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HAOCHENG YANG!2

ABSTRACT. The motion of liquid jets plays an important role in physics and engineering,
and needs rigorous mathematical investigations. Recently, Huang-Karakhanyan proved
the first local well-posedness in Sobolev spaces for axisymmetric jets. In this paper, we
will extend this result to general jets, namely without any axisymmetry condition.
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1. INTRODUCTION

1.1. History of the problem. The study of liquid jets has a long history in physics.
It is until the beginning 19th century that researchers discovered that the singularity
(namely, break-up) of jets is regardless of any exterior forces (gravity, for example), and
should be due to surface tension, which is a nature of the fluid. In 1873, Plateau [54]
firstly observed that this instability is related to the area of jets. Soon in 1879, Rayleigh
[55] developed a linear stability method and explained this phenomenon from a theoretical
point of view. Meanwhile, other physical nature of jets were also widely studied. We refer
to [33] for more histories and results on physics.

In mathematics, the study of jets is concentrated on the steady case (system in-
dependent of time), especially the flow in nozzles. For the research on fixed infinitely
long nozzles, we refer to [19, 67, 66, 32]. In the case of semi-infinite nozzle (with half free
boundary), the early study using hodograph transformation and conformal mappings can
be found in [21, 35] and a stronger method via variational formulation is developed by
Alt, Caffarelli, and Friedman [25, 13, 12]. Recent progress on this topic can be found in
[27, 63, 47] and the references therein. Except for nozzle problem, there are also some
other results on stationary jets [38, 36].

For the system depending on time, some formal construction of special solutions is
established [44, 15]. The first study of the Cauchy problem has recently been given by
Huang-Karakhanyan [41], where the authors prove that the axisymmetric jets are locally
well-posed in Sobolev spaces. In [40], the same authors studied in detail the Dirichlet-to-
Neumann operator in the problem of Taylor-cone arising from break-up of jets. To our
knowledge, further mathematical research on jets, such as the formation of break-up, is
still blank. In this article, we will extend the well-posedness obtained in [41] to the case
without the axisymmetry condition.

1.2. Setting of the problem.

1.2.1. Cylinder-like jets. In this paper, we are interested in the 3D jets that are not
necessarily invariant by rotation. The shape of such jets can be characterized by

(1.1) Qt) ={(x,2) eR*xR: 2 =0or |z| < nt,x/|z|,2)},
and its free boundary is given by
(1.2) B(t) = {(z,2) € R* x R || = n(t, 2/|z], 2)},

where 7 is a strictly positive function defined on R x T x R. From physical background of
the problem, we focus on two cases: steady interface with little perturbation and periodic
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interfaces. Rigorously, the following hypotheses on initial data 1y = n|;—¢ will be made
in the whole paper:

(HO) 3Cy,co > 0, such that ¢y < ny < Co;
(H1) (Perturbative case) IR > 0, such that no — R € H*(T x R), for some proper s;
(H1") (Periodic case) 3L > 0, such that 7 is periodic in z of period L.

In perturbative case, (H1) indicates that, when s > 1 and z — 400, no(w, z) tends
to R uniformly in w, which can be formally preserved for all time due to the governing
equation (1.7), while (H1) and (HO) will hold for short time from our main result Theorem
1.1. In periodic case, one may check that (H1’) is preserved for all time by using the
fact that equations (1.3), (1.7), and (1.8) are invariant by translations in z-direction.
Therefore, 1 should be viewed as a function on R x T? (for simplicity, we may take
L = 2m). In what follows, we focus on the perturbative case, while all the results hold
true in periodic case with normalizations eliminated.

We also assume that the fluid is inviscid, incompressible, and irrotational. Conse-
quently, the velocity field u satisfies Euler equation with divergence-free and rotation-free
conditions

(1.3) { du+u-Vyu+ Ve, P=0, inQt),

div,,u=0, curl,,u=0, in Q(¢),

where P is the pressure driven only by surface tension.

1.2.2. Boundary conditions. In order to fully determine the motion of fluid and free
surface, we introduce two boundary conditions on Y(¢). The first one is the kinematic
boundary condition,

(1.4) n-y=n-u, on X(t),

where, for all time ¢, n = n(t) is the outward unit normal direction to X(¢) in R® and
v = () is the parametrization of ¥(t),

y(t): TxR — R3
(w,2) = (N(t,w,z)cosw,n(t,w,z)sinw, z).

In coordinate (w, z), n equals

1 N
1.5 n=—-\€6 — —€, — nzez) ,
(15) ! ( n

with
e, = (cosw, sinw,0), e, = (—sinw,cosw,0), e, =(0,0,1),
and

(1.6) l:\/1+ (%)QJrng.

As a result, (1.4) can be rewritten as

(1.7) N = (er — %}ew — nzez) - uly.

The second boundary condition in need is the balance of forces on the free boundary

DX

(1.8) Plg=o <H - %) )
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where 0 > 0 is a constant and H is the mean curvature. The normalization 1/(2R) is
necessary in perturbative case, since the mean curvature

171 a, (n, .
(1.9) H=3 =%l —@@J
n o \nl l
tends to 1/(2R) as z — £oo under the hypothesis (H1) with s > 3. In periodic case,
this normalization can be omitted.

1.2.3. Impact of gravity. We emphasize that the effect of gravity is not important in the
Cauchy problem. In fact, under gravity force, P should be replaced by P + gz, where g
is the gravity acceleration. Let (u9, PY,19) be any solution to the system with gravity. A
simple calculus shows that

1
u(t,x,z) =ud(t,x,z — Egt2) + (0,0, gt),
1
P(t,l’, Z) = Pg(twruz - 59752) + gz,

1
77(@007 Z) = 779<t7w7 Z = §gt2)7

is a solution to the problem (1.3), (1.7), and (1.8) without gravity. This transformation
between (u, P,n) and (u?, P9,19) is clearly invertible, meaning that the systems with and
without gravity are equivalent.

1.3. Craig-Sulem-Zakharov formulation. Unlike standard 3D Euler equation, (1.3)
is defined in a domain varying in time. To overcome this difficulty, we follow the idea
from Zakharov [68] and Craig-Sulem [30], which can reduce the problem to equations on
a fixed domain T x R (or T? in periodic case).

To begin with, we observe that the irrotational and incompressible conditions guar-
antee the existence of harmonic scalar potential ¢

(1.10) Ap.p=0, Vi, 0=u, in Q).
In terms of ¢, (1.3) can be written as

2

which yields the Bernoulli’s equation

Va0
2

Note that the right hand side should be a constant depending only on time, while, by
absorbing this constant in P, we may take it to be zero for simplicity.
Now, let us consider the trace ¥ of ¢ at the free surface 3(t), namely

(1.11) 09+ =22 L P =0, in Q).

(1.12) Y(t,w, z) = ¢ (n(t,w, z) cosw, n(t,w, z)sinw, z) .

By definition, ¢ can be uniquely determined by v (and 7 implicitly) via the following
linear elliptic equation

(1.13) { A, .0 =0, in Q(2),

Pls@ =



CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS 5

Consequently, the right hand side of (1.7) can be regarded as a function depending
linearly on ¢ and implicitly on 1, which gives rise to the (formal) definition of Dirichlet-
to-Neumann operator,

(114) G(’?W = (er - %ew - nzez) : Vx,z¢|r:n(w,z)

It is easy to check that G(n) is linear, positive, and that nG(n) is self-adjoint. A rigorous
study of this operator will be given in Section 2 and 3. In terms of the quantities below

2 B2
(116) B = €r vx,z(b‘E?
(1.17) V=e,(€y Vi.0)|ste (e, Virt)ls.
we have

n = G(UWJ =B-V. <%6w + nzez> 5
and, from (1.11) and (1.8),
Yy =0 (¢ (t,mcosw,nsinw, 2)) = ¢¢ls + neer - Vi Pls

2
= — (’Vm;(m +P) +<B—V-(7Z7—wew+nzez)>3
b
() (oo ()
=————0|H—— |+ |B-V-|—e,+ne.)|B
2 2R n

1
=—o(H-—)-N.
(- 35)

In conclusion, the system (1.3), (1.7), and (1.8) is reformulated as the following
equations on T x R (or T? in periodic case)

ne = Gn)y,
(118) {ma(ﬂ_ﬁ)w:o.

1.4. Main results. The main result of this paper is that the system (1.18) is locally
well-posed in Sobolev spaces. More precisely,

Theorem 1.1. Let (g — R, o) € H* 2 (T x R) x H*(T x R) with s > 3. Assume that
no satisfies the hypotheses (HO) and (H1), or (HO) and (H1’) for periodic case. Then
there exists T' > 0, such that the system (1.18) with initial data (1o, o) admits a unique
solution

(n— R, ) €C ([O,T[; H*"3(T x R) x H*(T x ]R)) .
Moreover, the hypotheses (HO), (H1) or (H1’) are preserved for all t € [0,T.

Moreover, we shall prove that the flow map is continuous in the sense of following
theorem:

Theorem 1.2. Under the hypotheses of Theorem 1.1, for all 0 < r < 1, we denote by
Bs (no, o; 1) the collection of all ({y, o) with

1m0 = R) = ol ey gy T %0~ ol

which is a subset of H*2(T x R) x H*(T x R). Then there exists T, > 0 (depending on
(M0, %0) ), such that the system (1.18) with initial data in Bs (0o, vo;7) + (R,0) admits a

Hs(TxR) < T,
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unique solution (i, ) on [0,T,] with (j— R,v) € C ([O,TT[; H*"3(T x R) x H*(T x R)),
and the hypotheses (HO), (H1) or (H1") are preserved for all t € [0,T,].
Moreover, the flow map

F: Bi(novo;r) — L=([0,T,[; H2(T x R) x H¥(T x R))

(1.19) Conto) (ﬁ(t) — R,@/?(t)) :

1S continuous.

These well-posedness results have attracted lots of attention for planar water-wave
(64, 65, 46, 14, 34, 43, 8, 3, 4] in recent years. And the same problem with different
geometric setting such as water drops [20, 28, 48, 60, 59, 58, 17] has also been widely
studied. [41] provides the first result on cylinder, and the theorems above extend it by
deleting the axisymmetric condition.

1.5. Idea of the proof. Formally speaking, we attempt to investigate the hyperbolic
nature of water-wave equation (1.3) with (1.7), (1.8), and reformulate the equivalent
system (1.18) as

(1.20) aY + AY)Y = F(Y),

where Y is a new variable defined as an elliptic operator acting on (n,%) and F(Y) is a
(relatively) regular source term relying implicitly on Y. The high order linear operator
A(Y') also depends implicitly on Y with

A(Y)" = —A(Y).

Then classical methods for hyperbolic equations allow us to construct a series of approx-
imate solutions and prove their convergence to a solution to (1.20) via energy estimates.
With a similar argument, one may also show the uniqueness of the solution, which com-
pletes the well-posedness stated in Theorem 1.1.

In the context of water-wave problem (1.18), there are several difficulties:

1. How to rewrite the nonlinear terms as A(Y)Y up to acceptible remainders ?
2. What is the dependence of A(Y) in Y ? Or equivalently, how do G(n), N, and

H depend on (n,1) ?
3. Does the unique solution depend continuously on time and initial data ?

To solve these problems, we follow the idea of [9, 6] and apply the techniques of
paradifferential calculus. More precisely, we shall write all the nonlinear terms as parad-
ifferential operators acting on (n,%), where the implicit dependence in (n,) will be
reflected in the symbols to be calculated explicitly.

1.5.1. Paralinearization of G(n). In order to write G(n) as a paradifferential operator
with symbol depending explicitly on 7, from definition (1.14), one can see that the core
of this problem is to express normal derivative of potential ¢ as tangential ones, where
the implicit dependence on 7 is mainly hidden in Poisson’s equation (1.13). As in [9], we
will reformulate (1.13) as an elliptic equation on a fixed domain (see (2.22)), where the
Laplacian A, relies on metric g, or equivalently 7. Then, by decomposing the Laplacian
in normal and tangential part, we can see that the difference of normal derivative of ¢
and a tangential operator acting on ¢ is governed by a hyperbolic equation, implying the
desired paralinearization (3.52).

A major difficulty in this step is that the coefficients are smooth in 7, which has
limited regularity. As a consequence, if one applies directly the calculus above, most of
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the remainders will have the same regularity as the principal terms. To deal with this
lack of regularity, we replace v by Alinhac’s good unknown U = 1 — Tgn defined by
(3.19), which is inspired by paracomposition (see Appendix C.4 and [9]). Note that it is
possible to recover ¢ from U and 7.

1.5.2. Paralinearization of N, H. The treatment of N is easy since it can be expressed
as a smooth function of G(n)v, n, ¥, and their derivatives. The desired paralinearization
follows easily from classical formula (C.19). The same formula also works for mean
curvature H which is a smooth function of n and its derivatives.

1.5.3. Symmetrization. Given the paralinearizations above, we can rewrite the main
equation (1.18) as (3.68), which takes the form of (1.20) with

AY)=Ty -V +L.

The first part Ty - V can be roughly viewed as transport V - V with a Lipschitzian
vector V', and the classical arguments can be applied. The second part £ is a matrix
of paradifferential operators and the symbol of each entry is homogeneous in Fourier
variable £. After simple linear transform, the matrix of symbols becomes anti-Hermitian
(see Section 4). To do the same symmetrization at operator level, it suffices to apply
symbolic calculus as in Section 4 of [6].

1.5.4. Cauchy problem. As mentioned above, we will first construct a series of approxi-
mate solutions governed by

(1.21) Y + A(Yo)Ye = F(Yo),

where A.(Y) is a mollification of A(Y). Note that, in order to maintain the property
A(Y)" = —A(Y), this mollifier cannot be taken as a simple localization in Fourier vari-
able. Instead, A.(Y") will be defined by inserting a well-chosen paradifferential operator
depending on 1 in A(Y").

Another difficulty arsing from the convergence of approximate solutions Y, is that, to
compare Y, with another Y., it is necessary to calculate the Lipschitz norm of F'. We will
see in Section 3.5 that the core of this problem is to study the derivative-in-n of G(n)v,
which is known as shape derivative. A standard proof of this can be found in Section 3.3
of [45], which does not work here due to some difficulties from the geometric nature of
the cylinder. Inspired by [20], we first study the Hamiltonian formulation (Proposition
2.5) of the system (1.18), which then implies the desired shape derivative formula (2.42).

1.5.5. Continuity of the solution. It remains to check that the unique solution constructed
as the limit of approximate solutions is continuous in time and initial data. It is possible
to use the same strategy as in Section 6 of [6], while, in this paper, we will use another
method. In a recent paper [7], the authors prove a nonlinear interpolation theorem (see
Theorem 5.19), which can be briefly stated as: if the flow map satisfies the contraction
(5.50) and tame estimate (5.51), the solution will be continuous in time and initial data.
The former one follows easily from the energy estimate, while the tame estimate holds
due to the paradifferential calculus. In fact, all the estimates involving paradifferential
operators require the index of regularity to belong to an open interval. Then it is harmless
to replace these index by slightly smaller one, which gives the desired tame estimate.
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1.6. Plan of the paper. In Section 2, we will construct a proper change of variable to
pull the Poisson’s equation (1.13) back to a fixed domain and prove the elliptic regularity
with details left to Appendix B. Moreover, the Hamiltonian formulation will be given
and, as a result, we will deduce the shape derivative formula.

In Section 3, we first introduce the homogeneous symbols to be studied in this paper
and clarify the basic properties of paradifferential operator of these symbols (the general
theory will be reviewed in Appendix C). Then the paralinearization of G(n), N, and
H will be given as well as the paralinearization of the system (1.18). In the end of
this section, we will justify that all the remainders arising from the paralinearization are
Lipschitzian in (n,).

With the symmetrization proved in Section 4, we are able to define the approximate
system in Section 5, where the energy estimate will also be proved. As a consequence,
we deduce the convergence of approximate solutions and the uniqueness of the solution,
whose continuity in time and initial data is left to the end of Section 5 via nonlinear
interpolation.

The Appendix A is devoted to a review of Sobolev spaces defined on domains with
smooth boundary which is used in the pull-back of the Poisson’s equation 1.13. And
Appendix D contains a direct (but complicated) variational calculus, which proves the
most important identity in the Hamiltonian formulation of (1.18).

1.7. Notations and conventions. In what follows, we list the notations and conven-
tions frequently used in the whole paper. And a list of symbols is available at the end of
this paper.

- Let W € Cf° be a fixed function (usually it is a constant). We denote by Hjj, the
set of functions f such that

If1

my, = |lf = W]

s < 400,

where H*® is the Sobolev norm. For example, all n satisfying (H1) with R > 0 belong
to H3(T x R). Furthermore, an operator L : Hyp — Hy is said to be linear when
(f = Woy) = (Lf — W) is linear from H*° to H*'.

- We denote by D the open unit disk in 2D, namely {y € R? : |y| < 1}. Its boundary
is denoted as S, which will be identify as the 1D torus T.

- We say x is a smooth truncation near K C R?, if y € Cg°(RY) is supported in a
(usually small) neighborhood of K and is equal to 1 in a smaller neighborhood of K.

- All the large constants will be denoted as C' or C,, if this constant depends on some
parameter . Moreover, we write C'(Q) for some quantity Q > 0 when C' > 0 is a smooth
increasing function of Q.

- We use the Einstein summation convention: if an index appears twice, a summation
in this index should be added automatically. For simplicity, theses summations will not
be precised in the formulas.

- We use double integral [[ for the integrals in domain Q(¢) (or its pull-back by
diffeomorphisms), and single integral [ for those on interface X(¢) without precising the
region of integration.

- We say a linear operator 7' is of order m € R, if it is bounded from H*® to H*™™
for all s € R. When an operator is of order m for all m € R, it is said to be a smoothing
operator.

- For real number s, we write s+ for s + ¢, where € > 0 is a small number, when the
exact value of € is not important. Similarly, s— stands for s — e with 0 < e < 1.
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2. PRELIMINARIES

In Section 1.3, we have reformulated our problem as (1.18) on fixed domain T x R,
while the implicit dependence on the shape of fluid, or equivalently 7, is hidden in the
definition of Dirichlet-to-Neumann operator G(n) and the non-linear term N. In order
to clarify this dependence, it is essential to rigorously investigate the relation between 1
and ¢, or equivalently the Poisson’s equation (1.13), where the main difficulty is that the
domain €2(t) varies in time. To reduce the problem to a fixed domain, in axis-symmetric
case [41], the authors use an explicit change of variable :

0,1] x T xR — Q(t), (p,6,2)— (pn(t, z) cos(9), pn(t, z) sin(), z),

where the dependence on angular variable 6 can be omitted due to the symmetricity.
In this way, one may rewrite the Poisson’s equation (1.13) as an elliptic equation on
0,1] x R,

(21) { VP7Z ' Q(n’ T]Z)vp,zgp - 0, ln [0’ ]_] X R7

SO|P:1 - 1/5

where () is a smooth function of 7,7, that can be calculated explicitly. At p = 0,
there is no boundary condition directly from (1.13), while one may add the compatibility
condition d,¢|,—0 = 0 to avoid singularity at the axis {p = 0} C Q(¢).

Clearly, this boundary condition is not reasonable in general case (with dependence
on angular variable). To overcome this difficulty, instead of looking for a generalized
boundary condition, we attempt to flatten (¢) in an alternative way so that no extra
boundary will be generated. In the study of water-drop, where (t) is a perturbation of
unit ball, Beyer-Giinther [20] introduce a diffeomorphism from unit ball to the water-drop
which equals identity near zero, up to multiple of positive constants. Inspired by this
work, we shall extend 7 defined on T x R to a positive function ¢ = ((y, z) on D x R (see
(2.5)), such that in polar coordinate (y, z) = (pd, z), ¢ equals n at p = 1 and behaves like
p near p = 0. In this way, the domain () can be characterized by x = ((p#0, 2)0, z = z,
and there is no singularity at p = 0 since = = ((pb, )0 behaves like pf = y near y = 0
(see Proposition 2.2).

Via this change of coordinate, (1.13) can be reduced to an elliptic equation on D x R,
whose coefficients depend smoothly on 7. The desired elliptic regularity (Proposition 2.3)
then follows from some classical arguments. As a corollary, we may obtain the high-order
estimates for Dirichlet-to-Neumann operator G(n) (Corollary 2.4).

Furthermore, this change of variable gives a rigorous meaning of the variational
calculus, which is required for Hamiltonian formulation (Proposition 2.5). In fact, from
the definition (2.29) of energy Hamiltonian H, it is clear that its variation in 1 can be
reduced to derivative-in-n of metric, which is a smooth function of 77 and its derivatives,
due to our construction of coordinate (z, z) = ({(y, z)y, z). Hence, in consideration of the
elliptic regularity (which guarantees all the integrands are integrable), all the derivatives-
in-n of potential and kinetic energy make sense.

As a result of Hamiltonian formulation (Proposition 2.5), we shall also deduce
the shape derivative formula (2.42), which provides a preliminary explanation of how
Dirichlet-to-Neumann operator G(n) depends on 1 (while more delicate results will be
given in Section 3 via paradifferential calculus).

Note that, in planar water-wave case (where free surface is homotopic to hyperplane),
it is easier to start by proving shape derivative formula (see Chapter 3 of [45] for instance),
which implies the Hamiltonian formulation. To use this method, it is essential to find
explicitly a harmonic extension of Bdn appearing in the right hand side of (2.42) so that
one could calculate G(n)(Bd). However, this harmonic extension is not evident in our
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context, preventing us to repeat the argument for planar water-wave. That is why we
begin with the Hamiltonian formulation and then prove the shape derivative formula. As
a by-product, during the proof of Proposition 2.8, we shall see that the shape derivative
formula is somehow equivalent to the variation of kinetic energy in 7, which is the core
of Hamiltonian formulation.

It is also worth mentioning the recent work by Baldi-Julin-Manna [17] on the study
of liquid water drop. The authors develop an alternative method based on differential
geometry to deal with the singularity at the origin. This method allows us to prove
directly the shape derivative formula with little interior information involved (i.e. one
can work solely on the boundary). And it could be expected to work well for jets and the
planar water-wave with rough bottom (for example, the case studied in [6]). Nevertheless,
these geometrical calculations require further justifications in low-regular context, which
may end up with more technical details. In the mean time, the equivalence between shape
derivative formula and Hamiltonian formulation is not revealed during the proof.

In this section, the hypotheses (HO) and (H1) (or (H1’)) play an important role,
while we will not precise them in each statement for simplicity.

2.1. Change of coordinate. As explained above, we aim to construct a diffeomorphism
of the form

t(t): DxR — Q) CR?
(y,2) = (yC(t,y,2),2)

with boundary correspondence, where ( is an explicit extension of 7. To begin with,

we fix a general extension 7 of n to D x R, and construct ¢ in a proper way so that the
mapping above is a bijective and thus a diffeomorphism. For simplicity, time variable ¢
will be omitted in this part since each step below is independent of time. The construction
of ¢ has been given in [20] for water droplets (free surface homotopic to S%). We will see
in the sequel that it also works for jets.

(2.2)

2.1.1. Extension of n. Let n be a function in H3,(T x R) with s > 2, satisfying (H0) and
(H1) (or (H1")). Then we may define 7, in polar coordinate (y, z) = (p#, z), as

(2.3) (00, 2) == x1(p)Xo((p — 1){Da2)) (0, z) — R] + R,

where o, x1 are smooth truncation near 0 and 1 respectively, xo is even and [ xo = 1.
It is easy to check that this extension satisfies the following properties:

Lemma 2.1. Let s > 2. The scalar function 7 defined by (2.3) belongs to H?E(]D x R)
with

(1) Mp=1 = n;

(2) 0,1 is uniformly continuous in D x R with 0,7|,=1 = 0;

(3) The linear application Lo : (n — R) — (7 — R) is bounded from H*(T x R) to
H+2(R3), and from C*~1(T x R) to C*L(R3);

(4) There exists 0 < 6 < 1, such that, for all p € [1 —6,1], 7 > 2 and [0,7] < 2.
Moreover, & depends only on the H® norm of n.

Recall that cq is the constant appearing in (HO).

Proof. These claims are trivial except for the boundedness in Holder space (from C*~1(T x
R) to C*71(R?)). To prove this, we first show that the multiplier x1(p)xo((p — 1){Ds..))
is bounded from C%(T x R) to C°(R?). The kernel of this multiplier is given by

K(w.usp) = s [ €S (oial(p — DO,
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where w = (0, z), w' = (¢, 2'), and £ is the Fourier variable associated to (6, z). A simple
calculus gives that

K (w,w';p)] < xa(p)|1 — p| 72,
while

mWﬂmewnm:hiﬁ/www x1()2% (Ro((p — M@D%‘

ol 11| [ 5500 = DD Gte] S -1,

Similarly, one gains |1 — p| from each product with (w — w’), and thus for all N > 1,

L w—w\""
(2.4 Kwipl Sul- o (20
which proves the boundedness of Ly from L®(T x R) to L®(R3). Provided that n €
C%T x R), then continuity of 7 = Lo(n — R) + R on {p # 1} is obvious due to the
continuity of K in (w,w’;p) and the estimate (2.4) of K. To obtain the continuity at
{p = 1}, we notice that

/K(w,w’;p)dw’ = x1(p),

which, together with (2.4), guarantees that 77(p) — 1 as p — 1, locally uniformly in (6, 2)
(see Section 1.2.4 of [37]).

For high order regularity, we observe that the derivatives in w = (0, z) is commutative
with LO, i.e.

1057 Lo ey = Lo (T | Looey S 00l zoe(usmy, Yor € N%

As for the derivatives in p, one can see from the definition (2.3) that each derivative in p
leads to a (D,,), reducing the problem to derivatives in w. In conclusion, we have proved
that Ly is bounded from C*(T x R) to C*(R?) for all k¥ € N and the case of non-integer
s follows from the interpolation between Holder spaces (see Section 1.1.1 of [52]). O

Here, we have managed to define 77 on R?, while we only consider its restriction in
D x R. Note that this construction is not unique and the next step is valid for any 7
verifying Lemma 2.1.

2.1.2. Construction of (. Let x € C°(R) be an even function decreasing on [0, +ool,
supported in | — 1, 1[, and equal to 1 on [—1 44,1 — §] with 0 < § < 1. Then we define

(2.5) C(r0, z) == (1 = x)(p)7(pd, z) + ex(p) Mn,

where 0 < € < 1 is a constant depending on ¢y, Cp in (HO) and Mn € R is the mean of
n. In perturbative case, when s > 2, (H1) implies that

2T
Mn = lim —// (0,2)dAdz = R.
l—+o0 471l

In the periodic case, Mn is the usual average of n on T?. Note that (H(0) guarantees
co < Mn < Cy.

Proposition 2.2. Let s > 2, § be chosen as in (4) of Lemma 2.1, and € = 1o Then

the mapping v defined by (2.2) is bijective with boundary correspondence (S x R) = X.
The Jacobian of v is bounded from below by

3
(2.6) det J := det(0,”) > 46—&),
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where co, Cy are constants in hypothesis (HO). Moreover, the linear application
L:(n—R)~— (C—Rep)),

is bounded from H*(T x R) to H*"2(D x R), and from C*~(T x R) to C*~(D x R), with

R, defined by

(2.7) Re(p) == R— (1 —¢e)x(p)R.

