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Abstract
Egalitarian considerations play a central role in many areas of social choice theory. Appli-
cations of egalitarian principles range from ensuring everyone gets an equal share of a cake
when deciding how to divide it, to guaranteeing balance with respect to gender or ethnicity
in committee elections. Yet, the egalitarian approach has received little attention in judg-
ment aggregation—a powerful framework for aggregating logically interconnected issues.
We make the first steps towards filling that gap. We introduce axioms capturing two clas-
sical interpretations of egalitarianism in judgment aggregation and situate these within the
context of existing axioms in the pertinent framework of belief merging. We then explore
the relationship between these axioms and several notions of strategyproofness from social
choice theory at large. Finally, a novel egalitarian judgment aggregation rule stems from our
analysis; we present complexity results concerning both outcome determination and strategic
manipulation for that rule.

Keywords Social choice theory · Judgment aggregation · Egalitarianism · Strategic
manipulation · Computational complexity

1 Introduction

Judgment aggregation is an area of social choice theory concerned with turning the indi-
vidual binary judgments of a group of agents over logically related issues into a collective
judgment [22]. Being a flexible and widely applicable framework, judgment aggregation
provides the foundations for collective decision making settings in various disciplines, like
philosophy, economics, legal theory, and artificial intelligence [38]. The purpose of judg-

This paper extends and corrects the version appearing in the AAMAS-2021 proceedings. We are grateful to
the anonymous AAMAS and JAAMAS reviewers for their valuable feedback.

B Zoi Terzopoulou
zoiterzopoulou@yahoo.com

1 School of Computer Science and Engineering, UNSW Sydney, Sydney, Australia

2 Institute for Logic, Language and Computation (ILLC), University of Amsterdam, Amsterdam,
The Netherlands

3 Department of Information Science and Media Studies, University of Bergen, Bergen, Norway

4 GATE, Saint-Etienne School of Economics, University of Lyon - Saint-Etienne, Saint-Étienne, France

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09598-6&domain=pdf
http://orcid.org/0000-0001-5289-434X


   16 Page 2 of 32 Autonomous Agents and Multi-Agent Systems            (2023) 37:16 

ment aggregation methods (rules) is to find those collective judgments that better represent
the group as a whole. Following the utilitarian approach in social choice, the will of the
majority has traditionally been considered an “ideal” such collective judgment. In this paper
we challenge this perspective, introducing a more egalitarian point of view.

In economic theory, utilitarian approaches are often contrasted with egalitarian ones [55].
In the context of judgment aggregation, an egalitarian rule must take into account whether
the collective outcome achieves equally distributed satisfaction among agents and ensure
that agents enjoy equal consideration. A rapidly growing application domain of egalitarian
judgment aggregation (that also concerns multiagent systems with practical implications
like in the construction of self-driving cars) is the aggregation of moral choices [15], where
utilitarian approaches do not always offer appropriate solutions [3, 57]. One of the drawbacks
of majoritarianism is that a strong enough majority can cancel out the views of a minority,
which is questionable in several occasions.

For example, suppose that the president of a student union has secured some budget for
the decoration of the union’s office and she asks her colleagues for their opinions on which
paintings to buy (perhaps imposing some constraints on the combinations of paintings that
can be simultaneously selected, due to clashes on style). If the members of the union largely
consist of pop-art enthusiasts that the president tries to satisfy, then a few members with
diverting taste will find themselves in an office that they detest; an arguably more viable
strategy would be to ensure that—as much as possible—no-one is strongly dissatisfied.
Consider a similar situation in which a kindergarten teacher needs to decide what toys to
complement the existing playground with. In that case, the teacher’s goal is to select toys that
equally (dis)satisfy all kids involved, so that no extra tension is created due to envy, which the
teacher will have to resolve—if the kids disagree a lot, then the teacher may end up choosing
toys that none of them really likes.1

Besides our toy examples, egalitarian principles are also taken into consideration within
social contexts of larger scale, like in laws that aim to prevent price-gouging: If an upper
bound is enforced to the price of a commodity implying that no seller will have an interest
to supply it, then consumers will not have access to the commodity and sellers will make
no profit from it. Although this situation causes less happiness overall, it is considered fair
because no person can becomemuch happier than another one (in other words, the difference
in happiness is minimised).

In order to formally capture scenarios like the above, this paper introduces two fundamental
properties (also known as axioms) of egalitarianism to judgment aggregation, inspired by the
theory of justice. The first captures the idea behind the so-called veil of ignorance of Rawls
[60], while the second speaks about how happy agents arewith the collective outcome relative
to each other.

Our axioms closely mirror properties in other areas of social choice theory. In belief
merging, egalitarian axioms and merging operators have been studied by Everaere et al.
[28]. The nature of their axioms is in line with the interpretation of egalitarianism in this
paper, although the two main properties they study are logically weaker than ours, as we
further discuss in Sect. 3.1.2 Also, in resource allocation, fairness has been interpreted both

1 In the latter problem, the teacher may notably choose a collection of toys that violates the Pareto principle,
e.g., there may be a different collection that increases the satisfaction of one kid more than the satisfaction of
the remaining kids; this unbalance would arguaby create undesirable competition and tension amongst humans
of a young age. More generally, the Pareto principle is not always as attractive in egalitarian contexts as it is
in utilitarian ones—in particular, it will not be necessarily fulfilled by the equity rule we will define later.
2 For an exposition of the similarities and differences between the frameworks of belief merging and judgment
aggregation, consult the work of Everaere et al. [29].
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as maximising the share of the worst off agent [11] as well as eliminating envy between
agents [31].

Unfortunately, egalitarian considerations often come at a cost. A central concern in many
areas of social choice theory, from which judgement aggregation is not exempted, is that
agents may have incentives to manipulate, i.e., to misrepresent their judgments aiming for a
more preferred outcome [19]. Frequently, it is impossible to simultaneously be fair and avoid
strategic manipulation. For both variants of fairness in resource allocation, rules satisfying
them usually are susceptible to strategic manipulation [1, 9, 13, 54]. The same type of results
have recently been obtained for multiwinner elections [49, 58]. It is not easy to be egalitarian
while disincentivising agents from taking advantage of it.

Inspired by notions of manipulation stemming from voting theory, we explore how our
egalitarian axioms affect the agents’ strategic behaviour within judgment aggregation. Our
most important result in this vein is showing that the two properties of egalitarianism defined
in this paper clearly differ in terms of their relationship to strategyproofness.

Our axioms give rise to two concrete egalitarian rules—one that has been previously
studied, and one that is new to the literature. For the latter, we are interested in exploring how
computationally complex its use is in the worst-case scenario. This kind of question, first
addressed by Endriss et al. [27], is regularly asked in the literature of judgment aggregation
[4, 24, 51]. As Endriss et al. [25] wrote recently, the problem of determining the collective
outcome of a given judgment aggregation rule is “themost fundamental algorithmic challenge
in this context”.

The remainder of this paper is organised as follows. Section 2 reviews the basic model of
judgment aggregation, while Sect. 3 introduces our two original axioms of egalitarianism and
the rules they induce. Section 4 analyses the relationship between egalitarianism and strategic
manipulation in judgment aggregation, and Sect. 5 focuses on relevant computational aspects:
although the general problems of outcome determination and of strategic manipulation are
proven to be very difficult, we propose a way to confront them with the tools of Answer Set
Programming [35]. Section 6 concludes, and Sect. 1 contains additional technical details that
were missing from the previous version of the paper [7].

2 Basic model

Our framework relies on the standard formula-based model of judgment aggregation [52],
but for simplicity we also use notation commonly employed in binary aggregation [37].

Let N denote the (countably infinite) set of all agents that can potentially participate in
a judgment aggregation setting. In every specific such setting, a finite set of agents N ⊂
N of size n ≥ 2 express judgments on a finite and nonempty set of issues (formulas in
propositional logic) � = {ϕ1, . . . , ϕm}, called the agenda.3 J (�) ⊆ {0, 1}m denotes the
set of all admissible opinions on �. Then, a judgment J is a vector in J (�), with 1 (0)
in position k meaning that the issue ϕk is accepted (rejected). J̄ is the antipodal judgment
of J : for all ϕ ∈ �, ϕ is accepted in J̄ if and only if it is rejected in J . For example, for
the agenda � = {p, q, p ∧ q}, the formuas p, q , and p ∧ q are the issues, and the set of

3 Note that the direct proofs that we provide in this paper hold for all agendas and all numbers of agents. On the
other hand, each of our counterexamples relies on the construction of a specific agenda, but can be extended to
any number of agents. Importantly, our counterexamples fail for some rich agendas that are natural, such as the
preference agenda [18] or the agenda that contains logically independent formulas. Overall, characterising the
exact conditions on the agenda for which suitable counterexamples exist is an intriguing but rather demanding
task, which we do not tackle here.
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all admissible opinions is J (�) = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0)}; each of the four
vectors in J (�) may be a judgment J . For simplicity, we will often abbreviate a judgment
by only keeping its numerical values: e.g., (1, 1, 1) may be abbreviated to 111.

A profile J = (J1, . . . Jn) ∈ J (�)n is a vector of individual judgments, one for each
agent in a group N . We write J′ =−i J when the profiles J and J′ are the same, besides the
judgment of agent i . We write J−i to denote the profile J with agent i’s judgment removed,
and (J, J ) ∈ J (�)n+1 to denote the profile J with judgment J added—importantly, in
our variable population framework, the profile J−i where agent i abstains is admissible. A
judgment aggregation rule F is a function that maps every possible profile J ∈ J (�)n , for
every group N and agenda�, to a nonempty set F(J) of collective judgments in J (�). Note
that a judgment aggregation rule is defined over groups and agendas of variable size, and
may return several, tied, collective judgments.

The agents that participate in a judgment aggregation scenario will naturally have prefer-
ences over the outcome produced by the aggregation rule. First, given an agent i’s truthful
judgment Ji , we need to determine when agent i would prefer a judgment J over a different
judgment J ′. Preferences defined by the Hamming distance constitute one among several
ways to define agents’ preferences in judgment aggregation—yet, they are the most preva-
lent ones in the literature [5, 6, 8, 64]. They correspond to commonly considered preferences
based on the swap-distance in preference aggregation, and to preferences based on the size
of the symmetric difference between an agent’s true approval set and the outcome in multi-
winner approval voting [10]. In order to be able to compare our results with previous one of
the literature, in this paper we also assume Hamming-distance preferences.

