) ·DwA

(1)

)
,(3.35)

a(0) =− 1

A(1) + a(1)

(
−a

(1)γ

α
+ ∂ρA

(1) + ∂ξa
(1) ·DwA

(1)

)
.(3.36)

Note that all the operators are defined on T × R with ρ ∈ [1 − δ, 1] regarded as a
parameter.

Proof. From (3.32), we shall see what is the conditions required for a and A. In fact, the
right hand side of (3.32) equals

Tα(∂ρ + Ta)(∂ρ − TA) + R0 +R1∂ρ

=Tα
(
∂2ρ + Ta−A∂ρ − TaTA − T∂ρA

)
+R0 +R1∂ρ

=Tα∂
2
ρ + (TαTa−A +R1) ∂ρ − Tα

(
TaTA + T∂ρA

)
+R0.

By comparing it with definition (3.21) of P , one could see that (3.32) holds if the con-
struction of a,A satisfies{

TαTa−A +R1 = Tiβ·ξ+γ,

Tα
(
TaTA + T∂ρA

)
−R0 = Tρ−2η−2ξ2θ+ξ

2
z
.

Recall that by (3.6) and definition 3.3, α ∈ Σ0. Since η ∈ H
s+ 1

2
R , the end of definition 3.3

shows in particular that α ∈ Γ0
3/2+ +Γ−1

1/2+. Moreover, α is elliptic and independent of ξ.
For all a,A ∈ Σ1, symbolic calculus (Proposition 3.4) gives that

TαTa−A ≈Tα♯(a−A) = Tα(a−A),

Tα
(
TaTA + T∂ρA

)
≈TαTa♯A+∂ρA ≈ Tα♯(a♯A+∂ρA) = Tα(a♯A+∂ρA) ≈ Tα(a♯A+∂ρA(1)),

where the difference in the first line is of order 0+1− 3
2
− = −1

2
− and those in the second

line is of order 0 + 1 + 1− 3
2
− = 1

2
−, allowing us to define

R1 :=Tα(a−A) − TαTa−A,

R0 :=Tα(a♯A+∂ρA) − Tα
(
TaTA + T∂ρA(1)

)
.
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Therefore, it suffices to construct A = A(1) + A(0) and a = a(1) + a(0) verifying{
α(a− A) = iβ · ξ + γ,

α
(
a♯A+ ∂ρA

(1)
)
= ρ−2η−2ξ2θ + ξ2z ,

From (3.13) and correspondence of order (in ξ), we only need to solve
α(a(1) − A(1)) = iβ · ξ,
α(a(0) − A(0)) = γ,

αa(1)A(1) = ρ−2η−2ξ2θ + ξ2z ,

∂ξa
(1) ·DwA

(1) + a(0)A(1) + a(1)A(0) + ∂ρA
(1) = 0,

which allows us to obtain (3.33)-(3.36). □
By combining Lemma 3.11 and 3.14, we have

(3.37) Tα(∂ρ + Ta)(∂ρ − TA)Φ = −R0Φ−R1∂ρΦ + r1.

Under the hypothesis of Proposition 3.10, we have

(3.38) ‖ −R0Φ−R1∂ρΦ + r1‖C0
ρH

s0−
1
2+ϵ ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

In fact, the estimate for r1 is a consequence of Lemma 3.11, and the definition (3.22) of
Φ, together with Lemma 3.1 and Proposition C.8, implies that

(3.39) ‖Φ‖C0
ρH

s0 + ‖∂ρΦ‖C0
ρH

s0−1 + ‖∂2ρΦ‖C0
ρH

s0−2 ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ,

which implies (3.38).
By definition (3.6) of α, under the hypothesis of Proposition 3.10, α ∈ H

s− 1
2
−

R−2 , which
is a symbol in Γ0

s−3/2− ⊂ Γ0
3/2+. Since α is strictly positive due to hypothesis (H0), 1/α

belongs to the same class of symbol. Consequently, Proposition C.8 guarantees that
T 1

α
Tα = id+R2,

where R2 is of order 3
2
+. Now we may apply T1/α on both hands of (3.37) and obtain

that
(∂ρ + Ta)(∂ρ − TA)Φ = T 1

α
(−R0Φ−R1∂ρΦ + r1)−R2(∂ρ + Ta)(∂ρ − TA)Φ.

We claim that the C0
ρH

s0− 1
2
+ϵ norm of the right hand side is bounded by C(‖η‖

H
s+1

2−
R

)‖ψ‖Hs0 .
In fact, the estimate of the first term follows from (3.38) and the fact that T1/α is of order
zero. As for the second term, since Ta and TA are of order 1, we have

‖R2(∂ρ+Ta)(∂ρ−TA)Φ‖C0
ρH

s0−
1
2+ϵ ≲ ‖(∂ρ+Ta)(∂ρ−TA)Φ‖C0

ρH
s0−2 ≲ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ,

where the last inequality is a consequence of (3.39).
To sum up, under the hypothesis of Proposition 3.10, we have seen that Φ defined

by (3.22) satisfies
(∂ρ + Ta(1))(∂ρ − TA)Φ = T−a(0)(∂ρ − TA)Φ + r2,

with
‖r2‖C0

ρH
s0−

1
2+ϵ ⩽ C

(
‖η‖

H
s+1

2
R

)
‖ψ‖Hs0 .
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Lemma 3.15 (Proposition 3.19 of [6]). Let b1 ∈ Γ1
1 and b0 ∈ Γ0

0 with
Re b1(w, ξ) ⩾ c|ξ|

for some c > 0. If v ∈ C1
ρH

M for some M ∈ R that solves the equation
∂ρv + Tb1v = Tb0v + f,

with f ∈ C0
ρH

r for some r ∈ R, then, for all ϵ′ > 0, we have

v|ρ=1 ∈ Hr+1−ϵ′ .

One may apply this lemma for b1 = a(1) ∈ Γ1
3/2+ ⊂ Γ1

1, b0 = −a(0) ∈ Γ0
1/2+ ⊂ Γ0

0, and
v = (∂ρ − TA)Φ with M = s0 − 1, r = s0 − 1

2
+ ϵ, and ϵ′ = ϵ

2
to conclude that∥∥∥((∂ρ − TA)Φ)|ρ=1

∥∥∥
Hs0+

1
2
⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

In order to recover ∂ρφ (appearing on the left hand side of (3.18)) from ∂ρΦ, we use the
definition (3.22) of Φ,

((∂ρ − TA)Φ)|ρ=1 = ∂ρφ|ρ=1 − TτU − Tη−1∂2ρφ
η|ρ=1 − Tη−1∂ρφη|ρ=1,

where U is defined by (3.19) with B given in (2.17), τ = A|ρ=1, and the remaining terms
verify

‖Tη−1∂2ρφ
η‖

C0
ρH

s0+
1
2
≲‖η−1∂2ρφ‖C0

ρH
s0−2−‖η‖

H
s+1

2
R

⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0−‖η‖

H
s+1

2
R

,

‖Tη−1∂ρφη‖C0
ρH

s0+
1
2
≲‖η−1∂ρφ‖C0

ρH
s0−1−‖η‖

H
s+1

2
R

⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0−‖η‖

H
s+1

2
R

,

thanks to Proposition C.8 and Corollary C.9 together with Lemma 3.1. Note that, when
s0− 2 > 1, the estimate follows from s0 ⩽ s, while, when s0− 2 ⩽ d

2
, we use the fact that

(s0−)− 2 + s+ 1
2
− 1 > s0 +

1
2

since s > 3.

3.3. Paralinearization of Dirichlet-to-Neumann operator. Thanks to Proposition
3.10, we are now able to write the Dirichlet-to-Neumann operator (3.1) in terms of tan-
gential derivatives. We introduce the modified gradient (in w)

(3.40) ∇̄ :=
eθ∂θ
η

+ ez∂z,

which allows us to do the following calculation from (2.17)-(2.21) (attention that we
abuse the notation (ρ, θ, z) which has different meaning in Section 2 and here, whose
relation is given by (3.3)),

B =
∂ρφ|ρ=1

η
,(3.41)

V =∇̄φ|ρ=1 −
∇̄η
η
∂ρφ|ρ=1,(3.42)

N =BV · ∇̄η + |V |2 − B2

2
,(3.43)

G(η)ψ =B − V · ∇̄η,(3.44)
∇̄ψ =V +B∇̄η.(3.45)

Note that these formulas also imply

B =
G(η)ψ + ∇̄ψ · ∇̄η

1 +
∣∣∇̄η∣∣2 ,(3.46)
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V = ∇̄ψ − B∇̄η,(3.47)

N =
1

2

(
G(η)ψ + ∇̄ψ · ∇̄η

)2
1 +

∣∣∇̄η∣∣2 .(3.48)

The following estimate for (B, V ) is no more than a consequence of Lemma 3.1 and
formula (3.41), together with Corollary C.9 and Proposition C.22.

Lemma 3.16. Let (η, ψ) ∈ H
s+ 1

2
R ×Hs0 with s > 3 and 3

2
< s0 ⩽ s. Then, by expressing

B, V as linear operators acting on ψ,
(3.49) B = B(η)ψ, V = V(η)ψ,
we have

(3.50) ‖B(η)‖L(Hs0 ;Hs0−1) + ‖V(η)‖L(Hs0 ;Hs0−1) ⩽ C

(
‖η‖

H
s+1

2−
R

)
,

and, in particular,

(3.51) ‖B‖Hs0−1 + ‖V ‖Hs0−1 ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

We can now state the main result of this section as

Proposition 3.17. Let (η, ψ) ∈ H
s+ 1

2
R ×Hs0 with s > 3 and 3

2
< s0 ⩽ s. Let U = ψ−TBη

be the good unknown as defined in (3.19). Then there exists elliptic symbol λ ∈ Σ1, such
that

(3.52)
G(η)ψ =TλU − TV · ∇̄η + f1

=Tλ
(
ψ − TB(η)ψη

)
− TV(η)ψ · ∇̄η + f1,

where B(η),V(η) are defined by (3.49) above and f1 = f1(η, ψ) is linear in ψ with

(3.53) ‖f1‖Hs0+
1
2
⩽ C

(
‖η‖

H
s+1

2−
R

)(
‖ψ‖Hs0 + ‖η‖

H
s+1

2
R

‖ψ‖Hs0−

)
.

Moreover, λ = λ(1) + λ(0) ∈ Σ1 can be calculated explicitly,

(3.54) λ(1) =

√(
ξ2θ
η2

+ ξ2z

)
+

(
ξθ
η
ηz − ξz

ηθ
η

)2

, λ(0) =
l2

η
A(0)|ρ=1,

where A(0) is defined in (3.35), and l is as defined in (1.6),

l =

√
1 +

(
ηθ
η

)2

+ η2z .

Proof. During the proof of Proposition 3.17, we shall use the equivalence: for u, v defined
on T× R,

u ∼ v ⇔ ‖u− v‖
Hs0+

1
2
⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

Recall that, from (3.1), G(η)ψ can be written as

G(η)ψ =
l2

η
∂ρφ|ρ=1 −

ηθ
η

ψθ
η

− ηzψz

=Tη−1l2∂ρφ|ρ=1 + T∂ρφ|ρ=1η
−1l2 +R(η−1l2, ∂ρφ|ρ=1)− Tη−1ηθη

−1ψθ − Tη−1ψθ
η−1ηθ

−R(η−1ηθ, η
−1ψθ)− Tηzψz − Tψzηz −R(ηz, ψz)

∼Tη−1l2∂ρφ|ρ=1 + T∂ρφ|ρ=1η
−1l2 − Tη−1ηθη

−1ψθ − Tη−1ψθ
η−1ηθ − Tηzψz − Tψzηz
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=Tη−1l2∂ρφ|ρ=1 + T∂ρφ|ρ=1η
−1l2 − T∇̄η · ∇̄ψ − T∇̄ψ · ∇̄η

=Tη−1l2∂ρφ|ρ=1 + T∂ρφ|ρ=1η
−1l2 − T∇̄η · ∇̄ψ − TB∇̄η · ∇̄η − TV · ∇̄η.

where we use the formula (3.45). To prove the equivalence, we observe that ∂ρφ|ρ=1,

η−1ψθ and ψz belong to Hs0−1 with norm bounded by C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 using (3.4).

Thus, an application of Proposition C.22 and Corollary C.9 gives
‖R(η−1l2, ∂ρφ|ρ=1) + R(η−1ηθ, η

−1ψθ) + R(ηz, ψz)‖Hs0+
1
2

⩽
(
‖η−1l2‖

H
5
2+

R−1

+ ‖η−1ηθ‖H 5
2+ + ‖ηz‖H 5

2+

)
C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

Thanks to definition (3.19) of good unknown U , formula (3.41), and Proposition 3.10, we
have

G(η)ψ ∼Tη−1l2∂ρφ|ρ=1 + T∂ρφ|ρ=1η
−1l2 − T∇̄η · ∇̄ψ − TB∇̄η · ∇̄η − TV · ∇̄η

∼Tη−1l2TτU + T∂ρφ|ρ=1η
−1l2 − T∇̄η · ∇̄ (U + TBη)− TB∇̄η · ∇̄η − TV · ∇̄η

=Tη−1l2TτU − T∇̄η · ∇̄U − TV · ∇̄η + TηBη
−1l2 − T∇̄η · ∇̄TBη − TB∇̄η · ∇̄η,

where the equivalence is due to estimate (3.18) and η−1l2 ∈ H
s− 1

2
−

R−1 , ensuring that Tη−1l2

is of order 0.
We claim that

Tη−1l2TτU ∼ Tη−1l2τU,(3.55)

T∇̄η · ∇̄U ∼ −1

2
Tiηξ·β|ρ=1U,(3.56)

TηBη
−1l2 − T∇̄η · ∇̄TBη − TB∇̄η · ∇̄η ∼ 0.(3.57)

With these equivalences (whose proof will be given later), we may conclude that

G(η)ψ ∼ TλU − TV · ∇̄η, λ = η−1l2τ +
iηξ · β|ρ=1

2
,

which coincides with (3.54). □

Proof of (3.55). In Proposition 3.10 and Lemma 3.14, we have seen that τ = A|ρ=1 ∈ Σ1.
By applying Proposition 3.4 and using the fact that η−1l2 ∈ H

s− 1
2
−

R−1 ⊂ Σ0 (since s− 1
2
− >

3
2
+ 1 due to s > 3), we have

‖Tη−1l2TτU − T(η−1l2)♯τU‖Hs0+
1
2
≲ C

(
‖η‖

H
s+1

2−
R

)
‖U‖Hs0 ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

Note that, since η−1l2 ∈ Σ0 is independent of ξ and has no Γ−1
1/2+ components, the formula

(3.13) yields (
η−1l2

)
♯τ = η−1l2τ.

□

Proof of (3.56). By definition (3.7), it is easy to see that

− iηξ · β|ρ=1

2
= iξθ

ηθ
η2

+ iξzηz.
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We may decompose the left hand side of (3.56) as

T∇̄η · ∇̄U =Tη−1ηθ

(
η−1∂θU

)
+ Tηz∂zU

=Tη−1ηθTη−1∂θU + Tη−1ηθT∂θUη
−1 + Tη−1ηθR(η

−1, ∂θU) + TiξzηzU.

Since η−1ηθ, η
−1 ∈ Γ0

3/2+, an application of Proposition C.18 and (3.20) gives that

‖
(
T(η−1ηθ)♯(η−1) − Tη−1ηθTη−1

)
∂θU‖Hs0+

1
2
⩽C

(
‖η‖

H
s+1

2−
R

)
‖∂θU‖Hs0−1

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ,

with (η−1ηθ) ♯ (η
−1) = η−2ηθ, from which one may deduce that

Tη−1ηθTη−1∂θU ∼ Tη−2ηθ∂θU = Tiξθη−2ηθU,

and the desired estimate (3.56) can be reduced to

Tη−1ηθT∂θUη
−1 + Tη−1ηθR(η

−1, ∂θU) ∼ 0.

In fact, thanks to Proposition C.8 and Corollary C.9, we have

‖Tη−1ηθT∂θUη
−1‖

Hs0+
1
2
≲‖η−1ηθ‖H1+‖T∂θUη−1‖

Hs0+
1
2

⩽C
(
‖η‖

H
s+1

2−
R

)
‖∂θU‖Hs0−1‖η−1‖

H
max( 52+,s0+

1
2 )

R−1

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ,

‖Tη−1ηθR(η
−1, ∂θU)‖Hs0+

1
2
≲‖η−1ηθ‖H1+‖R(η−1, ∂θU)‖Hs0+

1
2

⩽C
(
‖η‖

H
s+1

2−
R

)
‖η−1‖

H
5
2+

R−1

‖∂θU‖Hs0−1

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

which completes the proof. □

Proof of (3.57). To prove (3.57), as in the proof of Lemma 3.11, we only need to consider
the case s0 = 3

2
+ δ with 0 < δ � 1 and the case s0 = s. In the first case, each term on

the left hand side of (3.57) is equivalent to zero. In fact, Proposition C.8 ensures that

‖TηBη−1l2‖H2+δ ⩽‖ηB‖
H

1
2+δ‖η−1l2‖

H
5
2
R−1

⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ,

‖T∇̄η · ∇̄TBη‖H2+δ ⩽‖∇̄η‖H1+‖∇̄TBη‖H2+δ ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖TBη‖H3+δ

⩽C
(
‖η‖

H
s+1

2−
R

)
‖B‖

H
1
2+δ‖η‖

H
7
2
R

⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 ,

‖TB∇̄η · ∇̄η‖H2+δ ≲‖B∇̄η‖
H

1
2+δ‖∇̄η‖H 5

2
⩽ C

(
‖η‖

H
s+1

2−
R

)
‖B‖

H
1
2+δ

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 .

Note that the estimate for B has been given by (3.51).
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If s0 = s > 3, we are able to apply symbolic calculus (Proposition C.18), since all
the involved symbols has at least Hölder regularity in w. Recall that η ∈ H

s+ 1
2
−

R and
B ∈ Hs−1−. Then we have

TηBη
−1l2 − T∇̄η · ∇̄TBη − TB∇̄η · ∇̄η

=TηBη
−1 + TηB

(
η−1|∇̄η|2

)
− Tη−1ηθ

(
η−1∂θ (TBη)

)
− Tηz∂z (TBη)

− Tη−1ηθB

(
η−1ηθ

)
− TηzBηz

∼TηB
(
η−1|∇̄η|2

)
− Tη−1ηθ

(
η−1TBηθ

)
− TηzTBηz − Tη−1ηθB

(
η−1ηθ

)
− TηzBηz

∼TBTη
(
η−1|∇̄η|2

)
− Tη−1ηθTη−1TBηθ − 2TBTηzηz − TBTη−1ηθ

(
η−1ηθ

)
∼TB|∇̄η|2 − TBTη−1ηθTη−1ηθ − TBTη−1ηθ

(
η−1ηθ

)
− TBη

2
z

∼TB|∇̄η|2 − 2TBTη−1ηθ

(
η−1ηθ

)
− TBη

2
z

∼TB|∇̄η|2 − TB
(
η−1ηθ

)2 − TBη
2
z = 0.

□
As a result of Proposition 3.17, we can replace the first equation in (1.18) by

(3.58) ηt + TV · ∇̄η − TλU = f1.

Before entering to the paralinearization of nonlinear terms, we provide a calculation
concerning the subprincipal part λ(0) of symbol λ appearing in (3.52). We claim that

Lemma 3.18. The symbol λ = λ(1) + λ(0) constructed in Proposition 3.17 satisfies

(3.59) Imλ(0) = −1

2
∂w · ∂ξλ(1) −

1

2

∂wη

η
· ∂ξλ(1).

Proof. Set a = ηλ. Since by (3.54), Imλ(1) = 0, Proposition 3.9 shows that (3.59) will
hold if we prove that the symbol ηλ verifies the second condition of (3.17), i.e. that
Tηλ − T ∗

ηλ is of order 0−.
To prove this, we assume that η ∈ H+∞

R := ∩s∈RHs
R and ψ ∈ Hs for some fixed

s� 1. Under this regularity assumption, from (3.52) and (3.19), we have
ηG(η)ψ =ηTλψ − ηTλTBη − ηTV · ∇̄η + f1

=TηTλψ + TTλψη +R(η, Tλψ)− ηTλTBη − ηTV · ∇̄η + f1

=Tηλψ + (TηTλ − Tηλ)ψ + TTλψη +R(η, Tλψ)− ηTλTBη − ηTV · ∇̄η + f1.

Since η ∈ H+∞
R , thanks to Proposition C.18, C.8, and Corollary C.9, it is clear that the

following terms are smoothing operator w.r.t. ψ,
(TηTλ − Tηλ)ψ, TTλψη, R(η, Tλψ), ηTλTBη, ηTV · ∇̄η,

while f1 is of order −1
2

due to (3.53). Consequently, we have that

Tηλ − ηG(η) is of order − 1

2
,

which, combined with the fact that ηG(η) is self-adjoint, yields that

Tηλ − T ∗
ηλ = (Tηλ − ηG(η))− (Tηλ − ηG(η))∗ is of order − 1

2
,

which concludes the desired result (3.59) for regular enough (η, ψ).
We emphasize that the regularity assumption on η and ψ has no impact in the

identity (3.59) since it can also be obtained by algebric calculus from (3.54) (which is far
more complicated). □
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3.4. Paralinearization of the nonlinear terms. In this section, we aim to rewrite
the second equation of (1.18) in the similar form as (3.58). The main difficulty is the
paralinearization of the nonlinear terms, i.e.

Proposition 3.19. Let (η, ψ) ∈ H
s+ 1

2
R × Hs with s > 3. Then there exists µ ∈ Σ2 and

r2, r3 ∈ Hs+ such that
N = TV · ∇̄ψ − TBG(η)ψ − TBTV · ∇̄η + r2,(3.60)

H − 1

2R
= Tµη + r3.(3.61)

where r2 = r2(η;ψ, ψ) is quadratic in ψ and r3 = r3(η) is independent of ψ with, for all
3
2
< s0 ⩽ s and ψ1, ψ2 ∈ Hs,

‖r2(η;ψ1, ψ2)‖Hs0 + ‖r2(η;ψ2, ψ1)‖Hs0 ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ1‖Hs−‖ψ2‖Hs0 ,(3.62)

‖r3(η)‖Hs ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖η‖

H
s+1

2
R

.(3.63)

Moreover, µ = µ(2) + µ(1) ∈ Σ2 is elliptic with

µ(2) =
1

2l3

[(
ξθ
η

)2

+ ξ2z +

(
ξθ
η
ηz − ξz

ηθ
η

)2
]
.(3.64)

Once this proposition is proved, the second equation in (1.18) can be replaced by
(3.65) ψt + TV · ∇̄ψ + σTµη − TBG(η)ψ − TBTV · ∇̄η = −r2 − σr3,

which can be further written as(
∂t + TV · ∇̄

)
ψ − TB

(
∂t + TV · ∇̄

)
η + σTµη = −r2 − σr3.

By combining this equation with (3.58), we obtain a reformulation of (1.18),
(3.66)(

I 0
−TB I

)(
∂t + TV · ∇̄

)( η
ψ

)
+

(
0 −Tλ
σTµ 0

)(
I 0

−TB I

)(
η
ψ

)
=

(
f1
f2

)
,

where
(3.67) f2 := f2(η;ψ, ψ) = −r2(η;ψ, ψ)− σr3(η).

Note that (
I 0

−TB I

)−1

=

(
I 0
TB I

)
.

This identity allows us to recover from (3.66) an evolution equation for (η, ψ),

(3.68)
(
∂t + TV · ∇̄

)( η
ψ

)
+ L

(
η
ψ

)
= f,

where

(3.69) L :=

(
I 0
TB I

)(
0 −Tλ
σTµ 0

)(
I 0

−TB I

)
and

(3.70) f :=

(
I 0
TB I

)(
f1
f2

)
=

(
f1

TBf1 + f2

)
.

Since λ and µ are elliptic, the operator L can be symmetrized, which is the purpose of
Section 4.
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3.4.1. Paralinearization of N . In this part, we shall prove (3.60) and (3.62). As before,
during this proof, we shall use the equivalence: for u, v defined on T× R and bilinear in
(ψ1, ψ2),
(3.71)

u ∼ v ⇔ ‖(u−v)(η;ψ1, ψ2)‖Hs0+‖(u−v)(η;ψ2, ψ1)‖Hs0 ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ1‖Hs−‖ψ2‖Hs0 .

To begin with, from formula (3.43) for N , it is clear that N is quadratic in ψ as well
as the three first terms on the right hand side of (3.60). As a result, r2 is quadratic in ψ
(not necessarily symmetric).