Proof. The boundedness of L is a direct consequence of Lemma 2.1. To prove the bi-
jectivity of ¢, from the definition (2.2), it suffices to check that, in polar coordinate
(y,2) = (pb, 2), 0,(p¢) > 0 for all 0 < p < 1. By definition (2.5) of ¢, we have

0,(pC) = (L= x)(p) (7 + pO,7) = pX'(p) (7] — €M) + ex(p) M.
The first term is positive since it is supported for 1 — § < r < 1, where 77 > ¢¢/2 and
|p0,m| < co/4 due to (4) of Lemma 2.1. The positivity of the second term follows from
the fact that eMn < eCy = ¢o/4 and 77 > ¢/2 on Supp X’ C [1 — §,1]. The last term is
trivially bounded from below by ex(p)co. To sum up, for all p > 0,

2
Co co i)
: = —(1- - — > ——.
(2.8) OplpC) 2 (1= X)) = rx'(p) + ccox(p) 2 =
Thus, by definition (2.2) of ¢, the Jacobian of « admits the lower bound det J = (0,(p() >
3
¢/ (4Ch). O

For simplicity, in the sequel, we shall ignore the normalizations and say that ( = Ln
is linear as in periodic case. As the extension 7 defined by (2.3), ¢ is well-defined in
H5+2(R3), up to C°(R3) normalization, whose restriction in D x R will be studied.
Before entering the next section, we introduce some conventions and notations to be used
frequently in the following sections.

- We use Latin letters for the indices involving y € R? and Greek letters for those
related to (y, z) € R3.

- We use u - v for the scalar product of vectors in Euclidean spaces, while uv? should
be understood as the matrix product. Besides, all the vectors are columns if there is no
further specifications.

- Let J = (aqp) be the Jacobian matrix of ¢ defined by (2.2). It is easy to see that

Jo I C+yVy¢ e
2. = = Y
(29) / ( 0 1 ) ( 0 1 ’
whose inverse is denoted by

-1 71
(2.10) Jh = (a®f) = ( Jg ‘]01 % ) .

- Let (gag) := JTJ be the metric tensor whose inverse is denoted by (¢*%) = J~1J~T.
We use ¢ to represent the determinant of (g,s), which is equal to

(2.11) g :=det(gas) = (det J)* = (det Jy)* = [ (C +y - V,O)]? = (2 (9,(p())* > 0.
Note that its restriction at p =1 is n* since 9,(|,=1 = 0 due to our construction.
- We denote by V, the pull-back of V. by ¢, namely

(2.12) V,=J"1V,..
Moreover the pull-back of Laplacian A, , reads

1
2.13 A, = —0, (/99*°05) ,
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which is clearly uniform elliptic on D x R.
- Let n, be the pull-back of the conormal vector n defined by (1.5). One may check
that

(2.14) ng=J1Y,

where Y = (y1,42,0)7.
- In polar coordinate (y, z) = (p, z), the restriction of V, at {p = 1} is

1 1 ) UP
(215) Vg = epﬁap + €g <589 — ﬁ@,,) + e, (az — E(%) R

where (e,, eg, €,) is the orthogonormal basis associated to polar variables (p, 8, z). More-
over, n, can be expressed as

1 Mo
(2.16) Ng = n <ep - ?69 - 77262:) )
while B, V, N defined in (1.16), (1.17), (1.15) read
1
(2.17) B =B() :E¢p|p:1a
1 >
(2.18) V=V({)= [5 (309 - %sop) eo + (soz - %%) ez} :
p=1

2 BQ

(219) N =N =8 (P e ) + S

where ¢ = ¢ o 1. As a result, the Dirichlet-to-Neumann operator defined by (1.14) can
be expressed as

- Mo
220 G = g Tyl = 0Y) Vel =BV (Po)).
In addition, a simple calculation gives
0
(2.21) (egﬁe + ezaz) Yv=V+DB (69% + eznz) )

2.2. Elliptic regularity. In this section, we shall solve (1.13) via variational formulation
and illustrate the regularity of ¢ from those of (n,1) with the help of diffeomorphism
constructed in (2.2). As a consequence, a rigorous definition of the Dirichlet-to-Neumann
operator G(n), which is defined formally by (1.14), and some high order estimates will
also be established.

In the rest of this paper, we denote by ¢ the pull-back of ¢ by change of variable ¢.
By definition (1.12) of %, it is clear that in polar coordinate (y, z) = (p#, 2),

¢(07 Z) = @lp:l = (p(@, Z)
From (1.13), ¢ is the solution to

Ayp=0
2.22 g ’
222) o e m

Let ¥ € Hs(’*%(]D x R) be an extension of ¥ supported near p = 1. One may repeat the
procedure in previous sections (construction of 7 from 7) to obtain the desired W. Then,
by writing ¢ = ® + ¥, the equation above can be restated as the following variational
problem

(2.23) / V@ -V, H\/gdydz = —/ V,V-V,H./gdydz, VH € Hj(D x R).
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Provided that n € H;Jr%f(T xR) with s > 2, we have ¢ € Hj;"'~(D xR) from Proposition
2.2 and thus g.s, 9,9 € L=®(D x R). A classical argument by Lions-Lax—Milgram
theorem (see for example [23]) guarantees a unique solution ® € H}(D x R) to the
variational problem (2.23), which yields ¢ € H*(D x R). Moreover, by choosing H = @',
we obtain the estimate

. 12 /
C1 ﬁg% V9l HH&(]D)X]R) <Gy E}ilﬂg Vol HH(}(IDJXR)H\I]”Hl(DXR)’

where 0 < ¢; < C) satisfies ¢; < (¢g*?) < C;. Under the hypothesis (H0), by using the
definition (¢®%) = J=1J~T with J defined by (2.9) and lower bound (2.6), we have

19"l g xry < CLll¥ |12 xRy,

for some (] depending only on ¢y, Cy appearing in the hypothesis (HO).
Consequently, we are able to define G(n) by duality:

(2.24) /G(n)zﬁhd&dz = // Voo V,H\/gdydz, YVH € H'(D x R), h = H|,—;.

An application of the trace theorem and duality of Sobolev spaces implies the following
estimate

3
225) 1O, ) <C (s ) Wl sy 95> 5

In order to obtain high order estimates, we need to prove the regularity of the elliptic
equation (2.22) or its variational form (2.23).

Proposition 2.3. Letn € Hy * (T xR) and 1 € H*(T x R) with s>3 and 3 < sp < s.
Then the unique solution ¢ = @' + W to (2.23) verifies

(2.26) 160y < € (1t 1) 19

where C' > 0 is a smooth increasing function.

H*0(TXR);

The proof of this proposition is classic and we leave it to Appendix B. As a corollary,
we are able to generalize the estimate (2.25) for high order Sobolev norms,

1
Corollary 2.4. Letn € H;Jr? (T x R) s > 2. Then for all so € [3,s], we have
H}s:%) ’

2.3. Hamiltonian structure. In this section, we investigate the Hamiltonian structure
of (1.18). Recall that for standard water-wave equation where the interface is given by
{(z,y) € R .y = n(z)}, the Hamiltonian H is taken as the total energy, which is
preserved in time and can be written in terms of  and v (restriction of scalar potential),
and the Hamiltonian formulation reads

oH

Nt = s>
oM
= e

This formulation has been firstly discovered by Zakharov [68], while the case of two-phase

fluid is studied by Benjamin-Bridges [18]. For fluids with nonzero vorticity, Castro-Lannes
[26] formally prove the Hamiltonian equation for the triple (n,,w), where ¢ can be
defined by projection and w is the vorticity.

(2.27) HG<77)HL(HSO(TXR);HSO*KTXR)) <C (H’?’

where C' > 0 is a smooth increasing function.
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In the case of sphere-like interface, Beyer-Giinther [20] pointed out that one should
modify ¢ by p = n%), where d is the dimension of spherical interface ( perturbation of
unit sphere S%). Inspired by this, we turn to the new variable (1, p) := (n, ) satisfying

me =Gy,
22 U S o () + ).
due to equation (1.18).

The total energy of the system (1.18) (or (2.28)) is
(2.29) H = E, + E,.

Here Ej is kinetic energy
(2.30)

1 1 1
Buim gy [ VesoPdot =3 [[ (9l vadya =5 [ oG vaoi
2 Q(t) 2 DxR 2 TxR

where the last equality follows from divergence theorem and Agjp = 0 (see (2.24)). E, is
potential energy

2 2
o o Mo ’77_R|
2.31 E, =—-A=— 1 — 21| ——| dod

where A is the (normalized) area of interface (t) and R is the constant from (H1). In
the periodic case, these normalization can be omitted.

By regarding H as a function on 1 and p = ¢, we have the following Hamiltonian
formulation.

s 1 1
Proposition 2.5. Let 1 < s < s and s > 3. Foralln € HR+2(’]I‘><R), on € H* z(TxR)
and p,op € H*(T x R), we have

(2.32) H(p+ edp,n) = /ntépdﬁdz,

e=0

de
4

(2.33)

T Ha+eon) = [ (posmdsi,
€le=0
where n, and —p; should be understood as the right hand side of (2.28).

Note that the results in previous sections imply that g, (gag), (¢°°) € C*~2(D x R)

and ¢ € HSOJF%(]D X R), so as their variations in p or 7. These ensure that all the
integrands below are integrable.

2.3.1. Variation in p. We first prove (2.32). In this paragraph, we fix n and use the
notation

i Q(p + €dp)

for any quantity depending on p. Since the potential energy (2.31) depends only on 7,
the variation can be applied merely for kinetic energy (2.30),

OH = 0E), = / VIV 40py/gdydz
= / / (Vg 'V yp) -V, .00dydz
_ / Y - (aJ V) dupdbdz,
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where Y = (y1,92,0)7 and the last equality follows from divergence theorem with ¢ the
restriction of dp. By (2.11) and (2.20), we have

Y- (VT 'Vep) 64 = (J7'Y) - VgpnPoy = G(n)dndd = G(n)edp,
Note that the last equality follows from i = p/n and the fact that n is fixed. This
completes the proof of (2.32).

2.3.2. Variation in n. Let us fix p and denote
d
0Q = — )
Q= — EZOQ(nJre )

for any quantity depending on 1. The variation of potential part £, can be calculated
directly,

o 1
(2.34) 0E, = §5A = 0/17 (H — ﬁ) ondhdz,

where H is the mean curvature defined in (1.9). For the kinetic part, we have

Lemma 2.6. Let 1 < sp < s and s > % For all n,on € Cs_%(T x R) and p,op €
H*(T x R), we have

d
2.35 oE, = —
(2.35) et i

Note that, by Sobolev embedding, (2.35) and (2.34) implies (2.33). Here we may
temporarily ignore the hypothesis (H1) since all the integrals below make sense whenever
n,0n (and (,d¢) have Lipschitz regularity, which is ensured by the condition n,dn €
C*73(T x R), s > 3.

Proof. By definition (2.30) of kinetic energy Fj, we have

Ey(p,n + edn) = / (=G +nN) dndbdz.

(2.36) 0B, =1 + I,

(2.37) hi=y [ [ weia*)dsodyd,

(2.38) I, :// Vo - Vyop/gdydz.

As before, by divergence theorem, I equals

(2.39) L= [ G@wywvdsas =~ [ v (G ondva

where the last equality follows from v = d(p/n) = —dnp/(n?) = —dn/n.

Remark 2.7. Our final goal is to establish the Hamiltonian formulation w.r.t. variable
(n,p). Therefore, during the calculation of variation in n above, the kinetic energy E,
which is a function of (n,v) due to definition (2.30), should be regarded as a function of

(n,p), namely
1
Ey, = Ej (T], B) = —/PG(U) (B) dz.
n 2 n

And the variation in n should be understood for fixed p,

d 1 P
— G(n+e€d d
GZOQ/p 1+ eo) (n+€5n) .

0b, = —
Howewver, in most parts of this paper, we are interested in variable (n,v) instead of

de
(p,v). Then, the derivative in n should be defined with fized 1) instead of fixed p (in
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such case, p = n may vary in n). The main difference is that, when 1 is fized, Iy is
automatically zero due to the first equality of (2.39). This is the case of shape derivative
to be studied in Section 2.4.

As for Iy, a direct calculus gives that

1 1
(2.40) 55(\/59‘“5 )00 =§v§ (T Vel asC) — VT (Vg Ve YTV 05¢)
+ /gAY -V, 00C,

the proof of this is left to Lemma D.1. The technical identity above implies, via divergence
theorem and Aj¢ = 0, that
1
I, = §/YTJ1Y \Vg<p]2 n*éndfdz — /YTleggo YTV jon?ondodz.

Note that, at boundary p = 1, we have /g = n?, as it has been noticed after (2.11). By
formula (2.10) of J=!, definition (2.9) of Jy, and Y = (y,0)”, we have,

YTy = 2.
\/g\ |

The expression (2.15) yields that, as p = 1,
Voo’ =B+ [V]”, YV, = B.
In addition, we have seen in (2.20) that the trace of Y7 J 7'V is G(n)1/n. Consequently,

1
(2.41) I, = 5 /77(32 + |V |*)éndodz — /nG(n)wBéndez = /nNéndé’dz,
thanks to (2.17), (2.18), (2.19), and (2.20). O

In conclusion, the variational identity (2.33) follows from (2.34) and (2.35). Formally,
we may write (2.32) and (2.33) in classical form

_ OH
{mg,
— A
b = on

As a consequence of this Hamiltonian formulation, the total energy H is preserved in
time. Note that for Cauchy problem, there is no difference between (n,1) and (n,p),
since (HO) together with n € H?E(T x R), s > 3/2 guarantees that ¢ € H*(T x R) if
and only if p € H*(T x R). In the rest of this paper, we shall still work on (7,1) for the

simplicity of notation.

2.4. Shape derivative. We have proved in Corollary 2.4 that G(n) is a 1-order operator
1
for any fixed n € H;;? (T x R) with s > % In this section, we shall show that, for fixed

1
s+3

Y, G(n)y is derivable w.r.t. n € Hp *(T x R) and this derivative can be calculated
explicitly, which is known as shape derivative.

In the case of planar water-wave (X as a perturbation of R?), we refer to [45],
Section 3.3 for a detailed study of shape derivative. The axis-symmetric version (system
independent of 6) of shape derivative (2.42) is also proved in [41]. In these references,
the authors calculate directly the derivative in n of (2.20). The main difficulty of this
method is to represent G(n)(Bdn) in terms of 7, ¢, and dp. To do so, one needs to apply
variational calculus for the elliptic equation (2.22) and then determine the harmonic
extension of Bdn, which cannot be obtained simply due to the (relatively complicated)
change of coordinate (2.2). Nevertheless, one will see in the proof of Proposition 2.8 that
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the variational calculus (2.35) of kinetic energy is equivalent to (2.42), where the former
one has already been proved in previous section without using shape derivative.

Proposition 2.8. Let s > % and 1 < sg < s. Then for all fized b € H*, the map
1
Hy *(TxR) — H9YT x R)
U = Gy
is C' in the sense that, for all n € H**2(T x R) or én € C**2(T x R),

% B
Gl + ) = ~Gl(Bon) Vi (Locot Ve ) on) - 200
e=0

where VO, V* are defined by orthogonal decomposition V. = (VO V) = Viey + VZe,.
Recall that the second term on the right hand side should be understood as

| Ve

Proof. As in previous section, § denotes the derivative in 7. To begin with, we write
(2.42) into integrated form, namely, for all f € C°(T x R),

[ w6 Gty sasa:
= —/nG(n)(B577)fd0dz - /an,Z- ((%969 —I—Vzez) 577) fdodz — /Bénfd@dz

= —/BnG(n)fénd@dz - /Bfénd@dz + / (V069 + VZe,) - (69% + ezaz) (nf)ondodz

d
(242)  —

= —/BG(n)fnénd@dz — /G(n)wfdndedz + / (VQ% + szz) nondfdz.

Let F be the harmonic extension of f, namely AjF = 0 and F|,—; = f. Since f is

regular, F' is well-defined as well as B(f) and V(f). By applying (2.20) and (2.21), we
may write the equality above as

[ 06 (G sasaz+ [ Gnyepondsa:
= [ (Beww)- (L) +B0OVE) (L) - BB+ V) V() ) s

from which, one can see that the desired result (2.42) is equivalent to: for all f €

CCOO(T X R)?
(2.43)

5 ( / nG(n)l/de@dZ)

= [ (B - (2on) + BOw (%) - BB + V) V() ) wonds
When 9 belongs to the same class C2°(T x R) as f, due to the fact that both sides are

symmetric quadratic form of (v, f), it suffices to check the case ¥ = f. According to
(2.30), the left hand side becomes

5 ( / nG(n)wdedz) = 25 E,.
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Note that, unlike in the proof of Proposition 2.5, ¥ is required to be fixed, instead of p.
Thus the terms involving d1 are automatically zero. By applying the same calculation
as in Lemma 2.6, we can conclude that

20E, =2(I, + 1) = 2/77N517d9dz,

where I, I are defined in (2.37) and (2.38) with I, = 0 as explained above. From (2.19),
when ¢ = f, the right hand side of (2.43) equals

V|2 - B?
2/ (BV- (%,nz) + %) nondfdz = 2/77N(577d9dz.

Till now, we have proved (2.42) for ¢ € C°(T x R). Since C*(T x R) is dense in
H* (T x R), it remains to check that the left hand side of (2.42) satisfies

<0 (Il 310l ) o
To prove this, we apply the variation in 1 to the equation (2.22),

[ 890 =506 var) 09)
590‘,0:1 =0.

G(n+ edn)p

e=0

Hso—1.

(2.44) ‘ d

Hso—l

Recall that ¢ should be understood as the derivative in € at € = 0. It follows immediately
from (2.9)-(2.11) that ¢ (\/ggaﬁ) is a smooth function of ( and V, .(, depending linearly

in 6n and V, .0n. Consequently, ¢ € HSOJF%(]D x R) implies that

1
— 4 (6 (/99™?) D¢ < C( n -1 ) ©
V9 0 (Vag™) ds¢) H®0~% (DxR) i ¢ i

In fact, § (\/Egaﬁ) can be written in terms of Fy((,V,y.¢)0¢ and F5(C, V,0,.0)V0..6C,
where Fy and F, are smooth functions with F1(0) = F5(0) = 0. Since ¢ € Hj;™' (D x R)

1
with R, defined by (2.7), due to Proposition 2.2 and the assumption n € H?? (TxR), the
coefficients before §¢ and V4 .0¢ belong to H*(D x R), up to some Cy° normalizations

1
(see Proposition C.22). In the mean time, when dn € H;+§(']I‘ xR), 6¢ € Hif'(DxR) and
V,0,:0¢ € Hi, (D x R) for some W, W’ € Cg°(D x R) due to Proposition 2.2, which also
guarantees that, as 67 € C*2(T x R), 6¢ € C**2(D x R) and V,4.6¢ € C*2(D x R).
Therefore, the desired inequality follows from the estimate of products (Proposition C.8).
As a consequence, an application of elliptic regularity (B.2) gives that

b <€ (10 ) IV

By expression (2.20), the variation of

G(n)y = CYg* sy
is composed by two parts, the variation in coefficients (depending only on () and in ¢,
namely,

utd ()’ [167] Ho 03 (DxR)’

(2.45) 1o¢l

)’ [[om] H50(TxR)-

1
s+ 5
Hp 2(TxR

S(Gm) =6 (CY9™0sp)| _,
= (6(¢Yg*")9s) | _, + (CY9*0s00) | _,

We can deduce from (2.45) that 9zdp|,-1 € H* YT x R), while, up to Cp°(D x R)
normalizations, (Y *¢g*® has H*(D x R) regularity, the trace at p = 1 of which belongs to
H S_%(']I‘ x R). By applying Corollary C.9, we are able to conclude that the second part



20 CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS

(variation in ¢) lies in H*~}(T x R). As for the first part, we observe that (Y *¢g*® can
be written as a smooth function of ¢, V, ., and Y, i.e.

(Y™ = G((.V,:(Y),

for some smooth function G. The the variation in 7 reads
5 (Cyagaﬁ) = alG(C7 Vy,zga Y)(SC + 82G(C7 Vy,zC7 Y)Vy,z6C7

whose trace at p = 0 belongs to H 5_%(’11‘ x R), thanks to the same argument as above.
Then, by Corollary C.9, its product with dgp|,—; € H¥® (T xR) remains in %1 (TxR),
which completes the proof. O

In the formula (2.42), the left hand side belongs to H*~!(T x R) while the first two
terms on the right hand side are only in H**~%(T x R). This indicates that there exists

an implicit cancellation between these terms. In fact, by choosing dn =1 € Cst2 (T xR),
we can deduce from B/n € H* (T x R), which is a consequence of Corollary C.9 and
C.22, that

1
Proposition 2.9. Let s > 3 and 1 < so < s. Then for all n € H}?Q(T x R) and
e H(T x R), we have

)
(2.46) HG(n)B+ (e“’ 0 +ezaz> vV (Hnl
n H50*1(’]1‘><R)

where C' > 0 is an increasing smooth function.

H*0(TxR))

b ) 1

Proof. Tt remains to check that

0
H <69—80 +e, z) V=V, - (%69 + Vzez>

which is equivalent to

i) 19

<C (||77| H50(TxR);
H*0~1(TxR)

Jown v

H?0(TxR)-

I

1
We have seen that n € H}?"’(T x R), which implies 9pn~' € H,, 3 (T x R), thanks to
Proposition C.22. Since V¢ € H*~!, the desired result follows from Corollary C.9. [

oy < € (1

3. PARALINEARIZATION OF THE SYSTEM

This section is devoted to an explicit formulation of Dirichlet-to-Neumann operator
G(n) as paradifferential operator, up to some remainder of lower order. And, as a result,
we shall write the system (1.18) in paralinear form. Namely, all the nonlinear terms will be
replaced by paradifferential operators acting on (n,), up to proper regular remainders.
And the symbol of these paradifferential operators is a smooth function of n and its
derivatives and homogeneous in Fourier variable £. We shall follow the strategy used in
[9] and [6] (see also [5]).

To achieve this, we first observe that, by (2.20),

1 Ul Mo Lol p=1
Gy ==11+ ( ) + 107 | Bpplp=1 — — T — 0=
n n n n
1
n

2
"o N Vo
1+(—) +12 | Opplomr — == = -4,
n nn

(3.1)
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where the only implicit term is 0,¢|,=1, which is linear in ¢ and depends implicitly on
n. In order to represent normal derivative d,|,—; as tangential ones, we follow the idea
in [9] and return to the Poisson’s equation (2.22). Formally speaking, we shall rewrite
Laplacian A, as

A, = Ao(9, + A))(9, — A1) + remainders,

where Ay, A;, and A are elliptic operators involving only tangential derivatives. This
decomposition will be proved in Lemma 3.14, while the tangential operators should be
understood as paradifferential operator since the coefficients are smooth functions of n
and its derivatives and thus have limited regularity. As a result, the Poisson’s equation
(2.22) ensures that v := (9, — A1)y solves the parabolic equation

(0, + A})v = regular terms,

whose smoothing effect leads to a higher regularity of v|,—; than ¢ (or ¢). Consequently,
one may replace d,|,—1 by Ai|,=1 and then deduce the paralinearization of (3.1) (see
Proposition 3.17).

With paralinear formula (3.52) of G(n)1, we are able to write the nonlinear terms
in (1.18) in a similar form. In fact, these terms (quadratic term N and mean curvature
H) can be represented as a function of 7, ¢, and G (1), together with their derivatives.
Hence, one may simply apply the paralinear formula (C.19) and the paralinearization of
G(n)v, which will be proved in Section 3.4.

In the end of this section, we shall check that all the remainders appearing in the
normalization of the system are Lipschitzian w.r.t. (n,?) in proper functional spaces.
This is essential to prove convergence of approximate solution and uniqueness of the
solution (which will be studied in Section 5.3).

1
Inside this section, we always assume that (n,1)) € H;r? x H?® with s > 3, which
is the regularity required in the main theorem 1.1. One should pay attention to the fact
that, thanks to the paradifferential calculus (reviewed in Appendix C), all the estimates
to be proved are tame, in the sense that they can be written as

Q< i (Il oy + 10l
R

where @) stands for quantities to be studied, and the constant K = K (HUHH”%’_’ H¢||Hs)
R

depends only on HUHH”%_’ ||t || s instead of ||77||HS+%, |¥]|s. In Section 5, this obser-
R R

vation will lead to the tame estimate (5.51), implying the continuity of the solution to
(1.18) in time and initial data via a nonlinear interpolation (Theorem 5.19).

To simplify the computations, instead of the change of variable r = p((pf, z),w =
0,z = z defined in Section 2, where (z, z) = (rw, z) is the polar coordinate, we shall use
the same change of variable as in [41],

(3.2) r=m0,z), w=0, 2=z

Recall that this change of variable is easy to calculate and behaves well near the interface
r = 7, while singularities exists at » = 0, which is out of concern in this section. By
definition, the relation between (p,#,%) and the variable (p,6,z) studied in previous
section is given by

(3.3) (p,0,2) =1(p,0,2) = (%,9, z) :
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We denote by @ the potential ¢ in coordinate (p, 0, 2) (equivalently, oz = ¢). It can be
checked that ¢ has the same regularity as ¢ when p is close to 1. The proof of lemma
below is left to the end of Appendix B.4.

Lemma 3.1. Let s > 3 and 6 > 0 be small enough. If v € H*(T x R) with g < S0 < s
and n € H;+§(T x R), the potential ¢ in new coordinate (p,0,%) satisfies

4 )

From now on, we will no more use the coordinate introduced in Section 2 and, for
simplicity of notation, we omit the bar over (5,0, z) and . Moreover, all the functions to
be studied should be regarded as functions defined on T x R with parameter p € [1—4, 1].
By definition (3.2), the potential ¢ satisfies

(3.5) { Ly = (048§+B~Ve,z8p+78p+#agﬂ?g)gozo, Vi—6<p<1,
Plp=1 = 1.

HS0, 12071,2,3.

(34)  [lleoi s i < (

where

(3.6) a 771 <1+ (?;) +p2n§>,

219 2%)
37 B — (__7 - )
(3.7) pn? n

(3:8) 7 o (n P ). pn?

Note that by construction (2.5) of ¢, we have 00| p=1 = 05¢|5=1. Thus, the formula (3.1)
for Dirichlet-to-Neumann operator as well as formulation (2.17), (2.18), (2.19) of B,V, N
remain unchanged. Before entering the next part, we introduce the following estimates
for a, B, and v, which will be frequently used in this section.

o )l

The proof of this Lemma is no more than an application of Proposition C.22.

Lemma 3.2. Letn € H;JFT with s > 3. Then we have

3.9) Ml + 8oy + Il s c(um

COH, 3~ COH "¢,

1_ .
s+§7
R

3.1. Preliminaries in paradifferential calculus. During the whole paper, the in-
volved paradifferential operators have symbol homogeneous in Fourier variable £ and
depending smoothly in 7 and its derivatives (see Definition 3.3 below). In this case, the
general theory of paradifferential calculus reviewed in Appendix C can be refined with
simpler formulas, which are collected in this section. Note that most of these technical
results have been presented in Section 4.1 of [6], where one may find detailed proofs.