The Hamming distance between two judgments J and J ′ equals the number of issues on
which these judgments disagree—concretely, it is defined as H(J , J ′) = ∑

ϕ∈� |J (ϕ) −
J ′(ϕ)|, where J (ϕ) denotes the binary value in the position of ϕ in J . For example,
H(100, 111) = 2. Then, the (weak, and analogously strict) preference of agent i over judg-
ments is defined by the relation �i (where J �i J ′ means that i’s utility from J is not lower
than that from J ′):

J �i J
′ if and only if H(Ji , J ) ≤ H(Ji , J

′).

But an aggregation rule often outputs more than one judgment, and thus we also need to
determine agents’ preferences over sets of judgments.4

We define two requirements guaranteeing that the preferences of the agents over sets of
judgments are consistent with their preferences over single judgments. To that end, let �̊i
(with strict part 
̊i ) denote agent i’s preferences over sets X , Y ⊆ J (�). We require that �̊i
is related to �i as follows:

– J �i J ′ if and only if {J } �̊i {J ′}, for any J , J ′ ∈ J (�);
– X 
̊i Y implies that there exist some J ∈ X and J ′ ∈ Y such that J 
i J ′ and

{J , J ′} � X ∩ Y .

The above conditions hold for almost all well-known preference extensions. For example,
they hold for the pessimistic preference (X 
pess Y if and only if there exists J ′ ∈ Y such
that J 
 J ′ for all J ∈ X ) and the optimistic preference (X 
opt Y if and only if there
exists J ∈ X such that J 
 J ′ for all J ′ ∈ Y ) of Duggan and Schwartz [20], as well as the
preference extensions of Gärdenfors [32] and Kelly [43]. The results provided in this paper
abstract away from specific preference extensions.

4 Various approaches have been taken within the area of social choice theory in order to extend preferences
over objects to preferences over sets of objects—see Barberà et al. [2] for a review.
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3 Egalitarian axioms and rules

This section focuses on two axioms of egalitarianism in judgment aggregation. We examine
them in relation to each other and to existing properties from belief merging, as well as to
the standard majority property defined below. Most of the well-known judgment aggregation
rules return the majority opinion, when that opinion is logically consistent [23].5

Let m(J) be the judgment that accepts exactly those issues accepted by a strict majority
of agents in J. A rule F is majoritarian when for all profiles J, m(J) ∈ J (�) implies that
F(J) = {J }.

Our first axiom with an egalitarian flavour is the maximin property, suggesting that we
should aim at maximising the utility of those agents that will be worst off in the outcome.
Assuming that everyone submits their truthful judgment during the aggregation process, this
means that we should try to minimise the distance of the agents that are furthest away from
the outcome. Formally:

� A rule F satisfies the maximin property if for all profiles J ∈ J (�)n and judgments
J ∈ F(J), there is no judgment J ′ such that the following holds:

max
i

H(Ji , J
′) < max

i
H(Ji , J )

Example 1 Consider the agenda � = {p, q, p ∧ q} such that J (�) = {(1, 1, 1), (1, 0, 0),
(0, 1, 0), (0, 0, 0)}, and take the profile J consisting of one agentwith judgment J = (1, 0, 0),
and two agents with judgment J ′ = (0, 1, 0). Consider the well known median judgment
aggregation rule[56]6 defined as follows:

MedHam(J) = argmin
J∈J (�)

∑

i∈N
H(Ji , J )

We have that MedHam(J) = {(0, 1, 0)}. Also, MedHam does not satisfy the maximin prop-
erty because 1 = maxi H(Ji , 000) < maxi H(Ji , 010) = 2.

Although the maximin property is quite convincing, there are settings like those motivated in
the Introduction where it does not offer sufficient egalitarian guarantees. We thus consider a
different property next, which we call the equity property. This axiom requires that the gaps
in the agents’ satisfaction beminimised. In other words, no two agents should find themselves
in very different distances with respect to the collective outcome. Formally:

� A rule F satisfies the equity property if for all profiles J ∈ J (�)n and judgments
J ∈ F(J), there is no judgment J ′ such that the following holds:

max
i, j

|H(Ji , J
′) − H(J j , J

′)| < max
i, j

|H(Ji , J ) − H(J j , J )|

No rule that satisfies either the maximin property or equity property can be majoritarian—
this observation subsumes Example 1 about the median rule that also is majoritarian. As
an illustration, in a profile of only two agents who disagree on some issues, any egalitarian
rule will try to reach a compromise, and this compromise will not be affected if any agents
holding one of the two initial judgments are added to the profile—in contrast, a majoritarian
rule will simply conform to the crowd.

5 A central problem in judgment aggregation concerns the fact that the issue-wise majority is not always
logically consistent [52].
6 The Median rule and is also known under a number of other names, notably distance-based rule [59],
Kemeny rule [23], and prototype rule [53].
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Proposition 1 shows that it is also impossible for the maximin property and the equity
property to simultaneously hold. Therefore, we have established the logical independence of
all three axioms discussed so far: maximin, equity, and majoritarianism.

Proposition 1 No judgment aggregation rule can satisfy both the maximin property and the
equity property.

Proof Take an agenda � such that J (�) = {J1 = 1110, J2 = 0111, J = 0000}, and
consider the profile J = (J1, J2). Then, the equity property would require that F(J) = {J }
as J gives utility 1 to both agents (thus minimising the difference between the best off and
the worst off agent), while the maximin property would require that F(J) ⊆ {J1, J2} (as
both these judgments give the worst off agent utility 2). So, no rule F can satisfy the two
properties at the same time. �

From Proposition 1, we also know now that the two properties of egalitarianism generate
two disjoint classes of aggregation rules. In particular, in this paper we focus on themaximal
rule that meets each property: a rule F is the maximal one of a given class if, for every
profile J, the outcomes obtained by any other rule in that class are always outcomes of F
too. Although maximal rules produce many ties, they are useful because their outcomes only
rely on a specific property, and as such are more easily explained and justified.7

The maximal rule satisfying the maximin property is the ruleMaxHam (see, e.g., Lang et
al. [50]). For all profiles J ∈ J (�)n , the following holds:

MaxHam(J) = argmin
J∈J (�)

max
i∈N H(Ji , J )

Analogously, we define a rule new to the judgment aggregation literature, which is the
maximal one satisfying the equity property. For all profiles J ∈ J (�)n , the following holds:

MaxEq(J) = argmin
J∈J (�)

max
i, j∈N |H(Ji , J ) − H(J j , J )|

To better understand these rules, consider the agenda � = {p, q, p ∧ q}. Suppose that there
are only two agents in a profile J, holding judgments J1 = (111) and J2 = (010). Then, we
have that MaxHam(J) = {(111), (010), (100)}, while MaxEq = {(100)}. In this example,
the difference in spirit between the two rules of our interest is evident. Although theMaxHam
rule could fully satisfy exactly one of the agents without causing much harm to the other, it
has the potential to create greater unbalance than the MaxEq rule, which in turn ensures that
the two agents are equally happy with the outcome (under Hamming-distance preferences).
In that sense, MaxEq is better suited for a group of agents that do not want any of them to
feel particularly put upon, while MaxHam seems more desirable when a minimum level of
happiness is asked for.

The MaxHam rule is also similar to the minimax approval voting rule [10]. The approval
voting framework is a special case of judgment aggregation, where there are no logical
constraints on the judgments and the agents can accept any subset of the given issues. Brams
et al. [10] are also interested in manipulability questions (and work with Hamming-distance
preferences), but the specific variant of the minimax rule that they consider differentiates
their results from ours. In particular, their proposed rule weighs the judgments that appear
in a profile with respect to their proximity to other judgments, while this is not the case for

7 Of course, several natural refinements of these rules can be defined, with respect to various other axiomatic
properties that we may find desirable. Identifying and studying such rules is an interesting direction for future
research.
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MaxHam. As finding the outcome of minimax is computationally hard, Caragiannis et al.
[12] provide approximation algorithms that circumvent this problem. Caragiannis et al. also
demonstrate the interplay between manipulability and lower bounds for the approximation
algorithm—establishing strategyproofness results for approximations of minimax.

3.1 Relations with egalitarian belief merging

A framework closely related to ours is that of belief merging [45], which is concerned with
how to aggregate several (possibly inconsistent) sets of beliefs into one consistent belief set.
Egalitarian belief merging is studied by Everaere et al. [28], who examine interpretations of
the Sen-Hammond equity condition [63] and the Pigou-Dalton transfer principle [17]—two
properties that are logically incomparable.8 We situate our egalitarian axioms within the
context of these egalitarian axioms from belief merging;

we reformulate these axioms into our framework.

� Fix an arbitrary profile J, agents i, j , and any two judgments J , J ′ ∈ J (�). An aggre-
gation rule F satisfies the Sen-Hammond equity property if whenever

H(Ji , J ) < H(Ji , J
′) < H(J j , J

′) < H(J j , J )

and H(Ji ′ , J ) = H(Ji ′ , J ′) for all other agents i ′ ∈ N \ {i, j}, then J ∈ F(J) implies
J ′ ∈ F(J).

For maximin it is easy to see that Sen-Hammond is a weaker axiom.While maximin requires
us to maximise the minimum utility in all cases, Sen-Hammond only requires this in case
a particular condition is satisfied. As far as equity is concerned, the maximal rule satisfies
Sen-Hammond, as we show in Proposition 2 below.

Proposition 2 MaxEq satisfies the Sen-Hammond equity property.

Proof Let J be a profile and let i∗, j∗ be agents, and J , J ′ judgments such that H(Ji∗ , J ) <

H(Ji∗ , J ′) < H(J j∗ , J ′) < H(J j∗ , J ). Further, let H(Ji , J ) = H(Ji , J ′) for all other
agents i ∈ N \ {i∗, j∗}. Let F = MaxEq—the maximal rule satisfying equity. We want to
show that F must satisfy the Sen-Hammond property. To this end, we show that J ∈ F(J)

implies J ′ ∈ F(J).
First, we define de(J, J ) to be the maximal difference in utility for J given agents’ judg-

ments in J. Formally, de(J, J ) = maxi, j∈N |H(Ji , J ) − H(J j , J )|.
We know that the maximal difference in utility for J ′ cannot be the difference in utilities

between the agents i∗ and j∗: Indeed, by equity we know that if J ∈ F(J) then it cannot be
the case that |H(Ji∗ , J ′)− H(J j∗ , J ′)| < |H(Ji∗ , J )− H(J j∗ , J )|. We also know that if the
maximal difference in utility for J ′ is the difference in utilities between agents in N \{i∗, j∗},
then we are done, since H(Ji , J ) = H(Ji , J ′) for all agents i ∈ N \ {i∗, j∗}.

So, suppose the maximal difference in utility for J ′ is the difference in utilities between
i∗ and some agent k �= j∗, i.e., de(J, J ′) = |H(Ji∗ , J ′) − H(Jk, J ′)|. The case for j∗ and
some agent k �= i∗ is symmetric. Let x = H(Jk, J ) = H(Jk, J ′).