Due to (3.43) and (3.44), one may rewrite N as follow,
(3.72)

N =
|V |2 +B2

2
− BG(η)ψ

=TV · V + TBB − TBG(η)ψ − TB−V ·∇̄ηB +R(V, V ) + R(B,B) + R(B,G(η)ψ)

∼TV · V + TBB − TBG(η)ψ − TB−V ·∇̄ηB = TV · V − TBG(η)ψ + TV ·∇̄ηB

To prove the equivalence, it suffices to apply Proposition C.8 and use the fact that
B, V,G(η)ψ are linear in ψ with

(3.73) ‖B‖Hs′−1 + ‖V ‖Hs′−1 + ‖G(η)ψ‖Hs′−1 ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs′ , ∀s′ ∈]3

2
, s].

More precisely, we have
‖R(B(ψ1), B(ψ2))‖Hs0 ≲‖B(ψ1)‖H2+‖B(ψ2)‖Hs0−1−

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ1‖Hs−‖ψ2‖Hs0 ,

and the similar estimate holds for R(V, V ) (note that R(·, ·) is symmetric), while
‖R(B(ψ1), G(η)ψ2)‖Hs0 + ‖R(B(ψ2), G(η)ψ1)‖Hs0

≲‖B(ψ1)‖H2+‖G(η)ψ2‖Hs0−1− + ‖G(η)ψ1‖H2+‖B(ψ2)‖Hs0−1−

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ1‖Hs−‖ψ2‖Hs0 .

Inserting (3.45) in the right hand side of (3.60), we can write it, up to r2, as
TV · ∇̄ψ − TBG(η)ψ − TBTV · ∇̄η = TV V + TV · (B∇̄η)− TBG(η)ψ − TBTV · ∇̄η.

According to (3.72), this will be equivalent to N if and only if
TV ·∇̄ηB ∼ TV · (B∇̄η)− TBTV · ∇̄η.

The difference of the two sides can be expressed as
TV · (B∇̄η)− TBTV · ∇̄η − TV ·∇̄ηB

=TV TB∇̄η + TV · T∇̄ηB + TVR(B, ∇̄η)− TBTV · ∇̄η − TV ·∇̄ηB

=[TV , TB]∇̄η +
(
TV · T∇̄η − TV ·∇̄η

)
B + TVR(B, ∇̄η).

Therefore, it suffices to check the following equivalences:
[TV , TB]∇̄η ∼0,(3.74) (

TV · T∇̄η − TV ·∇̄η
)
B ∼0,(3.75)

TVR(B, ∇̄η) ∼0,(3.76)
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in the sense of (3.71). As before, the interpolation argument allows us to focus on the
case s0 = 3

2
+ δ with 0 < δ � 1 and the case s0 = s. In the latter one, by observing

that B, V ∈ Hs−1− ⊂ Γ0
1+, ∇̄η ∈ Hs− 1

2
− ⊂ Γ0

1+, the equivalences (3.74), (3.75), and
(3.76) follows from Corollary C.19, Proposition C.18, and Proposition C.8, respectively,
together with (3.73).

In the case s0 = 3
2
+ δ, we shall check that all the terms concerned are equivalent to

zero. In fact, we have
‖TV (ψ1)TB(ψ2)∇̄η‖H 3

2+δ + ‖TV (ψ2)TB(ψ1)∇̄η‖H 3
2+δ

≲‖V (ψ1)‖H1+‖B(ψ2)‖H 1
2+δ‖∇̄η‖H2 + ‖V (ψ2)‖H 1

2+δ‖B(ψ1)‖H1+‖∇̄η‖H2

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ1‖Hs−‖ψ2‖Hs0 ,

which implies TV TB∇̄η ∼ 0 and TBTV ∇̄η ∼ 0 in the same way, yielding (3.74). For
(3.75), we apply Proposition C.8,

‖
(
TV (ψ1) · T∇̄η − TV (ψ1)·∇̄η

)
B(ψ2)‖H 3

2+δ + ‖TV (ψ2) · T∇̄ηB(ψ1)‖H 3
2+δ

+ ‖TV (ψ2)·∇̄ηB(ψ1)‖H 3
2+δ

⩽‖V (ψ1)‖H2+‖∇̄η‖H2+‖B(ψ2)‖H 1
2+δ + ‖V (ψ2)‖H 1

2+δ‖∇̄η‖H1+‖B(ψ2)‖H2

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ1‖Hs−‖ψ2‖Hs0 .

The estimate corresponding to (3.76) is due to Proposition C.8.
‖TV (ψ1)R(B(ψ2), ∇̄η)‖H 3

2+δ + ‖TV (ψ2)R(B(ψ1), ∇̄η)‖H 3
2+δ

⩽‖V (ψ1)‖H1+‖B(ψ2)‖H 1
2+δ‖∇̄η‖H2 + ‖V (ψ2)‖H 1

2+δ‖∇̄η‖H1‖B(ψ2)‖H2

⩽C
(
‖η‖

H
s+1

2−
R

)
‖ψ1‖Hs−‖ψ2‖Hs0 .

3.4.2. Paralinearization of H. In this part we prove (3.61) and (3.63). As before, we
shall use the equivalence: for u, v functions of η,

(3.77) u ∼ v ⇔ ‖u(η)− v(η)‖Hs ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖η‖

H
s+1

2
R

.

By definition (1.9) of H and expression (1.6) of l, it is easy to calculate that the left hand
side of (3.61) reads

H − 1

2R
=
1

2

[
1

ηl
− ∂θ

η

(
ηθ
ηl

)
− ∂z

(ηz
l

)]
− 1

2R

=
1

2ηl
− 1

2R
+

1

2

[
1

η

ηθ
l

ηθ
η2

+
1

η

ηθ
η

lθ
l2

− 1

η2l
ηθθ

]
+

1

2

[
ηz
lz
l2

− 1

l
ηzz

]

=
1

2ηl
− 1

2R
+

1

2

 η2θ
η3l

+
ηθ
η2l2

ηθ
η
∂θ

(
ηθ
η

)
+ ηzηθz

l
− 1

η2l
ηθθ


+

1

2

ηz
l2

ηθ
η
∂z

(
ηθ
η

)
+ ηzηzz

l
− 1

l
ηzz


=

1

2ηl
− 1

2R
+

1

2

[
η2θ
η3l

− η4θ
η5l3

+
ηθηz
η2l3

ηθz −
(

1

η2l
− η2θ
η4l3

)
ηθθ

]
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+
1

2

[
−η

2
θη

2
z

η3l3
+
ηθηz
η2l3

ηθz −
(
1

l
− η2z
l3

)
ηzz

]
=

1

2ηl
− 1

2R
+

η2θ
2η3l3

− 1

2l3

[(
1 + η2z

) ηθθ
η2

− 2
ηθηz
η

ηθz
η

+

(
1 +

(
ηθ
η

)2
)
ηzz

]
=F (η, ηθ, ηz) +

∑
j,k∈{θ,z}

Gjk(η, ηθ, ηz)ηjk,

where F and Gjk are smooth functions defined by

(3.78)

F (x, u, v) :=
1

2xh
− 1

2R
+

u2

2x2h3
,

Gθθ(x, u, v) :=− 1

2h3
1 + v2

x2
, Gzz(x, u, v) := − 1

2h3

(
1 +

(u
x

)2)
,

Gθz(x, u, v) =Gzθ(x, u, v) :=
1

2h3
uv

x2
,

with h(x, u, v) :=
√

1 + (u/x)2 + v2. Since F (R, 0) = Gθz(R, 0) = Gzθ(R, 0) = 0,
Gθθ(R, 0) = −(2R2)−1, and Gzz(R, 0) = −1/2, one may apply Proposition C.22 and
obtain
(3.79)
H − 1

2R
=TFx(η,∇wη)η + T(∇u,vF )(η,∇wη) · ∇wη + TGjk(η,∇wη)ηjk

+ TηjkTGjk
x (η,∇wη)

η + TηjkT(∇u,vGjk)(η,∇wη)
· ∇wη +R

(
ηjk, G

jk(η,∇wη)
)
+ r4,

where Einstein summation convention is applied for simplicity and the remainder r4 is
equal to

(3.80)
r4 :=F (η,∇wη)− T∇x,u,vF (η,∇wη) · (η,∇wη)

+ Tηjk
(
Gjk(η,∇wη)− T∇x,u,vGjk(η,∇wη) · (η,∇wη)

)
,

which lies in H2(s− 1
2
−)−1 ⊂ Hs due to (C.19) and Proposition C.8, together with the fact

that η ∈ H
s+ 1

2
−

R . We claim that

Lemma 3.20. Under the hypotheses of Proposition 3.19, we have the following equiva-
lences in the sense of (3.77),

TFx(η,∇wη)η ∼ 0,(3.81)
TηjkTGjk

x (η,∇wη)
η, R

(
ηjk, G

jk(η,∇wη)
)
∼ 0,(3.82) (

TηjkT(∇u,vGjk)(η,∇wη)
− Tηjk(∇u,vGjk)(η,∇wη)

)
· ∇wη ∼ 0.(3.83)

Proof. From (C.20), we know that the composition of smooth functions with (η,∇wη)

belong to Hs− 1
2 . Thus, from Proposition C.8, we have

‖TFx(η,∇wη)η‖Hs ≲ ‖Fx(η,∇wη)‖H1+‖η‖Hs
R
⩽ C

(
‖η‖

H
s+1

2−
R

)
‖η‖

H
s+1

2
R

,

‖TηjkTGjk
x (η,∇wη)

η‖Hs + ‖R
(
ηjk, G

jk(η,∇wη)
)
‖Hs

≲‖ηjk‖H1+‖Gjk
x (η,∇wη)‖H1+‖η‖Hs + ‖ηjk‖H 3

2+‖Gjk(η,∇wη)‖Hs− 1
2−

⩽C
(
‖η‖

H
s+1

2−
R

)
‖η‖

H
s+1

2−
R

,
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‖
(
TηjkT(∇u,vGjk)(η,∇wη)

− Tηjk(∇u,vGjk)(η,∇wη)

)
· ∇wη‖Hs

⩽C
(
‖η‖

H
s+1

2−
R

)
‖∇wη‖Hs− 3

2− ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖η‖

H
s+1

2
R

,

where in the last inequality we apply Proposition C.18 with the fact that ηjk and
(
∇u,vG

jk
)
(η,∇wη)

are both in Hs− 3
2
− ⊂ Γ0

3/2+. □

To sum up, we have proved that

(3.84)
H − 1

2R
∼T(∇u,vF )(η,∇wη) · ∇wη + TGjk(η,∇wη)ηjk + Tηjk(∇u,vGjk)(η,∇wη)

· ∇wη

=T(∇u,vF )(η,∇wη)·iξη − TGjk(η,∇wη)ξjξkη + Tηjk(∇u,vGjk)(η,∇wη)·iξη,

and we can define µ(2), µ(1) as

(3.85)
−Gjk(η,∇wη)ξjξk = µ(2),

(∇u,vF ) (η,∇wη) · iξ + ηjk
(
∇u,vG

jk
)
(η,∇wη) · iξ = µ(1).

One can check by direct computation that µ(2) is given by (3.64). As for µ(1), we are only
interested in its imaginary part, which will be useful in Section 4. We claim that

Lemma 3.21. The symbol µ = µ(2) + µ(1) constructed in (3.61) satisfies

(3.86) Imµ(1) = −1

2
∂w · ∂ξµ(2) − 1

2

∂wη

η
· ∂ξµ(2).

Proof. The idea of proof is similar to that of Lemma 3.18. We may assume η ∈ H+∞
R :=

∩s∈RHs
R and reduce the problem to show that T ∗

ηµ − Tηµ is of order 1− (we shall prove
that it is a smoothing operator).

To begin with, we recall that we can represent H as

H − 1

2R
= F (η, ηθ, ηz) +

∑
j,k∈{θ,z}

Gjk(η, ηθ, ηz)ηjk,

where F (x, u, v) and Gjk(x, u, v) are smooth functions defined in (3.78). Then by regard-
ing H − 1

2R
as a nonlinear operator of η (not (η, ηθ, ηz)), one may calculate the derivative

w.r.t. η of η(H − 1
2R
). Namely, for all δη ∈ Hs with s� 1, we have

d

dϵ

∣∣∣∣
ϵ=0

[
(η + ϵδη)

(
H(η + ϵδη)− 1

2R

)]
=

d

dϵ

∣∣∣∣
ϵ=0

[(η + ϵδη)F (η + ϵδη, ∂θ(η + ϵδη), ∂z(η + ϵδη))]

+
∑

j,k∈{θ,z}

d

dϵ

∣∣∣∣
ϵ=0

[
(η + ϵδη)Gjk(η + ϵδη, ∂θ(η + ϵδη), ∂z(η + ϵδη))∂j∂k(η + ϵδη)

]
=F (η,∇wη)δη + ηFx(η,∇wη)δη + η (∇u,vF ) (η,∇wη) · ∇wδη + ηjkG

jk(η,∇wη)δη

+ ηηjkG
jk
x (η,∇wη)δη + ηηjk

(
∇u,vG

jk
)
(η,∇wη) · ∇wδη + ηGjk(η,∇wη)∂j∂kδη,

where the right hand side is a differential operator acting on δη. By comparing it with
(3.85), we can see that the symbol of this differential operator equals ηµ+F0(η,∇wη,∇2

wη),
where F0 is a smooth real-valued function.

Now, for any δη1, δη2 ∈ Hs
R with s� 1, we define

h(ϵ1, ϵ2) := A(η + ϵ1δη1 + ϵ2δη2),
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where A is the normalized area of interface Σ(t), which is defined in (2.31). By (2.34),
we have

∂ϵ1h|ϵ1=0 =

∫
(η + ϵ2δη2)

(
H(η + ϵ2δη2)−

1

2R

)
δη1dw,

which, together with the calculus above, yields

∂ϵ2∂ϵ1h|ϵ1=ϵ2=0 =

∫
Op
(
ηµ+ F0(η,∇wη,∇2

wη)
)
δη2δη1dw.

Due to the regularity of η, h is a smooth function of (ϵ1, ϵ2) near (0, 0). Therefore, the or-
der of derivative is not important, from which one can deduce that Op (ηµ+ F0(η,∇wη,∇2

wη))
is self-adjoint. Since F0 is real-valued, the differential operator Op (ηµ) is self-adjoint.
Form the fact that the difference between differential operator and paradifferential op-
erators with the same symbol is a smoothing operator, we conclude that Tηµ − T ∗

ηµ is a
smoothing operator, which completes the proof. □

Note that, as a by-product, we have re-expressed H − (2R)−1 as

(3.87)
H − 1

2R
=Tµη + TFx(η,∇wη)η + TηjkTGjk

x (η,∇wη)
η +R

(
ηjk, G

jk(η,∇wη)
)

+
(
TηjkT(∇u,vGjk)(η,∇wη)

− Tηjk(∇u,vGjk)(η,∇wη)

)
· ∇wη + r4

which can be seen by inserting (3.85) in (3.79). That is to say, the error r3 appearing in
(3.61) admits an explicit formulation :

(3.88)
r3 =TFx(η,∇wη)η + TηjkTGjk

x (η,∇wη)
η +R

(
ηjk, G

jk(η,∇wη)
)

+
(
TηjkT(∇u,vGjk)(η,∇wη)

− Tηjk(∇u,vGjk)(η,∇wη)

)
· ∇wη + r4.

Recall that F,G are defined in (3.78) and r4 is given by (3.80).

3.5. Continuity of source term. In previous sections, we manage to rewire (1.18)
in paralinear form (3.68). Moreover, by combining estimates in Proposition 3.17 and
Proposition 3.19, we are able to decompose the source term f (see (3.70) and (3.67)) as
(3.89) f = f (0) + f (1) + f (2),

where
(3.90)

f (0) =

(
0

−σr3(η)

)
, f (1) =

(
f1(η, ψ)

0

)
, f (2) =

(
0

TB(η,ψ)f1(η, ψ)− r2(η;ψ, ψ)

)
,

are respectively independent, linear, and quadratic in ψ, with estimates (3.53), (3.62),
and (3.63). In these estimates, by taking s0 = s, we have, for all (η, ψ) ∈ H

s+ 1
2

R ×Hs with
s > 3, B ∈ Hs−1 (see (3.51)) where s− 1 > 1, which, thanks to Proposition C.8, yields

(3.91) ‖f(η, ψ)‖
Hs+1

2×Hs
⩽ C

(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)(
‖η‖

H
s+1

2
R

+ ‖ψ‖Hs

)
.

Meanwhile, with 3
2
< s0 < s− 3

2
, we can prove the local Lipschitz regularity of f(η, ψ) in

ψ, i.e. for all η ∈ H
s+ 1

2
R and ψ1, ψ2 ∈ Hs with s > 3,

(3.92) ‖f(η, ψ1)− f(η, ψ2)‖Hs0+
1
2×Hs0

⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ1‖Hs0 , ‖ψ2‖Hs0

)
‖ψ1 − ψ2‖Hs0 .

The goal of this section is to show that f(η, ψ) is also locally Lipschitzian in η, which
is important to prove the convergence of approximate solutions to the paralinear system
(3.68) and the uniqueness (see Section 5.3).
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Proposition 3.22. Let (η1, ψ1), (η2, ψ2) ∈ H
s+ 1

2
R ×Hs with s > 3, such that

‖(η1, ψ1)‖
H

s+1
2

R ×Hs
+ ‖(η2, ψ2)‖

H
s+1

2
R ×Hs

⩽M

for some M > 0. Then we have, for all 3
2
< s0 < s− 3

2

(3.93) ‖f(η1, ψ1)− f(η2, ψ2)‖Hs0+
1
2×Hs0

⩽ C(M)‖(η1 − η2, ψ1 − ψ2)‖Hs0+
1
2×Hs0

.

The estimate (3.92) allows us to focus on the continuity in η by taking ψ := ψ1 =
ψ2 ∈ Hs, and the desired result can be reduced to

(3.94) ‖f(η1, ψ)− f(η2, ψ)‖Hs0+
1
2×Hs0

⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖η1 − η2‖Hs0+

1
2
,

which can be further reduced to the boundedness of derivation in η.

Lemma 3.23. Let η ∈ H
s+ 1

2
R , δη ∈ Hs+ 1

2 , and ψ ∈ Hs with s > 3. Then the derivative
of f in η, defined by

(3.95) δf :=
d

dη
f(η, ψ) · δη =

d

dϵ

∣∣∣∣
ϵ=0

f(η + ϵδη, ψ),

satisfies, for all 3
2
< s0 < s− 3

2
,

(3.96) ‖δf(η, ψ)‖
Hs0+

1
2×Hs0

⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

Since f can be decomposed as (3.89) with f (0), f (1), and f (2) given by (3.90), we
need to study δf1 and δf2 (more precisely δr2 and δr3, see definition (3.67) of f2). The
study of f1 is the most difficult one, since the only formula for f1 is (3.52), meaning
that it is unavoidable to calculate the derivative-in-η of G(η)ψ (depending implicitly in
η), which has been done in Proposition 2.8. As for the study of r2, we shall rewrite
it as a function of B, V , and G(η)ψ and reduce the problem again to shape derivative
(Proposition 2.8). The last term r3, according to its definition (3.61), depends explicitly
on η and the corresponding variational calculus is direct.

3.5.1. Derivative of f1. In this part, we shall prove (3.96) for f1 (defined in Proposition
3.17), namely

(3.97) ‖δf1(η, ψ)‖Hs0+
1
2
⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

Before starting the proof, we introduce several technical lemmas which will be fre-
quently used:

Lemma 3.24. Let η ∈ H
s+ 1

2
R and δη ∈ Hs0 with s > 3 and 3

2
< s0 ⩽ s. All the functions

u taking the form u = F (η,∇wη, . . .∇k
wη) (k = 0, 1, 2) belong to Hs+ 1

2
−k

F (R,0) with

(3.98) ‖δu‖
Hs0+

1
2−k ⩽ C

(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
.

Proof. The fact that u ∈ H
s+ 1

2
−k

F (R,0) is no more than a consequence of Proposition C.22. For
the proof of (3.98), we focus on the case k = 2, while the other cases can be proved in
the same way. By definition, the derivative of u in η reads

δu =
k∑
j=0

∂jF (η,∇wη, . . .∇k
wη)∇j

wδη,
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where, again by Proposition C.22, ∂jF (η,∇wη, . . .∇k
wη) ∈ Hs+ 1

2
−k, up to constant nor-

malization, and ∇j
wδη ∈ Hs0+

1
2
−j ⊂ Hs0+

1
2
−k. Thus, Corollary C.9 gives the desired

estimate,

‖δu‖
Hs0+

1
2−k ⩽

k∑
j=0

‖∂jF (η,∇wη, . . .∇k
wη)∇k

j δη‖Hs0+
1
2−k

≲
k∑
j=0

‖∂jF (η,∇wη, . . .∇k
wη)‖Hs+1

2−k‖∇k
j δη‖Hs0+

1
2−k

⩽C
(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
.

□

Lemma 3.25. Let η ∈ H
s+ 1

2
R , ψ ∈ Hs, and δη ∈ Hs0 with s > 3 and 3

2
< s0 ⩽ s. Then

the following estimate holds,

(3.99) ‖δB‖Hs0−1 + ‖δV ‖Hs0−1 ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

Proof. Recall that, since δη ∈ Hs0+
1
2 , the derivative in η of G(η)ψ lies in Hs0−1 due to

Proposition 2.8. The formula (3.46) allows us to estimate δB. In fact, from (3.46), we
have

δB =
δ (G(η)ψ)

1 +
∣∣∇̄η∣∣2 +

δ
(
∇̄ψ · ∇̄η

)
1 +

∣∣∇̄η∣∣2 +
(
G(η)ψ + ∇̄ψ · ∇̄η

)
δ

((
1 +

∣∣∇̄η∣∣2)−1
)
.

From δ (G(η)ψ) ∈ Hs0−1, the first term on the right hand side belongs to Hs0−1, while
the other terms belong to the same space Hs0−1 due to Lemma 3.24 and Corollary C.9,
which completes the proof for δB. As for δV , the formula (3.47) implies

δV = δ
(
∇̄ψ
)
+ δB∇̄η +Bδ

(
∇̄η
)
.

The desired estimate then follows from that of δB and Lemma 3.24. □

Lemma 3.26. Let η ∈ H
s+ 1

2
R and δη ∈ Hs0+

1
2 with s > 3 and 3

2
< s0 ⩽ s. Let

a = a(m) + a(m−1) be a symbol with m ∈ R and

a(m) = F (η,∇θ,zη; ξ), a(m−1) =
∑
|α|⩽2

Gα(η,∇θ,zη; ξ)∂
α
θ,zη,

where F (x, u, v; ξ) and Gα(x, u, v; ξ)’s are smooth function of order m and m − 1 in ξ,
respectively. Namely, for all β ∈ N3 and γ ∈ N2

sup
x,u,v

∣∣∂βx,u,v∂γξF (x, u, v; ξ)∣∣ ≲ 〈ξ〉m−|γ|, sup
x,u,v

∣∣∂βx,u,v∂γξGα(x, u, v; ξ)
∣∣ ≲ 〈ξ〉m−1−|γ|.

Then Ta and Tδa are of order m.
Proof. Clearly a ∈ Γm3/2+ + Γm−1

1/2+ and thus Ta is of order m. As for Tδa, a direct calculus
gives that

δa = δ (F (η,∇wη; ξ)) +
∑
|α|⩽2

δ (Gα(η,∇wη; ξ)) ∂
α
wη +

∑
|α|⩽2

Gα(η,∇wη; ξ)∂
α
wδη.

By Lemma 3.24 and s > 3, all the terms on the right hand side belong to Γm0+ or Γm−1
0+

except for those Gα(η,∇wη; ξ)∂
α
θ,zδη with |α| = 2. To deal with these terms, we observe

that Gα(η,∇wη; ξ) has Hs− 1
2 regularity in w variable while the low regularity comes from
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∂αθ,zδη ∈ Hs0− 3
2 . By applying Corollary C.9, it is easy to check that, for all |ξ| > 1

2
and

γ ∈ N2,
‖∂γξGα(η,∇wη; ξ)∂

α
θ,zδη‖Hs0−

3
2
≲ ‖Gα(η,∇wη; ξ)‖Hs− 1

2
‖δη‖

Hs0+
1
2
〈ξ〉m−1−|γ|.

Then by Proposition C.16, the associated paradifferential operators is of order m − 1
when s0 − 3

2
> 1, or

m− 1 + 1−
(
s0 −

3

2

)
= m−

(
s0 −

3

2

)
< m,

when s0 − 3
2
< 1 (in the critical case s0 − 3

2
= 1, one may replace s0 − 3

2
by s0 − 3

2
−),

which completes the proof. □
Now we are ready to prove (3.97). As before, during this proof, we denote

(3.100) u ∼ v ⇔ ‖u− v‖
Hs0+

1
2
⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

The main idea of the proof is to use (3.52) together with shape derivative formula (2.42)
to obtain an explicit expression of δf1, where most terms can be treated separately and
the remaining ones (see (3.104)) will be proved to admit some cancellation thanks to an
application of paralinearization (3.52) with ψ replaced by Bδη and B.