Definition 3.3. Given m € R, we denote by X™ the collection of symbols on T x R that
take the form

(3.10) a(w,€) = a™ (w,€) + a™V(w,£),
where a™ and o™V takes the form
"™ (w, &) =F(n, Vo,.1;€),
a" D (w, &) = Galn, Vo1m;€)05.m

<2
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Here F,G, are smooth functions and homogeneous of degree m,m — 1 in £, respectively.
3

Under the assumption that n € HS with s > 3 (true in the rest of this paper), we

have o™ € F3/2 and o™V € F@zi (see Definition C.14). In the sequel, we shall regard

a € 2™ as an element in F3/2+ + F1/2+

As a convention, we shall write all the equations in polar coordinate (y, z) = (pb, 2)
and denote the Fourier variable associated to w = (6,2) € T xR as £ = (&, £.) € R? (see
Section C.1 for Fourier variables on torus). Furthermore, all the estimates in this section
are uniform in time, the dependence on which will be omitted for simplicity.

For symbols a,b € X", we write

Ta =~ Tb

if T, — Ty is of order m — 2—, i.e. maps H® to H*"™2F for all s € R, with operator

2

norm controlled by C' (||77||H 3 +>. Then an application of Proposition C.18 gives that
R

1
Proposition 3 4 Let U € Hs+ with s > 3. For symbols a = a™ + o™ € ¥™ and

b=bm) 4 pm' =D ¢ 3 wzthmmER we have
(3.11) T,y ~ Tow,
(3.12) Ty~ Ty,
where

(3.13) ath =a™p™) 4 (aga@”) - Dpb™) 4 qmplm'=1) a<m-1>b<m’>) eyt

(3.14) a* =am + (D - Bea™ + qlm= 1>) =

Recall that we have regarded ¥™ as a subclass of I'%} Jot + F1 ot Thus the parameter
p in Proposition C.18 should be taken as 3/2+ or 1/2+. Moreover, all the involved
operator norms can actually be controlled by a positive smooth increasing function of

Ik i For simplicity, we shall not precise these in the sequel.
R

As a consequence, we are able to calculate the symbol of commutator,

spl_

Corollary 3.5. Let n € HR+2 with s > 3. For symbols a = a™ + o™ Y € ¥™ and
b =) b= ¢ 7 with m,m’ € R, their commutator [T,,Ty] is of order at most
m+m' — 1. More precisely, [T,,T,) =~ T i{atm) p(my, Where {-,-} is Poisson bracket,

{a,b} := 0ea™ - 0,0 — D,,a™ - Ob™) € T

Definition 3.6. Let symbol a = o™ + a(™™Y) € ¥™ with m € R. We say that a is
elliptic, if there exists 0 < ¢ < C' such that

clé|™ < Real™(w,&) < ClE™, Yw e T xR, £#£0,

syl
Proposition 3.7. Let n € HRJr2 with s > 3. For any elliptic symbol a € X™ with
m € R, we can construct another elliptic symbol a € X~ such that

(3.15) T.T; ~T:T, ~ id.

Proof. It suffices to take a=™a™ = 1 and @~ as the solution to

dea™ . D 4 gmg=m=1) | qm=1g(=m) _

1
w a(m)
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The ellipticity of a is obvious from this definition. The desired estimate (3.15) can be
checked directly from Proposition 3.4. More precisely, we have T,T; ~ Tz where

afi =a™a™ + (o™ - D™ + aMam=D 4 gm-Dg(-m)

1
=1+ <3§a(m) . DWW + a(m g(=m=1) + a(m—l)d(—m)) -1

Therefore, T, T; ~ T7, which equals identity up to a smoothing operator. The proof of
T:T, ~ id is similar. It suffices to observe that

1 0ca™ - 9,a™
85&(_7”)-Dwa(m) = 85—-Dwa(m) = 1dea QCL
(atm)

1

a(m) a(m)

which implies afa = afa = 1. U

Proposition 3.8. Let n € HIQ;F. For any elliptic symbol a € ¥™ with m € R, we have
the following estimate,

(3.16) lullirr < € (Inllzze ) (1 Tatullz—n + ullz2) ¥ € R,

where C > 0 is a smooth increasing function and the L*-norm of u can be replaced with
any other Sobolev norms.

srdo
Ifne HR+2 with s > 3, (3.16) is a consequence of Proposition 3.7. For the refined
version n € Hy', we refer to Proposition 4.6 of [6].

1_
Proposition 3.9. Let n € H;;z with s > 3. For any a = o™ + o™V € ¥ with
m € R and Ima™ = 0, we have the following equivalence,

1
(3.17) T, ~ T < (T, —T) is of order (m —1—) < Ima™V = —5(% - Ocal™.

Proof. The first assertion implying the second is easy. By Proposition 3.4, we have
TF ~ T, ensuring that T, — T is of order (m — 3/2—) and thus of order (m — 1—).

To show that the second assertion implies the third one, we observe that, since
Tr =~ Ty, T, o is also of order (m — 1—). Moreover, a,a* belong to the class ¥
meaning that a — a* is the sum of a symbol homogeneous in ¢ of degree m and another
one of degree m — 1. Once the order of T, ,- is strictly smaller than m — 1, both
components vanish and consequently a = a*, while, due to the expression (3.14) of a*,

a—a* = a(m) — a( ) — Dw . 8§a(m) + a(m_l) — a(m—l) = Zaw . 8£6L(m) + 24 Im a(m_l),

which gives the third assertion.
If the third assertion holds true, the calculation above ensures that a = a* and the
first assertion follows from 77" ~ T,« = T,,. O

3.2. Paralinearization of normal derivative and good unknown. In this part, we
shall separate Poisson’s equation (2.22) in normal and tangential directions near boundary
p = 1 and deduce that 0,¢|,—1 equals some one order tangential operator acting on 1,
up to some remainders. To do so, we use the strategy in [9] (see also [6]) where the
authors apply paradifferential calculus in tangential direction and reduce the problem
to a paralinear parabolic equation which yields the regularity of remainders. The main
result of this section is



CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS 25

1
Proposition 3.10. Let (n,v) € H;JFQ x H* with s > 3 and 3 < so < s. Then there
exists T € X' such that
) (st
where

(3.19) U :=1 —Tpn € H*(T x R).

Moreover, 7 = Al,—, where A(p) = AWV (p) + AO)(p) is defined by (3.33) and (3.35)
below.

(3.18) 10plp=1 = T3V

g o0+ 1l 191

Note that, under the assumption of Proposition 3.18, due to Proposition C.8 and
Lemma 3.16, the new variable U satisfies

(3.20)  (Ullmso < [¥llazso + I Tl me0 < C (Ilnl

3
R O D

As indicated in [9], the use of U instead of 9 is essential, which will be explained
briefly below. Let us consider the paralinearized version of Laplacian operator L appear-
ing in (3.5),

(321) P = Toﬁi + ﬂg.g_pyap - TP_277_253+5§'
One may expect that, Py — Ly is much more regular than v, which is true if the

coefficients a, 3,v,n72 are smooth. However, under the assumption of Proposition 3.10,
these coefficients have only Sobolev regularity and then the paraproducts To2p0, 1w, 0, I5;

appearing in the remainders lie in CgH 0=3  which is not enough to conclude (3.18) (we

need CEH SO%*). This lack of regularity is actually a consequence of paracomposition, the

general theory of which is sketched in Appendix C.4. Let x represent the diffeomorphism

from (p,0,z) € [1—9,1] xT xR to (z, z) € Q(t) and X* be the paracomposition operator

associated to y. A formal application of Proposition C.24 gives that
0=X"A,.0=T,X"¢o+ R,

where the symbol a is the pull-back of symbol of Laplacian operator and remainder R has
the desired regularity (see Lemma 3.11 below). Note that A, , should be understood as
the paralinearized Laplacian operator differing from A, . only in low frequency. There-
fore, this difference only generates smooth remainders and can be omitted. Formally, one
may identify 7, as P defined by (3.21), since Laplacian A, , is a differential operator. To

sum up, we have PX*¢ € C’SH =3, Meanwhile, by Proposition C.23, up to remainders,
the term X*¢ equal

X0 =9 —=Tyox = ¢ = Ty10,4p,
which suggests us to turn to Alinhac’s good unknown
(3.22) D= —T)19,00M,
whose trace at p =1 is equal to U defined by (3.19).

spl

Lemma 3.11. Let (n,7¢) € HRJr2 x H* with s >3 and 3 < sy <s. Then
(3.23) PO =ry.

where @ is defined by (3.22) and ry satisfies

(3.24) Irill g o4+ < © (Hn\

H+%0-

s ) 19
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During the proof of Lemma 3.11, we shall use the equivalence: for u,v defined on
1—0] xT xR,

(3.25) wr v o= vl e <O (ilay ) Wollm,

with 0 < € <« 1 to be determined later.
To begin with, we check that

Lemma 3.12. Under the hypothesis of Lemma 3.11, we have,
(3.26) PP ~ —Tagngé ~ 15,0, - B — To,07 — PTy-19,00m,
in the sense of (3.25). Recall that w stands for the couple of variable (0, z).
Proof. By definition (3.22) of the good unknown ®, we have
PO =Py — PT,-15,,pn
=Toa02p + Tiperr0pp — Ty2p2e2120 — PTy-10,000
:Taéﬁgo + 15 - V0,0 + 1,0, + Tpfana@g@ + 0%p — Pl 9,00m + (T2 — 0%p)
=L — Toppa — T ,0,0 - 8 — ooy — Topop 0> = PT10,00m
— R(0yp,0) = R(VuOpp, B) = R(Opp.7) — R(O5p. p7"n %) + (= Tezp — 02p)
~Lyp — Tagwa — 15,00 - b — To,07 — PTnflapwpn
=—Tozpa = Tv 0,6 - B — T, — PTy10,000.

Recall that L is the Laplacian in coordinate (p,6,z) defined in (3.5). To check this
equivalence, we first observe that, thanks to Lemma 3.1, Vi’wgo € C’SH %072~ and d,p €
CSH so=1= By Proposition C.8, Remark C.6, and estimate (3.9), we have the following
estimates:

||T8§gop_277_2||02Hs0—%+e + ||R(802g0’ p_277_2>||cl(3)H50—%+6
< Tozp(n™* = R7%) +IR(G5e.n )

HchSO—%“ COH 03T

r ) 19

S (720 ot e +1) 1l < € (1 o

R—2

COF*0—3+e
P

S (Bl gy gess 1) 10BN+ 180 sy ¥ Brlcgr-=

pPIR—2

<0 (Il s ) 1o
R

(80, Ml g reo-4e S <||7|| grer T 1) 10 llcgrrso-1- < C (Ilnl

Hs0;

o

As for the remaining term —Tg2¢ — 02, we observe that, since the symbol of 97 equals
—&2, the difference —Te2 — 0? is a smoothing operator. Namely, for all M > 1, we have

I~ Teap = 26l 30e S Wellogin <€ (1l ey ) Mol
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Let us proceed with the proof of Lemma 3.11. We observe that r; = P® is linear in
1. Therefore, an interpolation argument allows us to reduce to the endpoints sy = % +90
and so = s. If 59 = % + 0 with 6 > 0 fixed and small enough, the regularity of ¢ reads

V20 € CSH"%J”s and 0,p € C’SH%*‘s (see Lemma 3.1). As a result, by Proposition C.8
and (3.9), we have

HT@;LPOé + vaapv . ﬂ —+ Tap¢7"02H1+6+5
S HagSOHCSH_%%HOéHCgH}%f; + vaaPSOHCSH—%H||5||02H§+s + Hap('OHC,‘,JH%”HfYH

S (Il ) 16

Meanwhile, Proposition C.8 and Corollary C.9 give

oprate
CoHZ Y,

) Wl

1Ty sayeonlcgiosse S W00l gy llonl 5. 5 € (1ol

Since P is an operator of order 2, we can conclude
Pd ~ —Tag<poz —1v,08,0 - b — To,07 — PTn_1ap¢p77 ~ 0.

Note that the extra term T;-15,,0n from Alinhac’s good unknown is useless in this case
so = 3/2+9, while it will be crucial in the case sy = s. In fact, when sy = s, the estimates

above are no more correct. For example, we can only prove Ty a0 € CoH =3 = CoH s0-3
instead of CSHSO*%“.

From now on, we take sy = s and check that the extra term PT,-15,,pn is able to
cancel the low regular components of Tozp0t, 19,0, - B, and Tj,,v. To begin with, by
definition (3.21) of P,

PT,9,,0m = TaT ~10,0PN + Tig.c0pTy10,00m + 150, To10,00m — Ty2p-2¢2 42 Ti10,007,

and we will separately study each terms on the right hand side. As a corollary of the
following estimates, we are able to deduce that

(3.27)
Pd ~ — Tagsoa — vaap<p . ﬂ — T8p<p'7 — Tlg . Tnflagvpvwn — Tﬁ . Tnflapwvwn

- 2p_1Tn*2T89(77*18p<p)779 - p_lTn*QTn”@p@n@@ = 20T, (5-10,0)M= — PLy=10,47z2

when sy = s.

Lemma 3.13. Under the hypotheses of Lemma 3.11, we have the following equivalences:

(3.28) TL0RT, 10,01 ~0,

(3.29) Tipe0pTy-10,00m ~Tp - Ty-1520pVui) + T - Ty-19,4 V),
(3.30) T,0,T)-15,,0m ~0,

(3.31) —Tp2p2e262Ty-10,0pm ~2p "2, ~19,0)M0 + p_lTnf2Tnflap(p’l’]99

+ QPTOZ(n_lapSO)nZ + an_lap¢772Z’
in the sense of (3.25) with sy = s.

Proof. As before, we observe that n='0,p € C’gl:f“”*1 and thus T5-19,,0m € C'SHSJF%. To
prove the first equivalence (3.28), we apply Proposition C.8, Corollary C.9, together with
(3.9) and obtain

HTaang_18p¢pn||CgHS—%+e = ||TaTn‘13§’¢p77 + 2TCYTT]_18§507]HCEHS—%+S
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< (lellegmse, +1) (1openll oy o see + 1Tms0200 e 32)

<C (Wl s ) (1B egims W i+ 17 5B s )
<C (Wl s ) (1703 elcpms- + Ol
H;;"f_ P P P P

N

C <||TI||H;+%—> (“T’_l“H;i’;(l-‘r,s—?) + 1) <||8280||CSH5737 + ||8§¢||03H5727>

<C (Il 1) 191
R

Recall that d3¢ € CYH®*® thanks to (3.4). The term Tjg.¢0,1;-14,,pn in the second
equivalence (3.29) can be written as

Ty Ty,

HS.

n-1020) P + T - Ty-10200V ) + T - T, (3-10,0)1 + T - Ty-10,4 V),
with
1Ts - To,, (-r030) P + T Tvn-10,00l g s 4

SliBlleger I 75, (-1020)P1 + T90 0185001 g -3+

<C (unr H) (190 (1702 legn—s- + 1V (7' 902) Nogare—=- ) Il gm0
R

<C (Il ey ) el
H
R

which proves (3.29). The third equivalence (3.30) is due to the estimate
HTwaan—lap@PnHCgHs—%Jre = HTan‘lc‘),%soPn + T’YTn_lapV’angHs—%+e

v ) Il

The last equivalence can be

< (IWlegas,,_, +1) 110200 + Tymsoonl o3 < € (um
where one may apply Proposition C.22 to deal with L.
treated as follow,
_TP*QW*QEETn*ap%pn :P_ITH*QTaﬁ(n*aw)n + 2p_1T77*2T89(77*13p<p)779 + p_lTn*QTn*@pwn@@v
—Te2T-10,00M =PL02(0=10,0)1 + 20T 0. (n-10,0)7> + PLy-10,0722
+ (=T = 07) Ty1,001,
where similar estimates as above can be derived:

—1 —2 2 -1
Hp T"772Tag(77718p30)77||C(3Hsf%+e 5 <||17 ||H}1;i2 + 1) ||89 (77 8/)90) ||CSH5737HnHHmaX(%,sf%)JreJr

R
<c (Hm

—1
I e I (P I T

and

6T o200l g g3 <102 (n7'0,0) ||chs+Ilnlngax<g,3-%>+e+

HS.

<C (Il oy ) 1 Opelcpu - <€ (Il oy ) 1
R R

The desired result (3.31) follows from (=T — 92) T)-19,,p1 ~ 0 since (-T2 — 9?) is a
smoothing operator. O
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Proof of Lemma 3.11. Till now, we have managed to prove that, in the sense of (3.25),
P®~0

when sy = % + 6 with 0 < § < 1, and moreover, when sy = s, (3.27) holds. It remains to
check that the right hand side of (3.27) is equivalent to zero, namely

— Tagso()é — vaapw . 5 — T@,,so’)’ — Tﬁ . Tnflagwpvwn — Tﬂ . Tn—lapLPVUJU
- QpilTn‘QTae(n‘law)% - pilTn‘QTn‘laps@n% — 20T, (310,01 — PLy-10,4M:2 ~ 0.
Firstly, we claim that
—Tag@a —Ts- Tn—lag@pvuﬂ'] ~ 0.

In fact, by symbolic calculus (Proposition 3.4) and commutator estimate (Corollary C.19),
we have

Ts - Ty1020PV ) ~Tym1020T5 - PV wl) ~ ToppTy1Tl5 - pVau]
NTaggoTn*15 - PV,
where we use the fact that 8,n7! € C’SHS_% C I'f, and 029 € CY)H*> C I'j,. Asa
consequence, in each step above, the error can be written as a (0—)-order operator acting
on V1, which lies in C)H s=5 Meanwhile, by definition (3.6) of «,
Tag<p04 ~ Taggo (77_4773 + p277_277§) ~ Taggo (T277*4n9779 + T2p277*277277z) = TaggoT—pnflﬂ : ana

where the first equivalence is due to

Hs,

max(%,sf%}ke#» 5 C (||77|

R—2

v ) 19

1T5gem™ N g pye-3+e S N05¢llegrrs—-lln "1,

and the second equivalence is a consequence of Corollary C.21.
Now our problem is reduced to

PO~ =190, B —Toy — Tp - Ty10,0 Vil
— 207 T2 Toym10,00M0 — P~ Ty2Ty10,0m00 — 20T 0. (19,001 — PTy- 10,072
We observe that
207 T2 Toy 10,0910 =20~ Ty2 Ty 119,010 + 207 T2 Tm19,0,4700
N2p_lTn‘2T8prae(n‘l)779 + 2p_1Tn—zT30@p@Tn_1n9
~20" T, T2 Ty + 29~ Toy,0 T2 1106
~2p " Ty, o T—20,0-1y00 + 29~ Toy0,0 T30

These equivalences are consequences of symbolic calculus (Proposition C.18 and Corollary
C.19) and commutator estimate (Corollary C.19), as well as the fact that all the involved
symbols belong to C’/?H S o4 which guarantees that the error in each step takes
the form of Ty with T" linear and of order —%—. Moreover, an application of Proposition

C.8 gives
Hls;r%—) )

2p_1T77*2T89(n*13p90)779 ~ Qp_lTaan*Q@a(n*l)n@ + 2p_1T<998p90 (77_3779) :

IT5-m0 — 0 mell o3 <NTon™ + R0~ mo)ll g

Sl 21,3 <€ (1
R-3

and thus
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Similarly, we have
20T, (5-10,0)N= ~ 210,00, -1y + 20T0.5,, (77_1772) :
By observing that
19,0, " B=—2p""T,0,6n 19 — 20T.0,5m 12,
we can further reduce our problem to
PO ~—Ty,,v—TsTy-19,,Vun

- 2p_1T6ps0Tn‘28a(n‘1)779 - p_lTn‘QTn‘lapson% — 201,40 . (1)1 — PLy-10,07zz
~ = Tyoy — TopoTyo15 - Vil

- 29_1T80<PT77’289(7F1)779 - p_lTapsoTn*”n% = 20To,0To. ()= — PLo,o Tn11zz,

due to symbolic calculus (Proposition C.18 and Corollary C.19). From definition (3.7)
and (3.8) of 8 and ~, respectively, it is easy to calculate that

—y == B Vun+ o0 e + o0 e+ p7 07,
N8 =(20""n""0(n""),2p0:(n"")) -
As a result,
PO ~—p Ty on™ + T, ("B Vun —2T,-15 - Vun)
+ 0 T, (0000 — Ty-2m00) + pTo,0 (17" 02 — T-1m22)
the right hand side of which is equivalent to zero in the sense of (3.25), due to the

estimates
e <C(ll ey ) 10
2 HR

HTaplp (77_37799 - Tn*377¢99) ’|HS—%+€ <||Tap4PT779977_3HHS—%+6 + ||T8p<PR<n_37 7799) HHS—%+5

1o, ™2 -3 SNl I~ Ho

s—
R—

SNppll v+ [l1m60 | rr1+ I

<C (Wl s ) Wl
R

Hsf%+€ <||T8p<ﬂTﬂzzn_1||Hsf%+e + ||T8p<PR(77_17T]ZZ)||Hsf%+€
SOppll e ez e I~

<C (Il 3 ) 19
R

1ie

s—1
2
HR_3

||T3p<,0 (n_lnzz - Tn*”?zz) |

1

s—5+e€
2

HRi1

Hsy

as well as
”Tapgo (77_15 - Vun — 2T77’1/3 ’ an) | Ho—5+e
SIOpellaelln™ B - Vun — 21,15 - Vun

HS—%+E
<C (Wl ot ) W6l (173 = 2l 202 = 2T el )
R
<C (Wl s ) Wl
R

which is a consequence of Corollary C.21. U

Now we are in a position to separate the normal and tangential derivatives.
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1
Lemma 3.14. Let n € H?z with s > 3. There exists elliptic symbols a, A € X1, such

that
(3.32) P=T, (8 + T )(8 — TA) + Ry + Rlap,
where Ry is of order %—, and Ry is of order ———, satisfying

ol oty + IR gnt <€ (Wil g ) VR

Moreover, a = a™M +a® and A = AW + A©) can be computed explicitly,

i 5
(3.33) (p7ﬁ-+£2> (B8 = —
(3.34) =0 \/Oé( 22 +f2> (B-&)2+ Zgaf’
and
(3.35) AO = 1) 0 <Aa +9,AW + 9ea - DwA(1)> :
(3.36) al¥ = < Dy 1 49,40 4 9a® -DwA(l)).

Note that all the operators are defined on T x R with p € [1 — §, 1] regarded as a
parameter.

Proof. From (3.32), we shall see what is the conditions required for a and A. In fact, the
right hand side of (3.32) equals

To(0, +1,)(0, — Ta) + Ry + R10,
=T (02 + Tu-n0p — TuTa — Ty,4) + Ro + R10,
:Taag + (TaTa—A + Rl) ao - Ta (TaTA + T@,;A) + RO-

By comparing it with definition (3.21) of P, one could see that (3.32) holds if the con-
struction of a, A satisfies

ToTo-a+ Ry =Tigeyq,
T, (TaTA + TapA) — Ry = Tp_Qn_2€2+§g.

Recall that by (3.6) and definition 3.3, a € X°. Since n € Hy, - , the end of definition 3.3
shows in particular that o € T} oy T F1 24 Moreover, « is elhptlc and independent of &.

For all a, A € X!, symbolic calculus (Proposition 3.4) gives that

TaTa—A ~laf(a—A) = Ta(afA)a
To (TuTa + To,a) =TaTugaro,4 = Tagapato,a) = Ta(asaro,a) = T (ataro,am)s

where the difference in the first line is of order 041 — %— = —%— and those in the second

line is of order 0 +1+1 — %— = %—, allowing us to define

Ry ::Ta(afA) - ToaTa—Aa
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Therefore, it suffices to construct A = A® + A© and a = a® + a© verifying
OZ(G—A) 2355‘4‘%
o (atA +0,AV) = p7°¢ + &,
From (3.13) and correspondence of order (in &), we only need to solve
a(a(l) _ A(l)) =if-&,
a(a® = A©) = .
adV AW = p=2y g 4 &2,
9ca®) - Dy AD 1 a® A 1 oA 49 AW g,
which allows us to obtain (3.33)-(3.36). O
By combining Lemma 3.11 and 3.14, we have
(3.37) To(0, +T1,)(0, = Ta)® = —Ry® — R10,P + 1.
Under the hypothesis of Proposition 3.10, we have

H*®0 -

(3.38) | = Ro® = Ri0,® +1ill -4 < C (Hm H) |
In fact, the estimate for r; is a consequence of Lemma 3.11, and the definition (3.22) of
®, together with Lemma 3.1 and Proposition C.8, implies that

s )19
which implies (3.38).

1
By definition (3.6) of o, under the hypothesis of Proposition 3.10, a € H;,S , which
is a symbol in T y,, C T9,,. Since a is strictly positive due to hypothesis (H0), 1/a

belongs to the same class of symbol. Consequently, Proposition C.8 guarantees that

T T, = id + RQ,

H*®0,

(3.39) H®%%m+H@@bwwﬂ+W%W@mw2<C(M|

where Rj is of order %—i—. Now we may apply 77/, on both hands of (3.37) and obtain
that

(9 + T)(@, — Ta)® = T (~Ro® — Ri0,® + 1) — Ra(d, + T,)(0, — Ta)2.
We claim that the CSH"’O’%*E norm of the right hand side is bounded by C'(||n| he M| erso-

R
In fact, the estimate of the first term follows from (3.38) and the fact that 7}, is of order
zero. As for the second term, since T, and T4 are of order 1, we have

[1R2(0+T0)(9p=Ta) Pl

< OAT) (Bp=Ta)® cgeos S C (um H) s
R

ot

where the last inequality is a consequence of (3.39).
To sum up, under the hypothesis of Proposition 3.10, we have seen that & defined
by (3.22) satisfies

(8p ‘I— Ta(l))(ﬁp — TA)CI) = T_a(o) (8p — TA)(I) + T,

ot ) 19

with

Il gy 3 < € (D -
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Lemma 3.15 (Proposition 3.19 of [6]). Let b; € T'} and by € T3 with
Re by (w,§) = cl¢]
for some ¢ > 0. Ifv € C’;HM for some M € R that solves the equation
0,v + Ty,v =Thv + f,
with f € CYH" for some r € R, then, for all ¢ >0, we have
V|pmy € H™H17E
One may apply this lemma for b; = aV) € F?l)/2+ CTlbg=—-a®el?, cIY, and

1/2+
v =0, —Ta)® with M =sy— 1,7 =59 — 3 +¢ and € = § to conclude that

[(@ =0, ey <€ (s ) 10

In order to recover d,¢ (appearing on the left hand side of (3.18)) from 0,®, we use the
definition (3.22) of @,

(0, — TA>(I))|,;:1 = 0pplp=1 — T;U — Tn‘133<p77‘p=1 - Tn‘13p¢77|p=1a
where U is defined by (3.19) with B given in (2.17), 7 = A,=1, and the remaining terms

H%0-

verify
Ty sapeleggeny SV 0elgrr il oy <€ (s ) W6l
R R R
1Ty 0,0 gves S~ Bl oy <€ (il ey ) Woll Tl
R R R

thanks to Proposition C.8 and Corollary C.9 together with Lemma 3.1. Note that, when
sg— 2 > 1, the estimate follows from sy < s, while, when sy — 2 < g, we use the fact that
(so0—) —2+s+3 — 1> so+ 3 since s > 3.

3.3. Paralinearization of Dirichlet-to-Neumann operator. Thanks to Proposition
3.10, we are now able to write the Dirichlet-to-Neumann operator (3.1) in terms of tan-
gential derivatives. We introduce the modified gradient (in w)

_ O,
(3.40) Vi=9% 0.
n
which allows us to do the following calculation from (2.17)-(2.21) (attention that we
abuse the notation (p,#,z) which has different meaning in Section 2 and here, whose

relation is given by (3.3)),

(3.41) p=0fle1,
77 —
_ \%
(3.42) V =Vo|,=1 — 7"8pso\p:1,
2 2
(3.43) N =BV -Vn+ ’V’TB,
(3.44) G(n)yY =B -V -Vn,
(3.45) Vi =V + BVn.