– If x > H(Ji∗ , J ), then we know that |H(Ji∗ , J ) − x | > |H(Ji∗ , J ′) − x | because
H(Ji∗ , J ) < H(Ji∗ , J ′) by assumption.

8 Another egalitarian property in belief merging is the arbitration postulate. We do not go into detail on this
postulate, but refer the reader to Konieczny and Pérez [45].
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Fig. 1 The dashed line denotes incompatibility between the relevant notions: there is no rule that satisfies
both simultaneously. The line drawn with both dashes and dots denotes incomparability: there are rules that
satisfy both the notions, only one of them, or neither. The loosely dotted lines denote implication for the
maximal rules: MaxEq satisfies Sen-Hammond and MaxHam satisfies Pigou-Dalton. Finally, the property at
the beginning of an arrow with a solid line implies the property at the end of it

– If x ≤ H(Ji∗ , J ), then we know that |H(J j∗ , J ) − x | > |H(Ji∗ , J ′) − x | because
H(J j∗ , J ) > H(Ji∗ , J ′).

In either case, it cannot be that J ∈ F(J) as it should hold that de(J, J ) > de(J, J ′). �


The second axiom originating in belief merging is defined as follows:

� Given a profile J = (J1, . . . , Jn) and agents i and j such that:

– H(Ji , J ) < H(Ji , J ′) ≤ H(J j , J ′) < H(J j , J ),
– H(Ji , J ′) − H(Ji , J ) = H(J j , J ) − H(J j , J ′), and
– H(Ji∗ , J ) = H(Ji∗ , J ′) for all other agents i∗ ∈ N \ {i, j},

F satisfies the Pigou-Dalton transfer principle if J ∈ F(J) implies J ′ ∈ F(J).
We refer to these axioms simply as Sen-Hammond, and Pigou-Dalton. Note that Pigou-

Dalton is also a weaker version of our equity property, as it stipulates that the difference
between utility in agents should be lessened under certain conditions, while the equity prop-
erty always aims to minimise this distance. Thus, Pigou-Dalton is concerned with reaching
equity via the possible transfer of utility between agents, and only comes into play when
there are two agents such that we can “transfer” utility from one to the other.

Just as we can find a rule that satisfies both the equity property and a weakening of the
maximin property, viz. Sen-Hammond, we can do the same byweakening the equity property.

Proposition 3 MaxHam satisfies the Pigou-Dalton property.

Proof Let J be a profile, and let i, j be agents, and J , J ′ judgments such that H(Ji , J ) <

H(Ji , J ′) ≤ H(J j , J ′) < H(J j , J ), H(Ji , J ′) − H(Ji , J ) = H(J j , J ) − H(J j , J ′), and
H(Ji∗ , J ) = H(Ji∗ , J ′) for all other agents i∗ ∈ N \ {i, j}. Let F = MaxHam. We want to
show that J ∈ F(J) implies J ′ /∈ F(J).

Suppose therefore that J ∈ F(J). Further, suppose for contradiction that J ′ /∈ F(J). Let
de(J ) = maxi∗∈N H(J�, J ). Since J ′ /∈ F(J), it must be that de(J ′) > de(J ). Since both
H(Ji , J ′) < H(J j , J ) and H(J j , J ′) < H(J j , J ), this must mean that there is some agent
� ∈ N \ {i, j} such that H(Ji∗ , J ′) > H(Ji∗ , J ). This, of course, contradicts our assumption
that H(Ji∗ , J ) = H(Ji∗ , J ′) for all agents i∗ ∈ N \ {i, j}. �


We summarise the observations of this section in Fig. 1.
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4 Strategic manipulation

This section provides an account of strategic manipulation with respect to the egalitarian
axioms defined in Sect. 3. We start off with presenting the most general notion of strategic
manipulation in judgment aggregation, introduced by Dietrich and List [19].9 We assume
Hamming preferences throughout this section. Recall that wewrite F(J′) 
̊i F(J) to capture
that agent i prefers the outcome F(J′) to the outcome F(J), and 
̊i , denotes the relation of
the preference extension induced by Ji .

Definition 1 A rule F is susceptible to manipulation by agent i in profile J, if there exists
a profile J′ =−i J such that F(J′) 
̊i F(J).

We say that F is strategyproof in case F is not manipulable by any agent i ∈ N in any profile
J ∈ J (�)n .

Proposition 4 shows an important fact: In judgment aggregation, egalitarianism is incom-
patible with strategyproofness.10

Proposition 4 If an aggregation rule is strategyproof, it cannot satisfy the maximin property
or the equity property.

Proof We show the contrapositive. Let� be an agenda such thatJ (�) = 0000, 1000, 1100,
1111, and consider the following two profiles J (left) and J′ (right).

Ji 1100
J j 0000

F(J) 1000

J ′
i 1111
J ′
j 0000

F(J′) 1100
In profile J, both themaximin and the equity properties prescribe that 1000 should be returned
as the single outcome, while in profile J′ they agree on 1100. Because J′ = (J−i , J ′

i ), and
1100 
i 1000, this is a successful manipulation. Thus, if F satisfies the maximin or the
equity property, it fails strategyproofness. �

Strategyproofness according toDefinition 1 is a strong requirement, whichmany known rules
fail [8].

We investigate two more nuanced notions of strategyproofness that are novel to judgment
aggregation, yet have familiar counterparts in voting theory.

First, no-show manipulation happens when an agent can achieve a preferable outcome
simply by not submitting any judgment, instead of reporting an untruthful one.

Definition 2 A rule F is susceptible to no-show manipulation by agent i in profile J if
F(J−i ) 
̊i F(J).

We say that F satisfies participation if it is not susceptible to no-show manipulation by any
agent i ∈ N in any profile.11

Second, antipodal strategyproofness poses another barrier against manipulation, by stipu-
lating that an agent cannot change the outcome towards a better one for herself by reporting a
totally untruthful judgment. This is a strictly weaker requirement than full strategyproofness,
serving as a protection against excessive lying.

9 The original definition of Dietrich and List [19] concerned single-judgment collective outcomes, and a type
of preferences that covers Hamming-distance ones.
10 This agrees with [10], studying the minimax rule in approval voting.
11 cf. the no-show paradox in voting [30].
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Definition 3 A rule F is susceptible to antipodal manipulation by agent i in profile J if
F(J−i , J̄i ) 
̊i F(J).

We say that F satisfies antipodal strategyproofness if it is not susceptible to antipodal
manipulation by any agent i ∈ N in any profile. Similarly to participation, antipodal strate-
gyproofness is a weaker notion of strategyproofness.

In voting theory, Sanver and Zwicker [61] show that participation implies antipodal strat-
egyproofness (or half-way monotonicity, as called in that framework) for rules that output a
single winning alternative. Notably, this is not always the case in our model (see Example 2).
This is not surprising, as obtaining such a result independently of the preference extension
would be significantly stronger than the result by Sanver and Zwicker [61]. We are, however,
able to reproduce this relationship between participation and strategyproofness in Theorem 1,
for a specific type of preferences.

Example 2 Consider an agenda � with J (�) = {00, 01, 11}.12 We construct an anonymous
rule F that is only sensitive to which judgments are submitted and not to their multiplicity:

F(00) = F(11) = F(01, 00) = F(00, 11) = {01, 11}
F(01) = {00, 11}
F(01, 11) = F(01, 00, 11) = {01}

For the pessimistic preference extension, no agent can be strictly better off by abstaining.
However, compare the profiles (01, 00) and (01, 11): agent 2 with truthful judgment 00 can
move from outcome {01, 11} to outcome {01}, which is strictly better for her.

On the other hand, consider the same agenda as above and the following rule, which also
is anonymous and not sensitive to the number of different judgments that are submitted:

F ′(00) = F ′(11) = F ′(01, 00) = F ′(00, 11) = F ′(01, 11) = F ′(01, 00, 11) = {01, 11}
F(01) = {00, 11}

For the optimistic preference, no agent can be strictly better off by reporting the antipodal
judgment of her truthful one. However, compare the profiles (01, 00) and (01): agent 2 with
truthful judgment 00 can move from outcome {01, 11} to outcome {00, 11}, which is strictly
better for her.

Note that the rules demonstrated are quite unnatural for simplicity of the presentation.
More natural and elaborate rules also exist.13

While the two axioms are independent in the general case, participation implies antipodal
strategyproofness (Theorem 1) if we stipulate that

– X 
̊i Y if and only if there exist some J ∈ X and J ′ ∈ Y such that J 
i J ′ and
{J , J ′} � X ∩ Y .

If a preference extension satisfies the above condition,we say that it is decisive: it determines a
relation between many sets of judgments. This condition gives rise to a preference extension
equivalent to the large preference extension of Kruger and Terzopoulou [48]. Note that
a decisive preference is not necessarily acyclic—in fact, it may even be symmetric. The
interpretation of such a preference extension is slightly different than the usual one; when

12 For other agendas we can simply take the rules to be constant.
13 Note also that the first case of the example demonstrates antipodal manipulation, while the second case
demonstrates no-show manipulation.
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we say that a rule is strategyproof for a decisive preference where both X 
̊ Y and Y 
̊ X
hold, we mean that no agent i with X 
̊i Y and no agent j �= i with Y 
̊ j X will ever have
an incentive to manipulate. For example, if X = {J1, J4} and Y = {J2, J3} with J1 
i J2
and J3 
i J4, the decisive preference extension considers ranking X above Y and vice versa
both as reasonable options.

Using Lemma 1, we can now prove a result analogous to the one in voting theory, to give
a complete picture of how these axioms relate to each other in judgment aggregation.

Lemma 1 For judgments J , J ′ and J ′′: H(J , J ′) > H(J , J ′′), if and only if H( J̄ , J ′) <

H( J̄ , J ′′).

Proof For judgments J , J ′ ∈ J (�), we have that H( J̄ , J ′) = m − H(J , J ′). Suppose now
that H(J , J ′) > H(J , J ′′). Then H( J̄ , J ′) = m−H(J , J ′) < m−H(J , J ′′) = H( J̄ , J ′′).
The other direction is analogous. �

Theorem 1 For decisive preferences over sets of judgments, participation implies antipodal
strategyproofness.

Proof Working on the contrapositive, suppose that F is susceptible to antipodalmanipulation.
We will prove that F is susceptible to no-show manipulation.