From (3.52), the derivative of f1 in η reads
δf1 =δ

(
G(η)ψ − TλU + TV · ∇̄η

)
=δG(η)ψ − TδλU − TλδU + TδV · ∇̄η + TV · δ

(
∇̄η
)

=δG(η)ψ − TδλU − TλδU + TδV · ∇̄η + TV ·
(
−ηθ
η2
δη, 0

)
+ TV · ∇̄δη.

By (2.42) and definition (3.19) of U , the right hand side can be further written as

δf1 =−G(η) (Bδη)−∇w ·
(
V θ

η
δη, V zδη

)
− Bδη

η
− TδλU + Tλδ (TBη)

+ TδV · ∇̄η + TV ·
(
−ηθ
η2
δη, 0

)
+ TV · ∇̄δη

=−G(η) (Bδη)− ∇̄ · (V δη) + ηθ
η2
V θδη − Bδη

η
− TδλU + TλTδBη + TλTBδη

+ TδV · ∇̄η + TV ·
(
−ηθ
η2
δη, 0

)
+ TV · ∇̄δη.

Lemma 3.27. Under the hypotheses of Lemma 3.23, we have
ηθ
η2
V θδη,

Bδη

η
, TV ·

(
−ηθ
η2
δη, 0

)
∼ 0,(3.101)

TλTδBη, TδV · ∇̄η ∼ 0,(3.102)
TδλU ∼ 0,(3.103)

in the sense of (3.100)

Proof of Lemma 3.27. The proof of (3.101) is direct. Since B, V ∈ Hs−1, we are able
to deduce the following estimates from Proposition C.8, Corollary C.9, and Proposition
C.22,

‖ηθ
η2
V θδη‖

Hs0+
1
2
≲ ‖ηθ

η2
V θ‖Hs−1‖δη‖

Hs0+
1
2
⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,
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‖Bδη
η

‖
Hs0+

1
2
≲ ‖B

η
‖Hs−1‖δη‖

Hs0+
1
2
⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

‖TV ·
(
−ηθ
η2
δη, 0

)
‖
Hs0+

1
2
≲ ‖V ‖H1+‖ηθ

η2
δη‖

Hs0+
1
2
≲ ‖V ‖H1+‖ηθ

η2
‖
Hs0+

1
2
‖δη‖

Hs0+
1
2

⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

To prove (3.102), we recall that, due to Lemma 3.25, δB, δV ∈ Hs0−1 As a result,

‖TλTδBη‖Hs0+
1
2
⩽C

(
‖η‖

H
s+1

2
R

)
‖TδBη‖Hs0+

3
2
≲ ‖δB‖Hs0−1‖η‖

Hmax( 72+,s0+
3
2 )

⩽C
(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

‖TδV · ∇̄η‖
Hs0+

1
2
≲‖δV ‖Hs0−1‖∇̄η‖

Hmax( 52 ,s0+
1
2 )+ ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

As for the last equivalence (3.103), it is no more than a consequence of U ∈ Hs ⊂
Hs0+

3
2 and λ ∈ Σ1 with Lemma 3.26. □
It remains to prove (3.97), namely that

(3.104) δf1 ∼ −G(η) (Bδη)− ∇̄ · (V δη) + TλTBδη + TV · ∇̄δη

is equivalent to zero in the sense of (3.100). Note that δη is assumed to be in Hs+ 1
2 , per-

mitting us to apply the paralinearization of Dirichlet-to-Neumann operator (Proposition
3.17). More precisely, we have∥∥G(η) (Bδη)− Tλ

(
Bδη − TB(η)(Bδη)η

)
+ TV(η)(Bδη) · ∇̄η

∥∥
Hs0+

1
2

⩽ C

(
‖η‖

H
s+1

2
R

)
‖Bδη‖Hs0 ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

Recall that linear operators B(η) and V(η) are defined in (3.49) with estimate (3.50).
Then an application of Lemma 3.16, together with Bδη ∈ Hs0+

1
2 , gives the following

estimates∥∥TV(η)(Bδη) · ∇̄η∥∥Hs0+
1
2
⩽‖V(η)(Bδη)‖H1+

∥∥∇̄η∥∥
Hs0+

1
2
⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

∥∥TB(η)(Bδη)η∥∥Hs0+
3
2
⩽‖B(η)(Bδη)‖

Hs0−
1
2
‖η‖

Hs0+
3
2
⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

Therefore, the following paradifferential calculus holds:
δf1 ∼− Tλ (Bδη) + TλTBδη − (∇̄ · V )δη − V · ∇̄δη + TV · ∇̄δη

=− Tλ (TδηB +R(B, δη))− (∇̄ · V )δη −
(
T∇̄δη · V +R(V, ∇̄δη)

)
∼− TλTδηB + (G(η)B)δη,

where the last equivalence is from Proposition 2.9 and the following estimate (recall that
we assume s > s0 + 3/2)

‖R(B, δη)‖
Hs0+

3
2
+
∥∥T∇̄δηV ∥∥Hs0+

1
2
+
∥∥R(V, ∇̄δη)∥∥

Hs0+
1
2

≲‖δη‖
Hs0+

1
2
‖B‖Hs−1 + ‖∇̄δη‖

Hs0−
1
2
‖V ‖Hs−1

⩽C
(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.
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Our problem is now reduced to
(G(η)B)δη − TλTδηB ∼ 0.

To prove this, we apply again Proposition 3.17 with ψ replaced by B ∈ Hs−1, namely
G(η)B ∼ Tλ

(
B − TB(η)Bη

)
− TV(η)B · ∇̄η.

Recall that linear operators B(η) and V(η) are defined in (3.49) and the estimate (3.50)
ensures that B(η)B,V(η)B ∈ Hs−2. Since η ∈ H

s+ 1
2

R and ∇̄η ∈ Hs− 1
2 due to Corollary

C.9, one can apply Proposition C.8 to show that TλTB(η)Bη and TV(η)B · ∇̄η belong to
Hs− 1

2 , which implies that
G(η)B ∼ TλB,

since s− 1/2 > s0 + 1/2 (recall that in our assumption s > s0 + 3/2). Consequently,
(G(η)B)δη ∼ (TλB)δη = TδηTλB + TTλBδη +R(TλB, δη) ∼ TδηTλB,

where the last equivalence is due to
‖TTλBδη‖Hs0+

1
2
+ ‖R(TλB, δη)‖Hs0+

1
2
≲ ‖TλB‖Hs−2‖δη‖

Hs0+
1
2

⩽ C

(
‖η‖

H
s+1

2
R

)
‖B‖Hs−1‖δη‖

Hs0+
1
2
⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

Thus,
G(η)Bδη − TλTδηB ∼ TδηTλB − TλTδηB = [Tδη, Tλ(1) ]B + [Tδη, Tλ(0) ]B.

Since δη ∈ Hs0+
1
2 ⊂ Γ0

1+, λ(1) ∈ Γ1
3/2+, and λ(0) ∈ Γ0

1/2+, the commutator estimate
(Corollary C.19) implies that [Tδη, Tλ(1) ] and [Tδη, Tλ(0) ] are both of order less than 0, and
the proof of (3.97) is completed by observing that B ∈ Hs−1 ⊂ Hs0+

1
2 .

3.5.2. Derivative of f2. The purpose of this part is to show that the derivative in η of f2
(defined by (3.67)) is bounded, namely

(3.105) ‖δf2(η, ψ)‖Hs0 ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

We first claim that this estimate implies the desired result (3.96). In fact, by (3.97)
and the definition (3.70) of f , it suffices to show

(3.106) ‖δ (TBf1 + f2) ‖Hs0 ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

which can be reduced to

‖δ (TBf1) ‖Hs0 ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

provided (3.105) is correct. In (3.97) and Lemma 3.25, we have seen δB ∈ Hs0−1 and
δf1 ∈ Hs0+

1
2 , while B ∈ Hs−1 and f1 ∈ Hs+ 1

2 . These estimates give
‖δ (TBf1) ‖Hs0 ⩽‖TδBf1‖Hs0 + ‖TBδf1‖Hs0

≲‖δB‖Hs0−1‖f1‖Hmax(s0,2+) + ‖B‖H1+‖δf1‖Hs0

≲C
(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

which completes the proof of (3.106).
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As before, during the proof of (3.105), we denote

(3.107) u ∼ v ⇔ ‖u− v‖Hs0 ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

From definition (3.67), it suffices to prove that r2 (defined in (3.60)) and r3 (defined in
(3.61)) are equivalent to zero. We shall begin with the estimate of r2.
3.5.3. Study of r2. By (3.60), r2 reads

r2 = N − TV · ∇̄ψ + TBG(η)ψ + TBTV · ∇̄η.
As in Section 3.4.1, we shall decompose it as a function of B, V , and G(η)ψ and apply
Proposition 2.8. In this part, the shape derivative formula (2.42) is not necessary, we
only need the regularity of δ(G(η)ψ) (see also Lemma 3.25).

Via the same calculus as in (3.72), we can reformulate r2 as

r2 =
|V |2 +B2

2
− BG(η)ψ − TV ·

(
V +B∇̄η

)
+ TBG(η)ψ + TBTV · ∇̄η

=TBB − TG(η)ψB − TV ·
(
B∇̄η

)
+ TBTV · ∇̄η +R(V, V ) + R(B,B) + R(B,G(η)ψ)

=TV ·∇̄ηB − TV ·
(
B∇̄η

)
+ TBTV · ∇̄η +R(V, V ) + R(B,B) + R(B,G(η)ψ)

=
(
TV ·∇̄η − TV · T∇̄η

)
B + [TB, TV ] · ∇̄η − TV ·R(B, ∇̄η)

+R(V, V ) + R(B,B) + R(B,G(η)ψ).

And the desired result r2 ∼ 0 is no more than a consequence of the following lemma:
Lemma 3.28. Under the hypotheses of Lemma 3.23, we have the following equivalences
in the sense of (3.107),

δ
((
TV ·∇̄η − TV · T∇̄η

)
B
)
∼ 0,(3.108)

δ
(
[TB, TV ] · ∇̄η

)
∼ 0,(3.109)

δ
(
TV ·R(B, ∇̄η)

)
∼ 0,(3.110)

δ (R(V, V ) + R(B,B) + R(B,G(η)ψ)) ∼ 0.(3.111)

Proof. The left hand side of (3.108) is equal to
δ
((
TV ·∇̄η − TV · T∇̄η

)
B
)
=TδV ·∇̄ηB − TδV · T∇̄ηB + TV ·δ(∇̄η)B − TV · Tδ(∇̄η)B

+
(
TV ·∇̄η − TV · T∇̄η

)
δB,

where each term on the right hand side is equivalent to zero. In fact, since δB, δV ∈
Hs0−1 (see Lemma 3.25) and δ

(
∇̄η
)
∈ Hs0− 1

2 (see Lemma 3.24), one may obtain from
Proposition C.18, C.8, and Corollary C.9 that

‖TδV ·∇̄ηB‖Hs0 + ‖TδV · T∇̄ηB‖Hs0

≲‖δV · ∇̄η‖Hs0−1‖B‖Hmax(s0,2+) + ‖δV ‖Hs0−1‖∇̄η‖H1+‖B‖Hmax(s0,2+)

≲‖δV ‖Hs0−1‖∇̄η‖Hmax(1+,s0−1)‖B‖Hmax(s0,2+) ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

‖TV ·δ(∇̄η)B‖Hs0 + ‖TV · Tδ(∇̄η)B‖Hs0

≲‖V · δ
(
∇̄η
)
‖H1+‖B‖Hs0 + ‖V ‖H1+‖δ

(
∇̄η
)
‖H1+‖B‖Hs0

≲‖V ‖H1+‖δ
(
∇̄η
)
‖H1+‖B‖Hs0 ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

‖
(
TV ·∇̄η − TV · T∇̄η

)
δB‖Hs0
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⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δB‖Hs0−1 ⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

Recall that the regularity of B and V has been studied in Lemma 3.16.
The proof of (3.109) is similar. We first write its left hand side as

δ
(
[TB, TV ] · ∇̄η

)
= [TδB, TV ] · ∇̄η + [TB, TδV ] · ∇̄η + [TB, TV ] · δ

(
∇̄η
)
,

where we shall apply commutator estimate (Corollary C.19) only for the last term on the
right hand side.

‖[TδB, TV ] · ∇̄η‖Hs0 + ‖[TB, TδV ] · ∇̄η‖Hs0

⩽‖TδBTV · ∇̄η‖Hs0 + ‖TV · TδB∇̄η‖Hs0 + ‖TBTδV · ∇̄η‖Hs0 + ‖TδV · TB∇̄η‖Hs0

≲ (‖B‖H1+ + ‖V ‖H1+) (‖δB‖Hs0−1 + ‖δV ‖Hs0−1) ‖∇̄η‖Hmax(s0,2+)

⩽C
(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

‖[TB, TV ] · δ
(
∇̄η
)
‖Hs0

⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δ
(
∇̄η
)
‖
Hs0−

1
2
⩽ C

(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

As for the estimate (3.110), we shall apply Proposition C.8.
‖δ
(
TV ·R(B, ∇̄η)

)
‖Hs0

⩽‖TδV ·R(B, ∇̄η)‖Hs0 + ‖TV ·R(δB, ∇̄η)‖Hs0 + ‖TV ·R
(
B, δ

(
∇̄η
))

‖Hs0

≲‖δV ‖Hs0−1‖R(B, ∇̄η)‖Hmax(s0,2+) + ‖V ‖H1+‖R(δB, ∇̄η)‖Hs0

+ ‖V ‖H1+‖R
(
B, δ

(
∇̄η
))

‖Hs0

≲‖δV ‖Hs0−1‖B‖Hs−1‖∇̄η‖
Hs− 1

2
+ ‖V ‖H1+‖δB‖Hs0−1‖∇̄η‖H2+

+ ‖V ‖H1+‖B‖
H

3
2+‖δ

(
∇̄η
)
‖
Hs0−

1
2

⩽C
(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
.

The last equivalence (3.111) is merely a consequence of Proposition C.8.
‖δ (R(V, V ) + R(B,B) + R(B,G(η)ψ)) ‖Hs0

⩽‖R(δV, V )‖Hs0 + ‖R(δB,B)‖Hs0 + ‖R(δB,G(η)ψ)‖Hs0 + ‖R(B, δ(G(η)ψ))‖Hs0

≲‖δV ‖Hs0−1‖V ‖H2+ + ‖δB‖Hs0−1‖B‖H2+ + ‖δB‖Hs0−1‖G(η)ψ‖H2+

+ ‖B‖H2+‖δ(G(η)ψ)‖Hs0−1

⩽C
(
‖η‖

H
s+1

2
R

, ‖ψ‖Hs

)
‖δη‖

Hs0+
1
2
,

where we use the fact that G(η)ψ ∈ Hs−1 and δ(G(η)ψ) ∈ Hs0−1 due to Proposition
2.8. □

3.5.4. Study of r3. In the end of Section 3.4.2, we have obtained an explicit formula (3.88)
for r3. Then it suffices to show that the derivative-in-η of the right hand side of (3.88) is
equivalent to zero in the sense of (3.107), which can be reduced to the following lemma.

Lemma 3.29. Under the hypotheses of Lemma 3.23, we have the following equivalences
in the sense of (3.107),

δ
(
F (η,∇wη)− T∇x,u,vF (η,∇wη) · (η,∇wη)

)
∼ 0,(3.112)
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δ
(
Tηjk

(
Gjk(η,∇wη)− T∇x,u,vGjk(η,∇wη) · (η,∇wη)

))
∼ 0,(3.113)

δ
(
TFx(η,∇wη)η

)
∼ 0,(3.114)

δ
(
TηjkTGjk

x (η,∇wη)
η
)
, δ
(
R
(
ηjk, G

jk(η,∇wη)
))

∼ 0,(3.115)

δ
((
TηjkT(∇u,vGjk)(η,∇wη)

− Tηjk(∇u,vGjk)(η,∇wη)

)
· ∇wη

)
∼ 0.(3.116)

Recall that F,Gjk are smooth functions defined in (3.78).

Proof of (3.114)-(3.116). The proof of these equivalences are similar to the study of r2.
Due to Lemma 3.24, the composition of smooth functions with (η,∇wη) belongs to Hs− 1

2

and their derivative in η lie in Hs0− 1
2 . Then (3.114) follows from

‖δ
(
TFx(η,∇wη)η

)
‖Hs0 ⩽‖Tδ(Fx(η,∇wη))η‖Hs0 + ‖TFx(η,∇wη)δη‖Hs0

≲‖δ (Fx(η,∇wη)) ‖H1+‖η‖Hs0 + ‖Fx(η,∇wη)‖H1+‖δη‖Hs0

⩽C
(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
,

while (3.115) is a consequence of

‖δ
(
TηjkTGjk

x (η,∇wη)
η
)
‖Hs0 + ‖δ

(
R
(
ηjk, G

jk(η,∇wη)
))

‖Hs0

⩽‖TδηjkTGjk
x (η,∇wη)

η‖Hs0 + ‖TηjkTδ(Gjk
x (η,∇wη))η‖Hs0 + ‖TηjkTGjk

x (η,∇wη)
δη‖Hs0

+ ‖R
(
δηjk, G

jk(η,∇wη)
)
‖Hs0 + ‖R

(
ηjk, δ

(
Gjk(η,∇wη)

))
‖Hs0

≲‖δηjk‖Hs0−
3
2
‖Gjk

x (η,∇wη)‖H1+‖η‖
Hmax( 52+,s0)

+ ‖ηjk‖H1+‖δ
(
Gjk
x (η,∇wη)

)
‖H1+‖η‖Hs0

+ ‖ηjk‖H1+‖Gjk
x (η,∇wη)‖H1+‖δη‖Hs0 + ‖δηjk‖Hs0−

3
2
‖Gjk

x (η,∇wη)‖H 5
2+

+ ‖ηjk‖H 3
2+‖δ

(
Gjk
x (η,∇wη)

)
‖
Hs0−

1
2

⩽C
(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
.

As for (3.116), when the derivative δ acts on ∇wη, by Proposition C.18, we have

‖
(
TηjkT(∇u,vGjk)(η,∇wη)

− Tηjk(∇u,vGjk)(η,∇wη)

)
· ∇wδη‖Hs0

⩽C
(
‖η‖

H
s+1

2
R

)
‖δη‖s0− 1

2
⩽ C

(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
,

since the symbols ηjk and
(
∇u,vG

jk
)
(η,∇wη) belong to Hs− 3

2 ⊂ Γ0
3/2+. When δ acts on

the symbols, each terms are equivalent to zero,
‖TδηjkT(∇u,vGjk)(η,∇wη)

· ∇wη‖Hs0 ≲‖δηjk‖Hs0−
3
2
‖
(
∇u,vG

jk
)
(η,∇wη)‖H1+‖∇wη‖Hmax( 52+,s0)

,

‖TηjkTδ((∇u,vGjk)(η,∇wη)) · ∇wη‖Hs0 ≲‖ηjk‖H1+‖δ
((
∇u,vG

jk
)
(η,∇wη)

)
‖
Hs0−

1
2
‖∇wη‖Hs0 ,

‖Tδηjk(∇u,vGjk)(η,∇wη)
· ∇wη‖Hs0 ≲‖δηjk

(
∇u,vG

jk
)
(η,∇wη)‖Hs0−

3
2
‖∇wη‖Hmax( 52+,s0)

⩽‖δηjk‖Hs0−
3
2
‖
(
∇u,vG

jk
)
(η,∇wη)‖Hs−1‖∇wη‖Hmax( 52+,s0)

,

‖Tηjkδ((∇u,vGjk)(η,∇wη)) · ∇wη‖Hs0 ≲‖ηjkδ
((
∇u,vG

jk
)
(η,∇wη)

)
‖
Hs0−

1
2
‖∇wη‖Hs0

⩽‖ηjk‖Hs− 3
2
‖δ
((
∇u,vG

jk
)
(η,∇wη)

)
‖
Hs0−

1
2
‖∇wη‖Hs0 ,

the right hand side of which are all bounded by C
(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
. □
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To prove (3.112) and (3.113), we need the following lemma,

Lemma 3.30. Let η ∈ H
s+ 1

2
R and δη ∈ Hs0 with s > 3 and 3

2
< s0 < s − 3

2
. For all

smooth function F = F (x, u, v), we have

(3.117) ‖δ
(
F (η,∇wη)− T(∇x,u,vF )(η,∇wη) · (η,∇wη)

)
‖Hs0 ⩽ C

(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
.

Recall that δ stands for the derivation in η.

Proof. The function on the left hand side of (3.117) reads

(∇x,u,vF ) (η,∇wη) ·(δη,∇wδη)−Tδ((∇x,u,vF )(η,∇wη)) ·(η,∇wη)−T(∇x,u,vF )(η,∇wη) ·(δη,∇wδη).

Recall that Lemma 3.24 ensures that δ ((∇x,u,vF ) (η,∇wη)) ∈ Hs0− 1
2 . Then Proposition

C.8 implies

‖Tδ((∇x,u,vF )(η,∇wη)) · (η,∇wη)‖Hs0 ≲‖δ ((∇x,u,vF ) (η,∇wη)) ‖H1+‖(η,∇wη)‖Hs0

⩽C
(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
.

The remaining term

(∇x,u,vF ) (η,∇wη) · (δη,∇wδη)− T(∇x,u,vF )(η,∇wη) · (δη,∇wδη)

=T(δη,∇wδη) · (∇x,u,vF ) (η,∇wη) + R ((∇x,u,vF ) (η,∇wη), (δη,∇wδη)) ,

which, due to Proposition C.8, can be bounded by

‖T(δη,∇wδη) · (∇x,u,vF ) (η,∇wη)‖Hs0 ≲‖(δη,∇wδη)‖Hs0−
1
2
‖ (∇x,u,vF ) (η,∇wη)‖Hs0

⩽C
(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
,

‖R ((∇x,u,vF ) (η,∇wη), (δη,∇wδη)) ‖Hs0 ≲‖(δη,∇wδη)‖Hs0−
1
2
‖ (∇x,u,vF ) (η,∇wη)‖H 3

2+

⩽C
(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
.

□

Proof of (3.112) and (3.113). (3.112) is a direct consequence of Lemma 3.30. For (3.113),
one may rewrite its left hand side as

Tδηjk
(
Gjk(η,∇wη)− T∇x,u,vGjk(η,∇wη) · (η,∇wη)

)
+ Tηjkδ

((
Gjk(η,∇wη)− T∇x,u,vGjk(η,∇wη) · (η,∇wη)

))
,

where the second term is equivalent to zero due to Lemma 3.30 and Proposition C.8,
while the first term can be estimated via (C.9) and (C.19),

‖Tδηjk
(
Gjk(η,∇wη)− T∇x,u,vGjk(η,∇wη) · (η,∇wη)

)
‖Hs0

≲‖δηjk‖Hs0−
3
2
‖Gjk(η,∇wη)− T∇x,u,vGjk(η,∇wη) · (η,∇wη)‖Hmax( 52+,s0)

⩽C
(
‖η‖

H
s+1

2
R

)
‖δη‖

Hs0+
1
2
.

□
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4. Symmetrization of the system

In previous section, the main system (1.18) has been reformulated into paralinear
form (3.68), which we recall here

∂t

(
η
ψ

)
+
(
TV · ∇̄+ L

)( η
ψ

)
= f,

where
L =

(
I 0
TB I

)(
0 −Tλ
σTµ 0

)(
I 0

−TB I

)
.

The goal of this section is to check that this system is symmetrizable. Namely, the
operator TV · ∇̄ + L will be shown to be anti-self-adjoint, up to remainders with proper
regularity. Under the hypotheses of Theorem 1.1, (η, ψ) ∈ H

s+ 1
2

R × Hs and thus the
vector V and η has Lipschitz regularity, which guarantees that TV · ∇̄ is anti-self-adjoint
up to a remainder of order 0 (see Lemma 5.14). The main difficulty is to prove that L is
symmetrizable. In fact, the matrix of principal symbols associated to L reads(

0 −λ(1)
σµ(2) 0

)
,

where λ(1), µ(2) are real and elliptic with σ > 0. When η (the coefficients of λ, µ) is regular
enough, a simple calculation of matrices gives the desired symmetrization( √

σµ(2)/λ(1) 0
0 1

)−1
(

0 −
√
σλ(1)µ(2)√

σλ(1)µ(2) 0

)( √
σµ(2)/λ(1) 0

0 1

)
.