Note that these formulas also imply
G Vi -V
1+ |Vn|
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(3.47) V = V¢ — BVn,
= = 2
(3.48) N ORI
2 1+ |V

The following estimate for (B,V') is no more than a consequence of Lemma 3.1 and
formula (3.41), together with Corollary C.9 and Proposition C.22.

st l
Lemma 3.16. Let (n,v) € HR+2 x H*% with s > 3 and g < 89 < s. Then, by expressing
B,V as linear operators acting on 1,

(3.49) B =Bn)y, V=Ynh,
we have
(3.50) 1Bl cerso;ms0-1) + V)| crrso;p00-1) < C <H77| Hs+5_> )

and, in particular,

(3.51) 1Bl

a1 + V]

ot <€ (Il sy ) Wl
R

We can now state the main result of this section as

1
Proposition 3.17. Let (n,v) € H;Jr? x H* with s > 3 and 3 < sy <s. LetU = ¢—Tgn
be the good unknown as defined in (3.19). Then there exists elliptic symbol A € X1, such
that

G =T\U =Ty -V + fi
=T (¥ = To@un) = Tomw - Vi + fi,
where B(n),V(n) are defined by (3.49) above and fi = fi(n,) is linear in ¥ with

(3.53) il s <€ (Tl ) (101 o )

Moreover, X = AN + X0 € ©1 can be calculated explicitly,

2 2 12
(3.54) AW = \/(5—92 + 53) + (@nz - fz@) ;A0 = A0
n n 77 0

where A©) is defined in (3.35), and | is as defined in (1.6),

2
l:\/l%—(%) + n2.
n

Proof. During the proof of Proposition 3.17, we shall use the equivalence: for u, v defined

on T x R,
et <€ (Il5 ) 19

Recall that, from (3.1), G(n)Y can be written as

12 Mo Yo
Gy =—0,p)p=1 — —— — 0.9
() n "’ o= non
:Tfl’llzapgobzl + T8p¢|p:177_1l2 + R(n_1l2’ ap@lpzl) - Tnflngn_ll/@ - Tnflwgn_IHG
— R g, 0™ "be) — Tyth. — Ty.m. — R(n,, )

~T1120pp)p=1 + Tapsolp=177_1l2 - Tnflnen_lz/m - Tnflwan_lw — T 0. — Ty.n:

(3.52)

oo 1l 191

ur~v e ||u—vl

H*®0 -
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:Tn71l2apso|p:1 + Tap‘:o|p:1n_1l2 - T@n . ?@ZJ - T@w . ?T]
=Ty 122058l p=1 + Topelyat 1 = Ty - Vb = Ty - Vi = T - V.
where we use the formula (3.45). To prove the equivalence, we observe that d,¢|,-1,

por ) 19

Thus, an application of Proposition C.22 and Corollary C.9 gives
IR, 0pplp=1) + R0~ "m0, 0™ ) + R(n:,02)]

< (7810 + Il g+ el 5. ) € (1

2
R—

< (Il ) 1o

Thanks to definition (3.19) of good unknown U, formula (3.41), and Proposition 3.10, we
have

G(n)w NTn—llzapg0|p:1 + Tapw‘pzl’rflp - T@n . vlﬁ - TB@,7 . ?77 —Ty - ?7]
~ -2 T U + T8p¢|p:177_112 — T@n -V (U+Tgn) — TB?W . vn —Ty - ?n
=TT, U — Tg, - VU = Ty -V + Typn '1* — Te, - VIgn — Tpe, - V),

n~11e and 1, belong to H**~! with norm bounded by C (Hn|

oo using (3.4).

Ho0+S

s ) 19l

H*®0-

s—1_
where the equivalence is due to estimate (3.18) and n~'1* € H,_} , ensuring that 7,12
is of order 0.

We claim that

(3.55) T2 Ty U ~ Tyorp2, U,
_ 1
(3.56) T, VU ~ —éng.mp:lU,
(3.57) Typn '1? = Tg, - VIgn — Tpe, - Vn ~ 0.

With these equivalences (whose proof will be given later), we may conclude that
G(n)w ~ T)\U — TV . ?777 A= 7771[2’7' + _an ’26|p:1,
which coincides with (3.54). O

Proof of (3.55). In Proposition 3.10 and Lemma 3.14, we have seen that 7 = A|,—; € X%

s_1_
By applying Proposition 3.4 and using the fact that n=1i? € H,? C 0 (since s — %— >
3 +1 due to s > 3), we have

s0+3 ~ HSso -

1Ty T = Toprmgs Ul oy < C (nm o < C (um

pr ) 19

components, the formula

wor ) 101

Note that, since n71? € X% is independent of £ and has no I'
(3.13) yields

-1
1/2+

(0 2) tr = 502,

Proof of (3.56). By definition (3.7), it is easy to see that

_“75 ) B|p:1

.. T .
5 = 259? +1£.m,.
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We may decompose the left hand side of (3.56) as
VU T77 1y ( ‘189U) + TZ(?ZU

—TTI 1779 n= 10pU + T, neTanﬁil + Tn_lﬁeR(nil’ 89(]) —+ Tiﬁznz U.

Since n7ing,n~t € F3 /o> A1 application of Proposition C.18 and (3.20) gives that

I (T(n‘lne)ﬁ(n‘l) Ty1ny 1oy )39U\ goots X <C( H}s;r%) 109U || 1101
<C (Wl s ) 1l
with (n7 ) £ (n™') = 121y, from which one may deduce that
Ty-19y Ty-10pU ~ T2, OpU = Tiggy-29,U,

and the desired estimate (3.56) can be reduced to
s 1779T<96U77_1 + TnflneR(n_lv 9U) ~ 0.
In fact, thanks to Proposition C.8 and Corollary C.9, we have

aeoed Sl 1T, ey
<C( HS ) “aaU‘HSO 1”” 1” max( +,50+35 )
R R7
¢ (Il ) 1o
1Ty s B B0y <||n*1ne||H1+HR<n*%an>||Hso+%
~1
) 1 1000 g

<1,
<C (Il 3 ) 19

which completes the proof. O

HTn_l??eTannill

H*®0,

H*s0 -

Proof of (3.57). To prove (3.57), as in the proof of Lemma 3.11, we only need to consider
the case sg = % + 0 with 0 < § < 1 and the case sg = s. In the first case, each term on
the left hand side of (3.57) is equivalent to zero. In fact, Proposition C.8 ensures that

) Il

[Ty Falsss <[Vl 19Tl < € (Il ey ) Il
R

& (Il ) 1Bl g <€ () Mol
R

'
ITagy - Vnlluzs SIBSul, sl Fal, 5 < C ( ) 1B, 4.

<C (Il s ) 191
Note that the estimate for B has been given by (3.51).

T T I S IRl e
RrR—1

Hso -
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If s = s > 3, we are able to apply symbolic calculus (Proposition C.18), since all

the involved symbols has at least Holder regularity in w. Recall that n € H;;FT and
B € H*'~. Then we have

Tyen '1? = Tg, - VIgn — Tge, - Vn
=Tysn " + Ty (7 IVn?) = Tyryy (0705 (Tn)) — T,,.0. (Tn)

—Ty-1y,B (77717)9) — 1,87
~1inB (77_1|?77|2) — Ty, (77_1TB779) — 1,180, — Ty-1pyB (77_1776) — T8
~TBT, (n71|@m2) — Ty Ly Tng — 21T, 1. — TpT,-1y, (7771779)
~Tg|Vn|* =TTy, Ty-1m6 — TpTy-1, (0 09) — T2
~Tp|Vn|* = 21T, -1y, (0™ "n9) — T’
~Tp|Vn|* = Tp (77_1779)2 — Tpn: = 0.

As a result of Proposition 3.17, we can replace the first equation in (1.18) by

Before entering to the paralinearization of nonlinear terms, we provide a calculation
concerning the subprincipal part A of symbol A appearing in (3.52). We claim that

Lemma 3.18. The symbol A = XY + XO) constructed in Proposition 3.17 satisfies

1 10,
(3.59) A = 20, - gAY — 5Tn DD

Proof. Set a = n\. Since by (3.54), Im A() = 0, Proposition 3.9 shows that (3.59) will
hold if we prove that the symbol n\ verifies the second condition of (3.17), i.e. that
Tyn — Ty is of order 0—.

To prove this, we assume that n € HA™ = NyerH} and ¢ € H* for some fixed
s > 1. Under this regularity assumption, from (3.52) and (3.19), we have

nG(n)y =nTxp = nTaTpn —nTv -V + fi
=T, Tx¢) + Tryyn + R(n, Taxy) — T2 Tpn — 0Ty -V + fi
=T + (T, = Tp) ¥ + Tryyn + R(n, Taw) — nTaTen — nTv - Vi + fi.
Since n € H;>, thanks to Proposition C.18, C.8, and Corollary C.9, it is clear that the
following terms are smoothing operator w.r.t. i,
(T,Tx — Topn) ¥, Trygn, R(n, Ta), nTxTn, nTy - Vi,
while f; is of order —1 due to (3.53). Consequently, we have that

1
Ty — nG(n) is of order — 3

which, combined with the fact that nG(n) is self-adjoint, yields that

) 1
Top = Tox = (T =G () = (Tyx = nG ()" is of order — 7,

which concludes the desired result (3.59) for regular enough (7, ).
We emphasize that the regularity assumption on 7 and ¢ has no impact in the
identity (3.59) since it can also be obtained by algebric calculus from (3.54) (which is far

more complicated). d
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3.4. Paralinearization of the nonlinear terms. In this section, we aim to rewrite
the second equation of (1.18) in the similar form as (3.58). The main difficulty is the
paralinearization of the nonlinear terms, i.e.

1
Proposition 3.19. Let (n,v) € H;Jr? X H® with s > 3. Then there exists u € X* and
ro, T3 € HY such that

(3.60) N =Ty -V = TpG(n)Y — TpTy - Vi + 12,
1

where ro = 19(n;1,1) is quadratic in 1 and r3 = r3(n) is independent of ¥ with, for all
% < 59 < s and Yy, € H?,

362 IrsCmvnvallan + sl <€ (1lp-) o

R
Hs < C ( H;—&-%_)

Moreover, pn = p® + M) € ¥.2 s elliptic with

2
(5) e (ren) ]
Once this proposition is proved, the second equation in (1.18) can be replaced by
(3.65) Y+ Tv - Vi + oT,n—TpG(n)yY — TpTy - Vi = —ry — ors,
which can be further written as
((‘lﬁ—Ty-?)Qﬁ—TB (8t+Tv~v)77+aT,m: —r9 — OT3.

By combining this equation with (3.58), we obtain a reformulation of (1.18),
(3.66)

(o 0)esme (D) (Con, ) (o 7) ()= (1),

where

(3.67) f2 = fa(m; ¥, 0) = —ra(n; 0, ¥) — ors(n).

DD

This identity allows us to recover from (3.66) an evolution equation for (n, 1),

|2

Hs— H*®0,

(3.63)  [lrs(n)|

1
3.64 @ =

(3.68) (atwv.v)(g)%(g):f,
where

S C R I E )
and

10 f::(T{B (f))(ﬁ):<TBf{1+f2)-

Since A and u are elliptic, the operator £ can be symmetrized, which is the purpose of
Section 4.
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3.4.1. Paralinearization of N. In this part, we shall prove (3.60) and (3.62). As before,
during this proof, we shall use the equivalence: for u,v defined on T x R and bilinear in

(V1,2),
(3.71)

u~v & [[(u—v)(n; Y1, ¥s)|

w0+ (u=) (1 12, )|

o < C (Il g ) Il ol
R

To begin with, from formula (3.43) for N, it is clear that N is quadratic in ¢ as well
as the three first terms on the right hand side of (3.60). As a result, r is quadratic in v
(not necessarily symmetric).

Due to (3.43) and (3.44), one may rewrite N as follow,

(3.72)
2 2

=Ty -V +TpB =TGNy — Tp_v.v,B+ R(V.V) + R(B, B) + R(B,G(n))
NTV -V + TBB — TBG(n)w — TB—V-?nB = TV -V = TBG(U)'QD + Tv.ﬁnB

To prove the equivalence, it suffices to apply Proposition C.8 and use the fact that
B,V,G(n)y are linear in ¢ with
o <€ (Il oy ) 19
R

o SIB@ LBl
<C (Wl s ) Mol e

and the similar estimate holds for R(V, V) (note that R(-,-) is symmetric), while

”R( ( ) ( >¢2)| Hso + ||R(B(77/J2),G(77)¢1)| Hso
SIBW01) || w2 |G ()2 || gro-1- + [|G(0) 1] 2+ || B(12) |

(nnn )||¢1||Hs||w2 .

Inserting (3.45) in the right hand side of (3.60), we can write it, up to rq, as
Ty - Vi — TgG(n)Y — TgTy - Vn =Ty V + Ty - (BVn) — TsG(n)w — TTy - V1.
According to (3.72), this will be equivalent to N if and only if
Ty.syB ~ Ty - (BVn) — TgTy - V1.
The difference of the two sides can be expressed as
Tv - (BVn) — TgTy -V — Ty.5,B

=TyTgVn+Ty - Tg,B+TyR(B,Vn) — TgTy -V — Ty.5,B

=[Tv,Tp|Vn + (Iv - Ty, — Tv.5y) B+ TvR(B,Vn).
Therefore, it suffices to check the following equivalences:
(3.74) [Ty, Tg|Vn ~0,
(3.75) (Tv - Ts, — Ty5y) B ~0,
(3.76) Ty R(B,Vn) ~0,

(3.73) || B]

1

-1 G )Y]

3
ey Vs 6]5,3].

More precisely, we have

[R(B(¥1), B(¢2))|

sop—1—

Hs0,

Hso—l—
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in the sense of (3.71). As before, the interpolation argument allows us to focus on the
case sy = % + 0 with 0 < § < 1 and the case sy = s. In the latter one, by observing

that B,V € H*'= c TV, Vn € Hs 2 C 7., the equivalences (3.74), (3.75), and
(3.76) follows from Corollary C.19, Proposition C.18, and Proposition C.8, respectively,
together with (3.73).

In the case sy = % + 9, we shall check that all the terms concerned are equivalent to
zero. In fact, we have

1Ty ) TBe) Vil 305 + 1Ty o) T Vil 35
SIV @) N |B@2)l 15 Vllz + 1V (2) ], 3451 B@) s [Vl 12

<C (Il ot ) Wl
R

which implies Ty TpVn ~ 0 and TgTy'Vn ~ 0 in the same way, yielding (3.74). For
(3.75), we apply Proposition C.8,

I (Tv ey - Ton = Tvwaon) B@2) g5 + 1 Tvs) - Ton Bl 345
1Ty oy wa B 345
<IV @O IVl e [ B2 148 + 1V @2 148 IV0ll s [ B(2) | 12

<C (Wl s ) ol e
R

The estimate corresponding to (3.76) is due to Proposition C.8.
1Ty () RIBW2), V)l 45 + 1Ty ) RIB(W1), V)| 545
IV @O 1 B@2 ygas IVl + 1V @2 ys IVl [ B(42) |2

<C (Wl s ) Mol e
R

3.4.2. Paralinearization of H. In this part we prove (3.61) and (3.63). As before, we
shall use the equivalence: for u,v functions of 7,
por ) I

By definition (1.9) of H and expression (1.6) of [, it is easy to calculate that the left hand
side of (3.61) reads

1 _1 1 89 Mo P 1
H 2R 2 L)l n (77[) aZ(l)] 2R

Hs—

H*0-

Hes- He0 -

(3.77) u~v@mmwwmmm<com

1
s+1
HR

_1 1 +1-1?79779 1?79[9 1 +1 2 1
ol 2R 2\l gmi g T
1 1 . 1| n " 1777139 (ynﬁ) + 2702 1
Tonl 2R 2|l 2 l 2l
1 [n a0 (2) tne
2 |12 l 1

ol 2R 2|3l B3 B\t opap) ™
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L[ mgn? | nen- 1

11 ; 1 Moo o MoM: To- o\’
- S oo _ o107z o= | (4 .
2nl 2R * 2303 203 [( +77z) n? n o n U n g
=F(n,mo.n:)+ Y G (.m0, m2) 5
J.ke{0,z}

where F' and G’* are smooth functions defined by

Flaun) mee — = 4
T T T OR T 22
1 1402 1 U 2
00 o 2z e
(378) Gl u0) == 55— ’G<%%”=—§EO+<9>’
1 wv

0z z0
G (z,u,v) =G*(z,u,v) := 513 2
with A(z,u,v) == /1+ (u/z)2+02. Since F(R,0) = G%(R,0) = G*(R,0) = 0,
G%(R,0) = —(2R*)7!, and G**(R,0) = —1/2, one may apply Proposition C.22 and
obtain
(3.79)

H = o =Tr, 9w + 190 o) (0.90m) * Vall + Tt m,v ik

2R
+ DT gty + kaT(vu,vGﬂ'k)(n,vwn) -V + R 0k, G700, Vo) + 14,

where Einstein summation convention is applied for simplicity and the remainder ry is
equal to

T4 ::F(Th vwn) - TVz U UF(7I Vw??) ' (77’ Vu)n)
77Jk (G] ( Vuﬂ?) - TVz,u,ijk(me??) ) (777 Vuﬂ?)) )

which lies in H26—27)-1 ¢ H* due to (C.19) and Proposition C.8; together with the fact
1_
that n € H;;Q . We claim that

(3.80)

Lemma 3.20. Under the hypotheses of Proposition 3.19, we have the following equiva-
lences in the sense of (3.77),

(3.81) Tr.9umn ~ 0,
(3.82) T Tt nwums B (i G75 (1, Vo)) ~ 0,
(3.83) (TnjkT<Vu’ijk)(77,VwT]) o Tnjk(Vu,quk)(men)> Vi) ~ 0.

Proof. From (C 20), we know that the composition of smooth functions with (7, V,,n)
belong to H*~2. Thus, from Proposition C.8, we have
+§)
R
1550 Tt .5yl + IR (e, G (0, Vi) [ 1
Slmswll e |G O,V am) s [l + lngall 5 1G7* (0, V)|

(1)

HﬂmmmeﬁHﬂwvmeWW%<C<

1
H*™ 27
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I (kaT(vu,ijk)(n,vwn) N Tnjk(vu,vak)(n,vwn)) -Vl

(1l 1) 19 ¢ (Il s ) Ul
R R

where in the last inequality we apply Proposition C.18 with the fact that 7;;, and (Vuvaj ’“) (n, Vun)
are both in H*7 2~ C I'? O

3/2+
To sum up, we have proved that

1
H— SR ~T(9, P, V) * Vull + Taikm v ,mMik + T,,jk(vngk)(mvwn) -V

. =TV PV un)i€ — Lo vumee + Ty (v0.,6%) 0,9 0m)ie™
and we can define u®, u™ as

— G0, Vun)&i&e = ),

(V) (0, V) - i€ + nj (Vo GF) (0, Vn) - i€ = pt

One can check by direct computation that u(?) is given by (3.64). As for u(!); we are only
interested in its imaginary part, which will be useful in Section 4. We claim that

(3.85)

Lemma 3.21. The symbol pn = p® + puY constructed in (3.61) satisfies

1 10,m
3.86 Tmp™M = —209, - Oep'® — =25 e,
(3.86) m 4 5 e == e
Proof. The idea of proof is similar to that of Lemma 3.18. We may assume n € H}> :=
NserHj and reduce the problem to show that T;# — T, is of order 1— (we shall prove
that it is a smoothing operator).
To begin with, we recall that we can represent H as

1 A
H— = =Fmnen)+ > G*nne,n:)mm,

2R j,ke{0,z}

where F' (x u,v) and G*(x, u,v) are smooth functions defined in (3.78). Then by regard-
ing H — 55 as a nonlinear operator of n (not (n,7g,7.)), one may calculate the derivative
w.r.t. 7 of n(H — 35). Namely, for all én € H* with s > 1, we have

! » {(n + €dn) ( (n + edn) — %)}

de

= [(n + €dn) F'(n + edn, Op(n + €dn), 0. (n + €dn))]
e=0

+ D -
j,ke{0, z}
=F(1, Vu)on +nFu(0, Vun)on + 1 (VuoF) (7, V) - Vudn + 106G (0, Vun)on
+ 1 GIF (0, Vun)on + mjx (VauoG?*) (0, Vun) - Vwdn +nG7*(n, V.u1) 000,

where the right hand side is a differential operator acting on 7. By comparing it with
(3.85), we can see that the symbol of this differential operator equals nu+Fy(n, V,n, V2n),
where Fj is a smooth real-valued function.

Now, for any 0m,dne € Hj with s > 1, we define

h(el, 62) = A(77 + 615771 + 625772),

[(1 -+ edn)G7* (1 + €dn, Dp(n + €dn), 0. (1) + €61)); 0 (n + €dn) ]

e=0
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where A is the normalized area of interface ¥(t), which is defined in (2.31). By (2.34),
we have

1
(961h]€1:0 = /(77 + 6257}2) <H(7} + 62(57]2) — ﬁ) 5n1dw,

which, together with the calculus above, yields

OeyOc, h|ey—ey—o = /Op (np + Fo(n, Vun, Vin)) onpdmdw.

Due to the regularity of n, h is a smooth function of (€1, €2) near (0,0). Therefore, the or-
der of derivative is not important, from which one can deduce that Op (nu + Fo(n, Vwn, V1))
is self-adjoint. Since Fj is real-valued, the differential operator Op (nu) is self-adjoint.
Form the fact that the difference between differential operator and paradifferential op-
erators with the same symbol is a smoothing operator, we conclude that 7,, — T, is a
smoothing operator, which completes the proof.

Note that, as a by-product, we have re-expressed H — (2R)~! as
1 .
H — = =T + Tr 0.9 + Top Tzt vum + B (i1, G (0, Vi)
(3.87) 2R A
+ <T77jkT(Vu,ij’“)(men) B Tnjk<Vu,ijk)(77,vw77)> Vi) + 74
which can be seen by inserting (3.85) in (3.79). That is to say, the error r3 appearing in
(3.61) admits an explicit formulation :

13 =1TFy(n,Vun)l + TnjkTGZD’“(n,vwn)n +R (77jk7 Go* (n, Vw”))
(3.88)
+ (T

Njk

T(Vu,ijk>(77’vw"7) - Tnjk(vu,ijk)(W7V1v77)> ' vwn + T4
Recall that F, G are defined in (3.78) and ry is given by (3.80).
3.5. Continuity of source term. In previous sections, we manage to rewire (1.18)

in paralinear form (3.68). Moreover, by combining estimates in Proposition 3.17 and
Proposition 3.19, we are able to decompose the source term f (see (3.70) and (3.67)) as

(3.89) f=fO4 04 @

where

(3.90)
FO ( 0 ) FO ( fi(n, ) ) F@ = ( 0 )
—ors(n) ) 0 ’ Ty fr(n, ¥) —ra(n;v,9) )7

are respectively independent, linear, and quadratic in 1, with estimates (3.53), (3.62),

1
and (3.63). In these estimates, by taking sy = s, we have, for all (n, ) € H}S;? x H® with
s>3, Be H* ! (see (3.51)) where s — 1 > 1, which, thanks to Proposition C.8, yields

BI) 10 e <€ (I o) (19l + 10l

Meanwhile, with % <8< §— %, we can prove the local Lipschitz regularity of f(n,) in

¥, ie. forally € Hy, 2 and 1,1y € H® with s > 3,

(392) 100 ) — Fn ), ey <C (Hm H) lhér — vl

The goal of this section is to show that f(n, ) is also locally Lipschitzian in 7, which
is important to prove the convergence of approximate solutions to the paralinear system
(3.68) and the uniqueness (see Section 5.3).

H;:%i’ H¢|

H*®0, Hl/12|

H;—&-%Jle‘ Hso0 -
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1
Proposition 3.22. Let (n1,v1), (n2,19) € H;JFQ x H® with s > 3, such that

||(77171/11)| H:—%XHS + H(772>¢2)‘ HIS:%XHS < M
for some M > 0. Then we have, for all % < S < §— %
(3.93) 1 (s 1) = 2y Vo)l g oo < OO =201 = 2) | gt e

The estimate (3.92) allows us to focus on the continuity in 7 by taking ¢ := ¢; =
1o € H?, and the desired result can be reduced to
H) 71— 2]

(3.94) £ (1, 90) — f(n2, )]

which can be further reduced to the boundedness of derivation in 7.

HsO+%sto \ (HT]” S+77 H50+%,

S 1 1
Lemma 3.23. Let n € HR+2, on € H¥ 2, and v € H® with s > 3. Then the derivative
of f inn, defined by

d d
(3.95) of = d—nf(n,w) o = B f(n =+ edn, ),
satisfies, for all % <59 < §— %,
(3.96) 1800 3 < € (1l W0l ) 191

Since f can be decomposed as (3.89) with f(0), f), and f® given by (3.90), we
need to study §f; and Jfs (more precisely dry and drs, see definition (3.67) of f3). The
study of fi is the most difficult one, since the only formula for f; is (3.52), meaning
that it is unavoidable to calculate the derivative-in-n of G(n)1 (depending implicitly in
7n), which has been done in Proposition 2.8. As for the study of ry, we shall rewrite
it as a function of B, V, and G(n)y and reduce the problem again to shape derivative
(Proposition 2.8). The last term r3, according to its definition (3.61), depends explicitly
on n and the corresponding variational calculus is direct.

3.5.1. Derivative of fi. In this part, we shall prove (3.96) for f; (defined in Proposition

3.17), namely
(3.97) 16D ey < (||n| H) 160 e

Before starting the proof, we introduce several technical lemmas which will be fre-
quently used:

s+2

1
Lemma 3.24. Letn € H;JFQ and om € H*® with s > 3 and < 59 < 3 All the functions
u taking the form uw = F(n,V,n,...VEn) (k=0,1,2) belong to HF " with

aete <O (il ey ) 1901y

Proof. The fact that u € H F(R g) is no more than a consequence of Proposition C.22. For
the proof of (3.98), we focus on the case k = 2, while the other cases can be proved in
the same way. By definition, the derivative of u in 7 reads
k
Su=">"0;F(n,Vun,...Vin)Vi,on,

J=0

(RO

(3.98) l6ull .
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where, again by Proposition C.22, 9;F(n,V,n,...Vin) € H**27% up to constant nor-
malization, and Vi oy € H**t2~3 < H%+t2-%  Thus, Corollary C.9 gives the desired
estimate,

k

|l eoti—k Z 10;F (1, Vaun, - Vi U)Vk&?l prsoti—k
k
g Z Ha F 777 UJT]? ce VI,Z)T])‘ HS+%*7€ Hv";én‘ H50+%*k
7=0

<C (Il ) 100

Lemma 3.25. Let n € H}?E, v e H?, and on € H*° with s > 3 and % < 59 < 5. Then
the following estimate holds,
) 190l

ot + 16Vt <€ (1l
Proof. Recall that, since 6y € H*%z, the derivative in 1 of G(n)® lies in H*~* due to
Proposition 2.8. The formula (3.46) allows us to estimate 6 B. In fact, from (3.46), we
have

Ho0tT

g

(3.99) 16B]

_0(Gm) (V- In) o o
TR + (G + Vi vn)5(<1+\vn\) )

From § (G(n)y) € H*°~! the first term on the right hand side belongs to H*~!, while
the other terms belong to the same space H**~! due to Lemma 3.24 and Corollary C.9,
which completes the proof for §B. As for 6V, the formula (3.47) implies

6V =6 (Vi) +6BVn+ B (V).
The desired estimate then follows from that of 6 B and Lemma 3.24. O

1
Lemma 3.26. Let n € H?Q and on € H"2 with s > 3 and % < s9 < 5. Let
a=a™ + a™Y be a symbol with m € R and
o™ = F(n,Vo.m:8), o™ =" Galn, Vo.1:£)05.1.
|a|<2

where F(x,u,v;&) and Go(z,u,v;€)’s are smooth function of order m and m — 1 in &,
respectively. Namely, for all 3 € N* and v € N?