By assumption, we know that there exists i ∈ N such that F(J−i , J̄i ) 
̊i F(J−i , Ji ), for
some profile J. This means that there exist J ′ ∈ F(J−i , J̄i ) and J ∈ F(J−i , Ji ) such that

H(Ji , J
′) < H(Ji , J ) (1)

Since agent i has decisive preferences, we also know that

J /∈ F(J−i , J̄i ) or J
′ /∈ F(J−i , Ji ) (2)

Recall that J−i is the profile J with agent i’s judgment removed. Our goal is to show that
there always exists a no-show manipulation from either (J−i , J̄i ) or J, to J−i . To this end,
let J ′′ ∈ F(J−i ). We now examine two cases.

Case 1 Suppose that H( J̄i , J ′′) < H( J̄i , J ′). If J ′′ /∈ F(J′) or J ′ /∈ F(J−i ), then F
is susceptible to no-show manipulation by agent i (with decisive preferences) in the pro-
file (J−i , J̄i ). So we only need to examine the case where both J ′′ ∈ F(J′) and J ′ ∈ F(J−i ).

If J /∈ F(J−i ), there is a no-show manipulation from J to J−i for agent i with decisive
preferences, since J ′ /∈ F(J−i ) and H(Ji , J ) > H(Ji , J ′) (from Eq. 1).

We only have left to consider when J ′′ ∈ F(J′), J ′ ∈ F(J−i ), and J ∈ F(J−i ). From
Eq. 2 we know that either J /∈ F(J−i , J̄i ) or J ′ /∈ F(J−i , Ji ).

– Suppose J /∈ F(J−i , J̄i ). ByLemma1 andEq. 1,we know that H( J̄i , J ′) > H( J̄i , J ). So
there is a no-showmanipulation from (J−i , J̄i ) toJ−i by agent i with decisive preferences.

– Suppose instead J ′ /∈ F(J−i , Ji ). Then similarly, there must be a no-show manipulation
from J by agent i with decisive preferences, as H(Ji , J ) > H(Ji , J ′).

Case 2 Suppose now that H( J̄i , J ′′) ≥ H( J̄i , J ′).
From Lemma 1 we have that H(Ji , J ′′) ≤ H(Ji , J ′), which together with Eq. (2) tells us

H(Ji , J ′′) < H(Ji , J ). The proof proceeds similarly.
If J ′′ /∈ F(J) or J /∈ F(J−i ), then F is susceptible to no-show manipulation by agent i(

with decisive preferences) in the profile J. So we only need to examine the case where both
J ′′ ∈ F(J) and J ∈ F(J−i ).
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If J ′ /∈ F(J−i ) there is a no-showmanipulation from (J−i , J̄i ) to J−i for agent i with deci-
sive preferences, since J ∈ F(J−i ) and H( J̄i , J ) < H( J̄i , J ′) (from Eq. 1 and Lemma 1).

Thus, we only have left to consider when J ′ ∈ F(J−i ). From Eq. (2) we know that either
J /∈ F(J−i , J̄i ) or J ′ /∈ F(J−i , Ji ).

– Suppose J /∈ F(J−i , J̄i ). By Lemma 1 and Eq. (1), we know that H( J̄i , J ′) > H( J̄i , J ).
So there is a no-show manipulation from (J−i , J̄i ) to J−i by agent i with decisive pref-
erences.

– Suppose instead J ′ /∈ F(J−i , Ji ). Then similarly, there must be a no-show manipulation
from J by agent i with decisive preferences, as H(Ji , J ) > H(Ji , J ′′).

Finally, we have shown that there always exists a no-show manipulation from either J or
(J−i , J̄i ), as desired. �

We next prove that any rule satisfying the maximin property is immune to both no-show
manipulation and antipodal manipulation (Theorem 2), while this is not true for the equity
property (Proposition 5).14 Weemphasise that the theoremholds forall preference extensions.
These results—holding for two independent notions of strategyproofness—are significant for
two reasons. First, they bring to light the conditions under which we can have our cake and
eat it too, simultaneously satisfying an egalitarian property and a degree of strategyproofness.
In addition, they provide a further way to distinguish between the properties of maximin and
equity: the former is better suited in contexts where we may worry about the agents’ strategic
behaviour.

Theorem 2 The maximin property implies participation and antipodal strategyproofness.

Proof The proofs for the two properties are similar, but only one of them utilises Lemma 1—
we provide them separately for the sake of completeness.
Proof for participation Suppose for contradiction that F satisfies the maximin property but
violates participation. Then there must exist agent i ∈ N and profile J where Ji is agent
i’s truthful judgment, such that F(J−i ) 
̊i F(J). This means there must exist judgments
J ∈ F(J) and J ′ ∈ F(J−i ) such that J ′ 
i J and {J , J ′} � F(J)∩F(J−i ). Because agent i
strictly prefers J ′ to J , this means that H(Ji , J ) > H(Ji , J ′). We consider two cases.

Case 1 Suppose that J ′ /∈ F(J). Let k be the distance between the worst off agent’s
judgment in J and any judgment in F(J). Then,

H(J j ′ , J ) ≤ k for all j ′ ∈ N . (3)

We know that H(Ji , J ′) < k because H(Ji , J ) ≤ k, and agent i strictly prefers J ′ to J . From
Inequality (3), this means that if J ′ is not among the outcomes in F(J), there has to be some
j ∈ N \ {i} such that H(J j , J ′) > k. But all judgments submitted to profile J−i by agents in
N \ {i} are at most at distance k from J by Inequality (3), so any rule satisfying the maximin
property will select J as an outcome of F(J−i )—instead of J ′, which is a contradiction.

Case 2 Suppose that J ′ ∈ F(J), meaning that J /∈ F(J−i ). Analogously to the first case,
let k′ be the distance between the worst off agent’s judgment in J−i and any judgment in
F(J−i ). Then,

H(J j ′ , J
′) ≤ k′ for all j ′ ∈ N \ {i}. (4)

14 Note that antipodal strategyproofness is not so weak a requirement that is immediately satisfied by all
“utilitarian” aggregation rules. For example, the Copeland voting rule fails the analogous axiom of half-way
monotonicity [66].
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Moreover, since J /∈ F(J−i ), it is the case that

H(J j , J ) > k′ for some j �= i . (5)

In profile J, Inequalities (4) and (5) still hold. In addition, we have that H(Ji , J ) > H(Ji , J ′)
because agent i strictly prefers J ′ to J . So, for any rule satisfying the maximin property,
judgment J ′ will be strictly better as an outcome of F(J) than J , which is a contradiction
because J ∈ F(J).
Proof for antipodal strategyproofness. Suppose for contradiction that F satisfies themaximin
property but violates antipodal strategyproofness. Then there must exist agent i ∈ N and
profile J where Ji is agent i’s truthful judgment, such that F(J−i , J̄i ) 
̊i F(J). This means
there must exist judgments J ∈ F(J) and J ′ ∈ F(J−i , J̄i ) such that J ′ 
i J and {J , J ′} �

F(J) ∩ F(J−i , J̄i ). Because agent i strictly prefers J ′ to J , this means that H(Ji , J ) >

H(Ji , J ′). We consider two cases.
Case 1 Suppose that J ′ /∈ F(J). Let k be the distance between the worst off agent’s

judgment in J and any judgment in F(J). The following holds:

H(J j ′ , J ) ≤ k for all j ′ ∈ N (6)

We know that H(Ji , J ′) < k because H(Ji , J ) ≤ k, and agent i strictly prefers J ′ to J .
From Inequality (6), this means that if J ′ is not among the outcomes in F(J), there has to
be some j ∈ N \ {i} such that H(J j , J ′) > k. But all judgments submitted to profile J−i by
agents in N \ {i} are at most at distance k from J by Inequality (6). In addition, by Lemma 1
and the fact that agent i strictly prefers J ′ to J , we know that H( J̄i , J ) < H( J̄i , J ′). So
any rule satisfying the maximin property will select J as an outcome of F(J−i , J̄i )—instead
of J ′, which is a contradiction.

Case 2 Suppose that J ′ ∈ F(J), meaning that J /∈ F(J−i , J̄i ). Analogously to the first
case, let k′ be the distance between the worst off agent’s judgment in (J−i , J̄i ) and any
judgment in F(J−i , J̄i ). Then, the following holds:

H(J j ′ , J
′) ≤ k′ for all j ′ �= i and H( J̄i , J

′) ≤ k′ (7)

Moreover, since J /∈ F(J−i , J̄i ), the following is the case:

H(J j , J ) > k′ for some j �= i or H( J̄i , J ) > k′ (8)

However, by Lemma 1 and the fact that agent i strictly prefers J ′ to J , we know—together
with Inequality 7—that H( J̄i , J ) < H( J̄i , J ′) ≤ k. Hence, the following holds:

H(J j , J ) > k′ for some j �= i (9)

Now, In profile J, Inequalities (7) and (9) still hold. In addition, we have that H(Ji , J ) >

H(Ji , J ′) because agent i strictly prefers J ′ to J . So, for any rule satisfying the maximin
property, judgment J ′ will be strictly better as an outcome of F(J) than J , which is a
contradiction because J ∈ F(J). �

Corollary 1 The rule MaxHam satisfies antipodal strategyproofness and participation.

Proposition 5 No rule that satisfies the equity property can satisfy participation or antipodal
strategyproofness .

Proof We first give a counterexample for antipodal strategyproofness.
Consider the following profiles J = (Ji , J j ) and J′ = (J−i , J̄i ). We give a visual repre-

sentation of the profiles as well as the outcomes under an arbitrary rule F that satisfies the
equity principle. We specify that J (�) = {00110, 00000, 01110, 10000, 11111}.
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F(J)

00110

J
Ji : 00000
J j : 01110

F(J′)
10000

J′
J ′
i : 11111
J ′
j : 01110

4

4

1

4

2

1

Each edge from an individual judgment to a collective one is labelled with the Hamming
distance between the two. It is clear that agent i will benefit from her antipodal manipulation,
as her true judgment is much closer to the singleton outcome in J′ than the singleton outcome
in J.

We now give a similar counterexample for participation. Consider the following pro-
files J = (Ji , J j , Jk) and J′ = (J j , Jk)—meaning J′ is equivalent to J with agent
i removed. We give a visual representation of the profiles as well as the outcomes
under an arbitrary rule F that satisfies the equity principle. We specify that J (�) =
{00110, 00000, 01110, 10000, 11111} as above.

F(J)

00110

J

Ji : 00000

J j : 01110
Jk : 11111

F(J′)
10000

J′

Jk : 11111
J j : 01110

4

4

1

4

4

2

1

3

We can see from the figure that agent i benefits by not participating as her true judgment is
closer to the singleton outcome in J′—where she does not participate—than the singleton
outcome in J—where she does participate. �


Corollary 2 The rule MaxEq does not satisfy participation or antipodal strategyproofness.