This heuristic calculation indicates us to try to construct symmetrizer S such that

S

(
0 −Tλ
σTµ 0

)
S−1

is anti-self-adjoint up to remainders. Meanwhile, one could also see the proper order
of symbols, which is stated in detail in Proposition 4.1. To rigorously construct the
symmetrizer S, we shall repeat the method in [6] with the symbolic calculus introduced
in Section 3.1 and Appendix C.3.

As in previous section, for a, b ∈ Σm, we say that Ta and Tb are equivalent and
write Ta ≈ Tb if their difference is of order m − 3/2− with operator norm bounded
by C

(
‖η‖

H
7
2+

)
. Besides, for any symbol a ∈ Σm ⊂ Γm3/2+ + Γm−1

1/2+, we shall also use
the notation a(m) ∈ Γm3/2+ and a(m−1) ∈ Γm−1

1/2+ to present its principal and subprincipal
component respectively (note that this decomposition is unique if we further assume that
a(m) is homogeneous in ξ of order m).

Proposition 4.1. Let (η, ψ) ∈ H
s+ 1

2
R ×Hs with s > 3. There exist elliptic symbols p ∈ Σ

1
2

and q ∈ Σ0 such that

(4.1) S :=

(
Tp 0
0 Tq

)
satisfies, for some elliptic γ ∈ Σ

3
2 ,

(4.2) S

(
0 −Tλ
σTµ 0

)
=

(
0 −TpTλ

σTqTµ 0

)
≈
(

0 −TγTq
T ∗
γTp 0

)
=

(
0 −Tγ
T ∗
γ 0

)
S

in the sense that TpTλ ≈ TγTq and σTqTµ ≈ T ∗
γTp.
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Furthermore, we have,
(4.3) TpTλ ≈ TγTq, TqTσµ ≈ TγTp, T ∗

γ ≈ Tγ,

which is stronger than (4.2)

The construction of p, q, γ from λ, µ is exactly the same as in Section 4.2 of [6], which
we recall here. To begin with, we investigate the conditions on γ such that T ∗

γ ∼ Tγ. By
choosing
(4.4) Im γ(3/2) = 0,

one may apply Propostion 3.9 to deduce that

(4.5) Im γ(1/2) = −1

2
∂w · ∂ξγ(3/2).

We shall next determine Re γ(3/2), Re γ(1/2) and q such that
(4.6) TqTσµTλ ≈ TγTγTq, and TpTλ ≈ TγTq.

This will provide a solution to the first two equivalences in (4.3), plugging the last formula
of (4.6) inside the first one and using that λ has a parametrix, since λ is elliptic (see
Proposition 3.7). By applying symbolic calculus (3.11), the first equivalence of (4.6)
follows from

q♯ (σµ♯λ) = (γ♯γ) ♯q.

By (3.13), we can write this equality as

(4.7)
q(0) (σµ♯λ) + ∂ξq

(0) ·Dw

(
σµ(2)λ(1)

)
+ q(−1) (σµ♯λ)(2)

=(γ♯γ) q(0) + ∂ξ
(
γ(3/2)γ(3/2)

)
·Dwq

(0) + (γ♯γ)(2) q(−1).

By comparing the principal part of both sides (terms of degree 3 in ξ), we are able to
determine
(4.8) γ(3/2) =

√
σµ(2)λ(1).

To deal with the subprincipal terms of (4.7), one may set
(4.9) q(−1) = 0

and (4.7) becomes

(4.10)

q(0) (σµ♯λ− γ♯γ) =∂ξ
(
γ(3/2)γ(3/2)

)
·Dwq

(0) − ∂ξq
(0) ·Dw

(
σµ(2)λ(1)

)
=∂ξ

(
σµ(2)λ(1)

)
·Dwq

(0) − ∂ξq
(0) ·Dw

(
σµ(2)λ(1)

)
=
1

i
{σµ(2)λ(1), q(0)},

where {·, ·} is Poisson bracket. By comparing real and imaginary part of both sides of
(4.10) and setting
(4.11) Im q(0) = 0,

we have
(4.12) Re (σµ♯λ− γ♯γ) = 0, q(0) Im (σµ♯λ− γ♯γ) = −{σµ(2)λ(1), q(0)}.
From the first equation in (4.12), we are able to solve Re γ(1/2),
(4.13) 2γ(3/2) Re γ(1/2) = σ

(
µ(2) Reλ(0) +Reµ(1)λ(1)

)
= σµ(2) Reλ(0),

where the first equality holds since γ(3/2), λ(1), and µ(2) are real with (4.8), and the
second follows from Reµ(1) = 0, which can be seen from the second formula in (3.85).
Then (4.13), together with (4.8) and (4.5), completes the definition of γ. Meanwhile,
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to solve the second equation in (4.12), we first calculate the coefficient before q(0) by
applying (3.59), (3.86), and (4.5),

Im (σµ♯λ− γ♯γ)

=− σ∂ξµ
(2) · ∂wλ(1) + σ Imµ(1)λ(1) + σµ(2) Imλ(0)

+ ∂ξγ
(3/2) · ∂wγ(3/2) − 2γ(3/2) Im γ(1/2)

=− σ∂ξµ
(2) · ∂wλ(1) −

σ

2
∂w · ∂ξµ(2)λ(1) − σ

2

∂wη

η
· ∂ξµ(2)λ(1) − σ

2
µ(2)∂w · ∂ξλ(1)

− σ

2
µ(2)∂wη

η
· ∂ξλ(1) + ∂ξγ

(3/2) · ∂wγ(3/2) + γ(3/2)∂w · ∂ξγ(3/2)

=− σ

2
∂ξµ

(2) · ∂wλ(1) −
(σ
2
∂ξµ

(2) · ∂wλ(1) +
σ

2
∂w · ∂ξµ(2)λ(1) +

σ

2
µ(2)∂w · ∂ξλ(1)

)
−
(
σ

2

∂wη

η
· ∂ξµ(2)λ(1) +

σ

2
µ(2)∂wη

η
· ∂ξλ(1)

)
+
(
∂ξγ

(3/2) · ∂wγ(3/2) + γ(3/2)∂w · ∂ξγ(3/2)
)

=− σ

2
∂ξµ

(2) · ∂wλ(1) +
σ

2
∂wµ

(2) · ∂ξλ(1) −
σ

2
∂w · ∂ξ(µ(2)λ(1))− σ

2

∂wη

η
· ∂ξ
(
µ(2)λ(1)

)
+

1

2
∂w · ∂ξ(γ(3/2)γ(3/2))

=
σ

2
{λ(1), µ(2)} − σ

2

∂wη

η
· ∂ξ
(
µ(2)λ(1)

)
+

1

2
∂w · ∂ξ(γ(3/2)γ(3/2) − σµ(2)λ(1))

=
σ

2
{λ(1), µ(2)} − σ

2

∂wη

η
· ∂ξ
(
µ(2)λ(1)

)
,

where we apply (4.8) to obtain the last equality. The equation for q(0) becomes
1

2
q(0)

[
{λ(1), µ(2)} − ∂wη

η
· ∂ξ
(
µ(2)λ(1)

)]
= −{µ(2)λ(1), q(0)}.

From (3.54) and (3.64), we have µ(2) = a2
(
λ(1)
)2 with

(4.14) a :=
1√
2

(
1 + |∇̄η|2

)− 3
4 ,

which is positive and independent of ξ. Furthermore, we look for q(0) also independent
of ξ. Then the equation for q(0) can be written as

∂wq
(0)

q(0)
· ∂ξλ(1) =

1

2

∂wη

η
· ∂ξλ(1) −

1

3

∂wa

a
· ∂ξλ(1),

an obvious solution of which reads
(4.15) q(0) = η

1
2a−

1
3 = 2

1
6
√
η
(
1 + |∇̄η|2

) 1
4 .

Clearly, q = q(0) is elliptic.
Till now, we have constructed γ ∈ Σ2 and q ∈ Σ0 satisfying (4.6), according to our

discussion before, it remains to construct p ∈ Σ
1
2 with either TpTλ ≈ TγTq or TqTσµ ≈

TγTp. Here we focus on the former one. In fact, since λ ∈ Σ1 is elliptic, by Proposition
3.7, there exists λ̃ ∈ Σ−1 such that TλTλ̃ ≈ TλTλ̃ ≈ id. Thus, by symbolic calculus
(Proposition 3.4), one has

TpTλ ≈ TγTq ⇔ TpTλTλ̃ ≈ TγTqTλ̃ ⇔ Tp ≈ T(γ♯q)♯λ̃,

which gives a possible definition of p:
(4.16) p := (γ♯q)♯λ̃ ∈ Σ

1
2 ,
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whose principal symbol equals

(4.17) p(1/2) =
γ(3/2)q(0)

λ(1)
.

Hence, p is elliptic.
From Proposition 3.7, the ellipticity of p, q implies that S has a parametrix S̃, in the

sense that
(4.18) SS̃ ≈ S̃S ≈ id,

where

(4.19) S̃ :=

(
Tp̃ 0
0 Tq̃

)
with p̃ ∈ Σ−1/2 and q̃ ∈ Σ0 the elliptic symbols constructed by Proposition 3.7.

To end this section, we introduce some commutator estimates involving S (see also
Section 2.4 of [5] for the case of planar water-wave).

Proposition 4.2. Let (η, ψ) ∈ H
s+ 1

2
R × Hs with s > 3. For all symbol a ∈ Σm with

m ∈ R, the commutator [Ta, ∂t] is of order m, with

(4.20) ‖[Ta, ∂t]‖L(Hr;Hr−m) ⩽ C

(
‖η‖

H
s+1

2−
R

)
, ∀r ∈ R.

In particular, the commutator between S and ∂t is equal to

[S, ∂t] = −
(
T∂tp 0
0 T∂tq

)
,

where T∂tp is of order 1
2

and T∂tq is of order 0.

Proof. We intend to apply Lemma 3.26, which gives the invariance of order of Ta under
derivative in η in a weaker space Hs0+

1
2 with 3

2
< s0 ⩽ s. By Leibniz rule, it suffices to

check that ηt belongs to this space for some s0 ∈]32 , s], which is a consequence of the first
equation of (1.18) together with Corollary 2.4 (with s0 = s), namely

ηt = G(η)ψ ∈ Hs−1.

□

Proposition 4.3. Let (η, ψ) ∈ H
s+ 1

2
R ×Hs with s > 3. Let a = a(m) + a(m−1) be a symbol

in Γm3/2+ + Γm−1
1/2+ with m ∈ R and

‖∂αξ a(m)(ξ)‖
C

3
2+〈ξ〉−m+|α| + ‖∂αξ a(m−1)(ξ)‖

C
1
2+〈ξ〉−m−1+|α| ≲ C

(
‖η‖

H
s+1

2−
R

)
,

for all α ∈ N2 and ξ ∈ R2. Then we have, for all r ⩽ min(s+m+ 1
2
, s+ 3

2
−),

(4.21)
∥∥[Ta, TV · ∇̄

]∥∥
L(Hr;Hr−m)

⩽ C

(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
.

In particular, we have, for all r ⩽ s+ 1
2
,∥∥[Tp, TV · ∇̄

]∥∥
L(Hr;Hr− 1

2 )
⩽ C

(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
,(4.22)

∥∥[Tq, TV · ∇̄
]∥∥

L(Hr;Hr)
⩽ C

(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
.(4.23)
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Proof. Let u be any function in Hr with r ⩽ s+m+ 1
2
. One may write[

Ta, TV · ∇̄
]
u = [Ta, TV ziξz ] u+ TaTV θ

(
Tη−1∂θu+ T∂θuη

−1 +R(η−1, ∂θu)
)

− TV θ

(
Tη−1∂θ(Tau) + T∂θ(Tau)η

−1 +R(η−1, ∂θ(Tau))
)

= [Ta, TV ziξz ] u+ [Ta, TV θTη−1 ]∂θu+ TaTV θ

(
T∂θuη

−1 +R(η−1, ∂θu)
)

− TV θ

(
Tη−1T∂θau+ T∂θ(Tau)η

−1 +R(η−1, ∂θ(Tau))
)
.

We shall check that each term on the right hand side lies in Hr−m. The first term
[Ta, TV ziξz ] u ∈ Hr−m is no more than a consequence of commutator estimate (Corollary
C.19). For the second term [Ta, TV θTη−1 ]∂θu, one may replace TV θTη−1 by Tη−1V θ , since
their difference is of order −1− leading to an error term in Hr−m+, and apply again
Corollary C.19. The third term can be estimated via Proposition C.8,

‖TaTV θ

(
T∂θuη

−1 +R(η−1, ∂θu)
)
‖Hr−m

⩽C
(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
‖T∂θuη−1 +R(η−1, ∂θu)‖Hr

⩽C
(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
‖u‖Hr‖η−1‖

H
s+1

2−
R−1

⩽ C

(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
‖u‖Hr ,

which is bounded due to Proposition C.22. To deal with the last term, we observe that
Tau ∈ Hr−m ,and that T∂θa has the same order as Ta due to Proposition C.16 and the
fact that ηθ ∈ Hs− 1

2 . Then, again by Proposition C.8 and C.22, we have

‖TV θ

(
Tη−1T∂θau+ T∂θ(Tau)η

−1 +R(η−1, ∂θ(Tau))
)
‖Hr−m

⩽C
(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
‖Tη−1T∂θau+ T∂θ(Tau)η

−1 +R(η−1, ∂θ(Tau))‖Hr−m

⩽C
(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)(
‖u‖Hr + ‖∂θ(Tau)‖Hr−m−1‖η−1‖

H
s+1

2−
R−1

)
⩽C

(
‖η‖

H
s+1

2−
R

, ‖ψ‖Hs−

)
‖u‖Hr .

Note that in the second inequality, we need the assumption r ⩽ min(s+m+ 1
2
, s+ 3

2
−)

to apply Proposition C.8. □

5. Cauchy problem

In this section, we shall prove Theorem 1.1 and 1.2. Recall that in Section 3, we
have managed to reformulate the equation (1.18) as (3.68),(

∂t + TV · ∇̄
)( η

ψ

)
+ L

(
η
ψ

)
= f,

where the linear operator L admits a symmetrizer S defined by (4.1) (see Proposition
4.1). Moreover, provided that (η, ψ) ∈ H

s+ 1
2

R × Hs with s > 3, f = f(η, ψ) belongs to
Hs+ 1

2 ×Hs and has local Lipschitz regularity from H
s0+

1
2

R ×Hs0 to Hs0+
1
2 ×Hs0 , for all

3
2
< s0 < s− 3

2
(see Proposition 3.22).

Based on the definition (3.69) of L, we shall introduced a mollified version Lϵ by in-
serting proper smoothing operators (see (5.9)). The resulting approximate system (5.10),
which is nothing else than an ODE, has a unique solution (ηϵ, ψϵ) on the time interval
[0, Tϵ[ due to Cauchy-Lipschitz Theorem. Energy estimates (Proposition 5.5) guarantee
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that the lifespan Tϵ admits a uniform lower bound T (see Corollary 5.6), and the approx-
imate solution (ηϵ, ψϵ) is bounded in H

s+ 1
2

R × Hs with s > 3, and converges on [0, T ] in
a weaker norm H

s0+
1
2

R × Hs0 where 3
2
< s0 < s − 3

2
. Consequently, (ηϵ, ψϵ) tends to a

solution (η, ψ) to (1.18) and the uniqueness follows from a similar argument used in the
convergence of approximate solution. Note that, by classical interpolation argument, the
limit of approximate solution has only L∞ regularity in time, which can be optimized to
C0 via nonlinear interpolation introduced in [7], which completes the proof of Theorem
1.1. As a by-product, we can also deduce the continuity of flow map, i.e. Theorem 1.2.

Before starting the proof, we introduce some notations and conventions used in this
section,

Definition 5.1. For s ∈ R, R > 0, and T > 0, X s
R denotes the collection of all (η, ψ)

such that ψ ∈ Hs and η − R ∈ Hs+ 1
2 , where we further assume that η satisfy hypotheses

(H0) and (H1) (or (H1’)). For all (η1, ψ1), (η2, ψ2) ∈ X s, we denote
(5.1) dX s

R
((η1, ψ1), (η2, ψ2)) := ‖η1 − η2‖Hs+1

2
+ ‖ψ1 − ψ2‖Hs .

It is clear that (X s
R, dX s

R
) is a complete metric space. Note that in periodic case (i.e. with

hypothesis (H1’)), the normalization R should be omitted and (X s, dX s) becomes a Banach
space. Moreover, if (η, ψ) depends on time t ∈ [0, T [, we denote by L∞

T X s
R the space of

L∞-functions with value in X s
R such that

sup
t∈[0,T [

‖(η(t)−R,ψ(t))‖
Hs+1

2×Hs
< +∞.

Furthermore, we denote by CTX s the subspace of L∞
T X s where (η(t), ψ(t)) is continuous

in time w.r.t. the distance (5.1).

In the sequel, we focus on the perturbative case (with hypothesis (H1)) and the proof
for periodic case can be obtained simply by deleting all the normalization.

As in previous sections, for linear operators A,B of order m ∈ R, we write

(5.2) A ≈ B ⇔
A− B is of order m− 3

2
−,

with operator norm bounded by C
(
‖(η, ψ)‖

H
s+1

2
R ×Hs

)
.

5.1. Construction of approximate solutions. Recall that L is defined by (3.69),

L :=

(
I 0
TB I

)(
0 −Tλ
σTµ 0

)(
I 0

−TB I

)
.

As in [6], we introduce the mollifier Jϵ := Tjϵ (0 ⩽ ϵ � 1), where the symbol jϵ is given
by

(5.3) jϵ = j(0)ϵ + j(−1)
ϵ , j(0)ϵ := exp

(
−ϵγ(3/2)

)
, j(−1)

ϵ := − i

2
∂w · ∂ξj(0)ϵ .

Recall that γ(3/2) is constructed in Proposition 4.1. As a consequence of Corollary 3.5
and 3.9, all the symbols constructed as above satisfy the following property.

Lemma 5.2. Given m ∈ R, we denote by Gm the collection of real functions F = F (ϵ, ρ)
which are smooth on {ρ > 0} with parameter ϵ ∈]0, 1], satisfying that, for all k ∈ N and
ρ > 0,
(5.4) sup

ϵ∈]0,1]

∣∣∂kρF (ϵ, ρ)∣∣ ≲ ρm−k.
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Let η ∈ L∞
T H

s+ 1
2
−

R with s > 3 and T > 0. For all F ∈ Gm, we define symbol aF,ϵ as

(5.5) aF,ϵ := a
(3m/2)
F,ϵ + a

(3m/2−1)
F,ϵ , a

(3m/2)
F,ϵ = F (ϵ, γ(3/2)), a

(3m/2−1)
F,ϵ = − i

2
∂w · ∂ξa(3m/2)F,ϵ .

Then aF,ϵ belongs to Γ
3m/2
3/2+ + Γ

3m/2−1
1/2+ uniformly in ϵ and t ∈ [0, T [ with

(5.6) TaF,ϵ
≈ T ∗

aF,ϵ
.

Moreover, for any F,G ∈ Gm, we have

(5.7) TaF,ϵ
TaG,ϵ

≈ TaG,ϵ
TaF,ϵ

.

Proof. The uniform-in-(ϵ, t) boundedness of a(3m/2)Fϵ and a
(3m/2−1)
Fϵ in Γ

3m/2
3/2+ and Γ

3m/2−1
1/2+ ,

respectively, can be directly checked from the definition (4.8) of γ(3/2) and the condition
(5.4) of F . Since F is real-valued, a(3m/2)Fϵ is also real. Then an application of Proposition
3.9 gives (5.6). To prove the last equivalence (5.7), we first reduce it to aF,ϵ♯aG,ϵ =
aG,ϵ♯aF,ϵ, thanks to (3.11). In fact, by formula (3.13) and definition (5.5), we have

aF,ϵ♯aG,ϵ − aG,ϵ♯aF,ϵ

=∂ξa
(3m/2)
F,ϵ ·Dwa

(3m/2)
G,ϵ − ∂ξa

(3m/2)
G,ϵ ·Dwa

(3m/2)
F,ϵ

=F ′(ϵ, γ(3/2))G′(ϵ, γ(3/2))∂ξγ
(3/2) ·Dwγ

(3/2) −G′(ϵ, γ(3/2))F ′(ϵ, γ(3/2))∂ξγ
(3/2) ·Dwγ

(3/2)

=0.

□

In particular, by choosing F (ϵ, ρ) = exp(−ϵρ) and G(ϵ, ρ) = ρ, we have the following
property on jϵ constructed in (5.3),

Lemma 5.3. Let η ∈ L∞
T H

s+ 1
2
−

R with s > 3 and T > 0. Then the symbol jϵ defined above
is elliptic and belong to Γ0

3/2+ + Γ−1
1/2+ uniformly in ϵ ⩾ 0 and t ∈ [0, T [. Moreover, we

have

(5.8) JϵTγ ≈ TγJϵ, J∗
ϵ ≈ Jϵ,

uniformly in ϵ, t.

Note that when ϵ > 0, jϵ ∈ Γm3/2+ + Γm−1
1/2+ for all m < 0, and as a consequence, Jϵ

serves as a smoothing operator. Nevertheless, the estimates of jϵ are uniform in ϵ ⩾ 0
only for m ⩾ 0. In the sequel, we shall regard jϵ as an element in Γ0

3/2++Γ−1
1/2+ in symbolic

calculus.
Now, we define the mollification of L as

(5.9) Lϵ :=
(

I 0
TB I

)(
0 −Tλ
σTµ 0

)
S̃JϵS

(
I 0

−TB I

)
,

where S is the symmetrizer of L defined by (4.1) and S̃ is an inverse of S (in the sense
of (4.18)), which can be taken as (4.19). The resulting approximate system reads

(5.10)


(
∂t + TV · ∇̄Jϵ + Lϵ

)( η
ψ

)
= f(Jϵη, Jϵψ),

(η, ψ)|t=0 = (η0, ψ0) ∈ H
s+ 1

2
R ×Hs,

where s > 3.
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Proposition 5.4. Let s > 3 and ϵ > 0. For all (η0, ψ0) ∈ X s
R, there exists T ′

ϵ > 0 and a
unique solution (ηϵ, ψϵ) ∈ CT ′

ϵ
X s
R to the Cauchy problem (5.10). Moreover, if Tϵ denotes

the supremum of all such T ′
ϵ, we have,

(5.11) Tϵ = +∞, or Tϵ < +∞ with lim sup
t→Tϵ−

(
‖ηϵ(t)−R‖

Hs+1
2
+ ‖ψϵ(t)‖Hs

)
= +∞.

In the following, we still denote the approximate solution by (η, ψ) if there is no
confusion.

Proof. To prove Proposition 5.4, we attempt to apply Cauchy-Lipschitz theorem, requir-
ing the following quantities to be locally Lipschitizian on X s

R:

TV · ∇̄Jϵ
(
η
ψ

)
, Lϵ

(
η
ψ

)
, f(Jϵη, Jϵψ).

As in Section 3.5, it suffices to check that the derivative-in-(η, ψ) of these quantities are
bounded in X s

R (in this case, we can assume δη ∈ Hs+ 1
2 ). This boundedness is no more

than a consequence of Lemma 3.25, 3.26, and Proposition 3.22, C.8. The only term that
needs to be treated carefully is the η−1 arising from the definition (3.40) of ∇̄, namely

TV θ

(
1

η
∂θJϵ

(
η
ψ

))
.

After applying derivatives in η or ψ, ϵ > 0 ensures that ∂θJϵη, ∂θJϵψ, and their derivatives
in (η, ψ) lie inH+∞ := ∩k∈ZHk. Therefore, their product with η−1 or δ(η−1) has regularity
Hs+ 1

2 due to Corollary C.9. Since TV θ is of order 0, the contribution of these terms is
still in X s

R. □

5.2. Energy estimates. In this part, we shall make energy estimates for approximate
solutions constructed in Proposition 5.4, which also hold for the original system (3.68),
namely in the case ϵ = 0. One should keep in mind that all the estimates in this section
are uniform for ϵ ∈ [0, 1].

Proposition 5.5. Let (η0, ψ0) ∈ X s
R with s > 3. The approximate solution (ηϵ, ψϵ)

obtained in Proposition 5.4 satisfies, for some T0 depending only on H
s+ 1

2
R ×Hs-norm of

initial data (η0, ψ0),

(5.12) MT,ϵ ⩽ C(M0,ϵ)M0,ϵ, ∀T ∈ [0,min(T0, Tϵ)[, ∀0 < ϵ ⩽ 1,

where C is a positive increasing function independent of ϵ, Tϵ > 0 is the lifespan of the
approximate solution, and

(5.13) MT,ϵ := sup
t∈[0,T [

(
‖ηϵ(t)−R‖

Hs+1
2
+ ‖ψϵ(t)‖Hs

)
.