Sup | zuvfﬂF(x,u,v;f” 5 <§>m_|7|7 sSup | muvawGa(Iauyv;f)‘ S <€>m_1_|7|.

T, u,v T, u,v
Then T, and T, are of order m.

Proof. Clearly a € 'Y oy T Fl ot and thus T, is of order m. As for Ty,, a direct calculus
gives that

da =08 (F(,Vum; &)+ Y 6 (Gal(n, Vum; ) 0on+ Y Galn, Vun: £)050m.
|or|<2 lo]<2
By Lemma 3.24 and s > 3, all the terms on the right hand side belong to I'yt. or I'j'!
except for those G (n, Vu1;€)9g 0n with [a| = 2. To deal with these terms, we observe
that G (n, Vn; &) has H =3 regularity in w variable while the low regularity comes from
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dg.,0m € H*~ 3 By applying Corollary C.9, it is easy to check that, for all || > l and
v e N2

102 Ga (1, Vot €)05.01l yeo—3 S NGa(m, Voot O ey 1071y (€.

Then by Proposition C.16, the associated paradifferential operators is of order m — 1

Whenso—%>1,0r
3 3
m—1+1-— 30—5 =m — 80—5 <m,
3

when sy — % < 1 (in the critical case sy — % = 1, one may replace sy — % by sg — 5—),
which completes the proof. O

Now we are ready to prove (3.97). As before, during this proof, we denote

et <€ (Il 1ol ) 1

s+5
The main idea of the proof is to use (3.52) together with shape derivative formula (2.42)
to obtain an explicit expression of  f;, where most terms can be treated separately and
the remaining ones (see (3.104)) will be proved to admit some cancellation thanks to an
application of paralinearization (3.52) with 1 replaced by Bdon and B.
From (3.52), the derivative of f; in 1 reads

5f1 =0 (G(?])"(/J — T)\U + TV : vT])
=0G(n)Y — TsnU — Th6U + Ty -V + Ty - 6 (Vn)

(3.100) u~vE||u— v

Heoth

:(SG(U)"QD — Tg)\U — T,\(SU + Tgv : vﬁ + TV . <_%(57], 0) + TV . 6(577
By (2.42) and definition (3.19) of U, the right hand side can be further written as
Vo Bj
0f1=—G(n) (Bon) =V, - (75777 VZ577) - Tn — T5\U + 1)\ (T'sn)

+ T(;V . ?77 + TV . (_%677,0) + TV . ?57]

_ B
=—G(n) (Bén) =V - (Vin) + %V%?? — Tn — T5\U + T\Tspn + T\Ton

+Toy -V + Ty - (—%5”»0) + Ty - Von.

Lemma 3.27. Under the hypotheses of Lemma 3.23, we have

Bs
(3.101) Byosn, 2L T (—"—3577, o) ~0,
U 1 1
(3.102) T\Tspn, Tsy - Vi~ 0,
(3.103) I5\U ~ 0,

in the sense of (3.100)

Proof of Lemma 3.27. The proof of (3.101) is direct. Since B,V € H®"!, we are able
to deduce the following estimates from Proposition C.8, Corollary C.9, and Proposition

C.22,
IZv7%1) H) o)

ve\

H50+2 ~ H Hs— 1H577| 5+2 HSOJF%’

oy < (Hm
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Bén B
ot <C (Il

H HS0+E ~S Hg’
Mo
Hwywwmw§| ot

Mo
Ty - <—?(5n,0) ]
<0 (Il 10l ) U

To prove (3.102), we recall that, due to Lemma 3.25, 6B,V € H*~! As a result,

I <C( +;) 1 T587
R

< (um

wo-1|07]

H80+% )

kum) lon]

ootk S HV||H1+H—577| feo+3 11071

| T\Ts5m|

H50+2 ~ ||6B|H50 1”77||Hde(2+ sot+5 3)

H) lonl

As for the last equivalence (3.103), it is no more than a consequence of U € H® C
H®*2 and X € X! with Lemma 3.26. O

v ol ) 1o

Hso+% )

[ Tsv - V]

9+2 SO+%'

e, SOV ot [0 s ys < (||n|

It remains to prove (3.97), namely that
(3.104) §fi ~ —G(n) (Bén) —V - (Von) + ThTén + Ty - Vén
is equivalent to zero in the sense of (3.100). Note that dn is assumed to be in H**3 per-

mitting us to apply the paralinearization of Dirichlet-to-Neumann operator (Proposition
3.17). More precisely, we have

|G (n) (Bon) — T (Bon — Temy(ssnyn) + Tvimyson - V| s s

<0 (1l ) 185l < € (1l oy 1 ) 1

Recall that linear operators B(n) and V(n) are defined in (3.49) with estimate (3.50).

Then an application of Lemma 3.16, together with Bdén € H 50%, gives the following
estimates

moote

ooy IV (B s |||

| T ssn) - V1

H50+% )

e

||TB(77)(B(57])77||HS0+% <||B(77)(3577)”Hs0—% ||7]||HSO+2 X (HUH s+3

v ol ) 1o
) o
Therefore, the following paradifferential calculus holds:
§f1 ~— Ty (Bon) + T\Tgdn — (V- V)on —V -Vén+ Ty - Vén
=— T\ (T5,B + R(B,én)) — (V- V)on — (Tgs, - V + R(V,Vn))
~ = T\T5y B + (G(n)B)dn,

where the last equivalence is from Proposition 2.9 and the following estimate (recall that
we assume s > so + 3/2)

Hoot3

BB,y + [TVl sy + [ BV T s
ﬂ@MWgBWAHWMMWmeﬁ

(unn ]

H) lonl,

So+% N



48 CAUCHY PROBLEM FOR CYLINDER-LIKE CAPILLARY JETS

Our problem is now reduced to
(G(n)B)on — T)\Ts,B ~ 0.
To prove this, we apply again Proposition 3.17 with 1 replaced by B € H*~!, namely
G(n)B ~ T\ (B = Tsuysn) — Tvms - V.
Recall that linear operators B(n) and V(n) are deﬁnled in (3.49) and the estimate (3.50)

ensures that B(n)B,V(n)B € H*2. Since n € H;;r5 and Vi € H* 2 due to Corollary
C.9, one can apply Proposition C.8 to show that T)\Tp(,)gn and Ty - Vi belong to

H*"3, which implies that
G(U)B ~ T)\B7

since s — 1/2 > so + 1/2 (recall that in our assumption s > sy + 3/2). Consequently,
(G(?’])B)(S?] ~ (T)\B)én = T(gnT)\B + TT/\Bdn + R(T/\B, (57]) ~ TgnT)\B,

where the last equivalence is due to

ITaysl, ooy + 1RG0,y S ITSB 6]
<0 (10l ) 1Bl < € (1l N0l ) 6y
Thus,

G(T])B577 - T)\TMB ~ T(;WT)\B — TATMB = [Tgn, T)\(1)]B + [Tgn, T)\(o)]B.

Since dn € H* 2 C e, A e T§/2+, and \© ¢ F?/2+7 the commutator estimate

(Corollary C.19) implies that [T5,, T\o)] and [T}, T\ ] are both of order less than 0, and
the proof of (3.97) is completed by observing that B € H*™! C Heots,

3.5.2. Derivative of fo. The purpose of this part is to show that the derivative in 7 of f5
(defined by (3.67)) is bounded, namely
(3.105) 13520l < € (1l oyl ) o

We first claim that this estimate implies the desired result (3.96). In fact, by (3.97)
and the definition (3.70) of f, it suffices to show

T Hoo+3

(3,100 18 Tafit 2 o < € (Il g 1L ) B0y
which can be reduced to
15T s < € (Unlys ol ) 6y

provided (3.105) is correct. In (3.97) and Lemma 3.25, we have seen 6B € H*~! and
of, € HSUJF%, while B € H*! and f, € H*3. These estimates give

16 (Ts.f1) | zs0 <||T5Bf1llmso + | TB0 f1|ms0
SNOB|| grso-1 || f1ll gpmaxcso.2) + || Bl |16 1| #2s0
<O (1l oy W0l ) 1501,y

which completes the proof of (3.106).
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As before, during the proof of (3.105), we denote

< 0 (1l 1ol ) U

From definition (3.67), it suffices to prove that ry (defined in (3.60)) and r3 (defined in
(3.61)) are equivalent to zero. We shall begin with the estimate of rs.
3.5.3. Study of ro. By (3.60), ro reads

o = N — TV : v’(ﬁ + TBG(T]>1/J + TBTV : ?n.

As in Section 3.4.1, we shall decompose it as a function of B, V', and G(n)y and apply
Proposition 2.8. In this part, the shape derivative formula (2.42) is not necessary, we
only need the regularity of 6(G(n)1) (see also Lemma 3.25).
Via the same calculus as in (3.72), we can reformulate 7o as
\V|* + B?

ry =g = BG)Y — Ty - (V + BVn) + TG )y + TuTy - Vi

=TpB — TaueB — Tv - (BVn) + TsTy - Vn+ R(V,V) + R(B, B) + R(B,G(n))
=Ty.,B —Tv - (BVn) + TgTy -V + R(V,V) + R(B, B) + R(B,G(n)v)
=(Tys, —Tv - Tg,) B+ [T, Tv] -V — Ty, - R(B,Vn)

+ R(V,V)+ R(B, B) + R(B,G(n)v).

And the desired result 75 ~ 0 is no more than a consequence of the following lemma:

(3.107)

Lemma 3.28. Under the hypotheses of Lemma 3.23, we have the following equivalences
in the sense of (3.107),

(3.108) § ((Ty.5y — Tv - Tgy) B) ~ 0,

(3.109) 6 ([T, Tv] - Vn) ~ 0,

(3.110) 6 (Tv - R(B,Vn)) ~

(3.111) S (R(V,V)+ R(B, B) + R(B,G(n)Y)) ~ 0.

Proof. The left hand side of (3 108) is equal to
+ (Tygy — Tv - Ts,) 0B,
where each term on the right hand side is equivalent to zero. In fact, since 6B,V €

H#*~! (see Lemma 3.25) and 0 (V) € H®~2 (see Lemma 3.24), one may obtain from
Proposition C.18, C.8, and Corollary C.9 that

| Tsv.5y Bl so + | Tsv - Ty Bl oo
SISV - V| o=t || B| grmaxtsoiety + [|6V]

)B

Hs0—1 ||v77||H1+ ||B||Hmax(8072+>

SOV s 1Pl s B oz < C (1l N0l ) 1001
I V5<V77)B| o + [T Té(@n)Bl o

SV -6 (Tn) oo Bl + [Vl 16 (99) o

SV 118 (90) e 1Bl < € (1l g 1L ) 1001,

| (Ty.on — Tv - Toy) 0B 1o
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<0 (Wl op 10 ) 068 < € (1l oy Il )
R
Recall that the regularity of B and V' has been studied in Lemma 3.16.
The proof of (3.109) is similar. We first write its left hand side as
) ([TB, Tv] . ?n) = [T(;B,Tv] : ?n + [TB, Tgv] . vT] + [TB, Tv] ) (Vn) s

where we shall apply commutator estimate (Corollary C.19) only for the last term on the
right hand side.

I[Tss. Tv] - V|

1 1.
2 Ho 0tz

a0 + [T, Tsv] - V|

H*0
<ITssTv - Vnllaso + | Tv - TsgVnllaso + | T8Tsv - Vnllg=o + || Tsv - Te V|| meo
S UBae + Vi) (0Bl aso-1 + 10V ][ zrso-1) (V7] rmasceo 249
<C (Il Vol ) 1501,
1T, Tv] -6 (V) ||z
<0 (il et 100 ) 18 F0) -y < € (Ul W0l ) 100
As for the estimate (3.110), we shall apply Proposition C.8.
16 (Ty - R(B, V1)) || m2o
<[ Tsv - R(B, V) |laso + 1Ty - R(OB, V) |laso + | Ty - R (B, (Vn)) ||z
SOV rrso-1 | R(B, V)| grmaccso 200 + [V | 1+ | R(GB, V) || 5o
+ VIl IR (B, 6 (Vn)) [l
SIOV N aso[| Bl =2 IVl oy + VI [0 B gso-1 [ V| 2+
F VI 1B, M0 (V) [l y0-s
<C (Il g 1 ) Wy
R

The last equivalence (3.111) is merely a consequence of Proposition C.8.
10 (R(V,V) + R(B, B) + R(B, G(n)¥)) || o

SIREGV V) s + [RGB, B)l[aso + [RGB, G()¢) |0 + [[R(B, 6(G(1)1))) || z12o
SOV so-t V[ a2+ + 10B oo Bll a2+ + 0Bl oo |G ()30 2+
+ 1Bl a2+ 116G (1)) | 2201
<O (Il g 1L ) Dy
where we use the fact that G(n)y € H*™' and §(G(n)y) € H**! due to Proposition
2.8. U

3.5.4. Study of 3. In the end of Section 3.4.2, we have obtained an explicit formula (3.88)
for r3. Then it suffices to show that the derivative-in-n of the right hand side of (3.88) is
equivalent to zero in the sense of (3.107), which can be reduced to the following lemma.

Lemma 3.29. Under the hypotheses of Lemma 3.23, we have the following equivalences
in the sense of (3.107),

(3.112) 5 (F(,Vun) = To,wsrmven - (1 V) ~ 0,
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(3.113) 5 (T, (G0, Vum) = T, . v (0.90m) - (1, V) ~ 0,
(3.114) 8 (Trumwunmn) ~ 0,

(3.115) 6 (T Tty 0 (B (03 G750, V) ~ 0,

(3.116) 0 ((TnjkT(Vu,UGj’“)(n,an) - Tnjk(vu,ijk)(’?»Vw”» -Vw77> ~ 0.

Recall that F,G* are smooth functions defined in (3.78).

Proof of (3.114)-(3.116). The proof of these equivalences are similar to the study of 7.
Due to Lemma 3.24, the composition of smooth functions with (7, V,,n) belongs to H =3
and their derivative in 7 lie in H*~2. Then (3.114) follows from

16 (T, . 9umm) |

H*0 <’|T5(Fm(n,vwn))77’ Heo + ||TFz(n,an)577|
S0 (Fe(n, Van) e 0l zso + (12 (1, V) |+ |67

<C (1l ) 150y
R

while (3.115) is a consequence of

H5 (TNjkTG?;k(n,an)n> ’ Heo + H(S (R (nﬂﬁ ij(m Vwﬁ))) ‘
<||T5"7jkTchk Hoo + HT”J‘kTG%k(n,Vm)ém

Hso

Hso

Hso

(n,Vw??)?7| Heo + ||T’71kT5(G§;’“(n,vw77))n| H%0
+ 1R (3m0s G, Vum)) Nl + IR (myns 8 (G700, Vm)) ) e

SNkl o5 NG 0 Vi) L 10| s 000 + 035+ 118 (G2F (0, Vo)) ez 0] 1150
+ el 1G2F (s Vum) [ 10l zso + 10mel] o3 G2 (0, V)| 54

+ il g4 10 (GE (0. Vo) |

<C (It ) o
R

As for (3.116), when the derivative ¢ acts on V,,n, by Proposition C.18, we have

1
H50~3

Heots

<C (Il ot )10,y < € (Il ) o
R R

since the symbols 7;; and (Vu,ijk) (n, V1) belong to H3 C Fg/2+. When § acts on
the symbols, each terms are equivalent to zero,

50, T Vartllaso SI0mkll -3 | (VuwG™) (0, V)l [Vt | g .00
oo Sl 16 (VuwG'F) (0, Vo)) | [Vwn)
w0 S10mix (VuwG*) (0, V)|l

<N0mkll -3 11 (VuG*) (0, Vi) iz IV o] s 4009
w0 Slixd (Vo GT) (0, Vi) ] ey 1Vt
310 (VuuG™) (0, Vu) |

) 100

H50+% 9

Vu,ijk) (1, Vwn) '

1 s
H50—3 Hs0,

1T T((% 06 7m) Vo

‘|T577jk(vu,ijk)(n7vwn) ) vw77| -3 vanHHmax(%+,so>

Hso

V]

||Tnjk5((vu,v0j’“)(men)) V|

<lmgell o oo H%,

4

Heo+h

the right hand side of which are all bounded by C (Hn\
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To prove (3.112) and (3.113), we need the following lemma,

1
Lemma 3.30. Let n € H;” and on € H®* with s > 3 and % < 80 < §— % For all
smooth function F' = F(x,u,v), we have
Hso < C(

1) o

R

Proof. The function on the left hand side of (3.117) reads

(Vi) (0, V) (97, Vard 1) =I5 a0 ) 0.90m) (5 Vell) = T4,y (0. 70m) * (011, Vs 07).

Recall that Lemma 3.24 ensures that 0 (V.. F) (9, Vyn)) € H*™ 2. Then Proposition
C.8 implies

(3117) H(S (F(Th an) - T(V;c,u,uF)(n,an) : (777 an)) |

g0ty

Recall that o stands for the derivation in n.

o0 SN0 (Ve F) (0, V) [+ (0, V)|

<C (1l ) 1901y

1 T5((5 s F) (0. Fm)) * (15 Vs Heo

The remaining term

(Vm,uva) (777 an) : (5777 wasﬁ) - T(Vz,u,uF)(n,an) : (5777 Vw&?)
:T(M,Vwén) ) (vz,u,vF) (777 an) +R ((Vm,u,vF) (777 an)a (67]7 Vw57])) )

which, due to Proposition C.8, can be bounded by

T 6n.7wom) = (Vo) (0, V) o SIS0, Vadm) - 3 1| (Vo ) (0, V)|

Hso

<C (Il ) 1901t
IR ((VeuoF) (0, Vun), (00, Vuon)) a0 SI(6n, V 5n)||Hso_% I (VauoE) (0, V)l 3+
<C< +§> [67] fsotde

g

Proof of (3.112) and (3.113). (3.112) is a direct consequence of Lemma 3.30. For (3.113),
one may rewrite its left hand side as

T(Sﬂjk (ij(777 Vun) — Tvz,u,ijk(nann) - (n, an))
+ T30 (G (0, V) = T, ok r5um) - (0 V)

where the second term is equivalent to zero due to Lemma 3.30 and Proposition C.8,
while the first term can be estimated via (C.9) and (C.19),

||T577jk (G]k(% an) - TVz,u,ijk(n,an) : (777 Vuﬂ?)) HHSO
SN0mkll o3 G (0, V) = T, ik - (1, Van)]

<C (Il ) 1901y

Hmdx +,50)
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4. SYMMETRIZATION OF THE SYSTEM

In previous section, the main system (1.18) has been reformulated into paralinear
form (3.68), which we recall here

8t(Z>+(TV-V+£)(Z>:f,

(10 0 —T I 0
N TB I O'Tu 0 —TB I ’

The goal of this section is to check that this system is symmetrizable. Namely, the

operator Ty - V + L will be shown to be anti-self-adjoint, up to remainders with proper
sil

regularity. Under the hypotheses of Theorem 1.1, (n,v) € H R+2 X H?® and thus the

vector V' and n has Lipschitz regularity, which guarantees that Ty - V is anti-self-adjoint

up to a remainder of order 0 (see Lemma 5.14). The main difficulty is to prove that L is

symmetrizable. In fact, the matrix of principal symbols associated to £ reads

0 -
(fw(” 0 )

where AV, 11(?) are real and elliptic with o > 0. When 7 (the coefficients of A, z1) is regular
enough, a simple calculation of matrices gives the desired symmetrization

Ta@ D 0\ 0 —/o AW ) o /X0 0
0 1 \/0')\(1)“(2) 0 0 1 '

This heuristic calculation indicates us to try to construct symmetrizer S such that

0 =T\ 1
5 < ol,, 0 > 5
is anti-self-adjoint up to remainders. Meanwhile, one could also see the proper order
of symbols, which is stated in detail in Proposition 4.1. To rigorously construct the
symmetrizer S, we shall repeat the method in [6] with the symbolic calculus introduced
in Section 3.1 and Appendix C.3.

As in previous section, for a,b € ¥™, we say that T, and T, are equivalent and
write T, ~ T if their difference is of order m — 3/2— with operator norm bounded

by C (||7]||H%+) Besides, for any symbol a € X" C I'),, + F;’;;}r, we shall also use

the notation a(™ € Fg}z , and am=1 ¢ Fg”/;lr to present its principal and subprincipal
component respectively (note that this decomposition is unique if we further assume that

a™ is homogeneous in ¢ of order m).

where

2)

sl
Proposition 4.1. Let (n,v) € HRJr2 x H® with s > 3. There exist elliptic symbols p € L2
and q € X° such that

(4.1) S = ( L Toq >

satisfies, for some elliptic v € Z%,

o -nn\_( o0 -n\_( 0 -LT,\_ (0 -T
(4'2)S<0TM 0 >_(UTQTM 0 )“’(T;Tp o )=\ o )°

in the sense that T,T\ ~ T, T, and oT;T, ~ 5T,.
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Furthermore, we have,
(4.3) T,1\~T/1T, T,1,,~T1T, T;~T,
which is stronger than (4.2)

The construction of p, ¢,y from A, i is exactly the same as in Section 4.2 of [6], which
we recall here. To begin with, we investigate the conditions on 7 such that 77 ~ 7). By
choosing

(4.4) Im~®/? =0,
one may apply Propostion 3.9 to deduce that

1

We shall next determine Rev®/2, Re~1/?) and ¢ such that
(4.6) T,T,,Tx ~ T,T,T,, and T,Tx ~T,T,.

This will provide a solution to the first two equivalences in (4.3), plugging the last formula
of (4.6) inside the first one and using that A has a parametrix, since A is elliptic (see
Proposition 3.7). By applying symbolic calculus (3.11), the first equivalence of (4.6)
follows from

gt (outd) = (v87) ta.
By (3.13), we can write this equality as

02 (opg\) + 9eq” - Dy (epPAM) + ¢ (opgn)?
= (1414 + 9 (YD) - Dug® + (i) ¢

By comparing the principal part of both sides (terms of degree 3 in &), we are able to
determine

(4.8) Y32 = o@D,
To deal with the subprincipal terms of (4.7), one may set
(4.9) V=0
and (4.7) becomes
4O (oA — 7i7) =0 (YD132) . Dg® — 9, - Dy, (o AD)
=0 (opPXDY) . DWg @ — 9.4 - D, (cpPAD)
(4.10) ¢\ ¢

1
:Z{U“(Q) AW, 4O}

(4.7)

where {-,-} is Poisson bracket. By comparing real and imaginary part of both sides of
(4.10) and setting

(4.11) Im ¢® =0,

we have

(4.12) Re (opfiA —787) =0, ¢ Im (opfid — v87) = —{ou AW, 4O},
From the first equation in (4.12), we are able to solve Re~(}/?),

(4.13) 293 Rey1/? = o (1P Re A + Re p™MAW) = 5P Re A,

where the first equality holds since /2, A and u® are real with (4.8), and the
second follows from Rey = 0, which can be seen from the second formula in (3.85).
Then (4.13), together with (4.8) and (4.5), completes the definition of . Meanwhile,
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to solve the second equation in (4.12), we first calculate the coefficient before ¢(® by
applying (3.59), (3.86), and (4.5),

Im (opgA — 47)
— 00 - 9, A 4 o Tm DAY 4 0@ T 2O
+ 0D . 9,73/ 2731 [y (172

O
= — 00 - 9, A0 — Zaw DA — %Tn DA — %u(”@w AW

g @ ‘9;;77 DD 1 9y B12) . 9 B12) L 312)9 . ,3/2)
- %35M(2) oA — (%aw@) oA %% Dep @AW %Mm)@w . @SW)

(an” e A0 1 % u@ % o, A(l)) (951 . 9y 31D 4 452, . 9312
n

Ouy
- %5 1@ 90 4 %&uu(z) AN — %aw B (P AD) — %T” de (HPAW)
1
28 ) ( (3/2) (3/2))
7 (A0, 4} - %@ 9 (A0 + a - D FD /D _ (0
n
o 0 Own
T m @y Tl g @)
5 A >y (1AW,
where we apply (4.8) to obtain the last equality. The equation for ¢ becomes
Oun
(0, @) — . o (UPAD)| = —{u@AD O},
From (3.54) and (3.64), we have u® = a2 ()\(1))2 with
1 _3
4.14 a:= 1+|V *

which is positive and independent of ¢. Furthermore, we look for ¢(® also independent
of €. Then the equation for ¢(® can be written as

Dy 10,

10,0
. 1)
O O\ 5

Gl <1>___
; DN 2 De A

an obvious solution of which reads
_1
(4.15) ¢ =nras =25 i (14 |Vn?)*.
Clearly, ¢ = ¢'9 is elliptic.
Till now, we have constructed v € ¥? and ¢ € X° satisfying (4.6), according to our

discussion before, it remains to construct p € Y5> with either T\ ~ 1,1, or 1,15, ~
T.,T,. Here we focus on the former one. In fact, since A € X! is elliptic, by Proposition

3.7, there exists A € ! such that T\T5 ~ T)\T5 =~ id. Thus, by symbolic calculus
(Proposition 3.4), one has

LT =TT, < T, = T, T < T, = Ty
which gives a possible definition of p:

(4.16) p = (Vig)th € X3,
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whose principal symbol equals
(3/2) 4(0)
) 1947
(4.17) P 0

Hence, p is elliptic. .
From Proposition 3.7, the ellipticity of p, ¢ implies that S has a parametrix .S, in the
sense that

(4.18) 5SS~ SS ~id,
where

s (15 0
(4.19) S = ( d Tq)

with p € =2 and § € X° the elliptic symbols constructed by Proposition 3.7.
To end this section, we introduce some commutator estimates involving S (see also
Section 2.4 of [5] for the case of planar water-wave).

1

Proposition 4.2. Let (n,v) € H;JFQ x H® with s > 3. For all symbol a € ¥™ with
m € R, the commutator [T,, ;] is of order m, with

s+1) , Vr eR.
Hy,' 2

In particular, the commutator between S and 0; is equal to

_ Tazp 0
5.01) = < 0 Ty ) ’

where Ty, is of order 5 and Ty,q is of order 0.

(4.20) [T, O\l cearrypr—my < C (||77|

Proof. We intend to apply Lemma 3.26, which gives the invariance of order of T}, under
derivative in 7 in a weaker space H s0+3 with % < 89 < s. By Leibniz rule, it suffices to
check that 7, belongs to this space for some sq E]%, s], which is a consequence of the first
equation of (1.18) together with Corollary 2.4 (with sy = s), namely

=Gy e H"
]

1
Proposition 4.3. Let (n,¢) € H;JFQ x H® with s > 3. Let a = a™ +a™ Y be a symbol
mn Fg;ﬂ + I Y with m € R and
H;‘F%) )

1/2+
2 2 : 1 3
for all o« € N* and § € R*. Then we have, for all v < min(s +m + 5,5+ 5—),

u%mmwamﬁ+@>mﬂa+u%wm]%®mﬁ+@>ml*ﬂsc70m

(1.21) 72T+ ey < € (s L )
R

).
).