5 Computational aspects

We have discussed two aggregation rules that reflect desirable egalitarian principles—the
MaxHam and MaxEq rules—and examined whether they give agents incentives to misrepre-
sent their truthful judgments. In this section we consider how complex it is, computationally,
to employ these rules, and the complexity of determining whether an agent can manipulate
the outcome.

The MaxHam rule has been considered from a computational perspective before [39–41]:
it was shown that a decision variant of the outcome determination problem for it is �

p
2-

complete. Here, we extend this analysis to the MaxEq rule, and we compare the two rules
with each other on their computational properties.

We primarily establish some computational complexity results; motivated by these, we
then illustrate how some computational problems related to these rules can be solved using
the paradigm of Answer Set Programming (ASP) [35].

5.1 Computational complexity

We investigate some computational complexity aspects of the judgment aggregation rules
that we have considered. To ease readability, we only describe the main lines of our results
in the main body of the paper—for full details, we refer to the Appendix (Sect. 1).
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Consider the problem of outcome determination (for a rule F). This is most naturally
modelled as a search problem, where the input consists of an agenda � and a profile J =
(J1, . . . , Jn) ∈ J (�)n . The problem is to produce some judgment J ∗ ∈ F(J).

We will show that for the MaxEq rule, this problem can be solved in polynomial time with
a logarithmic number of calls to an oracle for NP search problems (where the oracle also
produces a witness for yes answers—also called an FNP witness oracle). Said differently,
the outcome determination problem for the the MaxEq rule lies in the complexity class
FPNP[log,wit]. We also show that the problem is complete for this class (using the standard
type of reductions used for search problems: polynomial-time Levin reductions).

Theorem 3 The outcome determination problem for the MaxEq rule is FPNP[log,wit]-
complete under polynomial-time Levin reductions.

Proof Weonly provide the basic idea of the proof here—for thewhole proof see theAppendix.
Membership in FPNP[log,wit] can be shown by giving a polynomial-time algorithm that
solves the problem by querying an FNP witness oracle a logarithmic number of times. The
algorithm first finds the minimum value k of maxJ ′,J ′′∈J |H(J , J ′)−H(J , J ′′)| by means of
binary search—requiring a logarithmic number of oracle queries. Then, with one additional
oracle query, the algorithm can produce some J ∗ ∈ J (�) with maxJ ′,J ′′∈J |H(J ∗, J ′) −
H(J ∗, J ′′)| = k.

To show FPNP[log,wit]-hardness, we reduce from the problem of finding a satisfying
assignment of a (satisfiable) propositional formulaψ that sets amaximumnumber of variables
to true [14, 44].

This reduction works roughly as follows. Firstly, we produce 3CNF formulas ψ1, . . . , ψv

where each ψi is 1-in-3-satisfiable 15 if and only if there exists a satisfying assignment of ψ

that sets at least i variables to true. Then, for each i , we transform ψi to an agenda �i and
a profile Ji such that there is a judgment with equal Hamming distance to each J ∈ Ji if
and only if ψi is 1-in-3-satisfiable. Finally, we put the agendas �i and profiles Ji together
into a single agenda � and a single profile J such that we can—from the outcomes selected
by the MaxEq rule—read off the largest i for which ψi is 1-in-3-satisfiable, and thus, the
maximum number of variables set to true in any truth assignment satisfying ψ . This last step
involves duplicating issues in �1, . . . , �v different numbers of times, and creating logical
dependencies between them. Moreover, we do this in such a way that from any outcome
selected by the MaxEq rule, we can reconstruct a truth assignment satisfying ψ that sets a
maximum number of variables to true. �

The result of Theorem 3 means that the computational complexity of computing outcomes
for the MaxEq rule lies at the �

p
2-level of the Polynomial Hierarchy. This is in line with

previous results on the computational complexity of the outcome determination problem
for the MaxHam rule—De Haan and Slavkovik [40] showed that a decision variant of the
outcome determination problem for the MaxHam rule is �

p
2-complete.

Interestingly, we found that the problem of deciding if there exists a judgment J ∗ ∈ J (�)

that has the exact same Hamming distance to each judgment in the profile is NP-hard, even
when the agenda consists of logically independent issues.

Proposition 6 Given an agenda � and a profile J, the problem of deciding whether there is
some J ∗ ∈ J (�) withmaxJ ′,J ′′∈J |H(J ∗, J ′)−H(J ∗, J ′′)| = 0 is NP-complete. Moreover,

15 Let ψ be a propositional logic formula in 3CNF, i.e., ψ = c1 ∧ · · · ∧ cm , where each ci is a clause
containing exactly three literals. Then ψ is 1-in-3-satisfiable if there exists a truth assignment α that satisfies
exactly one of the three literals in each clause ci .
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NP-hardness holds even for the case where � consists of logically independent issues—i.e.,
the case where J (�) = {0, 1}m for some m.

This is also in line with previous results for the MaxHam rule—De Haan [39] showed that
computing outcomes for the MaxHam rule is computationally intractable even when the
agenda consists of logically independent issues.

Next, we turn our attention to the problem of strategic manipulation. Specifically, we show
that—for the case of decisive preferences over sets of judgments—the problem of deciding
if an agent i can strategically manipulate is in the complexity class �

p
2 .

Proposition 7 Let � be a preference relation over judgments that is polynomial-time com-
putable, and let �̊ be a decisive extension over sets of judgments. Then the problemof deciding
if a given agent i can strategically manipulate under the MaxEq rule—i.e., given � and J,
deciding if there exists some J′ =−i J with MaxEq(J′) 
̊i MaxEq(J)—is in the complexity
class �

p
2 .

Proof To showmembership in�
p
2 = NPNP, we describe a nondeterministic polynomial-time

algorithm with access to an NP oracle that solves the problem. The algorithm firstly guesses
a new judgment J ′

i for agent i in the new profile J′, and guesses a truth assignment α for
the variables in �. It then checks that J ′

i is consistent—that is, that α satisfies every formula
in J ′

i .
Next, the algorithm needs to check whether MaxEq(J′) 
̊i MaxEq(J)—that is, whether

there is some J ′ ∈ MaxEq(J′) and some J ∈ MaxEq(J) such that J ′ 
i J and {J , J ′} �

MaxEq(J) ∩ MaxEq(J′). It does so as follows. It first (1) computes the values k =
minJ0∈J (�) maxJ1,J2∈J |H(J0, J1)−H(J0, J2)| and k′ = minJ0∈J (�) maxJ1,J2∈J′ |H(J0, J1)
− H(J0, J2)|. Then, (2) it nondeterministically guesses appropriate sets J , J ′ ∈ J (�), and
using these values k and k′ it verifies whether the sets J and J ′ satisfy the requirements. We
will describe these two steps (1) and (2) in more detail.

For step (1), the algorithm uses the NP oracle to decide, for various values of u, whether
there is some J0 ∈ J (�) such that maxJ1,J2∈J |H(J0, J1) − H(J0, J2)| ≤ u. This is
an NP problem, because one can nondeterministically guess the set J0, together with a
truth assignment witnessing its consistency, and then in polynomial deterministic time
verify that maxJ1,J2∈J |H(J0, J1) − H(J0, J2)| ≤ u. By querying the NP oracle for all
relevant values of u—or more efficiently: for a logarithmic number of values of u, by
using binary search—the algorithm can identify k = minJ0∈J (�) maxJ1,J2∈J |H(J0, J1) −
H(J0, J2)|. In an entirely similar fashion, the algorithm can also compute the value k′ =
minJ0∈J (�) maxJ1,J2∈J′ |H(J0, J1) − H(J0, J2)| in polynomial time using the NP oracle.

Then, for step (2), the algorithm nondeterministically guesses judgments J , J ′ together
with two truth assignments α, α′ and it verifies that J , J ′ ∈ J (�) by checking that α

satisfies J and that α′ satisfies J ′. What remains is to check that J ′ ∈ MaxEq(J′), that J ∈
MaxEq(J), that J ′ 
i J and that {J , J ′} � MaxEq(J) ∩MaxEq(J′). For both J ∗ ∈ {J , J ′}
and for both J∗ ∈ {J, J′}, the algorithm can computemaxJ1,J2∈J∗ |H(J ∗, J1)−H(J ∗, J2)| in
polynomial time, and compare it with the appropriate value among k and k′, thereby deciding
if J ∗ ∈ MaxEq(J∗). Thus, the algorithm can in polynomial time check whether J and J ′ are
appropriate witnesses for MaxEq(J′) 
̊i MaxEq(J). It accepts the input if and only if this is
the case. �

For no-show manipulation and antipodal manipulation, we obtain an upper bound of �

p
2-

membership for the MaxEq rule, under similar restrictions for the preference relation � and
its decisive extension �̊—essentially by the same argument, observing that the choice of
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manipulating judgment set J ′
i is determined by the problem input, and thus does not need to

be nondeterministically chosen.

Corollary 1 Let � be a preference relation over judgments that is polynomial-time com-
putable, and let �̊ be a decisive extension over sets of judgments. Then the problems of
deciding if a given judgment aggregation scenario is susceptible to no-show manipulation or
to antipodal manipulation under the MaxEq rule (for a given agent i)—is in the complexity
class �

p
2 .

Proof (sketch). The proof is entirely analogous to that of Proposition 7, with the only differ-
ence that the relevant judgment set J ′

i can be computed in polynomial-time from the input.
Therefore, the resulting algorithm is a deterministic polynomial-time algorithm with access
to an NP oracle, leading to membership in �

p
2 . �


These �
p
2 -membership and �

p
2-membership results can straightforwardly be extended to

other preferences, as well as to the MaxHam rule. Due to space constraints, we omit further
details on this. Still, we shall mention that results demonstrating that strategic manipula-
tion is very complex are generally more welcome than analogous ones regarding outcome
determination. If manipulation is considered a negative side-effect of the agents’ strategic
behaviour, knowing that it is hard for the agents to materialise it is good news.16 In Sect. 5.2
we will revisit these concerns from a different angle.

5.2 ASP encoding for theMaxEq rule

The complexity results in Sect. 5.1 leave no doubt that applying our egalitarian rules is com-
putationally difficult. Nevertheless, they also indicate that a useful approach for computing
outcomes of the MaxEq rule in practice would be to encode this problem into the paradigm
of Answer Set Programming (ASP; 35), and to use ASP solving algorithms.

ASP offers an expressive automated reasoning framework that typically works well for
problems at the �

p
2 level of the Polynomial Hierarchy.

In this section,wewill showhow this encoding can be done—similarly to anASP encoding
for the MaxHam rule [41]. We refer to the literature for details on the syntax and semantics
of ASP—e.g., [33, 35].