As a corollary, the blow-up criteria (5.11) implies

Corollary 5.6. Under the hypotheses of Proposition 5.4, there exists T0 > 0 depending
only on H

s+ 1
2

R ×Hs-norm of initial data (η0, ψ0), such that the lifespan Tϵ satisfies,

(5.14) Tϵ ⩾ T0, ∀ϵ > 0.

As a result, the energy estimate (5.12) becomes

(5.15) MT,ϵ ⩽ C(M0,ϵ)M0,ϵ, ∀T ∈ [0, T0[, ∀0 < ϵ ⩽ 1.
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Remark 5.7. Note that, once we manage to prove the convergence of approximate solu-
tions (ηϵ, ψϵ) in L∞

T X s
R or weaker space L∞

T X s0
R (s0 < s), the limit (η, ψ) will inherit this

uniform bound, namely,

‖(η, ψ)‖
L∞
T (H

s+1
2

R ×Hs)
⩽ C

(
‖(η0, ψ0)‖

H
s+1

2
R ×Hs

)
‖(η0, ψ0)‖

H
s+1

2
R ×Hs

, ∀T ∈ [0, T0[.

Instead of proving Proposition 5.5, we shall consider a more general case.

Proposition 5.8. Let (η′0, ψ
′
0) ∈ H

s+ 1
2

R′ × Hs and (η, ψ) ∈ L∞
T X s

R with R′ ∈ R, R > 0,
T > 0, and s > 3. Given s0 ∈]32 , s], we assume that

(1) The system

(5.16)


(
∂t + TV · ∇̄Jϵ + Lϵ

)( η′

ψ′

)
= f,

(η′, ψ′)|t=0 = (η′0, ψ
′
0),

admits a solution (η′, ψ′) ∈ L∞
T (H

s+ 1
2

R′ × Hs), where the operators TV · ∇̄Jϵ and Lϵ are
associated to (η, ψ);

(2) The source term f verifies, for all t ∈ [0, T [,
(5.17) ‖f‖

L∞
t (Hs1+

1
2×Hs1 )

⩽ C(N s−
t ) (M s1

t + cf ) ,

where cf ∈ [0, 1] is a constant,

(5.18) M r
T := sup

t∈[0,T [

(
‖η′(t)−R′‖

Hr+1
2
+ ‖ψ′(t)‖Hr

)
,

and N r
T is defined as

(5.19) N r
T := sup

t∈[0,T [

(
‖η(t)−R‖

Hr+1
2
+ ‖ψ(t)‖Hr

)
+M r

T ,

(3) There exists 3
2
< s1 < min(s− 3

2
, s0) such that (η, ψ) satisfies for all t ∈ [0, T [,

(5.20) ‖ηt‖Hs1+
1
2
+ ‖ψt‖Hs1 ⩽ C(N s−

t )N
s1+

3
2

t .

Then there exists 0 < T0 ⩽ T depending only on ‖(η′0, ψ′
0)‖

H
s+1

2
R′ ×Hs

and cf ∈ [0, 1],

such that for all ϵ ∈ [0, 1] and t ∈ [0, T0],
(5.21) (M s0

t )2 ⩽ C(N s−
0 )(M s0

0 )2 + tC(N s−
t ) (N s0

t + 1)
(
(N s0

t )2 + c2f
)
,

where the smooth increasing function C > 0 is independent of ϵ ∈ [0, 1].
In particular, if s0 < s, the estimate above can be written as

(5.22) (M s0
t )2 ⩽ C(N s−

0 )(M s0
0 )2 + tC(N s−

t )
(
(M s0

t )2 + c2f
)
, ∀t ∈ [0, T0].

Meanwhile, if s0 ⩾ s−, cf = 0, R′ = R, and (η′, ψ′) = (η, ψ) ∈ CTX s
R, we have N r

t = 2M r
t

as well as
(5.23) N s0

t ⩽ C(N s−
0 )N s0

0 , ∀t ∈ [0, T0].

Remark 5.9. In application of this proposition, we always have that (η, ψ) solves (3.68)
or the approximate system (5.10). Therefore, condition (3) is trivial. Besides, (η′, ψ′) is
equal to either (η, ψ) or the difference of two solutions to (3.68) or (5.10). In both cases,
we can easily derive the equation (5.16) in (1).

When Proposition 5.8 is proved, Proposition 5.5 follows from (3.91) and (5.23) with
s0 = s, cf = 0, and (η′, ψ′) = (η, ψ). In order to prove Proposition 5.8, we begin with the
following two lemmas.
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Lemma 5.10. Let (η, ψ) ∈ L∞
T X s

R with s > 3 and T > 0. Then the following estimate
holds uniformly in ϵ ∈ [0, 1] and t ∈ [0, T [,

(5.24) S

(
I 0

−TB I

)
Lϵ ≈

(
0 −TγJϵ

(TγJϵ)
∗ 0

)
S

(
I 0

−TB I

)
.

The meaning of this equivalence between matrix of paralinear operators is that the corre-
sponding entries are equivalent in the sense of (5.2).
Proof. By definition (5.9) of Lϵ, we have

S

(
I 0

−TB I

)
Lϵ = S

(
0 −Tλ
σTµ 0

)
S̃JϵS

(
I 0

−TB I

)
.

Thanks to Proposition 4.1, the right hand side is equivalent to(
0 −Tγ
T ∗
γ 0

)
SS̃JϵS

(
I 0

−TB I

)
≈
(

0 −Tγ
T ∗
γ 0

)
JϵS

(
I 0

−TB I

)
,

where we use SS̃ ≈ id (see (4.18)). It remains to check that T ∗
γ Jϵ ≈ (TγJϵ)

∗. In fact, by
(4.3) and Lemma 5.3,

(TγJϵ)
∗ = J∗

ϵ T
∗
γ ≈ JϵT

∗
γ ≈ JϵTγ ≈ TγJϵ ≈ T ∗

γ Jϵ.

□
Lemma 5.11. Let (η, ψ) ∈ L∞

T X s
R with s > 3 and T > 0. Then the following estimate

holds uniformly in ϵ ∈ [0, 1] and t ∈ [0, T [,

(5.25) ‖[TB, ∂t]‖L(Hr;Hr− 1
2+)

+ ‖[TB, TV · ∇̄]‖
L(Hr;Hr− 1

2+)
⩽ C(N s−

T ), ∀r ⩽ s+
1

2
.

Proof. The commutator TB and ∂t reads
[TB, ∂t] = T∂tB.

By Proposition C.16, it suffices to prove that ∂tB ∈ H
1
2
+. Thanks to formula (3.46)

of B, one may regard B as a smooth function of G(η)ψ, (η,∇wη), and (ψ,∇wψ). By
Proposition C.22 and Corollary C.9, it suffices to check that the derivative in time of
these quantities belongs to H 1

2
+. From equation (1.18), we have

∂tη = G(η)ψ ∈ Hs−1, ∂tψ = −σ
(
H − 1

2R

)
−N ∈ Hs− 3

2 ,

which is a consequence of Corollary 2.4, C.9, and Proposition C.22 (recall that B, V ∈
Hs−1 due to Lemma 3.16). This observation implies that ∂t(η,∇wη) and ∂t(ψ,∇wψ) have
regularity H 1

2
+ since s > 3. As for the time derivative of G(η)ψ, we have

∂t (G(η)ψ) =
d

dη
G(η)ψ · ∂tη +G(η)∂tψ ∈ Hs− 5

2 ⊂ H
1
2
+,

thanks to Proposition 2.8 and 2.4.
It remains to study the commutator [TB, TV · ∇̄], whose estimate follows from Propo-

sition 4.3 with a = B ∈ Γ0
2+ (see also (3.51)). □

Now, we are ready to prove Proposition 5.8. Recall that (η′, ψ′) solves (5.16), namely(
∂t + TV · ∇̄Jϵ + Lϵ

)( η′

ψ′

)
= f ∈ L∞

T (Hs+ 1
2 ×Hs).

By applying operator

(5.26) S

(
I 0

−TB I

)
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on both sides (recall that S is defined in (4.1)), one has

(5.27)
S

(
I 0

−TB I

)(
∂t + TV · ∇̄Jϵ + Lϵ

)
=
(
∂t + TV · ∇̄Jϵ

)
S

(
I 0

−TB I

)
+

(
0 −TγJϵ

(TγJϵ)
∗ 0

)
S

(
I 0
TB I

)
+R1.

We claim that the remainder R1 satisfies the following property.

Lemma 5.12. Under the assumption of Proposition 5.8, R1 defined by (5.27) satisfies,
for all r ∈ [0, s],
(5.28) ‖R1‖

L(H
r+1

2
R′ ×Hr;Hr×Hr)

⩽ C(N s−
t ).

Proof. We observe from the definition (4.1) of S, that

R1 =

[
S

(
I 0

−TB I

)
, ∂t + TV · ∇̄Jϵ

]
+ S

(
I 0

−TB I

)
Lϵ −

(
0 −TγJϵ

(TγJϵ)
∗ 0

)
S

(
I 0
TB I

)
=

[(
Tp 0

−TqTB Tq

)
, ∂t + TV · ∇̄Jϵ

]
+R′′

2 = R′
2 +R′′

2,

where

R′
2 =

( [
Tp, ∂t + TV · ∇̄Jϵ

]
0[

−TqTB, ∂t + TV · ∇̄Jϵ
] [

Tq, ∂t + TV · ∇̄Jϵ
] ) ,

R′′
2 =S

(
I 0

−TB I

)
Lϵ −

(
0 −TγJϵ

(TγJϵ)
∗ 0

)
S

(
I 0
TB I

)
.

From Lemma 5.10, R′′
2 satisfies the desired estimate, so as the commutator between Tp

(and Tq) and ∂t + TV · ∇̄Jϵ (see Proposition 4.2 and 4.3). Thus, it remains to show that
the commutator

[
TqTB, ∂t + TV · ∇̄Jϵ

]
is bounded from H

r+ 1
2

R′ to Hr, with operator norm
bounded by C(N s−

t ). In fact, we have[
TqTB, ∂t + TV · ∇̄Jϵ

]
=Tq

[
TB, ∂t + TV · ∇̄Jϵ

]
+
[
Tq, ∂t + TV · ∇̄Jϵ

]
TB

=Tq [TB, ∂t] + Tq[TB, TV · ∇̄]Jϵ + TqTV · ∇̄[TB, Jϵ]

+ [Tq, ∂t]TB + [Tq, TV · ∇̄]JϵTB + TV · ∇̄[Tq, Jϵ]TB.

Since Tq, TB, and Jϵ are of order zero, thanks to Proposition 4.2, 4.3, and Lemma 5.11, it
suffices to study the term TqTV · ∇̄[TB, Jϵ] and TV · ∇̄[Tq, Jϵ]TB, which are bounded from
H
r+ 1

2

R′ to Hr+ 1
2 since the commutators [TB, Jϵ], [Tq, Jϵ] are of order (−1) due to Corollary

C.19 and 3.5. □
As a consequence of Lemma 5.12, the quantity

(5.29) Y := S

(
I 0
TB I

)(
η′

ψ′

)
∈ CT (H

s ×Hs),

verifying the direct estimate
(5.30) ‖Y (t)‖Hs0×Hs0 ⩽ C(N s−

t )M s0
t , ∀s0 ∈ [0, s], t ∈ [0, T [,

solves the equation

(5.31) ∂tY + TV · ∇̄JϵY +

(
0 −TγJϵ

(TγJϵ)
∗ 0

)
Y = F1,
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with

(5.32) F1 = S

(
I 0
TB I

)
f −R1

(
η′

ψ′

)
.

Hence, the new source term F1 verifies, for all 0 ⩽ s0 ⩽ s and t ∈ [0, T [,

(5.33) ‖F1(t)‖CT (Hs0×Hs0 ) ⩽ C(N s−
t )
(
‖f(t)‖

Hs0+
1
2×Hs0

+M s0
t

)
.

To obtain the Hs0+
1
2

R′ ×Hs0 estimate of (η′, ψ′) (namely (5.21)), we introduce a new
symbol β := β(s0) + β(s0−1) ∈ Σs, defined by

(5.34) β(s0) :=
(
γ(3/2)

) 2s0
3 , β(s0−1) = − i

2
∂w · ∂ξβ(s0),

where γ(3/2) is constructed in Proposition 4.1. By applying Lemma 5.2 with F (ϵ, ρ) =
ρ2s0/3, G1(ϵ, ρ) = exp(−ϵρ), and G2(ϵ, ρ) = ρ, we obtain the following properties of β.

Lemma 5.13. Let η ∈ L∞
T H

s+ 1
2

R with s > 3 and T > 0. Then the symbol β defined above
is elliptic and belong to Γs03/2+ + Γs0−1

1/2+ uniformly in t ∈ [0, T [. Moreover, we have

(5.35) TβTγ ≈ TγTβ, TβJϵ ≈ JϵTβ,

uniformly in ϵ, t, in the sense of (5.2).

As a result of Lemma 5.13 together with (4.3) and (5.8), we have

Tβ

(
0 −TγJϵ

(TγJϵ)
∗ 0

)
≈
(

0 −TγJϵ
(TγJϵ)

∗ 0

)
Tβ.

Moreover, thanks to Proposition 4.2, 4.3, and Corollary C.19, the commutator between
Tβ and (∂t+TV ·∇̄Jϵ) is bounded from Hr to Hr−s0 for all r ∈ [0, s], whose operator norm
is bounded by C(N s−

t ). Now, we apply Tβ to (5.31) and write the resulting equation as

(5.36) ∂tTβY + TV · ∇̄JϵTβY +

(
0 −TγJϵ

(TγJϵ)
∗ 0

)
TβY = F2,

with

(5.37) F2 = TβF1 +R2Y,

where the remainder R2 is bounded from Hr × Hr to Hr−s0 × Hr−s0 for all r ∈ [0, s],
whose operator norm is bounded by C(N s−

t ), which, combined with (5.30) and (5.33),
yields the following estimate for F2,

(5.38) ‖F2(t)‖CT (L2×L2) ⩽ C(N s−
t )
(
‖f(t)‖

Hs0+
1
2×Hs0

+M s0
t

)
, ∀t ∈ [0, T [.

The L2-scalar product of (5.36) with TβY gives
1

2

d

dt
‖TβY ‖2L2×L2 = −Re〈TV · ∇̄JϵTβY, TβY 〉+Re〈F2, TβY 〉.

We claim that

Lemma 5.14. Let (η, ψ) ∈ L∞
T X s

R with s > 3 and T > 0. Then we have

(5.39)
∣∣Re〈TV · ∇̄JϵTβY, TβY 〉

∣∣ ⩽ C(N s−
t )‖TβY ‖2L2×L2 , ∀t ∈ [0, T [,

where C > 0 is an ϵ-independent smooth increasing function.
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Once Lemma 5.14 is proved (the proof is deferred to the end of this section), we can
conclude using (5.30) and (5.38) that, for all t ∈ [0, T [,
‖Tβ(t)Y (t)‖2L2×L2

⩽‖TβY (0)‖2L2×L2 +

∫ t

0

(
C(N s−

t′ )‖TβY (t′)‖2L2×L2 + ‖TβY (t′)‖L2×L2‖F2(t
′)‖L2×L2

)
dt′

⩽C(N s−
0 )‖Y (0)‖2Hs0×Hs0 +

∫ t

0

C(N s−
t′ )‖Y (t′)‖Hs0×Hs0 (‖Y (t′)‖Hs0×Hs0 + ‖F2(t

′)‖L2×L2) dt′

⩽C(N s−
0 )(M s0

0 )2 +

∫ t

0

C(N s−
t′ )M s0

t′

(
M s0

t′ + ‖f(t′)‖
Hs0+

1
2×Hs0

)
dt′

⩽C(N s−
0 )(M s0

0 )2 + tC(N s−
t )M s0

t

(
M s0

t + ‖f‖
L∞
t (Hs0+

1
2×Hs0 )

)
.

An application of (5.17) leads to the following estimate of TβY ,
(5.40) ‖Tβ(t)Y (t)‖2L2×L2 ⩽ C(N s−

0 )(M s0
0 )2 + tC(N s−

t )M s0
t (M s0

t + cf ) .

Proof of (5.21). Compared with the desired estimate (5.12), we need to pass from the
estimate of TβY to that of (η′, ψ′). Notice that β, p, and q are elliptic symbols. Then, by
Proposition 3.8, we have

‖(η′, ψ′)(t)‖
H

s0+
1
2

R′ ×Hs0
⩽ C(N

3
2
+

t )

(
‖Tβ(t)Y (t)‖L2×L2 + ‖(η′, ψ′)(t)‖

H
s0−1

R′ ×Hs0−
3
2

)
.

Recall that, Lϵ (defined in (5.9)) is bounded from H
r+ 1

2

R′ × Hr to Hr−1
R′ × Hr− 3

2 for all
r ∈ R with operator norm controlled by C(N s−

t ). Then, by (5.16), one can easily see that

‖η′t‖Hs′−1 + ‖ψ′
t‖Hs′− 3

2
⩽ C(N s−

t )M s′

t + ‖f(t)‖
Hs′−1×Hs′− 3

2
, ∀t ∈ [0, T [, s′ ∈]3

2
, s− 3

2
[,

which yields, for all t ∈ [0, T [,
‖TβY (t)‖2L2×L2 + ‖(η′, ψ′)(t)‖2

H
s0−1

R′ ×Hs0−
3
2

⩽‖TβY (t)‖2L2×L2 + ‖(η′0, ψ′
0)‖2Hs0−1

R′ ×Hs0−
3
2

+ 2

∫ t

0

‖(η′, ψ′)(t′)‖
H

s0−1

R′ ×Hs0−
3
2

(
‖η′t‖Hs0−1 + ‖ψ′

t‖Hs0−
3
2

)
dt′

⩽‖TβY (t)‖2L2×L2 + ‖(η′0, ψ′
0)‖2

H
s0+

1
2

R′ ×Hs0

+ 2

∫ t

0

‖(η′, ψ′)(t′)‖
H

s0−1

R′ ×Hs0−
3
2

(
C(N s−

t′ )M s0
t′ + ‖f(t′)‖

Hs0−1×Hs0−
3
2

)
dt′

⩽‖TβY (t)‖2L2×L2 + (M s0
0 )2 + 2

∫ t

0

M s0
t′

(
C(N s−

t′ )M s0
t′ + ‖f(t′)‖

Hs0−1×Hs0−
3
2

)
dt′

⩽‖TβY (t)‖2L2×L2 + (M s0
0 )2 + tC(N s−

t )M s0
t

(
M s0

t + ‖f‖
L∞
t (Hs0−1×Hs0−

3
2 )

)
⩽‖TβY (t)‖2L2×L2 + (M s0

0 )2 + tC(N s−
t )M s0

t (M s0
t + cf )

⩽C(N s−
0 )(M s0

0 )2 + tC(N s−
t )M s0

t (M s0
t + cf ) ,

where we used again the assumption (5.17) and estimate (5.40) of TβY .
To sum up, we have proved that, for all t ∈ [0, T [,

(5.41) ‖(η, ψ)(t)‖2
H

s0+
1
2

R ×Hs0

⩽ C
(
N

3
2
+

t

) (
C(N s−

0 )(M s0
0 )2 + tC(N s−

t )M s0
t (M s0

t + cf )
)
.
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Notice that, it is harmless to replace C
(
N

3
2
+

t

)
by C

(
(N s1

t )2
)

(recall that 3
2
< s1 <

min(s− 3
2
, s0)), where C > 0 is smooth increasing function. From the definition (5.19) of

N s1
t , equation (5.16), and assumption (5.20), it is clear that, for all t ∈ [0, T [,

C
(
(N s1

t )2
)
⩽C

(
(N s1

0 )2
)
+

∫ t

0

C ′ ((N s1
t′ )

2) ‖(η, ψ)(t′)‖
H

s1+
1
2

R ×Hs1
‖(ηt, ψt)(t′)‖Hs1+

1
2×Hs1

dt′

+

∫ t

0

C ′ ((N s1
t′ )

2) ‖(η′, ψ′)(t′)‖
H

s1+
1
2

R′ ×Hs1
‖(η′t, ψ′

t)(t
′)‖

Hs1+
1
2×Hs1

dt′

⩽C (N s1
0 ) +

∫ t

0

C (N s1
t′ )N

s1
t′ C(N

s−
t′ )N

s1+
3
2

t′ dt′

⩽C
(
N s−

0

)
+

∫ t

0

C
(
N s−
t′

)
N s0
t′ dt

′

⩽C
(
N s−

0

)
+ tC

(
N s−
t

)
N s0
t ,

and the right hand side of (5.41) can be bounded by

‖(η, ψ)(t)‖2
H

s0+
1
2

R ×Hs0

⩽
(
C
(
N s−

0

)
+ tC

(
N s−
t

)
N s0
t

)
×
(
C(N s−

0 )(M s0
0 )2 + tC(N s−

t )M s0
t (M s0

t + cf )
)

⩽C(N s−
0 )(M s0

0 )2 + tC
(
N s−
t

)
N s0
t (M s0

t )2 + tC(N s−
t )
(
(M s0

t )2 + c2f
)

+ t2C(N s−
t )N s0

t

(
(M s0

t )2 + c2f
)

⩽C(N s−
0 )(M s0

0 )2 + (t+ t2)C(N s−
t ) (N s0

t + 1)
(
(M s0

t )2 + c2f
)
,

which completes the proof of (5.21) by taking T0 < 1. □

Proof of (5.22) and (5.23). When s0 < s, (5.22) can be obtained by the trivial inequality
N s0
t ⩽ N s−

t . Now, we assume s0 ⩾ s−, cf = 0, and prove (5.23) via a bootstrap argument.
Let

Bν :=
√

2C(N s−
0 )(N s0

0 )2 + ν2 ⩾ ν > 0,

where ν > 0 is a small parameter. We fix T0,ν ∈]0, T [ such that

C(N s−
0 )(N s0

0 )2 + T0,νC(Bν)(Bν + 1)B2
ν < B2

ν ,

or equivalently,

T0,νC(Bν)(Bν + 1)B2
ν <

B2
ν + ν2

2
.

One may take T0,ν as

T0,ν =
B2
ν + ν2

4C(Bν)(Bν + 1)B2
ν

,

which depends only on initial data (η, ψ)(0) and parameter 0 < ν � 1. We claim that
N s0
T0,ν

⩽ Bν . Otherwise, there exists t0 ∈]0, T0,ν ], such that

t0 = sup{t ∈]0, T0,ν [: N s0
t ⩽ Bν}.

The continuity-in-time of (η, ψ) guarantees that N s
t0
= Bν . As a result, (5.21) gives

B2
ν = (N s0

t0 )
2 ⩽ C(N s−

0 )(N s0
0 )2 + t0C(Bν) (Bν + 1)B2

ν < B2
ν ,

which is a contradiction. Now, by passing to the limit ν → 0 + 0, one obtains (5.23).
Note that T0,ν tends to T0, which is a positive smooth function of N s0

0 an N s−
0 . □
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Proof of Lemma 5.14. We shall prove a general result covering the inequality (5.39): for
all u ∈ L2 and t ∈ [0, T [,

(5.42)
∣∣Re〈TV · ∇̄Jϵu, u〉

∣∣ ≲ C(N s−
t )‖u‖2L2 .

To begin with, a simple calculus gives

TV · ∇̄Jϵu =TV ziξzTjϵu+ TV θTη−1∂θ(Jϵu) + TV θ

(
T∂θ(Jϵu)η

−1 +R(η−1, ∂θ(Jϵu))
)

=TV ziξzTjϵu+ TV θTη−1T∂θjϵu+ TV θTη−1Tjϵiξθu

+ TV θ

(
T∂θ(Jϵu)η

−1 +R(η−1, ∂θ(Jϵu))
)
,

where the last term can be omitted since, due to Proposition C.8,

‖TV θ

(
T∂θ(Jϵu)η

−1 +R(η−1, ∂θ(Jϵu))
)
‖L2 ≲‖T∂θ(Jϵu)η

−1 +R(η−1, ∂θ(Jϵu))‖L2

≲‖∂θ(Jϵu)‖H−1‖η−1‖H2+

R−1
≲ C(N s−

t )‖u‖L2 .

Moreover, by Lemma 3.26 and the fact that ηθ ∈ Hs− 1
2 , T∂θjϵ is of order ⩽ 0, and thus

‖TV θTη−1T∂θjϵu‖L2 ≲ C(N s−
t )‖u‖L2 .