In particular, we have, for all r < s+ %,

(122) 25591, < (10

H]s;r%fa ||77ZJ|

(123 e (e
R
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Proof. Let u be any function in H” with r < s+m + % One may write

[Taa TV : v} U= [Tav TVziﬁz] u + TaTV9 (Tn_laGU + Taguﬁfl + R(ﬁfl, 86u>)
— Tyo (T,-10p(Tou) + Toywn ' + R(n~ ", 0p(Touw)))
= [T0, Ty=ie.) u + [Ty, TyoTy-1]0gu + T, Tyo (Toun™" + R(n~", Opu))
—Tye (Tn—lTaeaU + Tag(Tau)ﬁ_l + R(n !, 89(Tau))) )
We shall check that each term on the right hand side lies in H"™™™. The first term
[Ty, Tv=¢,]u € H™™ is no more than a consequence of commutator estimate (Corollary
C.19). For the second term [T}, TyeT,-1]0pu, one may replace TyoT,-1 by T, -1y0, since

their difference is of order —1— leading to an error term in H"~ "%, and apply again
Corollary C.19. The third term can be estimated via Proposition C.8,

HTaTV9 (Taguﬁfl + R(”fla 89u)) HHT_m

<C (Il ot W0l ) W™ + R Op)
R
<C (Il ey Wl ) el ey < € (Wl g e ) e

which is bounded due to Proposition C.22. To deal with the last term, we observe that
Tou € H™™™ Jand that Tj,, has the same order as 7;, due to Proposition C.16 and the

fact that ng € H 3. Then, again by Proposition C.8 and C.22, we have
1 Tyvo (Ty-1Topau + Toyrawn " + R, Op(Touw))) || grr—m

<C (Il g ) I Tat+ o™ + Rl ()
R

<c (||n| sl H) (uunm T 106(Tt) s )
Hp HR—l
<C (Hn\ ol H) el
R

Note that in the second inequality, we need the assumption r < min(s +m + %, s+ %—)
to apply Proposition C.8.

5. CAUCHY PROBLEM

In this section, we shall prove Theorem 1.1 and 1.2. Recall that in Section 3, we
have managed to reformulate the equation (1.18) as (3.68),

im0 (2)ve(2)-r

where the linear operator £ admits a symmetrizer S defined by (4.1) (see Proposition
4.1). Moreover, provided that (n,1) € H;+§ x H® with s > 3, f = f(n,v) belongs to

H**2 x H* and has local Lipschitz regularity from H;ﬁ% x H® to HF 3 x H*0 | for all
3 < sy < s— 3 (see Proposition 3.22).

Based on the definition (3.69) of £, we shall introduced a mollified version £¢ by in-
serting proper smoothing operators (see (5.9)). The resulting approximate system (5.10),
which is nothing else than an ODE, has a unique solution (1, %) on the time interval

[0, T.[ due to Cauchy-Lipschitz Theorem. Energy estimates (Proposition 5.5) guarantee
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that the lifespan T, admits a uniform lower bound 7" (see Corollary 5.6), and the approx-

st l
imate solution (7<) is bounded in HRJr2 X H® with s > 3, and converges on [0,7] in

1

a weaker norm H;°+5 x H* where % < 8 < S8 — % Consequently, (n¢, 1) tends to a
solution (n,v) to (1.18) and the uniqueness follows from a similar argument used in the
convergence of approximate solution. Note that, by classical interpolation argument, the
limit of approximate solution has only L* regularity in time, which can be optimized to
C° via nonlinear interpolation introduced in [7], which completes the proof of Theorem
1.1. As a by-product, we can also deduce the continuity of flow map, i.e. Theorem 1.2.

Before starting the proof, we introduce some notations and conventions used in this

section,

Definition 5.1. For s € R, R > 0, and T > 0, X}, denotes the collection of all (n,)

such that ¢ € H® andn— R € H5+%, where we further assume that n satisfy hypotheses
(HO) and (H1) (or (H1’)). For all (n1,1), (n2,12) € X*, we denote

(5.1) dg, (1, 91), (12, 2)) i= [l = | pery + b1 — o

It is clear that (X5, d;(%) is a complete metric space. Note that in periodic case (i.e. with
hypothesis (H1') ), the normalization R should be omitted and (X*, dxs) becomes a Banach
space. Moreover, if (n,v) depends on time t € [0, T, we denote by L¥ X}, the space of
L*>°-functions with value in X}, such that

Ssu t — R’ t s 1 s < +m-
te[O%H(n( )= B vt

HS.

Furthermore, we denote by CpX* the subspace of LEX*® where (n(t),¥(t)) is continuous
in time w.r.t. the distance (5.1).

In the sequel, we focus on the perturbative case (with hypothesis (H1)) and the proof
for periodic case can be obtained simply by deleting all the normalization.
As in previous sections, for linear operators A, B of order m € R, we write

1 .
Hy 2 st)

5.1. Construction of approximate solutions. Recall that £ is defined by (3.69),

s (10 0 —T) I 0
T TB 1 O—T,u 0 _TB 1 '

As in [6], we introduce the mollifier J. := T; (0 < € < 1), where the symbol j. is given
by

A — B is of order m — ;—,
(5.2) A~ B <&

with operator norm bounded by C (H(n, )|

. . (_ . o 1 .
(5.3) Je= 304350, G0 =exp (™) I = =0 - 050

Recall that v(3/?) is constructed in Proposition 4.1. As a consequence of Corollary 3.5
and 3.9, all the symbols constructed as above satisfy the following property.

Lemma 5.2. Given m € R, we denote by G™ the collection of real functions F = F(e, p)
which are smooth on {p > 0} with parameter € €]0,1], satisfying that, for all k € N and
p >0,

(5.4) sup |05 F (e, p)| < p" 7 .
€€]0,1]
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1
Letn € L%"H?Q with s > 3 and T > 0. For all F € G™, we define symbol ape as

(5.5) ap.:= (3T/2) —I—ag?/g_l), ;?T/Q) F(e,~®/), agln/Q D= 8 - Oga 3m/2.
Then ap.e belongs to Fi%/f + F?Z/f_l uniformly in € and t € [0,T[ with

(5.6) Top. = 17,

Moreover, for any F,G € G™, we have

(5.7) Tap Tag, = Tag Tap,-

Proof. The uniform-in-(e, ) boundedness of a;’E ™/2) and a Bm/ 27D i Fg%/f and Ff%/f '

respectively, can be directly checked from the definition (4.8) of 42 and the condition

(5.4) of F. Since F' is real-valued, agf’?/ ?) is also real. Then an application of Proposition
3.9 gives (5.6). To prove the last equivalence (5.7), we first reduce it to ap fag. =
ag.far., thanks to (3.11). In fact, by formula (3.13) and definition (5.5), we have

G/FEﬂO/G € aG,eﬂaF,e

=0kl Dol — oealdl" - Duallr

=F' (&, Y*/)G (€, 73/ 9y . Dy 3D — G (€, 73DV F' (e, D)9er /D) . D,y /P
=0.

g

In particular, by choosing F(¢, p) = exp(—ep) and G(¢, p) = p, we have the following
property on j. constructed in (5.3),

Lemma 5.3. Letn € L%OH?T with s > 3 and T > 0. Then the symbol j. defined above
is elliptic and belong to Fg/2+ + F1_/12+ uniformly in € > 0 and t € [0,T[. Moreover, we
have

(5.8) JT, ~ T Je, JF~J,

€

uniformly in €, t.

Note that when ¢ > 0, j. € F3/2+ + F1/2+ for all m < 0, and as a consequence, .J,
serves as a smoothing operator. Nevertheless, the estimates of j. are unlform ine>0
only for m > 0. In the sequel, we shall regard j. as an element in I'} Jot +T7L . in symbolic
calculus.

Now, we define the mollification of L as

. I 0 0 =T\ \ &z I 0
- e (400 T )sas( 4 0),

where S is the symmetrizer of £ defined by (4.1) and S is an inverse of S (in the sense
of (4.18)), which can be taken as (4.19). The resulting approximate system reads

1/2+

O+ Ty - VJ. + L€ ”)— Jn, Jab),
. o wacs e (1) = oo

(0, 9)|e=o = (10, %0) € Hp, +a x H?,

where s > 3.
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Proposition 5.4. Let s > 3 and € > 0. For all (no, o) € X}, there exists T, > 0 and a
unique solution (n,v°) € Cp X3 to the Cauchy problem (5.10). Moreover, if T, denotes
the supremum of all such T!, we have,

(5.11) T.=+o0, or T.< +oo with limsup <||7]E(t) — Rl .y + l0°()]

t—Te—

In the following, we still denote the approximate solution by (n,1) if there is no
confusion.

Proof. To prove Proposition 5.4, we attempt to apply Cauchy-Lipschitz theorem, requir-
ing the following quantities to be locally Lipschitizian on Xj:

TV.W(Z), c(;@) (o, Jab).

As in Section 3.5, it suffices to check that the derivative-in-(n, ) of these quantities are

bounded in A}, (in this case, we can assume én € H ”%). This boundedness is no more
than a consequence of Lemma 3.25, 3.26, and Proposition 3.22, C.8. The only term that
needs to be treated carefully is the 7! arising from the definition (3.40) of V, namely

(1)

After applying derivatives in 7 or ¥, € > 0 ensures that 9yJ.n, 0y Je), and their derivatives
in (1, ) liein HT° := Ngez H*. Therefore, their product with 7! or 6(n~!) has regularity
H*"2 due to Corollary C.9. Since Ty is of order 0, the contribution of these terms is
still in A5, U

5.2. Energy estimates. In this part, we shall make energy estimates for approximate
solutions constructed in Proposition 5.4, which also hold for the original system (3.68),
namely in the case ¢ = 0. One should keep in mind that all the estimates in this section
are uniform for € € [0, 1].

Proposition 5.5. Let (o, 1) € X}, with s > 3. The approzimate solution (n®,°)
1

obtained in Proposition 5.4 satisfies, for some Ty depending only on H}S_-;ri x H®-norm of
initial data (1o, o),

(5.12) My, < C(My )Mo, VT € [0,min(Ty, T.)[, V0 <e<1,

where C' is a positive increasing function independent of €, T. > 0 is the lifespan of the
approximate solution, and
Hs) .

(5.13) Mre = sup (I (t) = Bl ey, + [4°(0)

tel0,T]

As a corollary, the blow-up criteria (5.11) implies

Corollary 5.6. Under the hypotheses of Proposition 5.4, there exists Ty > 0 depending

1

only on H;Jr? X H?®-norm of initial data (1o, o), such that the lifespan T, satisfies,
(5.14) T. > Ty, Ve>0.
As a result, the energy estimate (5.12) becomes

(515) MT,e < C(MO7€)MO7€, VT € [O,T()[, V0 < € < 1.
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Remark 5.7. Note that, once we manage to prove the convergence of approrimate solu-
tions (0%, ¢°) in LP X}, or weaker space LE X5 (so < s), the limit (n,) will inherit this
uniform bound, namely,

I ) <0 (Wbl s ) Nl oy VT € 0T

L (s
Instead of proving Proposition 5.5, we shall consider a more general case.
1
Proposition 5.8. Let (1), ;) € H;J,FQ x H® and (n,v) € LPX}, with R € R, R > 0,

T >0, and s > 3. Given sy €]2,s], we assume that
(1) The system

@1 v+ ) (1) =1
(77/7 wl)|t=0 = (77(/% w(/))?

admits a solution (n',¢') € L%"(H]S;,r§ x H?®), where the operators Ty - V.J. and L are
associated to (n,1);
(2) The source term f wverifies, for all t € [0,T1],

(5.17) S CONTT) (M7 +cp),

(5.16)

||f||Lt°°(Hsl+%><H51)

where ¢y € [0,1] is a constant,

(5.18) M= sup (I0(8) = B ey, + 1/ Ollir )
tel0,T]

and N7. is defined as

(5.19) Npi= sup (10(0) = Rll oy + 100 ) + M.
€ )

(3) There exists 3 < s; < min(s — 3, s0) such that (n,v) satisfies for all t € [0,T],

s— S +%

(5.20) 7]l oy g+ el < CONET)N, 2.

Then there exists 0 < Ty < T depending only on ||(ng, 1g)]
such that for all € € [0,1] and t € [0, Ty],
(5:21) (M) < CNG )M + LO(N;™) (N + 1) ((Nf)? + ),
where the smooth increasing function C' > 0 is independent of € € [0, 1].

In particular, if so < s, the estimate above can be written as
(5.22) (M°)* < C(Ng ) (Mg°)* + tC(N;™) (Mp°)* +cf), Yt € [0,Tp).
Meanwhile, if s > s—, ¢; =0, R' = R, and (n',¢') = (n,¢) € CrX}, we have N] = 2M]
as well as
(5.23) N> < C(NST)NG°, Vit e [0,Ty].

3 e and ¢y € [0,1],

H,

Remark 5.9. In application of this proposition, we always have that (n,1) solves (3.68)
or the approzimate system (5.10). Therefore, condition (3) is trivial. Besides, (n',v') is
equal to either (n,) or the difference of two solutions to (3.68) or (5.10). In both cases,
we can easily derive the equation (5.16) in (1).

When Proposition 5.8 is proved, Proposition 5.5 follows from (3.91) and (5.23) with
so=s, ¢y =0, and (n',9’") = (n,7). In order to prove Proposition 5.8, we begin with the
following two lemmas.
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Lemma 5.10. Let (n,¢) € LPXS with s > 3 and T > 0. Then the following estimate
holds uniformly in € € [0,1] and t € [0,T7,

I 0\ ne 0 -TJ I 0
san (4 ) em( gl T )s( 0.

The meaning of this equivalence between matriz of paralinear operators is that the corre-
sponding entries are equivalent in the sense of (5.2).

Proof. By definition (5.9) of L€, we have

I 0\ . 0 -7\ z I 0
(1o T)sis( )

Thanks to Proposition 4.1, the right hand side is equivalent to

0 -7, \ o I 0\ _[0 -T, I 0
(2 0 oo (o 1)~ ( 00 ) os( 7).

where we use SS = id (see (4.18)). It remains to check that T3 J. ~ (T,Je)*. In fact, by
(4.3) and Lemma 5.3,
(T,J)" = JIT2 = JT7 ~ JTy ~ Ty J. ~ TV
U

Lemma 5.11. Let (n,v¢) € LPX}, with s > 3 and T > 0. Then the following estimate
holds uniformly in € € [0,1] and t € [0,T7,
_ 1

) + H[TB7TV : v]l‘E(H'y-;HTf%‘F) < O(N;“_)a Vr <s+ —.

(5.25) ||y, 8| 2

C(Hm b
Proof. The commutator Tz and 0, reads

(Tg, 0 = Ty, 5.
By Proposition C.16, it suffices to prove that 0;B € H 5+, Thanks to formula (3.46)
of B, one may regard B as a smooth function of G(n)v, (n,V,n), and (¥, V). By

Proposition C.22 and Corollary C.9, it suffices to check that the derivative in time of
these quantities belongs to Hz*. From equation (1.18), we have

2R

which is a consequence of Corollary 2.4, C.9, and Proposition C.22 (recall that B,V €
H*~! due to Lemma 3.16). This observation implies that 9;(n, V,,n) and d,(, V,,1) have

regularity Hz* since s > 3. As for the time derivative of G ()1, we have

1 3
O =Glnyp € H', dp = —0 (H - —) ~NeH" S,

d 5 )
9 (G(n)v) = d—nG(n)w O+ Gm)ow € H 2 C Hz™,

thanks to Proposition 2.8 and 2.4. B
It remains to study the commutator [T, Ty - V], whose estimate follows from Propo-
sition 4.3 with a = B € '), (see also (3.51)). O

Now, we are ready to prove Proposition 5.8. Recall that (7', ') solves (5.16), namely

(0 +Tv -V + L) ( ) = fe LFP(H 2 x HY).

/
0
By applying operator

(5.26) s( A )
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on both sides (recall that S is defined in (4.1)), one has

T I

B _ I 0 0 -1 Je 0
—(at+Tv-VJe>S(_TB z>+<<m>* 0 >S(TB 1>+Rl'

We claim that the remainder R, satisfies the following property.

(5.27) S( 1 O)(8t+TV.W€+ge)

Lemma 5.12. Under the assumption of Proposition 5.8, Ry defined by (5.27) satisfies,
for allr €10, 5],

2 < ST,

Proof. We observe from the definition (4.1) of S, that
I 0 =
R1:|iS(_TB I),3t+TVVJE]
I 0 . 0 —T,J. I 0
+S<—TBI>‘C_((TVJE)* 0 )S<TBI>
T, 0 - PR
— —TqTB Tq ,at + TV . VJe + R2 — R2 + Rz,

where

R - T, 0, + Ty - VJ] 0o
2\ [T, 00+ Ty -VJ] [T,0,+Tv-VJ] )’

. I 0\ . 0 -T.J I 0
s e (aly 7)o(40)

From Lemma 5.10, R} satisfies the desired estimate, so as the commutator between T,
(and T},) and 0, + Ty - VJ. (see Proposition 4.2 and 4.3). Thus, it remains to show that

the commutator [TqTB7 o+ Ty - @Je} is bounded from H;J,FE to H", with operator norm
bounded by C(N;7). In fact, we have

[TqTB, 8,5 + TV . vje] :Tq [TB, (9t + TV : vJJ + [Tq, 8t + TV . VJE] TB

=T, [Ts,0) + T,[Ts, Ty - V]J. + T, Ty - V[T, J.]

+ [Ty, 0T + [T, Ty - V]J.Tp + Ty - V[T, J]Tp.

Since Ty, Tp, and J. are of order zero, thanks to Proposition 4.2, 4.3, and Lemma 5.11, it

suffices to study the term 7,1y - V[T, J| and Ty - V[T, J|Tp, which are bounded from
r+

Hp, % to H™ since the commutators T, J), [T}, J.| are of order (—1) due to Corollary

C.19 and 3.5. O
As a consequence of Lemma 5.12, the quantity

(5.29) Y:=5 ( Y{B ? ) ( Z, ) e Cr(H® x H?),

verifying the direct estimate

(5.30) 1Y ()|l mrsoxmso < C(NST)MP, Vso €[0,s], t €[0,T],

solves the equation

_ 0 —TJ \. _
(5.31) aY + Ty -VJY + ( Ty 0 ) Y =F,
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with
B I 0 n
(5.32) FlS(TB I)f_Rl(z//>'
Hence, the new source term F) verifies, for all 0 < s < s and ¢t € [0,T7,
(5.33) LE @ oo < COF) (17O yeyed, g + M)

1
50+§

To obtain the Hy, * x H* estimate of (n',1’) (namely (5.21)), we introduce a new
symbol 3 := B(0) 4 gls0=1) ¢ 33 defined by

2sq

(5.34) B0 = (43/2) | gleo=) = _%@w.agﬁ(so)7

where 7(/?) is constructed in Proposition 4.1. By applying Lemma 5.2 with F(e, p) =
p*/3 Gi(e, p) = exp(—ep), and Gy (e, p) = p, we obtain the following properties of /3.

Lemma 5.13. Letn € L%’H}?% with s > 3 and T' > 0. Then the symbol 3 defined above
is elliptic and belong to P§72+ + Fi(};i uniformly in t € [0,T[. Moreover, we have

(5.35) TyT, ~ T,Ts, TyJ. ~ J.Tp,

uniformly in €, t, in the sense of (5.2).

As a result of Lemma 5.13 together with (4.3) and (5.8), we have

0 -TJ\ _ 0 —T,J
TB((M)* 0 )”((Tm* 0 )Tﬁ'

Moreover, thanks to Proposition 4.2, 4.3, and Corollary C.19, the commutator between
Ts and (0;+Tv -V J,) is bounded from H" to H"* for all r € [0, s], whose operator norm
is bounded by C'(N;™). Now, we apply T3 to (5.31) and write the resulting equation as

= 0 =T, J -
(5.36) OIsY + Ty - VJIRY + ( (T,.J.)" 0 ) TgY = F,
with
(5.37) Fy, =TsF + RyY,

where the remainder Ry is bounded from H" x H" to H"~*° x H"* for all r € [0, s,
whose operator norm is bounded by C(N;7), which, combined with (5.30) and (5.33),
yields the following estimate for F3,

539 (Bl < OO (7O, o + M), Ve 0,T]
The L?*-scalar product of (5.36) with T3Y gives
1d

5 g 1TV Z2xs2 = = Re(Ty - VITRY, TY) + Re(Fy, TyY).
We claim that

Lemma 5.14. Let (n,v) € LP X}, with s > 3 and T > 0. Then we have
(5.39) Re(Ty - VITY, T5Y)| < CONIOTHY 2oy V€ 0,77,

where C' > 0 is an e-independent smooth increasing function.
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Once Lemma 5.14 is proved (the proof is deferred to the end of this section), we can
conclude using (5.30) and (5.38) that, for all ¢ € [0, T,

T30 Y (D122 12

t
<IITY (0)[ 7202 +/0 (CONINTY L2z + I T5Y ()| raxee [Fa(t) | r2xez) dt’
t
SCINGNY ()10 10 +/ CINGIMY @) o scrrso (1Y ) [ msoscrrso + 1 F2(t) || 25 2) dt’
0

t
<O + [ COEIME (M2 + 1O e )

SO + NIV (M 4+ T e o ey ) -
An application of (5.17) leads to the following estimate of T3Y’,
(5.40) 1T Y ()l|72xr2 < C(NgT)(Mg)? + tO(N;T) M (M;° + ¢5) -

Proof of (5.21). Compared with the desired estimate (5.12), we need to pass from the
estimate of T3Y to that of (/,4’). Notice that g, p, and ¢ are elliptic symbols. Then, by
Proposition 3.8, we have

H;‘)leSO—%) '

1", ") ()l
1
Recall that, £¢ (defined in (5.9)) is bounded from H;J,FQ x H" to Hp ' x H™2 for all
r € R with operator norm controlled by C'(N; 7). Then, by (5.16), one can easily see that

3+
ot < OO (I Y Ol + 107,0)00)

s— s’ 3 3
il 4 Wy < OO + 1Oy yoge V€ 0,70 s =2
which yields, for all ¢ € [0, T,
Y Ot + 10Oy
ST O+ 10 Wy
+2 N0 gt (s + 16803 )
SITHY (Olzese + 1000 VO ey
R/
+2/ I(n bt (CONIME 1Oy s )

<UTEY (1) 3z + (M) +2 / M (CONG)M + | £(7)

0 Hs0—1 HSO")dZf

SUTSY (@)l + () + O M (M + |1
<‘|Tﬁy(t)|’%2XL2 + (M()SO)Q —+ tC’(NtS )Mtso (Mtso + Cf)
SONG)(Mg?)? +tC(N;)M;® (M;° + c)

Lgo(H%0~1 HSO’%)>

where we used again the assumption (5.17) and estimate (5.40) of T3Y".
To sum up, we have proved that, for all ¢t € [0, T,

(5.41)  [|(n, ¥)(®)]|

2 SO (V) (CONG M)+ 1O (N )M (M + )

sotg s
Hp x H*0
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Notice that, it is harmless to replace C (N;Jr) by C ((Nt51)2) (recall that 2 < s <

min(s — 2, s9)), where C' > 0 is smooth increasing function. From the definition (5.19) of

N;*, equation (5.16), and assumption (5.20), it is clear that, for all ¢ € [0, 77,

O ((V)2) <O ((V)2) + / O ((N3)?) ([, ) (2] dt

(e, ) ()]

1 1
H 2 xmn HAF 3 x

(11, ) (1) dt’

1 1
H 2 m H1*2 xH™

t
4 / ' ((V2)) 11 s ') ()]
t 3
<oy + [ oW Npow N
0

<C(N§7) + / e (N;7) Npedt!
<C (Ng™) + té’ (N;7) N,
and the right hand side of (5.41) can be bounded by
1, )OI <(C(Ng™) +1C (N77) Ny

1
s0+5
HY "2 xH%0

x (C(N™)(Mg*)? + tC(N; ™) M (M7 + cy))
SC(NG™)(Mg°)? +C (N77) N (M;)? + tC(Ny™) ((M°)* + )
+ EC(N;TIND (M°)? + ¢3)
SCNG M) + (E+)C(N; ) (N2 + 1) (M) + )
which completes the proof of (5.21) by taking T < 1. O

Proof of (5.22) and (5.23). When sq < s, (5.22) can be obtained by the trivial inequality
N7 < N;7. Now, we assume sy > s—, ¢y = 0, and prove (5.23) via a bootstrap argument.
Let

B, = \J20(Ng ) (N2 + 12 > v > 0,
where v > 0 is a small parameter. We fix Tj,, €]0, T such that
C(NG)(NG°)* + Ty, C(B,) (B, + 1)B. < B,
or equivalently,
1,,0(8,)(B, + 1B < P X

One may take Ty, as
Bl +v°
4C(B,)(B, + 1)B?’
which depends only on initial data (n,1)(0) and parameter 0 < v < 1. We claim that
Nz, < B,. Otherwise, there exists to €]0, Ty, ], such that

TO,V =

to = sup{t €]0, T, [: N° < B, }.
The continuity-in-time of (n,v) guarantees that N = B,. As a result, (5.21) gives
By = (Ny)* < C(NgT)(Ng*)* + tC(B,) (B, + 1) B} < B,

which is a contradiction. Now, by passing to the limit v — 0 + 0, one obtains (5.23).
Note that Tp, tends to Tp, which is a positive smooth function of Nj° an Nj ™. 4
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Proof of Lemma 5.14. We shall prove a general result covering the inequality (5.39): for
allu € L? and t € [0, 77,

(5.42) [Re(Ty - VJeu, u)| S C(N7)|ul|7-.
To begin with, a simple calculus gives
Ty - Ve =Ty, Tju+ TyoTy-10(Jew) + Tyo (To,rmn "+ R(n7", 0s(Jeu)))
=Tveie, Tjou+ Tyvoly—1Ty 5. u + Tyvo Ty T ie,u
+ Tvo (Toy(gan™ ' + R~ 9p(Jeu)))
where the last term can be omitted since, due to Proposition C.8,
1Tvo (Togrewn™ + R~ 9p(Jew))) |22 S Toyrn™ + R0~ dp(Jew)) | 2
SN0 (Jew) =l gz, < CONG7) |z
Moreover, by Lemma 3.26 and the fact that ny € H s*%, Th,;j. is of order < 0, and thus
[Ty Ty Togjull e S CINET)|ullz2.

This estimate is independent of € since j. € X% uniformly in € > 0 (that is, all the involved
estimates are uniform in €). Furthermore, by symbolic calculus (Proposition C.18),

[Tveie. Tjou = Tv=jaie ull 2 S CN; ™) |Jull 2,

[ Tvo -1 Thigyu — Ty-rvojag,ulle S C(N7)llullz2,
which reduces to

IRe(Th. u,u)] S C(NS)|ullrz, he = je (VZiE. +n7'V%i&) € T,
By Proposition C.18, T}y = Tj-, up to some operators of order 0—, with
hi = he + O¢ - Dyhe = —he + O - Dyhe.