Our aim in the current section and in the subsequent section (Sects. 5.2 and 5.3 ) is to
complement the work of De Haan and Slavkovik [41] by providing (i) an encoding of the
MaxEq rule, and (ii) a generic, readable and easily understandable method of encoding the
problem of strategic manipulation (for arbitrary judgment aggregation rules). Especially the
latter involves a non-trivial encoding. This paves the way for an extensive and thorough
experimental analysis of the performance of ASP solvers on computing outcomes and deter-
mining manipulability of judgment aggregation scenarios. Such an experimental analysis is
beyond the scope of this paper, and we leave this for future research.

We use the same basic setup that De Haan and Slavkovik [41] use to represent judgment
aggregation scenarios—with some simplifications and modifications for the sake of read-
ability. In particular, we use the predicate voter/1 to represent individuals, we use issue/1

to represent issues in the agenda, and we use js/2 to represent judgments—both for the
individual voters and for a dedicated agent col that represents the outcome of the rule.

With this encoding of judgment aggregation scenarios, one can add further constraints on
the predicate js/2 that express which judgments are consistent, based on the logical relations

16 Note though that hardness results regarding manipulation of our egalitarian rules remain an open question.
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between the issues in the agenda �—as done by De Haan and Slavkovik [41]. We refer to
their work for further details on how this can be done.

Now, we show how to encode the MaxEq rule into ASP, similarly to the encoding of the
MaxHam rule by De Haan and Slavkovik [41]. We begin by defining a predicate dist/2 to
capture the Hamming distance D between the outcome and the judgment set of an agent A.
1 dist(A,D):-voter(A),
2 D=# count{X:issue(X),js(col ,X),js(A,-X)}.

Then,we define predicates maxdist/1, mindist/1 and inequity/1 that capture themax-
imumHamming distance from the outcome to any judgment in the profile, the minimum such
Hamming distance, and the difference between the maximum and minimum (or inequity),
respectively.
3 maxdist(Max) :- Max = #max { D : dist(A,D) }.
4 mindist(Min) :- Min = #min { D : dist(A,D) }.
5 inequity(Max -Min) :- maxdist(Max), mindist(Min).

Finally, we add an optimization constraint that states that only outcomes should be selected
that minimize the inequity. 17

6 #minimize { I@30 : inequity(I) }.

For any answer set program that encodes a judgment aggregation setting, combined with
Lines 2–6, it then holds that the optimal answer sets are in one-to-one correspondence with
the outcomes selected by the MaxEq rule.

Interestingly, we can readily modify this encoding to capture refinements of the MaxEq
rule. An example of this is the refinement that selects (among the outcomes of theMaxEq rule)
the outcomes that minimize the maximum Hamming distance to any judgment in the profile.
We can encode this example refinement by adding the following optimization statement that
works at a lower priority level than the optimization in Line 6.
7 #minimize { Max@20 : maxdist(Max) }.

5.3 Encoding strategic manipulation

We now show how to encode the problem of strategic manipulation into ASP. The value of
this section’s contribution should be viewed from the perspective of the modeller rather than
from that of the agents. That is, even if we do not wish for the agents to be able to easily check
whether they can be better off by lying, it may be reasonable, given a profile of judgments,
to externally determine whether a certain agent can benefit from being untruthful.

We achieve this with the meta-programming techniques developed by Gebser et al. [34].
Their meta-programming approach allows one to additionally express optimization state-
ments that are based on subset-minimality, and to transform programs with this extended
expressivity to standard (disjunctive) answer set programs. We use this to encode the prob-
lem of strategic manipulation.

Due to space reasons, we will not spell out the full ASP encoding needed to do so. Instead,
we will highlight the main steps, and describe how these fit together.

We will use the example ofMaxEq, but the exact same approach would work for any other
judgment aggregation rule that can be expressed in ASP efficiently using regular (cardinality)
optimization constraints—in other words, for all rules for which the outcome determination
problem lies at the �

p
2 level of the Polynomial Hierarchy. Moreover, we will use the exam-

ple of a decisive preference 
̊ over sets of judgments that is based on a polynomial-time

17 The expression “@30” in Line 6 indicates the priority level of this optimization statement (we used the
arbitrary value of 30, and priority levels lexicographically).
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computable preference 
 over judgments. The approach can be modified to work with other
preferences as well.

We begin by guessing a new judgment J ′
i for the individual i that is trying to manipulate—

and we assume, w.l.o.g., that i = 1.
8 voter(prime (1)).
9 1 { js(prime (1),X), js(prime (1) ,-X) } 1 :- issue(X).

Then, we express the outcomes of the MaxEq rule, both for the non-manipulated profile J
and for the manipulated profile J′, using the dedicated agents col (for J) and prime(col)

(for J′). This is done exactly as in the encoding of the problem of outcome determination (so
for the case of MaxEq, as described in Sect. 5.2)—with the difference that optimization is
expressed in the right format for the meta-programming method of Gebser et al. [34].

We express the following subset-minimality minimization statement (at a higher priority
level than all other optimization constraints used so far). This will ensure that every possible
judgment J ′

i will be considered as a subset-minimal solution.
10 _criteria (40,1,js(prime (1),X)) :- js(prime (1),S).
11 _optimize (40,1,incl).

To encode whether or not the guessed manipulation was successful, we have to define
a predicate successful/0 that is true if and only if (i) J ′ 
i J and (ii) J and J ′ are not
both selected as outcome by the MaxEq rule for both J and J′, where J ′ is the outcome
encoded by the statements js(prime(col),X) and J is the outcome encoded by the state-
ments js(col,X). Since we assume that 
i is computable in polynomial time, and since we
can efficiently check using statements in the answer set whether J and J ′ are selected by the
MaxEq rule for J and J′, we know that we can define the predicate successful/0 correctly
and succinctly in our encoding. For space reasons, we omit further details on how to do this.

Then, we express another minimization statement (at a lower priority level than all other
optimization statements used so far), that states that we should make successful true
whenever possible. Intuitively, we will use this to filter our guessed manipulations that are
unsuccessful.
12 unsuccessful :- not successful.
13 successful :- not unsuccessful.
14 _criteria (10,1, unsuccessful) :- unsuccessful.
15 _optimize (10,1,card).

Finally, we feed the answer set program P that we constructed so far into the meta-
programming method, resulting in a new (disjunctive) answer set program P ′ that uses no
optimization statements at all, and whose answer sets correspond exactly to the (lexico-
graphically) optimized answer sets of our program P . Since the new program P ′ does not
use optimization, we can add additional constraint to P ′ to remove some of the answer
sets. In particular, we will filter out those answer sets that correspond to an unsuccessful
manipulation—i.e., those containing the statement unsuccessful. Effectively, we add the
following constraint to P ′:
16 :- unsuccessful.

As a result the only answer sets of P ′ that remain correspond exactly to successful manip-
ulations J ′

i for agent i .
The meta-programming technique that we use uses the full disjunctive answer set pro-

gramming language. For this full language, finding answer sets is a �
p
2 -complete problem

[21]. This is in line with our result of Proposition 7 where we show that the problem of
strategic manipulation is in �

p
2 .

The encoding that we described can straightforwardly be modified for various variants
of strategic manipulation (e.g., antipodal manipulation). To make this work, one needs to
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express additional constraints on the choice of the judgment J ′
i . To adapt the encoding for

other preference relations 
̊, one needs to adapt the definition of successful/0, expressing
under what conditions an act of manipulation is successful.

Our encoding using meta-programming is relatively easily understandable, since we do
not need to tinker with the encoding of complex optimization constraints in full disjunctive
answer set programming ourselves—this we outsource to the meta-programming method.
If one were to do this manually, there is more space for tailor-made optimizations, which
might lead to a better performance of ASP solving algorithms for the problem of strategic
manipulation. It is an interesting topic for future research to investigate this, and possibly
to experimentally test the performance of different encodings, when combined with ASP
solving algorithms.

6 Conclusion

We have introduced the concept of egalitarianism into the framework of judgment aggrega-
tion and have presented how egalitarian and strategyproofness axioms interact in this setting.
Importantly, we have shown that the two main interpretations of egalitarianism give rise to
rules with differing levels of protection against manipulation. In addition, we have looked
into computational aspects of the egalitarian rules that arise from our axioms—regarding
both outcome determination and manipulability—in a twofold manner: First, we have pro-
vided worst-case complexity results; second, we have shown how to solve the relevant hard
problems using Answer Set Programming.

While we have formalised two prominent egalitarian principles in terms of axioms, it
remains to be seen whether other egalitarian axioms can provide stronger barriers against
manipulation. For example, in parallel to majoritarian rules, one could define rules that min-
imise the distance to some egalitarian ideal. Moreover, as is the case in judgment aggregation,
there is an obvious lack of voting rules designed with egalitarian principles in mind. We hope
this paper opens the door for similar explorations in voting theory.

Finally, this paper brings up more concrete technical questions too: Can full axiomati-
sations be provided for more refined egalitarian rules in judgment aggregation (similarly to
that of the leximin rule based on the Sen-Hammond principle by Hammond, [42])? Can the
agenda structures that cause the incompatibility of our different axioms be characterised,
and do our results extend to more general utility functions beyond those based on Hamming
distance? All these are intriguing directions for future work.
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
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Appendix

In this section we delve deeper into the proofs of our complexity results.
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Appendix 1: Hardness of outcome determination for theMaxEq rule

In this appendix, we will show that the outcome determination problem for the MaxEq
rule boils down to a �

p
2-complete problem. In particular, we will show that the outcome

determination problem for the MaxEq rule, when seen as a search problem, is complete
(under polynomial-time Levin reductions) for FPNP[log,wit]—which is a search variant of
�

p
2 . Then, we show that the problem of finding the minimum difference between two agents’

satisfaction, and deciding if this value is divisible by 4, is a �
p
2-complete problem.

Along the way, we show that deciding if there is a judgment J ∗ ∈ J (�) that has the same
Hamming distance to each judgment in a given profile J is NP-hard, even in the case where
the agenda consists of logically independent issues.

We begin, in Sect. 2, by recalling some notions from computational complexity theory—
in particular, notions related to search problems. In Sect. 3, we establish the computational
complexity results mentioned above.

Appendix 2: Additional complexity-theoretic preliminaries

We will consider search problems. Let � be an alphabet. A search problem is a binary
relation R over strings in�∗. For any input string x ∈ �∗, we let R(x) = { y ∈ �∗ | (x, y) ∈
R } denote the set of solutions for x . We say that a Turing machine T solves R if on input x ∈
�∗ the following holds: if there exists at least one y such that (x, y) ∈ R, then T accepts x
and outputs some y such that (x, y) ∈ R; otherwise, T rejects x .