This estimate is independent of ϵ since jϵ ∈ Σ0 uniformly in ϵ ⩾ 0 (that is, all the involved
estimates are uniform in ϵ). Furthermore, by symbolic calculus (Proposition C.18),

‖TV ziξzTjϵu− TV zjϵiξzu‖L2 ≲ C(N s−
t )‖u‖L2 ,

‖TV θTη−1Tjϵiξθu− Tη−1V θjϵiξθu‖L2 ≲ C(N s−
t )‖u‖L2 ,

which reduces to

|Re〈Thϵu, u〉| ≲ C(N s−
t )‖u‖2L2 , hϵ = jϵ

(
V ziξz + η−1V θiξθ

)
∈ Γ1

1+.

By Proposition C.18, T ∗
hϵ

= Th∗ϵ , up to some operators of order 0−, with

h∗ϵ = hϵ + ∂ξ ·Dwhϵ = −hϵ + ∂ξ ·Dwhϵ.

Consequently,

Re〈Thϵu, u〉 = Re
〈
Thϵ+h∗ϵ

2

u, u
〉
+

1

2
Re
〈
u, (T ∗

hϵ − Th∗ϵ )
〉
,

where both terms on the right hand side are bounded by C(N s−
t )‖u‖2L2 . □

5.3. Convergence of approximate solutions and uniqueness. In previous sections,
we have constructed a sequence of approximate solution (ηϵ, ψϵ) solving the approximate
system (5.10), and that, for all ϵ > 0, (ηϵ, ψϵ) is well-defined on time interval [0, T0] and
uniformly (in ϵ > 0) bounded. The goal of this section is to check that these approximate
solutions form a Cauchy sequence in a weaker topology L∞

T1
X s0
R , where s0 < s − 3

2
and

0 < T1 ⩽ T0, which proves the existence in Theorem 1.1. As a by-product, one will see
that the same argument allows us to compare two different solutions to the system (3.68)
and deduce the uniqueness part of Theorem 1.1.

Proposition 5.15. Under the hypotheses of Proposition 5.4, there exists 0 < T1 ⩽ T0,
where T0 is defined in Corollary 5.6, such that the sequence {(ηϵ, ψϵ)}ϵ∈]0,1[ is Cauchy in
CT1X s0

R with 3/2 < s0 < s− 3/2. More precisely, we have

(5.43) lim
ϵ2→0+

sup
0<ϵ1<ϵ2<1

sup
t∈[0,T1[

(
‖ηϵ1(t)− ηϵ2(t)‖

Hs0+
1
2
+ ‖ψϵ1(t)− ψϵ2(t)‖Hs0

)
= 0.
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During the proof of Proposition (5.15), we emphasize that the appearance of mollifier
Jϵ has no impact in the estimates and one may delete all the Jϵ’s to obtain the proof of
uniqueness in Theorem 1.1.

Recall that, with 0 < ϵ1 < ϵ2 < 1, the approximate solutions (ηϵj , ψϵj) (j = 1, 2)
satisfy (5.10), namely

(
∂t + TV ϵj · ∇̄ϵjJϵj + Lϵj

)( ηϵj

ψϵj

)
= f(Jϵjη

ϵj , Jϵjψ
ϵj),

(ηϵj , ψϵj)|t=0 = (η0, ψ0) ∈ H
s+ 1

2
R ×Hs,

where V ϵj and ∇̄ϵj stand for the V and ∇̄ associated to (ηϵj , ψϵj), respectively. The
difference between approximate solutions

(5.44) (δη, δψ) := (ηϵ2 − ηϵ1 , ψϵ2 − ψϵ1) ∈ CT0(H
s+ 1

2 ×Hs)

satisfies

(5.45)


(
∂t + TV ϵ2 · ∇̄ϵ2Jϵ2 + Lϵ2

)( δη
δψ

)
= h,

(δη, δψ)|t=0 = 0,

where h equals

h =h1 + h2 − h3 − h4 − h5,

h1 =f(Jϵ2η
ϵ2 , Jϵ2ψ

ϵ2)− f(Jϵ2η
ϵ1 , Jϵ2ψ

ϵ1),

h2 =f(Jϵ2η
ϵ1 , Jϵ2ψ

ϵ1)− f(Jϵ1η
ϵ1 , Jϵ1ψ

ϵ1),

h3 =
(
TV ϵ2 · ∇̄ϵ2 − TV ϵ1 · ∇̄ϵ1

)
Jϵ2

(
ηϵ1

ψϵ1

)
,

h4 =
(
TV ϵ1 · ∇̄ϵ1

)
(Jϵ2 − Jϵ1)

(
ηϵ1

ψϵ1

)
,

h5 =(Lϵ2 − Lϵ1)
(
ηϵ1

ψϵ1

)
.

Let us denote by M the upper bound of L∞
T0
(H

s+ 1
2

R ×Hs)-norm of approximate solutions
(ηϵ, ψϵ), namely

(5.46) M := sup
ϵ∈]0,1]

‖(ηϵ, ψϵ)‖
L∞
T0

(H
s+1

2
R ×Hs)

,

which is finite due to Corollary 5.6. We claim that

Lemma 5.16. Under the assumption of Proposition 5.15, we have the following estimates,

‖hk(t)‖Hs0+
1
2×Hs0

⩽ C(M)‖(δη, δψ)(t)‖
Hs0+

1
2×Hs0

, ∀t ∈ [0, T0[, k = 1, 3, 5,

(5.47)

‖hk(t)‖Hs0+
1
2×Hs0

⩽ C(M)
(
‖(δη, δψ)(t)‖

Hs0+
1
2×Hs0

+ ϵν2

)
, ∀t ∈ [0, T0[, k = 2, 4,

(5.48)

where 0 < ν � 1 is a constant and C > 0 is an increasing smooth function that does not
depend on time t and ϵj’s.
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Once Lemma 5.16 is true, one may apply energy estimate (5.22), with 3
2
< s0 < s− 3

2
and cf = ϵν2 ∈ [0, 1], to conclude that, for all t ∈ [0, T0[,

‖(δη, δψ)(t)‖2
Hs0+

1
2×Hs0

⩽C
(
‖(η0, ψ0)‖

H
s+1

2
R ×Hs

)
‖(δη, δψ)(0)‖2

Hs+1
2×Hs

+ tC(M)

(
‖(δη, δψ)‖2

L∞
t (Hs0+

1
2×Hs0 )

+ ϵ2ν2

)
=tC(M)

(
‖(δη, δψ)‖2

L∞
t (Hs0+

1
2×Hs0 )

+ ϵ2ν2

)
,

where we used the fact that (δη, δψ)|t=0 = 0. Then, by choosing T1 > 0 such that
T1C(M) < 1

2
, we have

‖(δη, δψ)‖
L∞
T1

(Hs0+
1
2×Hs0 )

⩽ ϵν2 → 0, as ϵ2 → 0,

which completes the proof of (5.43).
Remark 5.17. In Lemma 5.16, ϵν2 appears solely in the estimates concerning Jϵ2 − Jϵ1.
Thus, in the proof of uniqueness, there is no ϵν2 and the above inequality becomes (δη, δψ) =
0 for all t ∈ [0, T1[, which proves the uniqueness (see Proposition 5.21).

By Proposition 5.15, the approximate solutions converges to (η, ψ) ∈ L∞
T1
X s0
R which is

the unique solution to (1.18). Besides, from the uniform bound of approximate solutions
in L∞

T0
X s
R, one may apply an interpolation argument to conclude that this solution (η, ψ)

has regularity L∞
T1
X s
R and CT1X s−

R . The continuity in time and the continuous dependence
in initial data (η0, ψ0) (w.r.t. the topology of X s

R) will be given in the next section.
Proof of (5.47). In the term h1, h3, and h5, the difference comes from that of (ηϵj , ψϵj).
Thus, this estimate is equivalent to boundedness of derivatives in η, ψ of

f(Jϵη, Jϵψ), TV ϵ · ∇̄ϵJϵ

(
ηϵ

ψϵ

)
, Lϵ

(
ηϵ

ψϵ

)
in Hs0+

1
2 ×Hs0 . For the derivative of the first term, if ϵ = 0, the desired result has been

given in Proposition 3.22. Otherwise, the following extra terms will appear

(
δ

δη
f)(Jϵη, Jϵψ)Tδjϵη, (

δ

δψ
f)(Jϵη, Jϵψ)Tδjϵψ,

where the extra factors Tδjϵη and Tδjϵψ do not change the desired estimate thanks to
Lemma 3.23. As for the other two terms, we observe that they are written in terms of
finitely many paradifferential operators (with symbol in Σm for some m ∈ R or equal to
B, V ) acting on ηϵ or ψϵ. Thus the desired estimates are no more than a consequence of
Lemma 3.26 and 3.25. The only case uncovered is when the derivative in η acts on (ηϵ)−1

from ∇̄ϵ, whose contribution reads

−T(V ϵ)θ

[
δη

(ηϵ)2
∂θ

(
Jϵ

(
ηϵ

ψϵ

))]
.

The estimate of this term simply follows from Proposition C.8 and Corollary C.9. □
By Proposition 3.22, C.8 and Corollary C.9, (5.48) can be reduced to the following

lemma
Lemma 5.18. Under the hypotheses of Proposition 5.15, for all r ∈ R and 0 < ν � 1,

(5.49) ‖Jϵ2 − Jϵ1‖L(Hr;Hr− 3
2 ν)

⩽ C(M)
(
‖(δη, δψ)‖

Hs0+
1
2×Hs0

+ ϵν2

)
,

where C > 0 is an increasing smooth function that does not depend on time t and ϵj’s.
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Proof. By definition (5.3) of jϵ, the principal symbol of Jϵ2 − Jϵ1 reads (the subprincipal
part can be treated in the same way)

exp(−ϵ2γ(3/2)2 )− exp(−ϵ1γ(3/2)1 ),

where γ(3/2)j stands for the γ (defined in Proposition 4.1) associated to ηϵj . One may
decompose this symbol as(

exp(−ϵ2γ(3/2)2 )− exp(−ϵ2γ(3/2)1 )
)
+ exp(−ϵ1γ(3/2)1 )

(
exp(−(ϵ2 − ϵ1)γ

(3/2)
1 )− 1

)
.

The contribution of the first part is of order 0 due to Lemma 3.26. For the second part,
since γ(3/2)1 ∈ Γ

3
2

3/2+, we have,

exp(−ϵ1γ(3/2)1 )
exp(−(ϵ2 − ϵ1)γ

(3/2)
1 )− 1

(ϵ2 − ϵ1)ν |ξ|
3
2
ν

∈ Γ0
3/2+,

and consequently,

(ϵ2 − ϵ1)
−ν exp(−ϵ1γ(3/2)1 )

(
exp(−(ϵ2 − ϵ1)γ

(3/2)
1 )− 1

)
∈ Γ

3
2
ν

3/2+,

which implies the desired estimate (5.49). □

5.4. Continuity in time and initial data. In this section, we finish the proof of
Theorem 1.1 and 1.2 by showing that the unique solution constructed in previous section
is continuous in time t and initial data (η0, ψ0). To achieve this, we shall apply the
nonlinear interpolation theorem recently proved in [7]. Recall that, in the statement of
Theorem 1.2, we have defined a small ball in Hs+ 1

2 ×Hs, which we recall here

Bs(η0, ψ0; r) := {v0 = (ζ̃0, ψ̃0) ∈ Hs+ 1
2 ×Hs : ‖(η0 −R)− ζ̃0‖Hs+1

2
+ ‖ψ0 − ψ̃0‖Hs < r}.

And in previous section, we have proved that the following flow map (already defined in
(1.19)) is well-defined for all s > 3,

F : Bs (η0, ψ0; r) → L∞
T (Hs+ 1

2 (T× R)×Hs(T× R))

(ζ̃0, ψ̃0) 7→
(
η̃(t)−R, ψ̃(t)

)
,

where (η̃(t), ψ̃(t)) is the unique solution to (1.18) with initial data (ζ̃0+R, ψ̃0). Note that,
when r > 0 is small enough, the life span of these solutions admits a minimum which is
denoted by T here. To prove this, it suffices to combine the energy estimate (5.12) and
the same argument in Corollary 5.6.

Then Theorem 1 of [7] can be stated as,

Theorem 5.19. Let s0, s, s1, r ∈ R with s0 < s < s1, r > 0, and 0 < T � 1. Assume
that the flow map F satisfies

(1)(contraction) for all v0, v′0 ∈ Bs(η0, ψ0; r) ∩H+∞ ×H+∞,
(5.50)
‖F(v0)− F(v′0)‖L∞

T (Hs0+
1
2×Hs0 )

⩽ C
(
‖v0‖Hs+1

2×Hs
+ ‖v′0‖Hs+1

2×Hs

)
‖v0 − v′0‖Hs0+

1
2×Hs0

;

(2)(tame estimate) for all v0 ∈ Bs(η0, ψ0; r) ∩H+∞ ×H+∞,

(5.51) ‖F(v0)‖L∞
T (Hs1+

1
2×Hs1 )

⩽ C
(
‖v0‖Hs+1

2×Hs

)
‖v0‖Hs1+

1
2×Hs1

.

Then F is continuous on the ball Bs(η0, ψ0; r) and F(v0) ∈ CT (H
s+ 1

2 × Hs) for all
v0 ∈ Bs(η0, ψ0; r).
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Remark 5.20. This theorem can be generalized to more general case, for instant, Besov
spaces. One may refer to Theorem 18 of [7] for the setting.

Proof of tame estimate. The tame estimate (5.51) is a direct result of energy estimate
(5.21) (replacing (s0, s−) by (s1, s)). In fact, let us consider any initial data (η0, ψ0) such
that v0 = (η0 −R,ψ0) ∈ Bs1(η0, ψ0; r). The energy of the resulting solution (η, ψ) is still
denoted as

N s1
T = sup

t∈[0,T [

(
‖η(t)−R‖

Hs1+
1
2
+ ‖ψ(t)‖Hs1

)
= ‖F(v0)‖L∞

T (Hs1+
1
2×Hs1 )

.

We recall that (3.91) gives

‖f‖
L∞
t (Hs1+

1
2×Hs1 )

⩽ C

(
‖(η, ψ)‖

L∞
t (H

s+1
2

R ×Hs)

)
‖(η, ψ)‖

L∞
t (H

s1+
1
2

R ×Hs1 )
,

which, combined with energy estimates (5.23) yields the desired estimate. □
The contraction condition (5.50) can be obtained directly from the following propo-

sition,

Proposition 5.21. Given s > 3, we take arbitrary (η0, ψ0), (η
′
0, ψ

′
0) ∈ X s

R. Let (η, ψ), (η′, ψ′) ∈
L∞
T X s

R be the solutions to (1.18) with initial data (η0, ψ0), (η
′
0, ψ

′
0), respectively. Then,

when T � 1, the following estimate holds:
(5.52) ‖(η − η′, ψ − ψ′)‖

L∞
T (Hs0+

1
2×Hs0 )

⩽ C (M) ‖(η0 − η′0, ψ0 − ψ′
0)‖Hs0+

1
2×Hs0

,

where 3
2
< s0 < s − 3

2
, and M > 0 is the maximum of ‖(η0, ψ0)‖

L∞
T (H

s+1
2

R ×Hs)
and

‖(η′0, ψ′
0)‖

L∞
T (H

s+1
2

R ×Hs)
.

Proof. We shall only give the sketch of the proof, since the argument is the same as
Proposition 5.15. By calculating the difference between the equations for (η, ψ) and
(η′, ψ′), we are able to write the equation for

(δη, δψ) := (η − η′, ψ − ψ′) ∈ L∞
T (Hs0+

1
2 ×Hs0).

More precisely, 
(
∂t + TV · ∇̄+ L

)( δη
δψ

)
= g,

(δη, δψ)|t=0 = (η0 − η′0, ψ0 − ψ′
0) ∈ Hs+ 1

2 ×Hs,

where the source term g = g1 − g2 − g3 is equal to

g1 = f(η, ψ)− f(η′, ψ′), g2 =
(
TV · ∇̄ − TV ′ · ∇̄′)( η′

ψ′

)
, g3 = (L − L′)

(
η′

ψ′

)
,

and V ′, ∇̄′, L′ are associated to (η′, ψ′). By using the same proof as for (5.47), one can
show that,

‖g‖
L∞
t (Hs0+

1
2×Hs0 )

⩽C
(
‖(η, ψ)‖

L∞
t (H

s+1
2

R ×Hs)
+ ‖(η′, ψ′)‖

L∞
t (H

s+1
2

R ×Hs)

)
× ‖(δη, δψ)(t)‖

Hs0+
1
2×Hs0

.

Then one may apply energy estimate (5.21) with s0 and obtain
‖(δη, δψ)‖

L∞
T (Hs0+

1
2×Hs0 )

⩽ C(M)‖(δη, δψ)(0)‖
Hs0+

1
2×Hs0

+TC(M)‖(δη, δψ)‖
L∞
T (Hs0+

1
2×Hs0 )

.

Then the desired result follows by choosing TC(M) < 1
2
. □
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Appendix A. Fractional Sobolev spaces in regular domains

In this appendix, we give a brief review of the fractional Sobolev spaces defined on
regular domain Ω. We focus on four types of domain: (1) Euclidean spaces, torus, and
their products, namely Td1×Rd2 with d1, d2 ∈ N; (2) half spaces Rd

+ := {(x′, dd) ∈ Rd−1×
R, xd > 0}; (3) bounded subdomains of Td1 ×Rd2 with smooth boundary; (4) cylindrical
domains Ω0 ×R, where Ω0 is a bounded subdomain of Td1 ×Rd2 with smooth boundary.
For simplicity, the properties below will be stated only for Rd and its subdomains, while
the same results holds for Td1 × Rd2 and its subdomains. We mainly refer to [51, 31, 1]
for the detailed demonstrations.
Definition A.1. Let s ∈ R. When s ∈ N, Hs(Ω) is the collection of distributions u with

‖u‖2Hs(Ω) :=
∑
|α|⩽s

‖∂αu‖2L2(Ω) < +∞.

When s = n + σ with n ∈ N and σ ∈]0, 1[, the space Hs(Ω) is defined by interpolation
(see Section 2.1 of [51] for the definition and [49, 50] for general theory of interpolation
spaces)

Hs(Ω) = [Hn(Ω), Hn+1(Ω)]σ.

It is clear that the spaces defined above are Hilbert spaces, which allows us to define Hs(Ω)
with s < 0 by duality

Hs(Ω) =
(
H

|s|
0 (Ω)

)′
,

where H |s|
0 (Ω) is the closure of C∞

c (Ω) w.r.t. the H |s|(Ω)-norm.
In the case of full space Rd, the Sobolev space can be characterized by Fourier

transform.
Proposition A.2. If Ω = Rd, for all s ∈ R, we have the equivalence

‖u‖2Hs(Ω) ∼
∫
Rd

〈ξ〉2s |û(ξ)|2 dξ.

From Definition A.1, one can deduce the boundedness of restriction operator.
Proposition A.3. For all s ∈ R, the restriction operator

R : Hs(Rd) → Hs(Ω)
u 7→ u|Ω

is bounded.
In the mean time, any function in Hs(Ω) can be continuously extended to Rd.

Proposition A.4. There exists an extension operator
E : Hs(Ω) → Hs(Rd)

u 7→ ũ,

such that ũ|Ω = u and E ∈ L(Hs(Ω);Hs(Rd)) for all s ∈ R.
The construction of operator E is not unique and we refer to Section 5.1 of [2] for

one possible construction (see also Chapter 5 of [61] for non-negative index s). Note
that, in these references, the extension operator is constructed for bounded domains and
half-space. As for the case of cylindrical domains Ω = Ω0×R ⊂ Rd (where Ω0 is bounded
domain), it suffices to fix a finite cover {Uj} of Ω0 such that Uj ∩ Ω0 is diffeomorphic
to some subset of half-space Rd−1

+ . Thus Uj × R ∩ Ω is diffeomorphic to half-space Rd
+

and the problem is reduced to the case of half-space. The boundedness of restriction and
extension operator guarantees the following equivalence



CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS 73

Proposition A.5. For all s ∈ R, we have the equivalence
‖u‖Hs(Ω) ∼ inf

ũ|Ω=u
‖ũ‖Hs(Rd).

As a corollary, Sobolev space Hs(Ω) is invariant by multiplication with C∞
b (Ω) func-

tions.

Corollary A.6. Let W ∈ C∞
b (Ω). Then for all s ∈ R, we have the following estimate,

(A.1) ‖Wu‖Hs(Ω) ⩽ C‖W‖CM (Ω)‖u‖Hs(Ω),

where C > 0 and M ∈ N are constants depending on s and dimension d and
‖W‖CM (Ω) = sup

|α|⩽M
‖∂αW‖L∞(Ω).

Proposition A.7. Let s ∈ R and Ω,Ω′ ⊂ Rd be two subdomains. χ : Ω′ → Ω is a smooth
diffeomorphism such that χ and χ−1 are bounded as well as their derivatives. Then for
all u ∈ Hs(Ω),

‖u‖Hs(Ω) ∼ ‖u ◦ χ‖Hs(Ω′).

We refer to Section 12.9 of [51] for a proof of this invariance by change of coordinate
(see also Chapter 3 of [1]). More precisely, we have the following refined version.

Proposition A.8. Let s ∈ R with s > d
2
+1. χ : Rd → Rd is a diffeomorphism such that

(χ− id) or (χ−1 − id) ∈ Hs. Then for all u ∈ Hs0(Rd), 0 ⩽ s0 ⩽ s,
‖u ◦ χ‖Hs0 (Rd) ∼ ‖u‖Hs0 (Rd).

We refer to Theorem 1.1 of [42] for the proof of this proposition (see also [24]). Local
result can also be obtained via paracomposition (see Proposition C.23).

Appendix B. Proof of elliptic regularity

This appendix serves as a proof of Proposition 2.3 and Lemma 3.1. The former one
is no more than a special case of the following proposition,

Proposition B.1. Let η ∈ H
s+ 1

2
−

R (T × R) and F ∈ Hs0− 3
2 (D × R) with s>3

2
and 1

2
⩽

s0 ⩽ s. Then the equation

(B.1)
{

∆gφ = F ∈ Hs0− 3
2 ,

φ|ρ=1 = 0,

admits a unique solution φ in Hs0+
1
2 (D× R) with

(B.2) ‖φ‖
Hs0+

1
2 (D×R)

⩽ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖F‖

Hs0−
3
2 (D×R)

.

where C > 0 is an increasing smooth function.

The idea of the proof of Proposition B.1 comes from [45], Chapter 2, where the
author focus on the water-wave with a bottom, the regularity of which is the same as
interface. In this case, the boundary condition at bottom should also be considered,
which does not exist in our problem. For axis-symmetric jets, one may find a similar
proof in [41].

Note that the s0 = 1
2

case can be proved by classical arguments via Lions–Lax–
Milgram theorem (see Section 2.2), which gives a unique solution. Therefore, for general
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case s0 > 1
2
, it remains to show that this solution is regular in the sense of (B.2). We

shall apply an iteration in s0. More precisely, we claim that

(B.3) If (B.2) is true for all s0 ∈
[
1

2
, s1

]
with s1 ⩽ s− δ, it also holds for s0 = s1 + δ.

Here δ > 0 is a small constant depending only on s, the choice of which will be precised
during the proof. From now on, we assume the assumption in (B.3) to be correct, and
turn to prove (B.2) with s0 = s1 + δ.

To do so, we first show that it is possible to add a cut-off before φ via a commutator
estimate, which allows us to study the equation (B.1) in interior part {ρ < 1

2
} and

boundary part {1
2
< ρ < 1}.

B.1. Localization. Let χ ∈ C∞
b (R3) be any smooth truncation. Then (B.1) can be

localized as

(B.4)
{

∆g(χφ) = F1 := χF + [∆g, χ]φ,

(χφ)|ρ=1 = 0.

Lemma B.2. If χ ∈ C∞
b (R3) and η ∈ H

s+ 1
2
−

R (T × R) with s > 3
2
, for all 0 ⩽ σ ⩽ s, we

have

(B.5) ‖[∆g, χ]w‖Hσ−1(D×R) ⩽ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖w‖Hσ(D×R), ∀w ∈ Hσ(D× R).

Proof. A simple calculus gives that

[∆g, χ]w = ∂αχg
αβ∂βw +

1
√
g
∂α
(
gαβ

√
g∂βχw

)
.

Recall that, from the construction of (gαβ) = J−1J−T and g by (2.10) and (2.11), re-
spectively, we have gαβ, g ∈ Hs−(D×R) up to C∞

b (D×R) normalizations, provided that
η ∈ H

s+ 1
2
−

R (T × R) (see Proposition 2.2). As a result, ∂αχgαβ, 1√
g
, gαβ

√
g∂βχ belong to

Hs−(D×R) up to C∞
b (D×R) normalizations, while w ∈ Hσ(D×R) and w ∈ Hσ(D×R).