Consequently,
1
Re(Ty, u,u) = Re <Th6+hg u, u> + 3 Re (u, (T — Ths))
where both terms on the right hand side are bounded by C(N;7)]|ul|3.. O

5.3. Convergence of approximate solutions and uniqueness. In previous sections,
we have constructed a sequence of approximate solution (n¢, 1) solving the approximate
system (5.10), and that, for all € > 0, (n°, 1) is well-defined on time interval [0, 7] and
uniformly (in € > 0) bounded. The goal of this section is to check that these approximate
solutions form a Cauchy sequence in a weaker topology L X, where sy < s — ‘% and
0 < Ty < Tp, which proves the existence in Theorem 1.1. As a by-product, one will see
that the same argument allows us to compare two different solutions to the system (3.68)
and deduce the uniqueness part of Theorem 1.1.

Proposition 5.15. Under the hypotheses of Proposition 5.4, there exists 0 < T} < Tj,
where Ty is defined in Corollary 5.6, such that the sequence {(n°, V) }ecioa 95 Cauchy in
Cr, XY with 3/2 < so < s — 3/2. More precisely, we have

H80> — O

(5.43) lim sup  sup (H?fl(t) = 02O ooy + 109 () = 9=(0)]

€270+ 0<ey <ea<1 te[0,7y
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During the proof of Proposition (5.15), we emphasize that the appearance of mollifier
Je has no impact in the estimates and one may delete all the J.’s to obtain the proof of
uniqueness in Theorem 1.1.

Recall that, with 0 < ¢; < €2 < 1, the approximate solutions (n“,¢) (j = 1,2)
satisfy (5.10), namely

(00 Ty - V5 I + £9) ( i ) — (et Ty ),

€: € s+% s
(77J7¢J)’t:0:(7]07¢0)€HR XHa

where V& and V¢4 stand for the V and V associated to (n%,1%), respectively. The
difference between approximate solutions

(5.44) (6n,60) == (n? — n, b2 — ) € Cpy (H* 2 x H?)

satisfies
Oy + Tyes - V2, + L = h,

(5.45) (0 + Ty * )(&b)

(61, 09|40 = 0,

where h equals

h:h1+h2—h3—h4—h5,
hl :f(J€277627 J€2¢62) - f(J€277€1’ Je2¢61)7
h2 :f(‘]GQTIEl? JEszI) - f(J617761> J61w61)7

hsy = (TVE2 Ve — Tye - vﬁl) JQ ( 17/7;11 ) s

h4 - (Tvel . ?51) (JEQ — Jel) ( Z:l ) 5

Uls
hs = (L2 — L) ( P ) '
1
Let us denote by M the upper bound of L3 (Hf;_2 X H*)-norm of approximate solutions

(n°, ), namely

5.46 M := sup e ol ,
(5.46) 07

which is finite due to Corollary 5.6. We claim that

Lemma 5.16. Under the assumption of Proposition 5.15, we have the following estimates,

(5.47)

1kl oot g < CODNOMIE D e, g V€ 0. T, k= 1,35,
(5.48)

1k g < COD) (100 00) O oy ey +5) 2 EEOTL k= 2,4

where 0 < v K 1 is a constant and C' > 0 is an increasing smooth function that does not
depend on time t and €;’s.
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Once Lemma 5.16 is true, one may apply energy estimate (5.22), with 3 < sy < s—3
and ¢y = €5 € [0,1], to conclude that, for all ¢ € [0, Ty,

||(0m, dv)(t)] 250+%XHSO <C (H(??o, o) Hfj%st) |(6m, 0¢)(0)| Zs+%st
2 2v
00 (1605012, sy + )
= 2 2v
~CO1) (1150 ety )

where we used the fact that (dn,09)|i=o = 0. Then, by choosing 7} > 0 such that
T,C(M) < 3, we have

||(6777 510)”[/%? (HSO_F%XHSO) < Eg — 0, as €9 — O,
which completes the proof of (5.43).

Remark 5.17. In Lemma 5.16, €5 appears solely in the estimates concerning J., — J,.
Thus, in the proof of uniqueness, there is no €5 and the above inequality becomes (0n, 0) =
0 for allt € [0,T1[, which proves the uniqueness (see Proposition 5.21).

By Proposition 5.15, the approximate solutions converges to (1, ) € L X7’ which is
the unique solution to (1.18). Besides, from the uniform bound of approximate solutions
in L X, one may apply an interpolation argument to conclude that this solution (n,)
has regularity L X5 and Cr, X%~ . The continuity in time and the continuous dependence
in initial data (9, %o) (w.r.t. the topology of X}) will be given in the next section.

Proof of (5.47). In the term hy, hs, and hs, the difference comes from that of (7%, ).
Thus, this estimate is equivalent to boundedness of derivatives in n, ¢ of

A v4s 776 € 776
f(Jen7Je¢)7 r—FV6 vje(,¢e)7 L <¢e)

in H*+2 x H*. For the derivative of the first term, if ¢ = 0, the desired result has been
given in Proposition 3.22. Otherwise, the following extra terms will appear

0 0
@f)((]en, Je)Ts5.0,

(%f)((]ena Jew)T(Sjena (
where the extra factors Ts; n and T5;1¢ do not change the desired estimate thanks to
Lemma 3.23. As for the other two terms, we observe that they are written in terms of
finitely many paradifferential operators (with symbol in ¥ for some m € R or equal to
B, V) acting on 1 or ¢°. Thus the desired estimates are no more than a consequence of
Lemma 3.26 and 3.25. The only case uncovered is when the derivative in 1 acts on (n)~!
from V¢, whose contribution reads

(o (1)

The estimate of this term simply follows from Proposition C.8 and Corollary C.9. U

By Proposition 3.22, C.8 and Corollary C.9, (5.48) can be reduced to the following
lemma

Lemma 5.18. Under the hypotheses of Proposition 5.15, for allr € R and 0 < v < 1,
(5.49) 1ew = Jeall gzt < COD) (1600, 000 g ey + €5) -

where C' > 0 is an increasing smooth function that does not depend on time t and €;’s.
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Proof. By definition (5.3) of j., the principal symbol of J., — J., reads (the subprincipal
part can be treated in the same way)

exp(—eans?) — exp(—e 1 ?),

where 73('3/ ? stands for the v (defined in Proposition 4.1) associated to n%. One may

decompose this symbol as

(exp(—exd¥™) — exp(—exf*’?) ) + exp(—err*"?) (exp(—(es — e)f) = 1)

The contribution of the first part is of order 0 due to Lemma 3.26. For the second part,

3
since 7%3/2) € F§/2+, we have,
(3/2)
3/2), exp(—(€2 =€)y 7)) — 1
eXp(_Elf)/i / )) ! 3, Fg/2+>
(€2 —e1)[¢]2
and consequently,
§l/
(2 — @) exp(—a1rf?) (exp(—(e2 — 0¥ = 1) e T3,

which implies the desired estimate (5.49). O

5.4. Continuity in time and initial data. In this section, we finish the proof of
Theorem 1.1 and 1.2 by showing that the unique solution constructed in previous section
is continuous in time t and initial data (n9,%). To achieve this, we shall apply the
nonlinear interpolation theorem recently proved in [7]. Recall that, in the statement of

Theorem 1.2, we have defined a small ball in H sty x H %, which we recall here
- X - -
By(mo,v0;7) := {vo = (Co, ¥0) € H™"2 x H* : ||(10 — R) — Goll ;us 3 + [0 — o

And in previous section, we have proved that the following flow map (already defined in
(1.19)) is well-defined for all s > 3,

§: B.(m,to;r) — LP(H3(T xR) x H(T x R))
(Gortbo) () — R5(1))

where (7(t), 1(t)) is the unique solution to (1.18) with initial data ({,+ R, ¥). Note that,
when r > 0 is small enough, the life span of these solutions admits a minimum which is
denoted by T here. To prove this, it suffices to combine the energy estimate (5.12) and
the same argument in Corollary 5.6.

Then Theorem 1 of [7] can be stated as,

s < 7"}.

Theorem 5.19. Let sg,5,51,7 € R with s < s < s1,r>0, and 0 <T < 1. Assume
that the flow map § satisfies

(1)(contraction) for all vy, v}, € Bs(no, Yo;m) NHT® x HT,
(5.50)

1800) = SO0 oot ggeay < C (10l govh g+ 106 ss g ) 100 = 00l g
(2)(tame estimate) for all vy € Bs(no, ¥o;m) N HT™® x HT,
(5.51) IO g4 gy < € (Il

Then § is continuous on the ball By(no, vo;7) and F(vo) € Cr(H* 2 x H*) for all
vo € By(no, tho; 7).

TR 1/ I —
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Remark 5.20. This theorem can be generalized to more general case, for instant, Besov
spaces. One may refer to Theorem 18 of [1] for the setting.

Proof of tame estimate. The tame estimate (5.51) is a direct result of energy estimate
(5.21) (replacing (so, s—) by (s1,s)). In fact, let us consider any initial data (7, g) such
that vg = (no — R, %) € Bs, (10, %0; 7). The energy of the resulting solution (n,1)) is still
denoted as

Nit = sup (10(0) = Bll oy + 190 ) = 15000 gt
We recall that (3.91) gives
by < € (100t VIOt
which, combined with energy estimates (5.23) yields the desired estimate. U

The contraction condition (5.50) can be obtained directly from the following propo-
sition,

Proposition 5.21. Given s > 3, we take arbitrary (no, o), (ny, ¥y) € X5. Let (n, ), (1, ¢') €
LP X}, be the solutions to (1.18) with initial data (1o, o), (04, V), respectively. Then,
when T < 1, the following estimate holds:

(552> ||<77 77 1/} ¢ )HLoo HS()+§><H50) ~N C (M) ||<TIO - 77(,)’77Z)0 - ¢6)| HS()+%><H507

3 3 ~
where 5 < so < s — 3, and M > 0 is the marimum of ||(770’¢0)||L°°(H;+%st) and
o w0l

S+? Hs)

Proof. We shall only give the sketch of the proof, since the argument is the same as
Proposition 5.15. By calculating the difference between the equations for (n,v) and
(n',¢"), we are able to write the equation for

i s
(0n,0¢) = (m—n', v =) € L}’f’(H50+2 x H®0).
More precisely,
_ 5,’7
L s
(61,00 i=0 = (10 — 1, o — W) € H*"2 x H®,
where the source term g = g; — g» — g3 is equal to

g1 = f(n,) — f(n', ¢, g2=(Tv-V—Tw-V’)<Zl), = (L~ E’)<¢;>,

and V', V’, L are associated to (1,1'). By using the same proof as for (5.47), one can
show that,

< / /

190 s <C (N0 + 0T )
X |[(dm, 0) (2]

Then one may apply energy estimate (5.21) with sy and obtain

H ((5777 6w) HL%O(HSO‘F% XHSO) < C(M) H ((577? 6w)(0) ’ H50+% % HS0 +TC(M) “ (5777 5w) HL%O(HSOJF% XHSO)'

Then the desired result follows by choosing TC(M) < 3. O

1 .
H0T2 x Hs0
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APPENDIX A. FRACTIONAL SOBOLEV SPACES IN REGULAR DOMAINS

In this appendix, we give a brief review of the fractional Sobolev spaces defined on
regular domain 2. We focus on four types of domain: (1) Euclidean spaces, torus, and
their products, namely T% x R with d;, d» € N; (2) half spaces RY := {(2/,d,;) € R x
R, 24 > 0}; (3) bounded subdomains of T% x R% with smooth boundary; (4) cylindrical
domains 2y x R, where € is a bounded subdomain of T% x R% with smooth boundary.
For simplicity, the properties below will be stated only for R? and its subdomains, while
the same results holds for T% x R% and its subdomains. We mainly refer to [51, 31, 1]
for the detailed demonstrations.

Definition A.1. Let s € R. When s € N, H*(Q2) is the collection of distributions u with

Ha) = Z 10%ul|72(q) < +o0.

o<
When s = n+ o with n € N and o €]0,1], the space H*(Y) is defined by interpolation
(see Section 2.1 of [51] for the definition and [}9, 50] for general theory of interpolation
spaces)

[l

H*(Q) = [H"(Q), H" ()],
It is clear that the spaces defined above are Hilbert spaces, which allows us to define H*(S))
with s < 0 by duality

/
() = (1)
where H(|)S|(Q) is the closure of C>°(Q) w.r.t. the H*!(Q)-norm.

In the case of full space R? the Sobolev space can be characterized by Fourier
transform.

Proposition A.2. If Q =RY, for all s € R, we have the equivalence
b ~ [ (Pl
Rd

From Definition A.1, one can deduce the boundedness of restriction operator.

|

Proposition A.3. For all s € R, the restriction operator
R: H:(RY) — H3(Q)
u = ulg
is bounded.

In the mean time, any function in H*(£2) can be continuously extended to R?.

Proposition A.4. There exists an extension operator
E: H Q) — H(RY

u o a,
such that tlg = u and € € L(H*(Q); H*(RY)) for all s € R.

The construction of operator £ is not unique and we refer to Section 5.1 of [2] for
one possible construction (see also Chapter 5 of [61] for non-negative index s). Note
that, in these references, the extension operator is constructed for bounded domains and
half-space. As for the case of cylindrical domains Q = Qg x R C R? (where € is bounded
domain), it suffices to fix a finite cover {U;} of €y such that U; N €y is diffeomorphic
to some subset of half-space ]R‘_ifl. Thus U; x RN is diffeomorphic to half-space Ri
and the problem is reduced to the case of half-space. The boundedness of restriction and
extension operator guarantees the following equivalence
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Proposition A.5. For all s € R, we have the equivalence

HU| Hs(Q) ~ ~iIl£ H’EL’ HS(]Rd)'
alo=u

As a corollary, Sobolev space H*(£2) is invariant by multiplication with Cg°(€2) func-

tions.

Corollary A.6. Let W € C;°(2). Then for all s € R, we have the following estimate,
(A1) |Wul

@) < ClWl|om o llull s ),

where C' > 0 and M € N are constants depending on s and dimension d and

||W||CM(Q) = Ssup ||aaW||L°°(Q)~
la|l<M
Proposition A.7. Let s € R and 2, C R? be two subdomains. x : Q' — Q is a smooth
diffeomorphism such that x and x~' are bounded as well as their derivatives. Then for

all u e H*(Q),

1wl s ) ~ llw o x| ms o)

We refer to Section 12.9 of [51] for a proof of this invariance by change of coordinate
(see also Chapter 3 of [1]). More precisely, we have the following refined version.

Proposition A.8. Let s € R with s > g+ 1. x : R* = R? is a diffeomorphism such that
(x —id) or (x ' —id) € H. Then for allu € H**(R?), 0 < sy < s,

HUOX’ Hs0(R4) ~ H'U/’ Hso(Rd)-

We refer to Theorem 1.1 of [42] for the proof of this proposition (see also [24]). Local
result can also be obtained via paracomposition (see Proposition C.23).

APPENDIX B. PROOF OF ELLIPTIC REGULARITY

This appendix serves as a proof of Proposition 2.3 and Lemma 3.1. The former one
is no more than a special case of the following proposition,

1
s+5

Proposition B.1. Let n € Hy * (T x R) and F € H*2(D x R) with s> and 1 <
so < s. Then the equation

(B.1)

Ayp=F e H* 3,
90|p=1 =0,

admits a unique solution o in H*%2 (D x R) with

worbion <€ (19,00 ) IF

R

(B.2) el

3 .
H®0~ 3 (DxR)
where C' > 0 is an increasing smooth function.

The idea of the proof of Proposition B.1 comes from [45], Chapter 2, where the
author focus on the water-wave with a bottom, the regularity of which is the same as
interface. In this case, the boundary condition at bottom should also be considered,
which does not exist in our problem. For axis-symmetric jets, one may find a similar
proof in [41].

Note that the s, = 1 case can be proved by classical arguments via Lions Lax -

2
Milgram theorem (see Section 2.2), which gives a unique solution. Therefore, for general
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case sy > j, it remains to show that this solution is regular in the sense of (B.2). We
shall apply an iteration in sy. More precisely, we claim that

1
(B.3) If (B.2) is true for all so € [5, 31} with s; < s — 9, it also holds for sqg = s1 + 0.

Here 6 > 0 is a small constant depending only on s, the choice of which will be precised
during the proof. From now on, we assume the assumption in (B.3) to be correct, and
turn to prove (B.2) with sg = s; + 4.

To do so, we first show that it is possible to add a cut-off before ¢ via a commutator
estimate, which allows us to study the equation (B.1) in interior part {p < 1} and
boundary part {3 < p < 1}.

B.1. Localization. Let x € C°(R?®) be any smooth truncation. Then (B.1) can be
localized as

(B.4) { Ay(xp) = Fi = xF +[Ay, x|,

(X@)’Fl =0.

Lemma B.2. If y € C;°(R?) and n € H?T('IF x R) with s > 3, for all0 < o < s, we
have

(B.5) HMmWNm%mm<COW

b o) Tl V0 € HYD X )

Proof. A simple calculus gives that
(0% 1 (0%
[Ag, XJw = Baxg™dgw + —\/gaa (9°7 Vg9sxw) -

Recall that, from the construction of (¢*¥) = J=1J-T and g by (2.10) and (2.11), re-

spectively, we have ¢**, g € H*~(D x R) up to C°(D x R) normalizations, provided that
1_

n e H;;z (T x R) (see Proposition 2.2). As a result, d,xg*’, %,gaﬁ\/gaﬁx belong to

H*= (D xR) up to C°(D x R) normalizations, while w € H7(D xR) and w € H7(D x R).
Since s > 3/2 and o < s, by Corollary A.6 and C.9, each term on the right hand side
is linear in w and belongs to H°71(D x R). Note that the estimate for product, Corol-
lary C.9 is stated for Euclidean spaces, which also holds for domains such as D x R via
Proposition A.5. U

As a result, under the hypotheses of Proposition B.1, the new source term F} verifies

(B.6)
H:r%_(’]l‘xR)) I

HF1|| 90—7 ]DXR) <||F|
once 0 > 0 is chosen to be strictly smaller than 1/2,i.e. sg—1/2=3s;4+6—1/2< s
In the following, we shall take x to be smooth truncations near {p = 0} and {p = 1},
respectively, and show (B.2) with sy = s; + ¢ and ¢ replaced by x¢.

H~ % (DxR) + Il H®0~ 3 (DxR)

<||F||HSO 3 (DxR) + HQOHHSl(]D)xR) < C (HT/| HSO_%(]‘XR)’

B.2. Interior regularity. Let us fix y € C;°(R3) a smooth truncation near {p < 1/2}.
The goal of this paragraph is to prove the regularity of ye and deduce (B.2) with sy =
s1 + 0 €]1/2,s] and ¢ replaced by y¢. With such localization, it is harmless to extend
the boundary value problem (B.4) to R? by zero extension away from D x R, since y¢
vanishes in a neighborhood of {p < 1/2}.
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Let A = (D, ) be the Fourier multiplier of symbol (é}, where € € R3 is the Fourier
variable associated to (y,z) € R3. Now, we apply A° to both sides of (B.4) and obtain

(B.7) { AN (xp) = Fa 1= AR = [N, Al xg).

Aé(XSO) |p:1 =0.

Lemma B.3. Letn € H;+§ (T x R) and ¢ € H**2(D x R) with 1<s1<s—6and
5 > % Then, when § > 0 is small enough, we have

po-d ey S ¢ (Hm Hjﬁ(TxR)) Il

Note that x € C*(R3) is supported near {p < 1/2} and thus x¢ can be extended to R?
by taking zero value outside D x R.

(B.8) 1A%, Agl(xe)|

H*1+3 (DXR)’

Once this lemma holds true, by using the assumption of iteration ((B.2) holds for
so € [1/2,51] and F € H® 2(D x R) with sy = s; + ), we have

155

é é
-3 SN F g e 1A% A0 -

Wyt + € (11 ) 9l
SO (Wlt ) 1 sy

where the last inequality can be seen from estimate (B.6) as well as (B.2) with s, replaced
by si1. Then, for equation (B.7), the assumption of iteration ensures that A°(yy) €
H*'*3(D x R). Furthermore, the desires result o € H*t2(D x R) follows from the
elliptic regularity of A? in R? and Proposition A.5.

Proof of Lemma B.3. By definition, A° is commutable with derivatives, then

1 1
A% A (xp) = {A‘s,—} 0o (9°°/905(x0)) + —=0a ([N, 9% /3] D5(x)) -
A%, 8] (x) 7 (9°7V/905(x)) 7 ([ V9] 95(x¥))
From ¢ € H“”l*%(]D) x R), where s; < s — 6, and ¢*?,,/g € H* (D x R) up to Cy°
normalization, it is easy to see that (%( B /G05(xp)) € H*~ 3(R3) with s; — 3/2 <
(s—) — 0 due to Corollary C.9. Thus by Corollary C.20 and the fact that 1/,/g €
H*= (D x R), we have

S —

for some small § > 0. Similarly, by noticing that dz(xp) € H*~2 where s; — 3 <
s—1—9 < (s—)— 9 and that gaﬁ\/g € H°~ (D x R) up to Cy° normalization, we apply
again Corollary C.20 and obtain that

(A%, g%0\/g] Bs(xy) € H*' "% (R?)

and the desired estimate follows due to Corollary C.9. U
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B.3. Boundary regularity. The proof of the case where x is a smooth truncation near
{p = 1} is similar to the interior case. The main difference is that, to maintain the
boundary condition, it is impossible to apply A%, which involves normal derivatives at
boundary. Instead, we introduce tangential multiplier Aj. Let (Dy ) be a Fourier multi-
plier on T x R with symbol (£), where ¢ is the Fourier variable associated to (0, z) € T xR.
Then, with polar coordinate  : (p,0,2) — (y, ), we can define AJ as

ASf = (<D932>5f ok)oK

for functions f defined on D x R. Note that, for any 0 < § < 1, ¢[,=1 = 0 implies
Ado),=1 = 0, and thus (B.7) becomes

(B 9) { AQA?](XQO) = F3 = AgFl - [Ag7 Ag](XQO),
Aj(x¢)lp=1 = 0,
where the source term Fj can be estimated as F5 in interior case,

15| SIS E -3 gy + 1183, Al ()]

H*1~3 (DxR)

oo~ % pxr) T ¢ (HW’ H:Lé(’]I‘XR)) el

SO (It ) P 3y

where the second inequality follows from Lemma B.3 with A replaced by Ay, which is
possible since Corollary C.20, the main step of Lemma B.3, is also stated for multipliers
independent of the normal variable. As a result, the assumption of iteration ensures that
Aj(xp) € H 3,

Now we prove the regularity in normal direction. Recall that the coefficients of A,
lie in H*~ (D x R) (2-order terms) or H*~'~(D x R) (1-order terms), up to Cg°(D x R)
normalizations. Then, in polar coordinate, A, can be written as

ady + - V.0, + 70, + Ry + Ry,

where R; is a j-order differential operator in 6, z with coefficients in H*77~2~(D x R),
a,f € H~(DxR), and v € H* 17 (D x R), up to Cs°(D x R) normalizations. Moreover,

« is strictly positive and its lower bound depends only on ¢y, Cy from (H0) and ||n|\Hs I
R

3
H®1~2 (DxR

Sl

H1+3 (DxR)

Therefore, Corollary C.9 and Proposition C.22 gives that

p gl 1 1453
Op(x9) = == - Vo05(xp) = ~0p(x¢) = —(R2 + R1)(xp) € H* 73D x R),
where we use the following regularities
Vo:05(x¢); Vi (xp) € H* 3D X R), V,p.(xp) € H*H2(D x R).

Till now, we have showed V,4.9,(xp) € H*H~2(D x R), i.e. 9,(xp) € H*H~2(D x R),
which gives yo € H*H42(D x R) = H*o 2 (D x R) due to V. (xp) € HH 2 (D x R).
And the proof of Proposition B.1 is finished.

B.4. Proof of Lemma 3.1. Recall that the goal of Lemma 3.1 is to show that, after a

change of variable
s p¢(pb, z)
(p767z):L(p707Z>::( ’072 )
(0, z)
the new scalar potential ¢ := ¢ o 7! satisfies (3.4). The proof is divided into four steps.
Firstly, we check that 7 — id has H*"2 -regularity away from p = 0 (so as i1 — id).
Secondly, we adopt Proposition A.8 to prove that @ belongs to H*2([1 —§,1] x T x R)
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for some 0 < § < 1 where sy can be taken as any value in ]3/2, s[. In the third step, we
complete the case of sg = s by reducing the problem to Proposition B.1. The last step is
the application of trace theorem so that one can obtain the continuity in p. During the
proof, we identify (y,z) € D x R with polar coordinate (p,0,z) € [0,1] x T x R, if the
information near the axis {p = 0} is not important.

Step 1: Regularity of 7.

1

Lemma B.4. Letn € H;JFZ (T x R) with s > 3. Then i defined in (3.3) is a diffeomor-
phism from [0,1] x T x R to [0,1] x T x R. Moreover, there exists 0 < 9,9 < 1 such that
i—ide H 2 (1 —=6,1] x TxR) and 7> —id € H*"2~([1 = 6,1] x T x R).

Proof. By definition (3.3) of z,

(p.0.2) — id — (pC(pM) - 77(972)7070) 7

(0, z)

which reduces our problem to showing that (((pf, z) — (6, 2))/n(0, z) belongs to H* 2~
near p = 1. In Proposition 2.2, we have seen that ¢ € Hj™' (D x R) with R, defined in
(2.7), which indicates that R, equals R when p is close to 1. Thus, by choosing 6 > 0 small
enough, we have (— R € H*™'~([1-6,1]xTxR). And 7y € H;JFT(']I‘ x R) implies ( —n €
H+27([1—6,1] x T x R), from which one may conclude z—id € H*"2~([1—4,1] x T x R)
by applying Proposition C.22 and Corollary C.9.

To obtain the regularity of :=! near {p = 1}, due to [24], Section 2, it suffices to
extend ¢ as a diffeomorphism on R x T x R and check that its Jacobian has strictly
positive lower bound. One possible extension is as follow,

eat(0.0,2) == (F(p.0.2),0.2) . F(p.6.2) = x_(0)f—(p) + xl<p>% s (D)2 (0),

where x; is a smooth truncation near {p = 1} increasing on {p < 1} and decreasing
on {p > 1}, x— (x4 resp.) is a smooth function supported in {p < 1} ({p > 1} resp.)
with x_ +x1 + x+ = 1 for all p € R, and f. is a smooth increasing function such that
f+(p) = p when p is away from 1 and fi(p) = lop for p € Supp x1 with constants IL > 0
to be determined later.