With any search problem R we associate a decision problem SR , defined by SR = { x ∈
�∗ | there exists some y ∈ �∗ such that (x, y) ∈ R }. We will use the following notion of
reductions for search problems. A polynomial-time Levin reduction from one search prob-
lem R1 to another search problem R2 is a pair of polynomial-time computable functions
(g1, g2) such that:

– The function g1 is a many-one reduction from SR1 to SR2 , i.e., for every x ∈ �∗ it holds
that x ∈ SR1 if and only if g1(x) ∈ SR2 .

– For every string x ∈ SR1 and every solution y ∈ R2(g1(x)) it holds that (x, g2(x, y)) ∈
R1.

One could also consider other types of reductions for search problems, such as Cook
reductions (an algorithm that solves R1 by making one or more queries to an oracle that
solves the search problem R2).

For more details, we refer to textbooks on the topic—e.g., [36].
We will use complexity classes that are based on Turing machines that have access to

an oracle. Let C be a complexity class with decision problems. A Turing machine T with
access to a yes-no C oracle is a Turing machine with a dedicated oracle tape and dedicated
states qoracle, qyes and qno. Whenever T is in the state qoracle, it does not proceed according to
the transition relation, but instead it transitions into the state qyes if the oracle tape contains
a string x that is a yes-instance for the problem C , i.e., if x ∈ C , and it transitions into the
state qno if x /∈ C .

Let C be a complexity class with search problems. Similarly, a Turing machine with
access to a witness C oracle has a dedicated oracle tape and dedicated states qoracle, qyes
and qno. Also, whenever T is in the state qoracle it transitions into the state qyes if the oracle
tape contains a string x such that there exists some y such that C(x, y), and in addition the
contents of the oracle tape are replaced by (the encoding of) such an y; it transitions into the
state qno if there exists no y such that C(x, y). Such transitions are called oracle queries.
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We consider the following complexity classes that are based on oracle machines.

– The class PNP[log] consists of all decision problems that can be decided by a deterministic
polynomial-time Turing machine that has access to a yes-no NP oracle, and on any input
of length n queries the oracle at most O(log n) many times. This class coincides with the
class PNP|| (spoken: “parallel access to NP”), and is also known as �

p
2 .

Incidentally, allowing the algorithms access to a witness FNP oracle instead of access to
a yes-no NP oracle leads to the same class of problems, i.e., the class PNP[log,wit] that
coincides with PNP[log] (cf. [46, Corollary 6.3.5]).

– The class FPNP[log,wit] consists of all search problems that can be solved by a determin-
istic polynomial-time Turing machine that has access to a witness FNP oracle, and on
any input of length n queries the oracle at most O(log n) many times. In a sense, it is the
search variant of PNP[log].
This complexity class happens to coincidewith the classFNP//OptP[log],which is defined
as the set of all search problems that are solvable by a nondeterministic polynomial-time
Turingmachine that receives as advice the answer to one “NP optimization” computation
[14, 44].

Appendix 3: Complexity proofs for theMaxEq rule

We define the search problem of outcome determination for a judgment aggregation rule F
as follows. The input for this problem consists of an agenda �, a profile J = (J1, . . . , Jn) ∈
J (�)n . The problem is to output some judgment J ∗ ∈ F(J). In other words, the problem
is the relation R that consists of all pairs ((�, J), J ∗) such that J ∈ J (�)n is a profile
and J ∗ ∈ F(J). We will show that the outcome determination problem for the MaxEq rule
is complete for the complexity class FPNP[log,wit] under polynomial-time Levin reductions.

In order to do so, we begin with establishing a lemma that will be useful for the
FPNP[log,wit]-hardness proof.

This lemma uses the notion of 1-in-3-satisfiability. Letψ be a propositional logic formula
in 3CNF, i.e., ψ = c1 ∧ · · · ∧ cm , where each ci is a clause containing exactly three literals.
Then ψ is 1-in-3-satisfiable if there exists a truth assignment α that satisfies exactly one of
the three literals in each clause ci .

Lemma 1 Let ψ be a 3CNF formula with clauses c1, . . . , cb that are all of size exactly 3 and
with n variables x1, . . . , xn, such that

(1) no clause of ψ contains complementary literals, and (2) there exists some x∗ ∈
{x1, . . . , xn} and a partial truth assignment β : {x1, . . . , xn} \ {x∗} → {0, 1} that satisfies
exactly one literal in each clause where x∗ or ¬x∗ occurs, and satisfies no literal in each
clause where x∗ or ¬x∗ occurs. We can, in polynomial time given ψ , construct an agenda �

on m issues such that J (�) = {0, 1}m and a profile J over �, such that:

– � = { yi , y′
i | 1 ≤ i ≤ n } ∪ {z1, . . . , z5};

– There exists a judgment J ∈ J (�) that has the same Hamming distance to each J ′ ∈ J
if and only if ψ is 1-in-3-satisfiable;

– if ψ is not 1-in-3-satisfiable, then for each judgment set J ∈ J (�) it holds
that maxJ ′,J ′′∈J |H(J , J ′) − H(J , J ′′)| ≥ 2, and there exists some J ∈ J (�) such
that maxJ ′,J ′′∈J |H(J , J ′) − H(J , J ′′)| = 2;

– The above two properties hold alsowhen restricted to judgment sets J that contain exactly
one of yi and y′

i for each 1 ≤ i ≤ n, and that contain ¬z1, . . . ,¬z4, z5; and
– The number of judgments in the profile J only depends on n and b.
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Fig. 2 Construction of the judgments J1, . . . , J2n in the proof of Lemma 1

Fig. 3 Illustration of the construction of the judgments Jk,1, Jk,2, Jk,3 for the example clause ck = (x1 ∨
¬x2 ∨ x3) in the proof of Lemma 1

Proof We let the agenda � consist of the 2n + 5 issues y1, . . . , yn , y′
1, . . . , y

′
n, z1, . . . , z5.

It follows directly that J (�) = {0, 1}2n+5. Then, we start by constructing 2n judg-
ments J1, . . . , J2n over these issues, defined as depicted in Fig. 2.

Then, for each clause ck of ψ , we introduce three judgments Jk,1, Jk,2, and Jk,3 that are
defined as follows. The judgment Jk,1 contains yi ,¬y′

i for each positive literal xi occurring
in ck , and contains y′

i ,¬yi for each negative literal ¬xi occurring in ck . Conversely, the
judgments Jk,2, Jk,3 contain y′

i ,¬yi for each positive literal xi occurring in ck , and con-
tain yi ,¬y′

i for each negative literal ¬xi occurring in ck . For each variable x j that does
not occur in ck , all three of Jk,1, Jk,2, Jk,3 contain ¬y j ,¬y′

j . Finally, the judgment Jk,1 con-
tains¬z1, . . . ,¬z4, z5, the judgment Jk,2 contains¬z1,¬z2, z3, z4, z5, and the judgment Jk,3
contains z1, z2,¬z3,¬z4, z5.

This is illustrated in Fig. 3 for the example clause (x1 ∨ ¬x2 ∨ x3).
The profile J then consists of the judgments J1, . . . , J2n , as well as the judg-

ments Jk,1, Jk,2, Jk,3 for each 1 ≤ k ≤ b.
In order to prove that J has the required properties, we consider the following observations

and claims (and prove the claims).

Observation 1 If a judgment J contains exactly one of yi and y′
i for each i , then theHamming

distance from J to each of J1, . . . , J2n—restricted to the issues y1, . . . , yn, y′
1, . . . , y

′
n—is

exactly n.

Claim 2 If a judgment J contains both yi and y′
i for some i, or neither yi nor y

′
i for some i,

then there are at least two judgments among J1, . . . , J2n such that the Hamming distance
from J to these two judgments differs by at least 2.
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Proof of Claim 2 We argue that this is the case for y1 and y′
1, i.e., for the case of i = 1. For

other values of i , an entirely similar argument works.
Picking both y1 and y′

1 to be part of a judgment J adds to the Hamming distances
between J , on the one hand, and J1, . . . , J2n , on the other hand, according to the vector v+

1 :

v+
1 = (0, 2, . . . , 2

︸ ︷︷ ︸
n−1

, 2, 0, . . . , 0
︸ ︷︷ ︸

n−1

).

Picking both ¬y1 and ¬y′
1 to be part of the set J adds to the Hamming distances between J

and J1, . . . , J2n according to the vector v−
1 :

v−
1 = (2, 0, . . . , 0

︸ ︷︷ ︸
n−1

, 0, 2, . . . , 2
︸ ︷︷ ︸

n−1

).

Picking exactly one of y1 and y′
1 and exactly one of ¬y1 and ¬y′

1 to be part of J corresponds
to the all-ones vector 1 = (1, . . . , 1). More generally, both yi and y′

i to be part of J adds to
the Hamming distances according to the vector v+

i :

v+
i = (2, . . . , 2

︸ ︷︷ ︸
i−1

, 0, 2, . . . , 2
︸ ︷︷ ︸
n−i+2

, 0, . . . , 0
︸ ︷︷ ︸

i−1

, 2, 0, . . . , 0
︸ ︷︷ ︸
n−i+2

),

picking both ¬yi and ¬y′
i corresponds to the vector v−

i :

v−
i = (0, . . . , 0

︸ ︷︷ ︸
i−1

, 2, 0, . . . , 0
︸ ︷︷ ︸
n−i+2

, 2, . . . , 2
︸ ︷︷ ︸

i−1

, 0, 2, . . . , 2
︸ ︷︷ ︸
n−i+2

),

and picking exactly one of yi and y′
i and exactly one of¬yi and¬y′

i to be part of J corresponds
to the all-ones vector 1 = (1, . . . , 1). For each 1 ≤ i ≤ n, the vectors v−

1 , . . . , v−
n and v+

i
are linearly independent, and the vectors v+

1 , . . . , v+
n and v−

i are linearly independent.
Suppose now that we pick J to contain both y1 and y′

1. Suppose, moreover, to derive a
contradiction, that the Hamming distance from J to each of the judgments J1, . . . , J2n is the
same. This means that there is some way of choosing s2, . . . , sn such that v

−
1 = ∑

1<i≤n v
si
i ,

which contradicts the fact that v+
1 , . . . , v+

n and v−
i are linearly independent—since each v−

j

can be expressed as v−
j = v+

i + v−
i − v+

j . Thus, we can conclude that there exist at least two
judgments among J1, . . . , J2n such that theHamming distance from J to these two judgments
differs. Moreover, since all vectors contain only even numbers, and the coefficients in the
sum are integers (in fact, either 0 or 1), we know that the difference must be even and thus at
least 2.