Since s > 3/2 and σ ⩽ s, by Corollary A.6 and C.9, each term on the right hand side
is linear in w and belongs to Hσ−1(D × R). Note that the estimate for product, Corol-
lary C.9 is stated for Euclidean spaces, which also holds for domains such as D × R via
Proposition A.5. □

As a result, under the hypotheses of Proposition B.1, the new source term F1 verifies
(B.6)
‖F1‖Hs0−

3
2 (D×R)

≲‖F‖
Hs0−

3
2 (D×R)

+ ‖φ‖
Hs0−

1
2 (D×R)

≲‖F‖
Hs0−

3
2 (D×R)

+ ‖φ‖Hs1 (D×R) ⩽ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖F‖

Hs0−
3
2 (T×R)

,

once δ > 0 is chosen to be strictly smaller than 1/2, i.e. s0 − 1/2 = s1 + δ − 1/2 ⩽ s1.
In the following, we shall take χ to be smooth truncations near {ρ = 0} and {ρ = 1},

respectively, and show (B.2) with s0 = s1 + δ and φ replaced by χφ.

B.2. Interior regularity. Let us fix χ ∈ C∞
b (R3) a smooth truncation near {ρ < 1/2}.

The goal of this paragraph is to prove the regularity of χφ and deduce (B.2) with s0 =
s1 + δ ∈]1/2, s] and φ replaced by χφ. With such localization, it is harmless to extend
the boundary value problem (B.4) to R3 by zero extension away from D × R, since χφ
vanishes in a neighborhood of {ρ < 1/2}.
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Let Λ = 〈Dy,z〉 be the Fourier multiplier of symbol 〈ξ̃〉, where ξ̃ ∈ R3 is the Fourier
variable associated to (y, z) ∈ R3. Now, we apply Λδ to both sides of (B.4) and obtain

(B.7)
{

∆gΛ
δ(χφ) = F2 := ΛδF1 − [Λδ,∆g](χφ),

Λδ(χφ)|ρ=1 = 0.

Lemma B.3. Let η ∈ H
s+ 1

2
−

R (T × R) and φ ∈ Hs1+
1
2 (D × R) with 1

2
⩽ s1 ⩽ s − δ and

s > 3
2
. Then, when δ > 0 is small enough, we have

(B.8) ‖[Λδ,∆g](χφ)‖Hs1−
3
2 (R3)

⩽ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖φ‖

Hs1+
1
2 (D×R)

.

Note that χ ∈ C∞
c (R3) is supported near {ρ < 1/2} and thus χφ can be extended to R3

by taking zero value outside D× R.

Once this lemma holds true, by using the assumption of iteration ((B.2) holds for
s0 ∈ [1/2, s1] and F ∈ Hs0− 3

2 (D× R) with s0 = s1 + δ), we have

‖F2‖Hs1−
3
2 (D×R)

⩽‖ΛδF1‖Hs1−
3
2 (D×R)

+ ‖[Λδ,∆g](χφ)‖Hs1−
3
2 (D×R)

≲‖F1‖Hs0−
3
2 (D×R)

+ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖φ‖

Hs1+
1
2 (D×R)

≲C
(
‖η‖

H
s+1

2−
R (T×R)

)
‖F‖

Hs0−
3
2 (D×R)

,

where the last inequality can be seen from estimate (B.6) as well as (B.2) with s0 replaced
by s1. Then, for equation (B.7), the assumption of iteration ensures that Λδ(χφ) ∈
Hs1+

3
2 (D × R). Furthermore, the desires result χφ ∈ Hs0+

3
2 (D × R) follows from the

elliptic regularity of Λδ in R3 and Proposition A.5.

Proof of Lemma B.3. By definition, Λδ is commutable with derivatives, then

[Λδ,∆g](χφ) =

[
Λδ,

1
√
g

]
∂α
(
gαβ

√
g∂β(χφ)

)
+

1
√
g
∂α
([
Λδ, gαβ

√
g
]
∂β(χφ)

)
.

From φ ∈ Hs1+
1
2 (D × R), where s1 ⩽ s − δ, and gαβ,

√
g ∈ Hs−(D × R) up to C∞

b

normalization, it is easy to see that ∂α
(
gαβ

√
g∂β(χφ)

)
∈ Hs1− 3

2 (R3) with s1 − 3/2 ⩽
(s−) − δ due to Corollary C.9. Thus by Corollary C.20 and the fact that 1/

√
g ∈

Hs−(D× R), we have [
Λδ,

1
√
g

]
∂α
(
gαβ

√
g∂β(χφ)

)
∈ Hs1− 3

2 (R3),

for some small δ > 0. Similarly, by noticing that ∂β(χφ) ∈ Hs1− 1
2 where s1 − 1

2
⩽

s− 1− δ < (s−)− δ and that gαβ√g ∈ Hs−(D× R) up to C∞
b normalization, we apply

again Corollary C.20 and obtain that[
Λδ, gαβ

√
g
]
∂β(χφ) ∈ Hs1− 1

2 (R3)

and the desired estimate follows due to Corollary C.9. □
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B.3. Boundary regularity. The proof of the case where χ is a smooth truncation near
{ρ = 1} is similar to the interior case. The main difference is that, to maintain the
boundary condition, it is impossible to apply Λδ, which involves normal derivatives at
boundary. Instead, we introduce tangential multiplier Λδ0. Let 〈Dθ,z〉 be a Fourier multi-
plier on T×R with symbol 〈ξ〉, where ξ is the Fourier variable associated to (θ, z) ∈ T×R.
Then, with polar coordinate κ : (ρ, θ, z) 7→ (y, z), we can define Λδ0 as

Λδ0f :=
(
〈Dθ,z〉δf ◦ κ

)
◦ κ−1,

for functions f defined on D × R. Note that, for any 0 < δ � 1, φ|ρ=1 = 0 implies
Λδ0φ|ρ=1 = 0, and thus (B.7) becomes

(B.9)
{

∆gΛ
δ
0(χφ) = F3 := Λδ0F1 − [Λδ0,∆g](χφ),

Λδ0(χφ)|ρ=1 = 0,

where the source term F3 can be estimated as F2 in interior case,
‖F3‖Hs1−

3
2 (D×R)

⩽‖Λδ0F1‖Hs1−
3
2 (D×R)

+ ‖[Λδ0,∆g](χφ)‖Hs1−
3
2 (D×R)

≲‖F1‖Hs0−
3
2 (D×R)

+ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖φ‖

Hs1+
1
2 (D×R)

≲C
(
‖η‖

H
s+1

2−
R (T×R)

)
‖F‖

Hs0−
3
2 (D×R)

,

where the second inequality follows from Lemma B.3 with Λ replaced by Λ0, which is
possible since Corollary C.20, the main step of Lemma B.3, is also stated for multipliers
independent of the normal variable. As a result, the assumption of iteration ensures that
Λδ0(χφ) ∈ Hs1+

1
2 .

Now we prove the regularity in normal direction. Recall that the coefficients of ∆g

lie in Hs−(D × R) (2-order terms) or Hs−1−(D × R) (1-order terms), up to C∞
b (D × R)

normalizations. Then, in polar coordinate, ∆g can be written as
α∂2ρ + β · ∇θ,z∂ρ + γ∂ρ +R2 +R1,

where Rj is a j-order differential operator in θ, z with coefficients in Hs+j−2−(D × R),
α, β ∈ Hs−(D×R), and γ ∈ Hs−1−(D×R), up to C∞

b (D×R) normalizations. Moreover,
α is strictly positive and its lower bound depends only on c0, C0 from (H0) and ‖η‖

H
s+1

2−
R

.
Therefore, Corollary C.9 and Proposition C.22 gives that

∂2ρ(χφ) = −β
α
· ∇θ,z∂ρ(χφ)−

γ

α
∂ρ(χφ)−

1

α
(R2 +R1)(χφ) ∈ Hs1+δ− 3

2 (D× R),

where we use the following regularities
∇θ,z∂ρ(χφ),∇2

θ,z(χφ) ∈ Hs1+δ− 3
2 (D× R), ∇ρ,θ,z(χφ) ∈ Hs1+δ− 1

2 (D× R).

Till now, we have showed ∇ρ,θ,z∂ρ(χφ) ∈ Hs1+δ− 3
2 (D×R), i.e. ∂ρ(χφ) ∈ Hs1+δ− 1

2 (D×R),
which gives χφ ∈ Hs1+δ+

1
2 (D× R) = Hs0+

1
2 (D× R) due to ∇θ,z(χφ) ∈ Hs1+δ− 1

2 (D× R).
And the proof of Proposition B.1 is finished.

B.4. Proof of Lemma 3.1. Recall that the goal of Lemma 3.1 is to show that, after a
change of variable

(ρ̄, θ̄, z̄) = ῑ(ρ, θ, z) :=

(
ρζ(ρθ, z)

η(θ, z)
, θ, z

)
,

the new scalar potential φ̄ := φ ◦ ῑ−1 satisfies (3.4). The proof is divided into four steps.
Firstly, we check that ῑ − id has Hs+ 1

2
−-regularity away from ρ = 0 (so as ῑ−1 − id).

Secondly, we adopt Proposition A.8 to prove that φ̄ belongs to Hs0+
1
2 ([1− δ̄, 1]×T×R)
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for some 0 < δ̄ � 1 where s0 can be taken as any value in ]3/2, s[. In the third step, we
complete the case of s0 = s by reducing the problem to Proposition B.1. The last step is
the application of trace theorem so that one can obtain the continuity in ρ̄. During the
proof, we identify (y, z) ∈ D × R with polar coordinate (ρ, θ, z) ∈ [0, 1] × T × R, if the
information near the axis {ρ = 0} is not important.
Step 1: Regularity of ῑ.

Lemma B.4. Let η ∈ H
s+ 1

2
−

R (T×R) with s > 3
2
. Then ῑ defined in (3.3) is a diffeomor-

phism from [0, 1]×T×R to [0, 1]×T×R. Moreover, there exists 0 < δ, δ̄ � 1 such that
ῑ− id ∈ Hs+ 1

2
−([1− δ, 1]× T× R) and ῑ−1 − id ∈ Hs+ 1

2
−([1− δ̄, 1]× T× R).

Proof. By definition (3.3) of ῑ,

ῑ(ρ, θ, z)− id =

(
ρ
ζ(ρθ, z)− η(θ, z)

η(θ, z)
, 0, 0

)
,

which reduces our problem to showing that (ζ(ρθ, z)− η(θ, z))/η(θ, z) belongs to Hs+ 1
2
−

near ρ = 1. In Proposition 2.2, we have seen that ζ ∈ Hs+1
Rϵ

(D × R) with Rϵ defined in
(2.7), which indicates that Rϵ equals R when ρ is close to 1. Thus, by choosing δ > 0 small
enough, we have ζ−R ∈ Hs+1−([1−δ, 1]×T×R). And η ∈ H

s+ 1
2
−

R (T×R) implies ζ−η ∈
Hs+ 1

2
−([1−δ, 1]×T×R), from which one may conclude ῑ− id ∈ Hs+ 1

2
−([1−δ, 1]×T×R)

by applying Proposition C.22 and Corollary C.9.
To obtain the regularity of ῑ−1 near {ρ̄ = 1}, due to [24], Section 2, it suffices to

extend ῑ as a diffeomorphism on R × T × R and check that its Jacobian has strictly
positive lower bound. One possible extension is as follow,

ῑext(ρ, θ, z) := (f(ρ, θ, z), θ, z) , f(ρ, θ, z) = χ−(ρ)f−(ρ) + χ1(ρ)
ρζ(ρθ, z)

η(θ, z)
+ χ+(ρ)f+(ρ),

where χ1 is a smooth truncation near {ρ = 1} increasing on {ρ < 1} and decreasing
on {ρ > 1}, χ− (χ+ resp.) is a smooth function supported in {ρ < 1} ({ρ > 1} resp.)
with χ− + χ1 + χ+ = 1 for all ρ ∈ R, and f± is a smooth increasing function such that
f±(ρ) = ρ when ρ is away from 1 and f±(ρ) = l±ρ for ρ ∈ Suppχ1 with constants l± > 0
to be determined later.

Clearly ῑext coincides with the original one (3.3) when ρ is close enough to 1 and
equals identity when ρ is away from 1. Moreover, since the extended parts are smooth
and equal to identity when ρ is away from 1, we have ῑext− id ∈ Hs− 1

2
−(R×T×R). The

Jacobian of ῑext reads

∂ρf =χ−(ρ)f
′
−(ρ)− χ′

−(ρ)

(
ρζ

η
− f−(ρ)

)
+ χ1(ρ)

∂ρ(ρζ)

η

+ χ′
+(ρ)

(
f+(ρ)−

ρζ

η

)
+ χ+(ρ)f

′
+(ρ)

=χ−(ρ)f
′
−(ρ)− χ′

−(ρ)ρ

(
ζ

η
− l−

)
+ χ1(ρ)

∂ρ(ρζ)

η

+ χ′
+(ρ)ρ

(
l+ − ζ

η

)
+ χ+(ρ)f

′
+(ρ).

Due to our construction, f ′
±, −χ′

−, and χ′
+ are non-negative. Besides, due to Proposition

2.2 (and estimate (2.8)), ζ/η and ∂ρ(ρζ)/η have upper and lower bounds depending only
on constants c0, C0 appearing in hypothesis (H0). Thus, by choosing 0 < l− � 1 � l+,
the Jacobian of ῑext can be bounded from below by some positive constant. □
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Step 2: The case s0 < s. Recall that φ̄ = φ◦ῑ−1 with φ verifying (2.26). Note that, in polar
coordinate (ρ, θ, z) ∈ [0, 1]×T×R, we can only deduce that φ ∈ Hs0+

1
2 ([1−δ, 1]×T×R)

for δ > 0. Then the condition s0 < s guarantees s0 +1/2 ⩽ s+1/2−, which allows us to
apply Proposition A.8 and conclude that

(B.10) ‖φ̄‖
Hs0+

1
2 ([1−δ̄,1]×T×R)

⩽ C

(
‖η‖

H
s+1

2−
R (T×R)

)
‖ψ‖Hs0 (T×R),

for some 0 < δ̄ � 1 such that [1− δ̄, 1]× T× R lies in ῑ−1([1− δ, 1]× T× R).
Step 3: The case s0 = s. Let ϵ > 0 be small enough (to be determined later). When
ψ ∈ Hs(T×R), from Step 2, we have seen that φ̄ ∈ Hs+ 1

2
−ϵ([1− δ̄, 1]×T×R). To obtain

the Hs+ 1
2 -regularity, we notice that φ̄ is the solution to equation (3.5), which we recall

here {
Lφ̄ :=

(
α∂2ρ̄ + β · ∇θ̄,z̄∂ρ̄ + γ∂ρ̄ +

1
ρ̄2η2

∂2
θ̄
+ ∂2z̄

)
φ̄ = 0, ∀1− δ̄ ⩽ ρ̄ ⩽ 1,

φ|ρ̄=1 = ψ,

where α, β, γ are defined in (3.6)-(3.8). Let χ1 = χ1(ρ) be a smooth truncation near
{ρ̄ = 1} supported in [1− δ̄,+∞[. By denoting Λ1 := 〈Dθ̄,z̄〉, we have{

LΛϵ1(χ1φ̄) = f̄ := −Λϵ1[χ1, L]φ̄− [Λϵ1, L](χ1φ̄), ∀ρ̄ ∈ [0, 1],

φ|ρ̄=1 = Λϵ1ψ.

Note that the first equation is valid for all ρ̄ ∈ [0, 1] since both sides vanish when ρ̄ < 1−δ̄,
thanks to the truncation χ1. It is clear that f̄ ∈ Hs− 3

2
−ϵ([1− δ̄, 1]×T×R) (it suffices to

apply Corollary C.20 to deal with [Λϵ1, L]). Then, via change of variable ῑ, this equation
can be rewritten as {

∆gφ1 = f̄ ◦ ῑ, on D× R,
φ1|ρ=1 = Λϵ1ψ,

where φ1 := (Λϵ1(χ1φ̄)) ◦ ῑ. Recall that we identify (y, z) ∈ D× R with polar coordinate
(ρ, θ, z) ∈ [0, 1] × T × R, since all the involved functions are supported away from the
axis {ρ = 0}. By Proposition A.8 and Lemma B.4, the source term f̄ ◦ ῑ belongs to
Hs− 3

2
−ϵ(D × R), while the boundary data Λϵ1ψ ∈ Hs−ϵ(T × R). Due to Proposition B.1,

we have φ1 ∈ Hs+ 1
2
−ϵ(D×R). Finally, we apply again Proposition A.8 and Lemma B.4 to

deduce Λϵ1(χ1φ̄) ∈ Hs+ 1
2
−ϵ([1− δ̄, 1]×T×R) and thus Λϵ1φ̄ ∈ Hs+ 1

2
−ϵ([1− δ̄′, 1]×T×R)

for some 0 < δ̄′ < δ̄. One may recover the regularity in ρ̄ from elliptic operator L as in
the proof of Proposition B.1 and conclude that φ̄ ∈ Hs+ 1

2 ([1− δ̄′, 1]×T×R), i.e. estimate
(B.10) also holds for s0 = s. Here the difference between δ̄ and δ̄′ can be ignored since
we are solely interested in the behavior near {ρ̄ = 1}.
Step 4: Trace estimate. To complete the proof of Lemma 3.1, it remains to deduce the
estimate below from (B.10).

‖∂lρ̄φ̄‖C0([1−δ̄,1];Hs0−l(T×R)) ⩽ C

(
‖η‖

H
s+1

2−
R

)
‖ψ‖Hs0 , l = 0, 1, 2, 3.

Recall that in the assumption of Lemma 3.1, we have s > 3 and 3/2 < s0 ⩽ s. Then the
case l = 0, 1 follows directly from trace estimate. For l = 2, we observe that

∂2ρ̄φ̄ = − 1

α

(
β · ∇θ̄,z̄∂ρ̄ + γ∂ρ̄ +

1

ρ̄2η2
∂2θ̄ + ∂2z̄

)
φ̄.

where α, β, γ are estimated in Lemma 3.2 with α > c for some constant c > 0 (depending
on c0, C0 appearing in hypothesis (H0)). An application of Lemma 3.2, Proposition C.22,
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and Corollary C.9 gives ∂2ρ̄φ̄ ∈ C0([1 − δ̄, 1];Hs0−2(T × R)). The last case l = 3 can be
obtained by applying an extra ∂ρ̄ and repeating this argument.

Appendix C. Paradifferential calculus

In this section, we shall review the definition and properties of paradifferential op-
erators on Rd, Td, or Td1 × Rd2 with d1 + d2 = d.
C.1. Pseudo-differential operator.
Definition C.1. Let a be a tempered distribution on Rd×Rd. For all Schwartz function
u ∈ S(Rd), we define

(C.1) 〈Op (a) u, v〉S′×S :=
1

(2π)d

∫∫
eix·ξa(x, ξ)û(ξ)v(x)dξdx.

It is easy to check that Op (a) is a continuous application from Schwartz functions S(Rd)
to tempered distributions S ′(Rd). We say that Op (a) is a pseudo-differential operator
with symbol a.
Definition C.2. Let ρ, δ ∈ [0, 1] and m ∈ R. The class of symbols Smρ,δ = Smρ,δ(Rd) is
defined as the collection of all symbols in C∞(Rd × Rd), such that, for all α, β ∈ Nd,∣∣∣∂αx∂βξ a(x, ξ)∣∣∣ ⩽ Cα,β〈ξ〉m+δ|α|−ρ|β|.

The following results are classic, whose proof can be founded in [39, 29].
Proposition C.3. Let 0 ⩽ δ < ρ ⩽ 1 or 0 ⩽ ρ = δ < 1. Then the pseudo-differential
operator Op (a) ∈ L(Hs;Hs−m) for all a ∈ Smρ,δ and s,m ∈ R.
Proposition C.4. Let 0 ⩽ δ < ρ ⩽ 1 and m,m′ ∈ R. For all symbols a ∈ Smδ,ρ and
b ∈ Sm

′

δ,ρ , the composition Op (a)Op (b) and the adjoint Op (a)∗ are also pseudo-differential
operators, with symbol a♯b ∈ Sm+m′

δ,ρ , a∗ ∈ Smδ,ρ, respectively. Moreover, for all N ∈ N, we
have the following symbolic calculus,

a♯b−
∑
|α|<N

1

α!
∂αξ aD

α
x b ∈ S

m+m′−N(ρ−δ)
ρ,δ ,(C.2)

a∗ −
∑
|α|<N

1

α!
∂αξD

α
xa ∈ S

m−N(ρ−δ)
ρ,δ ,(C.3)

where Dx = −i∂x.
In periodic case, there are two ways to define Op (a). One is to regard the Fourier

variable ξ as an element in Nd, and symbols as distributions on Td × Nd. The only
difference with Rd case is that the derivative in ξ should be understood as finite difference:

∂ξa(x, ξ) := a(x, ξ + 1)− a(x, ξ).

Another method is to regard functions on Td as periodic functions on Rd. Thus, for
symbols a ∈ S(Rd × Rd), Op (a) u is a well-defined periodic distribution, which can be
viewed as a distribution on Td. Then, for all a ∈ Smρ,δ, one may define Op (a) by density
arguments. Via this method, the derivatives in ξ is just the same as those on Euclidean
space. These two methods are equivalent in the sense that the difference of pseudo-
differential operators defined by two methods is of lower order than the itself. That is to
say, if a ∈ Smδ,ρ, the difference of two definition should be an operator of order m− ρ, i.e.
belonging to L(Hs;Hs−(m−ρ)) for all s ∈ R. A rigorous study of these definitions can be
found in [56, 57]. For simplicity, we shall focus on Rd case in the sequel.
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One observes that all the results above requires the symbols to be smooth in x and
ξ. However, in applications, they are usually rough in x. For example, the ∆g defined by
(2.13) has only Sobolev regularity in (y, z) but smooth in Fourier variables. To overcome
this difficulty, we turn to a refined version known as paradifferential calculus developped
by Bony [22] in 1980s.
C.2. Paraproduct. To begin with, we consider the simplest case, multiplication opera-
tors. We fix a dyadic decomposition

1 = χ(ξ) +
∞∑
j=0

φ

(
ξ

2j

)
,

where χ, φ are radial positive smooth truncations near {|ξ| ⩽ 1} and {1 ⩽ |ξ| ⩽ 2},
respectively, such that

χ

(
ξ

2j

)
= χ (ξ) +

j∑
k=0

φ

(
ξ

2k

)
, ∀ξ ∈ Rd, j ∈ N.

Then we can define the following multipliers:

∆j := φ

(
Dx

2j

)
, Sj := χ

(
Dx

2j

)
.

Definition C.5 (Bony’s decomposition). For all functions a, b ∈ S(Rd),

Tab :=
∞∑
j=2

Sj−2a∆jb,

R(a, b) := ab− Tab− Tba.

The linear operator Ta is known as paraproduct.
Remark C.6. In the definition of Tab, the low frequency part of b is eliminated. Thus,
it makes no difference to replace b by b plus any function whose Fourier transform is
supported near zero. In particular, we have

Tab = Ta(b−R), ∀R ∈ R.
Now, we review the boundedness of Tab and R(a, b) in Sobolev spaces,

Proposition C.7. Let a ∈ Hs, b ∈ Hs′ with s, s′ ∈ R. Then we have,

‖Tab‖
Hmin(s′,s+s′− d

2 ) ≲ ‖a‖Hs‖b‖Hs′ , if s 6= d

2
;(C.4)

‖R(a, b)‖
Hs+s′− d

2
≲ ‖a‖Hs‖b‖Hs′ , if s+ s′ > 0.(C.5)

Moreover, when a ∈ C∞
b and b ∈ Hs′ with s′ ∈ R, we have

‖Tab‖Hs′ ≲ ‖a‖L∞‖b‖Hs′ ,(C.6)
‖R(a, b)‖Hs′ ≲ ‖a‖CM‖b‖Hs′ ,(C.7)

for some M ∈ N depending on s′ and dimension d. Recall that ‖a‖CM := sup|α|⩽M ‖∂αa‖L∞.
And when a ∈ Hs and b ∈ C∞

b , the estimate (C.6) above becomes
(C.8) ‖Tab‖Hs ≲ ‖a‖Hs‖b‖CN ,

where N ∈ N depends on s and dimension d.
These results are classical, one may find a proof in [22] or Chapter 2 of [16], where

the results are generalized to Besov spaces. By combining Proposition C.7 and Remark
C.6, we have the following result to be used frequently in this paper.
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Proposition C.8. Let a ∈ Hs
W and b ∈ Hs′

R for some s, s′ ∈ R, with W ∈ C∞
b and

R ∈ R. Then, we have, for all r ∈ R,

‖Tab‖Hr ⩽ C(‖a‖Hs
W
+ ‖W‖L∞)‖b‖

H
max(r,r+ d

2−s)+

R

, if max(r, r +
d

2
− s) < s′;(C.9)

‖R(a, b)‖Hr ⩽ C(‖a‖Hs
W
+ ‖W‖CM )‖b‖

H
r+ d

2−s

R

, if r > −d
2
,(C.10)

where constants C > 0 and M ∈ N rely solely on r, s, s′ and dimension d.