Clearly 7., coincides with the original one (3.3) when p is close enough to 1 and
equals identity when p is away from 1. Moreover, since the extended parts are smooth
and equal to identity when p is away from 1, we have i,y —id € H s_%_(]R x T x R). The
Jacobian of 7., reads

Of =x—(0)F(5) = X (p) (p—j - <p>) () 8"(;0
X, () <f+(p) - ”n—c) RPIAD
3p(p€’)

=x-(p)f~(p) = X_(p)p <% - l—) + x1(p)

X () (u - %) X+ (D110

Due to our construction, f}, —x’, and )/, are non-negative. Besides, due to Proposition
2.2 (and estimate (2.8)), ¢/n and 9,(p¢)/n have upper and lower bounds depending only
on constants ¢y, Cy appearing in hypothesis (H0). Thus, by choosing 0 < |- < 1 < [,
the Jacobian of z.,; can be bounded from below by some positive constant. O
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Step 2: The case sy < s. Recall that ¢ = por~! with ¢ verifying (2.26). Note that, in polar
coordinate (p, 6, z) € [0,1] x T x R, we can only deduce that ¢ € H+2([1—4,1] x T x R)
for 6 > 0. Then the condition sy < s guarantees so+ 1/2 < s+ 1/2—, which allows us to
apply Proposition A.8 and conclude that

(B.10) 1903 0 gaperniy < € (Ilet g ) I loces

for some 0 < § < 1 such that [1 —9,1] x T x R lies in 71([1 — 4,1] x T x R).
Step 3: The case sy = s. Let € > 0 be small enough (to be determined later). When

¢ € H5(T x R), from Step 2, we have seen that ¢ € H*"2~¢([1—4,1] x Tx R). To obtain

the H er%—regularity, we notice that ¢ is the solution to equation (3.5), which we recall
here

{ Lp:— <aa§+@-v9—,ga,;+yap+ 5217720§+a§) 5=0, Vl-6<p<1,
90’/3:1 - 7%
where «, 3,7 are defined in (3.6)-(3.8). Let x1 = x1(p) be a smooth truncation near
{p =1} supported in [1 — 9§, +o00[. By denoting A, := (Dj ), we have
{ LAS(x19) = f == —Ailx1. Llg — [AL, L](ap), Yp € [0,1],
Plo=1 = ATV
Note that the first equation is valid for all 5 € [0, 1] since both sides vanish when p < 19,

thanks to the truncation yi. It is clear that f € H*"2<([1 — 4, 1] x T x R) (it suffices to
apply Corollary C.20 to deal with [A{, L]). Then, via change of variable z, this equation

can be rewritten as
{ sp1=for, onD xR,

Sollpzl - Ai%
where @1 := (A{(x1p)) o . Recall that we identify (y,z) € D x R with polar coordinate
(p,0,z) € [0,1] x T x R, since all the involved functions are supported away from the

axis {p = O}. By Proposition A.8 and Lemma B.4, the source term f oz belongs to
H*27¢(D x R), while the boundary data ASy) € H*¢(T x R). Due to Proposition B.1,
we have p; € H st3- (]D x R). Finally, we apply again Proposition A.8 and Lemma B.4 to
deduce A{(x19) € H+27¢([1—6,1] x T x R) and thus AS¢ € H*t2<([1 — &, 1] x T x R)
for some 0 < ¢ < 6. One may recover the regularity in p from elliptic operator L as in
the proof of Proposition B.1 and conclude that ¢ € H** 2 (1=¢,1]xTxR), i.e. estimate
(B.10) also holds for sy = s. Here the difference between § and ¢’ can be ignored since
we are solely interested in the behavior near {p = 1}.

Step 4: Trace estimate. To complete the proof of Lemma 3.1, it remains to deduce the
estimate below from (B.10).

or ) 19

Recall that in the assumption of Lemma 3.1, we have s > 3 and 3/2 < sy < s. Then the
case [ = 0,1 follows directly from trace estimate. For [ = 2, we observe that

HS30 , l:O,1,2,3.

1058l co 15 1311501y < C (

a?@:—— (5 V205 +70; +p 82+62)

p

where «, 3,y are estimated in Lemma 3.2 with o > ¢ for some constant ¢ > 0 (depending
on ¢y, Cy appearing in hypothesis (H0)). An application of Lemma 3.2, Proposition C.22,
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and Corollary C.9 gives 92¢ € C°([1 —0,1]; H*~*(T x R)). The last case I = 3 can be
obtained by applying an extra d; and repeating this argument.

APPENDIX C. PARADIFFERENTIAL CALCULUS

In this section, we shall review the definition and properties of paradifferential op-
erators on R?, T or T x R% with d; + dy = d.

C.1. Pseudo-differential operator.
Definition C.1. Let a be a tempered distribution on R? x Re. For all Schwartz function
u € S(R?), we define
1 - Ty
(C.1) (Op (a) u,v) g1y 5 = 2n) // ¢'"Ca(z, €)u(€)v(r)dedz.

It is easy to check that Op (a) is a continuous application from Schwartz functions S(R?)
to tempered distributions S'(R?). We say that Op (a) is a pseudo-differential operator
with symbol a.

Definition C.2. Let p,6 € [0,1] and m € R. The class of symbols Si's = S75(R?) is
defined as the collection of all symbols in C®(R? x RY), such that, for all o, 3 € N¢,

00 a(w,€)] < CapleymHel-r

The following results are classic, whose proof can be founded in [39, 29].

Proposition C.3. Let 0 < I < p <1 or0<p=20<1. Then the pseudo-differential
operator Op (a) € L(H*; H*™™) for all a € S]'5 and s,m € R.

Proposition C.4. Let 0 < 6 < p < 1 and m,m’ € R. For all symbols a € ngp and
be S;;;j, the composition Op (a) Op (b) and the adjoint Op (a)" are also pseudo-differential

operators, with symbol agb € Sg‘;m/, a* € 557, respectively. Moreover, for all N € N, we
have the following symbolic calculus,

1 Q « m m’—N —0
(C.2) ath— Y —o¢aDb e SN,
la|<N
* ]' o )— m—N(p—9
la|<N

where D, = —i0,,.

In periodic case, there are two ways to define Op (a). One is to regard the Fourier
variable ¢ as an element in N¢, and symbols as distributions on T¢ x N¢. The only
difference with R? case is that the derivative in ¢ should be understood as finite difference:

a§a(m7€) = a(m,f + 1) - a(x,f).
Another method is to regard functions on T? as periodic functions on R?. Thus, for
symbols a € S(R? x RY), Op (a) u is a well-defined periodic distribution, which can be
viewed as a distribution on T?. Then, for all a € ST, one may define Op (a) by density
arguments. Via this method, the derivatives in £ is just the same as those on Euclidean
space. These two methods are equivalent in the sense that the difference of pseudo-
differential operators defined by two methods is of lower order than the itself. That is to
say, if a € 5§, the difference of two definition should be an operator of order m — p, i.e.

belonging to L(H?; H*~(m=P)) for all s € R. A rigorous study of these definitions can be
found in [56, 57]. For simplicity, we shall focus on R? case in the sequel.
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One observes that all the results above requires the symbols to be smooth in z and
. However, in applications, they are usually rough in z. For example, the A, defined by
(2.13) has only Sobolev regularity in (y, z) but smooth in Fourier variables. To overcome
this difficulty, we turn to a refined version known as paradifferential calculus developped
by Bony [22] in 1980s.

C.2. Paraproduct. To begin with, we consider the simplest case, multiplication opera-
tors. We fix a dyadic decomposition

1=x(§)+2¢<§>,

where x, ¢ are radial positive smooth truncations near {|¢| < 1} and {1 < [{| < 2},
respectively, such that

J
X<2£> =x<£>+2w(§), V¢ ER’jEN.
k=0

Then we can define the following multipliers:

D, D,
A ::go(g), S; ::X(E)‘

Definition C.5 (Bony’s decomposition). For all functions a,b € S(R?),

Tab = Z Sj_QCLAjb,
Jj=2
R(a,b) :=ab—T,b — Tya.

The linear operator T, is known as paraproduct.

Remark C.6. In the definition of T,b, the low frequency part of b is eliminated. Thus,
it makes no difference to replace b by b plus any function whose Fourier transform is
supported near zero. In particular, we have

T.b=T,(b—R), YReR.
Now, we review the boundedness of T,b and R(a,b) in Sobolev spaces,

Proposition C.7. Let a € H®, b € H* with s,s' € R. Then we have,

. d
bHHS'v ZfS 7£ 57
e, if s+s >0.

(04) HTCLb”Hmin(s/,s-‘rs/—%) g
(C.5) [1R(a, b)| S llallzs o]

lall s

Hs+s’—%
Moreover, when a € C;° and b € H* with s' € R, we have

(C.6) [Tabll sz S Nlall oo 161l g

(C.7) 1@, O)ll s S Nallem 1Bl s

for some M € N depending on s" and dimension d. Recall that ||al|ca = sup, < |0%al| Lo -

And when a € H® and b € Cy°, the estimate (C.6) above becomes

(C.8) I T5b]

where N € N depends on s and dimension d.

ms S llallms][bllew,

These results are classical, one may find a proof in [22] or Chapter 2 of [16], where
the results are generalized to Besov spaces. By combining Proposition C.7 and Remark
C.6, we have the following result to be used frequently in this paper.
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Proposition C.8. Let a € Hj, and b € H} for some s,s' € R, with W € C° and
R € R. Then, we have, for all r € R,

/

) d
(C.9) ITabllar < Clllallmg, + Wz )bl maxirirsg=orer 3 max(r,r + 5 = 5) <85
R

) d
(C.10)  [[R(a,b)lls- < Clllallag, + W leslloll rigs > =3,
R

where constants C' > 0 and M € N rely solely on r,s,s" and dimension d.
If the normalization of b is not constant but a C3° function, the following corollary
follows from Proposition C.8 with estimates (C.8) and (C.7).

Corollary C.9. Given r > —521, we assume that a € Hp , b € H;?%'2 with s,s" € R and

Ry, Ry € Cp°. If s > max(r, 7"—1—%—3), there exists constants C' > 0 and M € N depending
onr,s,s and dimension d, such that

(C.11) lablly, ,, < CUllallmg, + [1Bxllca)([[6]

us [ Rallonm).
Ro

C.3. Paradifferential operators. The paraproduct operator 7T, defined in previous
section can be regarded as a refinement of multiplication operator, which is equal to the
pseudo-differential operator Op (a). This inspires us to study Op (a), where a = a(z, )
is a symbol with limited regularity in z, by turning to the paradifferential operator T,
defined below, which is no more than a generalization of Definition C.5.

Definition C.10. Let a = a(z,€) be a symbol smooth in & # 0 with Sobolev or Hélder
reqularity in x. Then the paradifferential operator of symbol a is defined as

(C.12) Tou(x) := (2;)d /6%'525}—2@(%,5)@ (%) a()de,

where S;_o acts on x variable.

Remark C.11. By construction, the low-frequency information |£| < 1 of u is eliminated,
which means that paradifferential operators are never bijective. Nevertheless, for elliptic
symbols (see Definition 3.6), it is possible to construct left and right inverse, up to some
reasonable remainders, which is known as a parametriz.

Remark C.12. The definition above is a special case of the general one introduced by
Bony [22],

T, :=Op(a), a(z,§) = x(Ds,&)al-¢),
where X = X(n,€) is a smooth truncation near {|n| < e(1 + |£|)}, such that x = 0 on
{In| > €1+ &)} with0 <e <€ <1 and for all o, B € N¢,

050X (0, )| Says (€)1,

In fact, with different choice of x, the resulting paradifferential operators are equivalent
in the sense that their difference is a smoothing operator (see [53] for more details).

Example C.13. If a = a(x), the definition C.5 and C.10 coincide. For a = a(§),

7 =a(D) - x (2 ) D),

i.e. T, equals the Fourier multiplier a(D,) up to a smoothing operator. Furthermore, for
general symbol a = a(x,§) and multiplier b = b(), we have

T, 0 b(Dy) = Ta.
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Definition C.14. Let p > 0 and m € R. The symbol class I} is defined as the collection
of symbols a = a(x,&) Hélder in x and smooth in &, such that for all o € N?,

I0z0(,E)lew < Cale)™ 1, ¥ 16> 5,

where C? s the class of Holder function for non-integer p and the usual Sobolev space

Wee for p € N.

Remark C.15. If a = a(z,§) is homogeneous in & of degree m, then it belongs to I'}" if
and only if
sup |192a(, &)llcr < Cay Vo € N
€]=1
In this paper, we are interested in symbols with Sobolev regularity in x. An appli-
cation of Bernstein’s Lemma (see, for example, Lemma 2.1 of [16]) implies that

Proposition C.16. For all m € R and a € I'" with r < 0, T, is of order m —r. In
particular, let s < %l be a real number. We assume that a = a(z,§) is smooth in & with
Sobolev regularity in x, namely

10g a(-,€)]

Then T, is of order m — s + g.

1
e < Cal€)™ 1V Je] > 5

Now, we are able to generalize Proposition C.3 and C.4. The proof of following
results can be found in Chapter 5 of [53].

Proposition C.17. Given m € R, for all a € I'}?, the paradifferential operator T, is of
order m, namely

(C.13) T, e L(H*;H™), VseR.
Proposition C.18. Let a € I'" and b € F;”’ with m,m’ € R and p > 0. Then the

composition T, Ty and adjoint T, are both paradifferential operators, such that ToTy —Tay
is of order m +m' — p and T — T, is of order m — p, where

1 (6% (0%
(C.14) agb= Y —0gaD}b,
laj<p
* 1 o et
(C.15) a* = Z aag DYa.
lor|<p

As a corollary, we have the following commutator estimate:
Corollary C.19. Ifa €T}, b e F;”' with m,m" € R and p > 0, the commutator [T, T}
is of order m +m’ — min(p, 1).

The following estimate concerning commutator will also be used,
Corollary C.20. Let a € Hj, with s > % and W € Cg°. There exists 0 < §y < 1, such

that, for all symbol X = X(€) in the class S5 ,(RY) (see Definition C.2) with § < &y, we
have

(C.16) 1Op (A) . alll gy < C. ¥r <53,

where C' > 0 and ¢ depends only on s,r.
Moreover, the same result holds true if the symbol X\ = \(§') depends only on &' (we
write £ = (&,€1) € R x R) and belongs to the class S9o(R*).
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Proof. For all w € H", we decompose,
[Op (A) 70’] U = [Op ()‘) JTCL] U+ Op ()‘) (TuCL + R(CL, u)) - (TOp(A)ua’ + R(a7 Op (/\) u)) :

For the last two terms, we will use estimates in Proposition C.8 and estimate (C.8). In
fact, u € H" implies

. d d
Tya € H™Es4r=2)= « g+ R(a,u) € H*""2 ¢ H',

whenever s > r + §y and s — d/2 > §y. Consequently, Op () (T,a + R(a,u)) lies in H".
With this choice of &y, from Op (A\)u € H"° one may also deduce that

Topyua € H™™*+7=0=5)= C [ R(a,Op (\)u) € H**"~"=% C H'.

It remains to deal with the principal part [Op (A), T, u. If A € SP((R?), it is harmless
to replace Op (\) by T} since their difference is a smoothing operator. Then by Corollary
C.19, it is easy to see that [Ty, T,]u belongs to H” since A € 'S and a € I'Y by choosing
s —d/2 > &y. The proof for the case of full space (A € S7((R?)) is completed.

If A depends only on £ and belongs to 5(1)70(Rd*1), we observe from Definition C.5
that

[Op (V) T u =" _[Op (V) S;aA;u,

Jj=2

It is easy to see that, for each j > 2, the Fourier transform of [Op (\),S;alAu is
supported in 2°C, where C is an annulus. Thus, by almost orthogonality, it suffices
to check that [Op (M), S;ja] is bounded from L*(RY) to L*(R?) uniformly in j, and the
problem can be reduced to the following commutator estimate

(C.17) 1TOP (A) s 0l 22 (rayy S 110l o

For any u € L*(R?), we fix arbitrary 74 € R and apply the result proved above (full space
case) on R41 (recall that we write z = (2, 74) € R"! x R).

ITOp (A) ;b za)]u(, za)ll 2, < 110l lul- za)llr2, < 0]

Lo md HS(Rd)”u(de)HLin

Td T x

where the second inequality is due to the classical trace theorem. The desired estimate
(C.17) follows by taking L7 mnorm on both sides. O

Another useful corollary is

Corollary C.21. Let a € H}, and u € HS with g < s <sand R € R constant. Then
there exists C > 0 such that

(C.18) law® = 2T ull mingeor-9) < C (llally) [lul

2
s

Proof. We may write au? as

au® = Tyu + Tyau + R(au,u) =Tyu + T, (Tyu + Tya + R(a,u)) + R(au, u)
=2T 4+ (T, Ty — Tou) u + T2a + T, R(a, u) + R(au, u).

Since a, u can be regarded as symbols in Fg,f d/2> respectively, the operator T, T, — T, is of
order —(s'—d/2) and thus (T, T, — Thw) u € H*"¥'~% (note that when a, u are independent
of &, af,u = au for all p > 0). By applying Proposition C.8 and Corollary C.9, we have
T?a € H®, T,R(a,u) € H**+¥'=% and R(au,u) € H2'=% which completes the proof. [
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C.4. Composition. To end this section, we review the paradifferential calculus concern-
ing composition.

Proposition C.22. Let F' be a smooth function and v € H® with s > %. Then F(u) €
Hp. ) with

(C.19) [1F(u) = F(0) = Trrwul

¢ < C(llullms) [lullms-

HQS—

Consequently, when v € H}, with s > g and R € Cy°, we have

(C.20) £ ()]

<O (Jlul

HE () H}S%> [l Hps

where C' > 0 is a smooth increasing function depending on F' and R.

The proof of this proposition can be found in [22] or [16], Chapter 2.

Now we focus on the study of u o x, where u and y both have limited regularity.
In this case, the singularity concentrates on two terms, T,/ x and the paracomposition
X*u, which is firstly studied by Alinhac in [11]. In the sequel, we assume that x : Q' —
is a diffeomorphism, where €2, ' are bounded domains in R? with smooth boundary, and
w is a function on © with Sobolev regularity. The following results can be found in [11]
(see also [10]), while the case of R is studied in [62] (see also [57]).

d
Proposition C.23. Let x € Hllotfro ando € Ry \N. Then there exists a paracomposition
operator X*, such that, for all u € H} ., s > g + 1,

locy

(C.21) uo X = Tyoyx + X u+ Ru,

. 1+U+nnn1+a+¢§—1
where the remainder R € H ( 2 )

loc

An important property of paracomposition operator x* is the following conjugation
formula,
dis . . .
Proposition C.24. Let y € H;;QJF be as in Proposition C.23 and a € I'"" with m € R
andr =2 0. The X* defined in Proposition C.23 satisfies

(C.22) X*T, = TyoX* + R,

where x* is the pull-back by x and the remainder R is also a paradifferential operator
with symbol in I'g"".

Remark C.25. The rigorous definition of the pull-back x*a depends on a delicate study
of pseudo-differential operators on domains (or smooth manifolds), which will not be
precised here (refer to [39], Theorem 18.1.17). In the case where a is a differential
operator a(s,§) = >, aa(x)E* (Laplacian operator, for example), x*a equals the symbol
of the pull-back of Op (a), which is clearly a differential operator and can be calculated
simply by usual change of variable.

Remark C.26. An explicit definition of paracomposition operator X* is
X*u:=Y Aj(Ajuoy),
J

which is hard to use in applications. Usually, we may define X*u via (C.21) when the
remainder is not important.
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APPENDIX D. VARIATION IN METRIC

This section is devoted to the proof of identity (2.40), which can be obtained via a
direct but complicated calculus.

Lemma D.1. Under the hypotheses of Proposition 2.5, we have

1 1
(D.1) 50(v99°7)uipDp0 =5V (7Y [Vel* V/G0C) = V. (V3T 7 Ve YIV500C)
+ VA Y - V(.

Recall that, in the coordinate (y1,y2, z), Greek letters are indices for {1,2, z}, while Latin
letters correspond to {1,2}.

Proof. To begin with, by using (¢*%) = J~'J~T, one could right the left hand side as
1 1 1 1
50(V39°)0ap03p =50 (VG) 9™ patps + 5V, .00 (J7HT 1) V204

1
=50 (det J) [Vypl* = VypJ 100T 1T TV, 200 /g

:% tr (J716J) [Vyel’/g — VEiedJ 7'V o/,
where we use formulas (2.11), (2.12), and
d(detJ) =tr(J'6J)detJ and 6 (J ") =—J'6JJ "
From the definition (2.9), one may compute
-5y — ( Jy ¢ 0 ) N ( Iy 'YV ec Jotydc, )
0 0 0 0
with Jo = ({65 + v:¢;)i;. As a result,

%tr( ~16J) [Veel*Vg

%tr (J51) IV a0* /98¢ + %tr (Jo 'y vV, 0C) IVe0*\/g

=50 (U5 VgplPVG3C+ 205y - 9,5V e

%tr (J5Y) Va2 V/g5¢ + %vy (T oIV g Vg) — %Vy (S0 'YV gel*V/9g) 66
%tr (J5Y) Va2 /g0¢ + %vy (T Y|V el Vg) — %Vy (T 'yIVeel?) Vas¢

- §‘V990|2J0_1y : (vy\/g) o¢

1

1 1
=5t (T ) Vel VaoC + 5V - (5 y0C IVl Va) = 5V - (o wIVel*) VaiC

- %|Vg<p|2joly ~tr (Jy ' Vydo) V90C.
Note that the last equality is a consequence of
Vg = Vydet Jo = tr (J; 'V, Jo) det Jo = tr (J; ' VyJo) /9
Therefore, we obtain the identity

1 _ 1 _
5t (J7100) VgV = my/goC + 5V, (I Vel V)
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where
1 _ 1 _ 1 _ _
D2) rn= 2 tr (Jo 1) Vel — §Vy : (Jo 1y|vg<P‘2) - §|Vg<P‘2J0 ty - tr (Jo lvyJO) :

In the mean time, it is clear that

[ 6CHYVIOC Yo\ [ 0¢ 0 yV5o¢ yoC.
5‘]_( oy o)‘(o 0>+( 5 o)’

which yields
VEpdJJ 'V /g
=V (J71Vy0) VG0C + 4 VipdCa (1Y) Vg
=Vigp (J7IV,0) VIOl + Vo - (T Vo VipdC/g) — Vo - (VIT Vi Vip) 6C
=V (J7'V0) VGO + V. (T VoY TV400C/G) = 3T 'V Vi (4:Vip) 6
— VA pY TV 4p0¢,

where the last equality is due to (2.12) and (2.13). Then the following identity holds
true,

VipdJJ 'V o\ /g =12/90C + V. (JT'VpY " V,00() — /gAY TV 08¢,
with
(D.3) ra = Vi (J7'Ve0) = (J7'Ve0 - Vy.) (uiVip) -
It follows that the desired result (D.1) is equivalent to
N —T9 = 0.
We notice that
— « « 1 1) 1 — -

ri=—((Jo 'y Vy) Vip) Vip — §aiajyjlvgg0|2 — 5% Yy tr (Jg'Vydo) [Vl

(recall that (a") is defined in (2.10) with 7, j taken in {y;,%2}), and
ro = —1Y; (J_IVggo . Vyvz) V;go.

Then the problem is reduced the following identities
(D.4) —0iay; = Jy 'ty - tr (Jg Vo)
(D.5) (Jo'y - Vy) Vg‘cp) Voo =y (J 'V V,.) V?p.

To prove these, we shall use the following formulas which can be checked easily from
(2.9),

(D.6) D07 = —aﬁﬁlﬁaagxyaM”,
(D7) 6aazg = 0,
(D-8) Datig = 0ipCa + 00iCs + YiCap-

Note that we write the version for J, while the same formulas hold for Jy, which means
one could replace the Greek letters by Latin ones.
We first check (D.4). By (D.8), the left hand side is equal to

—3iaijyj :aikﬁiaklaljyj
=a'* (0k1Gi + 9ir Gy + YrCar) aljyj

ik kj Ui, ik L
=@Ga"a"y; + Ga’ly;a" + a"yra y; G,



while the right hand side reads
Jo_ly - tr (Jo_lvyJo) :aijyjakl(?ialk
=a"y;a" (6 C; + 0uCh + yiCin)
=Cay;a" + Gt ay; + aVyay G,
which proves (D.4).
As for (D.5), the left hand side equals

a7y;0:(a"pg) Vi
:aijyj&»aﬁa(pgvggo + aijyjaﬁo‘goigvz‘go
- _ aijyjamaiawauawgvg‘go + aijyjaﬁo‘goigvg‘gp
= — a"y;a" Ojak,a" sV o + ay;a" iV g
= — a"y;a" (O + Gy + YkCin) a0V i + ay;a" iV o
= = Gay;ppa” " Vi — psaaVy;Cua Ve — s’ yratly;Gua Ve
+ aijyjaﬁagowvggp
= — Gaypa™ a" Voo — pia" a?y;Ca Ve — o yeay;Gua Ve
+ ay;a" iV,
while the right hand side can be written as
yiaﬂavg‘cp(%(awcpv)
=yia”* V5 pds(a’'p;)
=4;a"* 050" 0V + 'y 05V
= — yiaﬂaajkﬁgakla“gojvggo + ajiyiaﬂagojgvggo
= — ;0”@ (0l + OrpCt + yiCa)a" 0; Vo + a’'y;a” 05V S
= — ;" a"y;(a” Vi — Gayip;a? " Ve — 0" ypayiaa® Vi
+al'y;a™ sV,
which gives (D.5). O

LIST OF SYMBOLS

a* Adjoint of symbol, 78 Ay Pull-back of A, . by ¢, 12
. ' . % Variation in 7, 14
B Radial componant of velocity fluid at
free boundary, 5 E). Kinetic energy, 15
B(n) Trace of radial derivative of E, Potential energy, 15
harmonic extension, 34 ~ Equivalence between paralinear

operators, 23
1 Radius of free boundary, 2
~ Equivalence between functions, 26

Cy° Bounded smooth functions with
every derivative bounded, 8
Cr X}, Solution space (continuous in

time), 58 § Flow map, 6
atb Composition of symbols, 78 f1 Error in paralinearization of
co, Cy Lower and upper bounds of 7, 3 Dirichlet-to-Neumann operator, 34
D 2D Unit disk, 8 G(n) Dirichlet-to-Neumann operator, 5
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[ Symbol class for paralinear
operators, 81

g Determinant of (g,s), 12

g°? Tnverse of (gas), 12

Jap Metric tensor of ¢, 12

H Mean curvature of free boundary, 4

H? Sobolev space, 8

Hy3, Sobolev space with normalization
W, 8

‘H Hamiltonian, 15

¢ Diffeomorphism to straight cylinder, 10

J Jacobian matrix of ¢, 12
J. Smoothing opertaor, 59
Je Symbol of J,, 59

L X}, Solution space (bounded in
time), 58

L Principal operator in
paralinearization, 38

L Approximate principal operator, 59

A Symbol of Dirichlet-to-Nemann
operator, 34

M. Sobolev energy, 61
1 Symbol of mean curvature, 38

N Nonlinear term, 5

N7 Auxiliary Sobolev energy, 61

V Modified gradient, 33

V, Pull-back of V. by ¢, 12

n Conormal vector of free boundary, 3
ng Pull-back of the conormal vector n,

Q(t) Domain of fluid, 2
Op (a) Pseudo-differential operator, 78

P Paralinearized Laplacian, 25
® Alinhac’s good unknown, 25
¢ Scalar potential, 4

1 Trace of scalar potential, 4

R(a,b) Remainder in Bony’s
decomposition, 79

ro Error in paralinearization of
nonlinear term, 38

r3 Error in paralinearization of mean
curvature, 38

S Symmtrizer of the system, 53

S5 Symbol class, 78

Y(t) Free boundary, 2

> Homogeneous symbols depending on
n, 22

S 1D circle, 8

T, Paralinear operator (paraproduct), 79

T 1D Torus, 8

V' Angular componant of velocity fluid
at free boundary, 5

V(n) Trace of anular derivative of
harmonic extension, 34

X* Paracomposition operator, 83
X% Data space, 58

¢ Extension of n, 11
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