If the normalization of b is not constant but a C∞
b function, the following corollary

follows from Proposition C.8 with estimates (C.8) and (C.7).

Corollary C.9. Given r > −d
2
, we assume that a ∈ Hs

R1
, b ∈ Hs′

R2
with s, s′ ∈ R and

R1, R2 ∈ C∞
b . If s′ > max(r, r+ d

2
−s), there exists constants C > 0 and M ∈ N depending

on r, s, s′ and dimension d, such that
(C.11) ‖ab‖Hr

R1R2
⩽ C(‖a‖Hs

R1
+ ‖R1‖CM )(‖b‖Hs′

R2

+ ‖R2‖CM ).

C.3. Paradifferential operators. The paraproduct operator Ta defined in previous
section can be regarded as a refinement of multiplication operator, which is equal to the
pseudo-differential operator Op (a). This inspires us to study Op (a), where a = a(x, ξ)
is a symbol with limited regularity in x, by turning to the paradifferential operator Ta
defined below, which is no more than a generalization of Definition C.5.

Definition C.10. Let a = a(x, ξ) be a symbol smooth in ξ 6= 0 with Sobolev or Hölder
regularity in x. Then the paradifferential operator of symbol a is defined as

(C.12) Tau(x) :=
1

(2π)d

∫
eix·ξ

∞∑
j=2

Sj−2a(x, ξ)φ

(
ξ

2j

)
û(ξ)dξ,

where Sj−2 acts on x variable.

Remark C.11. By construction, the low-frequency information |ξ| � 1 of u is eliminated,
which means that paradifferential operators are never bijective. Nevertheless, for elliptic
symbols (see Definition 3.6), it is possible to construct left and right inverse, up to some
reasonable remainders, which is known as a parametrix.

Remark C.12. The definition above is a special case of the general one introduced by
Bony [22],

Ta := Op (ã) , ã(x, ξ) = χ̃(Dx, ξ)a(·, ξ),
where χ̃ = χ̃(η, ξ) is a smooth truncation near {|η| < ϵ(1 + |ξ|)}, such that χ̃ = 0 on
{|η| > ϵ′(1 + |ξ|)} with 0 < ϵ < ϵ′ < 1 and for all α, β ∈ Nd,

|∂αη ∂
β
ξ χ̃(η, ξ)| ≲α,β 〈ξ〉−|α|−|β|.

In fact, with different choice of χ̃, the resulting paradifferential operators are equivalent
in the sense that their difference is a smoothing operator (see [53] for more details).

Example C.13. If a = a(x), the definition C.5 and C.10 coincide. For a = a(ξ),

Ta = a(Dx)− χ

(
Dx

4

)
a(Dx),

i.e. Ta equals the Fourier multiplier a(Dx) up to a smoothing operator. Furthermore, for
general symbol a = a(x, ξ) and multiplier b = b(ξ), we have

Ta ◦ b(Dx) = Tab.
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Definition C.14. Let ρ ⩾ 0 and m ∈ R. The symbol class Γmρ is defined as the collection
of symbols a = a(x, ξ) Hölder in x and smooth in ξ, such that for all α ∈ Nd,

‖∂αξ a(·, ξ)‖Cρ ⩽ Cα〈ξ〉m−|α|, ∀ |ξ| > 1

2
,

where Cρ is the class of Hölder function for non-integer ρ and the usual Sobolev space
W ρ,∞ for ρ ∈ N.

Remark C.15. If a = a(x, ξ) is homogeneous in ξ of degree m, then it belongs to Γmρ if
and only if

sup
|ξ|=1

‖∂αξ a(·, ξ)‖Cρ ⩽ Cα, ∀α ∈ Nd.

In this paper, we are interested in symbols with Sobolev regularity in x. An appli-
cation of Bernstein’s Lemma (see, for example, Lemma 2.1 of [16]) implies that

Proposition C.16. For all m ∈ R and a ∈ Γmr with r < 0, Ta is of order m − r. In
particular, let s < d

2
be a real number. We assume that a = a(x, ξ) is smooth in ξ with

Sobolev regularity in x, namely

‖∂αξ a(·, ξ)‖Hs ⩽ Cα〈ξ〉m−|α|, ∀ |ξ| > 1

2
.

Then Ta is of order m− s+ d
2
.

Now, we are able to generalize Proposition C.3 and C.4. The proof of following
results can be found in Chapter 5 of [53].

Proposition C.17. Given m ∈ R, for all a ∈ Γm0 , the paradifferential operator Ta is of
order m, namely
(C.13) Ta ∈ L

(
Hs;Hs−m) , ∀s ∈ R.

Proposition C.18. Let a ∈ Γmρ and b ∈ Γm
′

ρ with m,m′ ∈ R and ρ > 0. Then the
composition TaTb and adjoint T ∗

a are both paradifferential operators, such that TaTb−Ta♯ρb
is of order m+m′ − ρ and T ∗

a − Ta∗ is of order m− ρ, where

a♯ρb =
∑
|α|<ρ

1

α!
∂αξ aD

α
x b,(C.14)

a∗ =
∑
|α|<ρ

1

α!
∂αξD

α
xa.(C.15)

As a corollary, we have the following commutator estimate:

Corollary C.19. If a ∈ Γmρ , b ∈ Γm
′

ρ with m,m′ ∈ R and ρ > 0, the commutator [Ta, Tb]
is of order m+m′ −min(ρ, 1).

The following estimate concerning commutator will also be used,

Corollary C.20. Let a ∈ Hs
W with s > d

2
and W ∈ C∞

b . There exists 0 < δ0 � 1, such
that, for all symbol λ = λ(ξ) in the class Sδ1,0(Rd) (see Definition C.2) with δ ⩽ δ0, we
have
(C.16) ‖[Op (λ) , a]‖L(Hr) ⩽ C, ∀r ⩽ s− δ,

where C > 0 and δ0 depends only on s, r.
Moreover, the same result holds true if the symbol λ = λ(ξ′) depends only on ξ′ (we

write ξ = (ξ′, ξd) ∈ Rd−1 × R) and belongs to the class Sδ1,0(Rd−1).
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Proof. For all u ∈ Hr, we decompose,

[Op (λ) , a] u = [Op (λ) , Ta] u+Op (λ) (Tua+R(a, u))−
(
TOp(λ)ua+R(a,Op (λ) u)

)
.

For the last two terms, we will use estimates in Proposition C.8 and estimate (C.8). In
fact, u ∈ Hr implies

Tua ∈ Hmin(s,s+r− d
2
)− ⊂ Hr+δ, R(a, u) ∈ Hs+r− d

2 ⊂ Hr+δ,

whenever s ⩾ r + δ0 and s − d/2 > δ0. Consequently, Op (λ) (Tua+R(a, u)) lies in Hr.
With this choice of δ0, from Op (λ) u ∈ Hr−δ one may also deduce that

TOp(λ)ua ∈ Hmin(s,s+r−δ− d
2
)− ⊂ Hr, R(a,Op (λ) u) ∈ Hs+r−δ− d

2 ⊂ Hr.

It remains to deal with the principal part [Op (λ) , Ta] u. If λ ∈ S0
1,0(Rd), it is harmless

to replace Op (λ) by Tλ since their difference is a smoothing operator. Then by Corollary
C.19, it is easy to see that [Tλ, Ta] u belongs to Hr since λ ∈ Γδδ and a ∈ Γ0

δ by choosing
s− d/2 > δ0. The proof for the case of full space (λ ∈ S0

1,0(Rd)) is completed.
If λ depends only on ξ′ and belongs to S0

1,0(Rd−1), we observe from Definition C.5
that

[Op (λ) , Ta] u =
∑
j⩾2

[Op (λ) , Sja]∆ju,

It is easy to see that, for each j ⩾ 2, the Fourier transform of [Op (λ) , Sja]∆ju is
supported in 2jC, where C is an annulus. Thus, by almost orthogonality, it suffices
to check that [Op (λ) , Sja] is bounded from L2(Rd) to L2(Rd) uniformly in j, and the
problem can be reduced to the following commutator estimate

(C.17) ‖[Op (λ) , b]‖L(L2(Rd)) ≲ ‖b‖Hs .

For any u ∈ L2(Rd), we fix arbitrary xd ∈ R and apply the result proved above (full space
case) on Rd−1 (recall that we write x = (x′, xd) ∈ Rd−1 × R).

‖[Op (λ) , b(·, xd)]u(·, xd)‖L2
x′
≲ ‖b‖

L∞
xd
H

s− 1
2

x′
‖u(·, xd)‖L2

x′
≲ ‖b‖Hs(Rd)‖u(·, xd)‖L2

x′
,

where the second inequality is due to the classical trace theorem. The desired estimate
(C.17) follows by taking L2

xd
norm on both sides. □

Another useful corollary is

Corollary C.21. Let a ∈ Hs
R and u ∈ Hs′ with d

2
< s′ ⩽ s and R ∈ R constant. Then

there exists C > 0 such that

(C.18) ‖au2 − 2Tauu‖
Hmin(s,2s′− d

2 ) ⩽ C
(
‖a‖Hs

R

)
‖u‖2

Hs′ .

Proof. We may write au2 as

au2 = Tauu+ Tuau+R(au, u) =Tauu+ Tu (Tau+ Tua+R(a, u)) + R(au, u)

=2Tauu+ (TuTa − Tau) u+ T 2
ua+ TuR(a, u) + R(au, u).

Since a, u can be regarded as symbols in Γ0
s′−d/2, respectively, the operator TuTa−Tau is of

order −(s′−d/2) and thus (TuTa − Tau) u ∈ Hs+s′− d
2 (note that when a, u are independent

of ξ, a♯ρu = au for all ρ > 0). By applying Proposition C.8 and Corollary C.9, we have
T 2
ua ∈ Hs, TuR(a, u) ∈ Hs+s′− d

2 , and R(au, u) ∈ H2s′− d
2 , which completes the proof. □
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C.4. Composition. To end this section, we review the paradifferential calculus concern-
ing composition.

Proposition C.22. Let F be a smooth function and u ∈ Hs with s > d
2
. Then F (u) ∈

Hs
F (0) with

(C.19) ‖F (u)− F (0)− TF ′(u)u‖
H2s− d

2
⩽ C (‖u‖Hs) ‖u‖Hs .

Consequently, when u ∈ Hs
R with s > d

2
and R ∈ C∞

b , we have

(C.20) ‖F (u)‖Hs
F (R)

⩽ C
(
‖u‖Hs

R

)
‖u‖Hs

R
,

where C > 0 is a smooth increasing function depending on F and R.

The proof of this proposition can be found in [22] or [16], Chapter 2.
Now we focus on the study of u ◦ χ, where u and χ both have limited regularity.

In this case, the singularity concentrates on two terms, Tu′◦χχ and the paracomposition
X∗u, which is firstly studied by Alinhac in [11]. In the sequel, we assume that χ : Ω′ → Ω
is a diffeomorphism, where Ω, Ω′ are bounded domains in Rd with smooth boundary, and
u is a function on Ω with Sobolev regularity. The following results can be found in [11]
(see also [10]), while the case of Rd is studied in [62] (see also [57]).

Proposition C.23. Let χ ∈ H
1+ d

2
+σ

loc and σ ∈ R+\N. Then there exists a paracomposition
operator X∗, such that, for all u ∈ Hs

loc, s > d
2
+ 1,

(C.21) u ◦ χ = Tu′◦χχ+X∗u+Ru,

where the remainder R ∈ H
1+σ+min(1+σ+ d

2
,s−1)

loc .

An important property of paracomposition operator χ∗ is the following conjugation
formula,

Proposition C.24. Let χ ∈ H
1+ d

2
+σ

loc be as in Proposition C.23 and a ∈ Γmr with m ∈ R
and r ⩾ 0. The X∗ defined in Proposition C.23 satisfies

(C.22) X∗Ta = Tχ∗aX
∗ +R,

where χ∗ is the pull-back by χ and the remainder R is also a paradifferential operator
with symbol in Γm−r

0 .

Remark C.25. The rigorous definition of the pull-back χ∗a depends on a delicate study
of pseudo-differential operators on domains (or smooth manifolds), which will not be
precised here (refer to [39], Theorem 18.1.17). In the case where a is a differential
operator a(s, ξ) =

∑
α aα(x)ξ

α (Laplacian operator, for example), χ∗a equals the symbol
of the pull-back of Op (a), which is clearly a differential operator and can be calculated
simply by usual change of variable.

Remark C.26. An explicit definition of paracomposition operator X∗ is

X∗u :=
∑
j

∆j (∆ju ◦ χ) ,

which is hard to use in applications. Usually, we may define X∗u via (C.21) when the
remainder is not important.
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Appendix D. Variation in metric

This section is devoted to the proof of identity (2.40), which can be obtained via a
direct but complicated calculus.

Lemma D.1. Under the hypotheses of Proposition 2.5, we have

(D.1)
1

2
δ(
√
ggαβ)∂αφ∂βφ =

1

2
∇T
y,z

(
J−1Y |∇gφ|2

√
gδζ
)
−∇T

y,z

(√
gJ−1∇gφ Y T∇gφδζ

)
+
√
g∆gφY · ∇gφδζ.

Recall that, in the coordinate (y1, y2, z), Greek letters are indices for {1, 2, z}, while Latin
letters correspond to {1, 2}.

Proof. To begin with, by using (gαβ) = J−1J−T , one could right the left hand side as
1

2
δ(
√
ggαβ)∂αφ∂βφ =

1

2
δ (

√
g) gαβφαφβ +

1

2
∇T
y,zφδ

(
J−1J−T )∇y,zφ

√
g

=
1

2
δ (det J) |∇gφ|2 −∇T

y,zφJ
−1δJJ−1J−T∇y,zφ

√
g

=
1

2
tr
(
J−1δJ

)
|∇gφ|2

√
g −∇T

g φδJJ
−1∇gφ

√
g,

where we use formulas (2.11), (2.12), and
δ (det J) = tr

(
J−1δJ

)
det J and δ

(
J−1
)
= −J−1δJJ−1.

From the definition (2.9), one may compute

J−1δJ =

(
J−1
0 δζ 0

0 0

)
+

(
J−1
0 y∇T

y δζ J−1
0 yδζz

0 0

)
,

with J0 = (ζδij + yiζj)ij. As a result,
1

2
tr
(
J−1δJ

)
|∇gφ|2

√
g

=
1

2
tr
(
J−1
0

)
|∇gφ|2

√
gδζ +

1

2
tr
(
J−1
0 y∇T

y δζ
)
|∇gφ|2

√
g

=
1

2
tr
(
J−1
0

)
|∇gφ|2

√
gδζ +

1

2
J−1
0 y · ∇yδζ|∇gφ|2

√
g

=
1

2
tr
(
J−1
0

)
|∇gφ|2

√
gδζ +

1

2
∇y ·

(
J−1
0 yδζ|∇gφ|2

√
g
)
− 1

2
∇y ·

(
J−1
0 y|∇gφ|2

√
g
)
δζ

=
1

2
tr
(
J−1
0

)
|∇gφ|2

√
gδζ +

1

2
∇y ·

(
J−1
0 yδζ|∇gφ|2

√
g
)
− 1

2
∇y ·

(
J−1
0 y|∇gφ|2

)√
gδζ

− 1

2
|∇gφ|2J−1

0 y · (∇y
√
g) δζ

=
1

2
tr
(
J−1
0

)
|∇gφ|2

√
gδζ +

1

2
∇y ·

(
J−1
0 yδζ|∇gφ|2

√
g
)
− 1

2
∇y ·

(
J−1
0 y|∇gφ|2

)√
gδζ

− 1

2
|∇gφ|2J−1

0 y · tr
(
J−1
0 ∇yJ0

)√
gδζ.

Note that the last equality is a consequence of
∇y

√
g = ∇y det J0 = tr

(
J−1
0 ∇yJ0

)
det J0 = tr

(
J−1
0 ∇yJ0

)√
g.

Therefore, we obtain the identity
1

2
tr
(
J−1δJ

)
|∇gφ|2

√
g = r1

√
gδζ +

1

2
∇T
y,z

(
J−1Y δζ|∇gφ|2

√
g
)
,
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where

(D.2) r1 =
1

2
tr
(
J−1
0

)
|∇gφ|2 −

1

2
∇y ·

(
J−1
0 y|∇gφ|2

)
− 1

2
|∇gφ|2J−1

0 y · tr
(
J−1
0 ∇yJ0

)
.

In the mean time, it is clear that

δJ =

(
δζ + y∇T

y δζ yδζz
0 0

)
=

(
δζ 0

0 0

)
+

(
y∇T

y δζ yδζz
0 0

)
,

which yields
∇T
g φδJJ

−1∇gφ
√
g

=∇i
gφ
(
J−1∇gφ

)i√
gδζ + yi∇i

gφδζα
(
J−1∇gφ

)α√
g

=∇i
gφ
(
J−1∇gφ

)i√
gδζ +∇y,z ·

(
J−1∇gφyi∇i

gφδζ
√
g
)
−∇y,z ·

(√
gJ−1∇gφyi∇i

gφ
)
δζ

=∇i
gφ
(
J−1∇gφ

)i√
gδζ +∇T

y,z

(
J−1∇gφY

T∇gφδζ
√
g
)
−√

gJ−1∇gφ · ∇y,z

(
yi∇i

gφ
)
δζ

−√
g∆gφY

T∇gφδζ,

where the last equality is due to (2.12) and (2.13). Then the following identity holds
true,

∇T
g φδJJ

−1∇gφ
√
g = r2

√
gδζ +∇T

y,z

(
J−1∇gφY

T∇gφδζ
)
−√

g∆gφY
T∇gφδζ,

with
(D.3) r2 = ∇i

gφ
(
J−1∇gφ

)i − (J−1∇gφ · ∇y,z

) (
yi∇i

gφ
)
.

It follows that the desired result (D.1) is equivalent to
r1 − r2 = 0.

We notice that

r1 = −
((
J−1
0 y · ∇y

)
∇α
gφ
)
∇α
gφ− 1

2
∂ia

ijyj|∇gφ|2 −
1

2
J−1
0 y · tr

(
J−1
0 ∇yJ0

)
|∇gφ|2

(recall that (aij) is defined in (2.10) with i, j taken in {y1, y2}), and
r2 = −yi

(
J−1∇gφ · ∇y,z

)
∇i
gφ.

Then the problem is reduced the following identities
−∂iaijyj = J−1

0 y · tr
(
J−1
0 ∇yJ0

)
,(D.4) ((

J−1
0 y · ∇y

)
∇α
gφ
)
∇α
gφ = yi

(
J−1∇gφ · ∇y,z

)
∇i
gφ.(D.5)

To prove these, we shall use the following formulas which can be checked easily from
(2.9),

∂αa
βγ = −aββ′

∂αaβ′γ′a
γ′γ,(D.6)

∂αazβ = 0,(D.7)
∂αaiβ = δiβζα + δαiζβ + yiζαβ.(D.8)

Note that we write the version for J , while the same formulas hold for J0, which means
one could replace the Greek letters by Latin ones.

We first check (D.4). By (D.8), the left hand side is equal to
−∂iaijyj =aik∂iaklaljyj

=aik (δklζi + δikζl + ykζil) a
ljyj

=ζia
ikakjyj + ζla

ljyja
ii + aikyka

ljyjζil,



while the right hand side reads
J−1
0 y · tr

(
J−1
0 ∇yJ0

)
=aijyja

kl∂ialk

=aijyja
kl(δlkζi + δilζk + ylζik)

=ζia
ijyja

kk + ζka
kiaijyj + aijyja

klylζik,

which proves (D.4).
As for (D.5), the left hand side equals

aijyj∂i(a
βαφβ)∇α

gφ

=aijyj∂ia
βαφβ∇α

gφ+ aijyja
βαφiβ∇α

gφ

=− aijyja
βλ∂iaλµa

µαφβ∇α
gφ+ aijyja

βαφiβ∇α
gφ

=− aijyja
βk∂iakµa

µαφβ∇α
gφ+ aijyja

βαφiβ∇α
gφ

=− aijyja
βk(δkµζi + δikζµ + ykζiµ)a

µαφβ∇α
gφ+ aijyja

βαφiβ∇α
gφ

=− ζia
ijyjφβa

βkakα∇α
gφ− φβa

βiaijyjζµa
µα∇α

gφ− φβa
βkyka

ijyjζiµa
µα∇α

gφ

+ aijyja
βαφiβ∇α

gφ

=− ζia
ijyjφla

lkakα∇α
gφ− φla

liaijyjζµa
µα∇α

gφ− φla
lkyka

ijyjζiµa
µα∇α

gφ

+ aijyja
βαφiβ∇α

gφ,

while the right hand side can be written as
yia

βα∇α
gφ∂β(a

γiφγ)

=yia
βα∇α

gφ∂β(a
jiφj)

=yia
βα∂βa

jiφj∇α
gφ+ ajiyia

βαφjβ∇α
gφ

=− yia
βαajk∂βakla

liφj∇α
gφ+ ajiyia

βαφjβ∇α
gφ

=− yia
βαajk(δklζβ + δkβζl + ykζβl)a

liφj∇α
gφ+ ajiyia

βαφjβ∇α
gφ

=− φja
jkakiyiζβa

βα∇α
gφ− ζla

liyiφja
jkakα∇α

gφ− φja
jkyka

liyiζβla
βα∇α

gφ

+ ajiyia
βαφjβ∇α

gφ,

which gives (D.5). □

List of Symbols

a∗ Adjoint of symbol, 78

B Radial componant of velocity fluid at
free boundary, 5

B(η) Trace of radial derivative of
harmonic extension, 34

C∞
b Bounded smooth functions with

every derivative bounded, 8
CTX s

R Solution space (continuous in
time), 58

a♯b Composition of symbols, 78
c0, C0 Lower and upper bounds of η, 3

D 2D Unit disk, 8

∆g Pull-back of ∆x,z by ι, 12
δ
δη

Variation in η, 14

Ek Kinetic energy, 15
Ep Potential energy, 15
≈ Equivalence between paralinear

operators, 23
η Radius of free boundary, 2
∼ Equivalence between functions, 26

F Flow map, 6
f1 Error in paralinearization of

Dirichlet-to-Neumann operator, 34

G(η) Dirichlet-to-Neumann operator, 5
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Γmρ Symbol class for paralinear
operators, 81

g Determinant of (gαβ), 12
gαβ Inverse of (gαβ), 12
gαβ Metric tensor of ι, 12

H Mean curvature of free boundary, 4
Hs Sobolev space, 8
Hs
W Sobolev space with normalization
W , 8

H Hamiltonian, 15

ι Diffeomorphism to straight cylinder, 10

J Jacobian matrix of ι, 12
Jϵ Smoothing opertaor, 59
jϵ Symbol of Jϵ, 59

L∞
T X s

R Solution space (bounded in
time), 58

L Principal operator in
paralinearization, 38

Lϵ Approximate principal operator, 59
λ Symbol of Dirichlet-to-Nemann

operator, 34

M r
T Sobolev energy, 61

µ Symbol of mean curvature, 38

N Nonlinear term, 5
N r
T Auxiliary Sobolev energy, 61

∇̄ Modified gradient, 33
∇g Pull-back of ∇x,z by ι, 12
n Conormal vector of free boundary, 3
ng Pull-back of the conormal vector n,

13

Ω(t) Domain of fluid, 2
Op (a) Pseudo-differential operator, 78

P Paralinearized Laplacian, 25
Φ Alinhac’s good unknown, 25
ϕ Scalar potential, 4
ψ Trace of scalar potential, 4

R(a, b) Remainder in Bony’s
decomposition, 79

r2 Error in paralinearization of
nonlinear term, 38

r3 Error in paralinearization of mean
curvature, 38

S Symmtrizer of the system, 53
Smρ,δ Symbol class, 78
Σ(t) Free boundary, 2
Σm Homogeneous symbols depending on

η, 22
S 1D circle, 8

Ta Paralinear operator (paraproduct), 79
T 1D Torus, 8

V Angular componant of velocity fluid
at free boundary, 5

V(η) Trace of anular derivative of
harmonic extension, 34

X∗ Paracomposition operator, 83
X s
R Data space, 58

ζ Extension of η, 11
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