An entirely similar argument works for the case where we pick J to contain both ¬y1
and ¬y′

1. �
Observation 3 Let α : {x1, . . . , xn} → {0, 1} be a truth assignment that satisfies exactly one
literal in each clause of ψ . Consider the judgment Jα = { yi ,¬y′

i | 1 ≤ i ≤ n, α(xi ) =
1 } ∪ { y′

i ,¬yi | 1 ≤ i ≤ n, α(xi ) = 0 } ∪ {¬z1, . . . ,¬z4, z5}. Then the Hamming distance
from Jα to each judgment in the profile J is exactly n + 1.

Claim 4 Suppose that ψ is not 1-in-3-satisfiable. Then for each judgment J that contains
exactly one of yi and y′

i for each i , there is some clause ck of ψ such that the difference in
Hamming distance from J to (two of) Jk,1, Jk,2, Jk,3 is at least 2.

Proof of Claim 4 Take an arbitrary judgment J that contains exactly one of yi and y′
i for

each i . This judgment J corresponds to the truth assignment αJ : {x1, . . . , xn} → {0, 1}
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defined such that for each 1 ≤ i ≤ n it is the case that α(xi ) = 1 if yi ∈ J and α(xi ) = 0
if yi /∈ J . Since ψ is not 1-in-3-satisfiable, we know that there exists some clause c� such
that αJ does not satisfy exactly one literal in c�. We distinguish several cases: either (i) αJ

satisfies no literals in c�, or (ii) αJ satisfies two literals in c�, or (iii) αJ satisfies three literals
in c�. In each case, the Hamming distances from J , on the one hand, and Jk,1, Jk,2, Jk,3, on
the other hand, must differ by at least 2. This can be verified case by case—and we omit a
further detailed case-by-case verification of this. �
Claim 5 If ψ is not 1-in-3-satisfiable, then there exists a judgment J such that maxJ ′,J ′′∈J
|H(J , J ′) − H(J , J ′′)| = 2.

Proof of Claim 5 Suppose that ψ is not 1-in-3-satisfiable. We know that there exists a vari-
able x∗ ∈ {x1, . . . , xn} and a partial truth assignment β : {x1, . . . , xn} \ {x∗} → {0, 1}
that satisfies exactly one literal in each clause where x∗ or ¬x∗ does not occur, and satis-
fies no literal in each clause where x∗ or ¬x∗ occurs. Without loss of generality, suppose
that x∗ = x1. Now consider the judgment Jβ = {¬y1,¬y′

1}∪ { yi ,¬y′
i | 1 < i ≤ n, β(xi ) =

1 } ∪ { y′
i ,¬yi | 1 < i ≤ n, β(xi ) = 0 } ∪ {¬z1, . . . ,¬z4, z5}.

One can verify that the Hamming distances from Jβ , on the one hand, and J ′ ∈ J, on
the other hand, differ by at most 2—and for some J ′, J ′′ ∈ J it holds that |H(J , J ′) −
H(J , J ′′)| = 2. �

We now use the above observations and claims to show that � and J have the required
properties. If ψ is 1-in-3-satisfiable, by Observation 3, there is some J ∈ J (�) that has
the same Hamming distance to each J ′ ∈ J. Suppose, conversely, that ψ is not 1-in-3-
satisfiable. Then by Claims 2 and 4 , there exist two judgments J ′, J ′′ ∈ J such that H(J , J ′)
and H(J , J ′′) differ (by at least 2). Thus, ψ is 1-in-3-satisfiable if and only if there exists
a judgment set J ∈ J (�) that has the same Hamming distance to each judgment in the
profile J.

Suppose that ψ is not 1-in-3-satisfiable. Then by Claims 2 and 4 , we know that for
each J ∈ J (�) it holds that maxJ ′,J ′′∈J |H(J , J ′)− H(J , J ′′)| ≥ 2. Moreover, by Claim 5,
there exists a judgment J ∈ J (�) such that maxJ ′,J ′′∈J |H(J , J ′) − H(J , J ′′)| = 2.

We already observed that that J (�) = {0, 1}m for some m. Moreover, one can straight-
forwardly verify that the statements after the first two bullet points in the statement of the
lemma also hold when restricted to judgment sets J that contain exactly one of yi and y′

i for
each 1 ≤ i ≤ n and that contain ¬z1, . . . ,¬z4, z5. This concludes the proof of the lemma. �


Now that we have established the lemma, we continue with the FPNP[log,wit]-
completeness proof.

Theorem 3 The problem of outcome determination for the MaxEq rule is FPNP[log,wit]-
complete under polynomial-time Levin reductions.

Proof To show membership in FPNP[log,wit], we describe an algorithm with access to a
witness FNP oracle that solves the problem in polynomial time by making at most a loga-
rithmic number of oracle queries. This algorithm will use an oracle for the following FNP
problem: given some k ∈ N and given the agenda � and the profile J, compute a judg-
ment J ∈ J (�) such that maxJ ′,J ′′∈J |H(J , J ′) − H(J , J ′′)| ≤ k, if such a J exists, and
return “none” otherwise. By using O(log |�|) queries to this oracle, one can compute the
minimum value kmin of maxJ ′,J ′′∈J |H(J , J ′)−H(J , J ′′)|where the minimum is taken over
all judgments J ∈ J (�). Then, with a final query to the oracle, using k = kmin, one can use
the oracle to produce a judgment J ∗ ∈ MaxEq(J).
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We will show FPNP[log,wit]-hardness by giving a polynomial-time Levin reduction from
the FPNP[log,wit]-complete problem of finding a satisfying assignment for a (satisfiable)
propositional formula ψ that sets a maximum number of variables to true (among any satis-
fying assignment of ψ) [14, 44, 47, 65].

Letψ be an arbitrary satisfiable propositional logic formula with v variables. Without loss
of generality, assume that v is even and that there is a satisfying truth assignment for ψ that
sets at least one variable to true. We will construct an agenda � and a profile J, such that the
minimumvalue ofmaxJ ′,J ′′∈J |H(J ∗, J ′)−H(J ∗, J ′′)|, for any J ∗ ∈ J (�), is divisible by 4
if and only if the maximum number of variables set to true in any satisfying assignment of ψ

is odd. Moreover, we will construct� and J in such a way that from any J ∗ ∈ MaxEq(�)we
can construct, in polynomial time, a satisfying assignment ofψ that sets a maximum number
of variables to true.

This—together with the fact that� and J can be constructed in polynomial time—suffices
to exhibit a polynomial-time Levin reduction, and thus to show FPNP[log,wit]-hardness.

We proceed in several stages (i–iv).

(i) We begin, in the first stage, by constructing a 3CNF formula ψi with certain properties,
for each 1 ≤ i ≤ v.

Claim 6 We can construct in polynomial time, for each 1 ≤ i ≤ v, a 3CNF formula ψi , that
is 1-in-3-satisfiable if and only if there is a truth assignment that satisfies ψ and that sets
at least i variables in ψ to true. Moreover, we construct these formulas ψi in such a way
that they all contain exactly the same variables x1, . . . , xn and exactly the same number b of
clauses, and such that each formula ψi has the properties:

– That it contains no clause with complementary literals, and
– That it contains a variable x∗ for which there exists a partial truth assignment β :

{x1, . . . , xn} \ {x∗} → {0, 1} that satisfies exactly one literal in each clause where x∗
or ¬x∗ does not occur, and satisfies no literal in each clause where x∗ or ¬x∗ occurs.

Proof of Claim 6 Consider the problems of deciding if a given truth assignment α to the
variables in ψ satisfies ψ , and deciding if α satisfies at least i variables, for some 1 ≤ i ≤ v.
These problems are both polynomial-time solvable. Therefore, by using standard techniques
from the proof of the Cook-Levin Theorem [16], we can construct in polynomial time a
propositional formula χ in 3CNF containing (among others) the variables t1, . . . , tv , the
variable x† and the variables inψ such that any truth assignment to the variables x†, t1, . . . , tv
and the variables in ψ can be extended to a satisfying truth assignment for χ if and only if
either (i) it sets x† to true, or (ii) it satisfies ψ and for each 1 ≤ i ≤ v it sets ti to false if and
only if it sets at least i variables among the variables in ψ to true.

Then, we can transform this 3CNF formula χ to another 3CNF formula χ ′ with a similar
property—namely that any truth assignment to the variables x†, t1, . . . , tv and the variables
in ψ can be extended to a truth assignment that satisfies exactly one literal in each clause
of χ if and only if either (i) it sets x† to true, or (ii) it satisfies ψ and for each 1 ≤ i ≤ v it
sets ti to false if and only if it sets at least i variables among the variables in ψ to true. We do
so by using the the polynomial-time reduction from 3SAT to 1-IN-3-SAT given by Schaefer
[62].

Then, for each particular value of i , we add two clauses that intuitively serve to ensure that
variable ti must be set to false in any 1-in-3-satisfying truth assignment. We add (s0 ∨ s1 ∨ ti )
and (¬s0 ∨ ¬s1 ∨ ti ), where s0 and s1 are fresh variables—the only way to satisfy exactly
one literal in both of these clauses is to set exactly one of s0 and s1 to true, and to set ti to
false.
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Moreover, we add the clauses (r0 ∨ r1 ∨ x†), (¬r0 ∨ r2 ∨¬x†), (x∗ ∨ r3 ∨ r0), and (¬x∗ ∨
r4 ∨ r0), where r0, . . . , r4 and x∗ are fresh variables. These clauses serve to ensure the
property that there always exists a partial truth assignment β : {x1, . . . , xn} \ {x∗} → {0, 1}
that satisfies exactly one literal in each clause where x∗ or ¬x∗ does not occur, and satisfies
no literal in each clause where x∗ or ¬x∗ occurs. Moreover, these added clauses preserve
1-in-3-satisfiability if and only if there exists a 1-in-3-satisfying truth assignment for the
formula without these added clauses that sets x† to true.

Putting all this together, we have constructed a 3CNF formula χ ′′—consisting of χ ′ with
the addition of the six clauses mentioned in the above two paragraphs—that has the right
properties mentioned in the statement of the claim. In particular, χ ′′ is 1-in-3-satisfiable if
and only if there is a truth assignment that satisfies ψ and that sets at least i variables in ψ

to true. Moreover, the constructed formula χ ′′ has the same variables and the same number
of clauses, regardless of the value of i chosen in the construction. �

Since the formulas ψi , as described in Claim 6, satisfy the requirements for Lemma 1, we
can construct agendas �1, . . . , �v and profiles J1, . . . , Jv such that for each 1 ≤ i ≤ v, the
agenda �i and the profile Ji satisfy the conditions mentioned in the statement of Lemma 1.
Moreover, we can construct the agendas �1, . . . , �v in such a way that they are pairwise
disjoint. For each 1 ≤ i ≤ v, let yi,1, . . . , yi,n, y′

i,1, . . . , y
′
i,n, zi,1, . . . , zi,5 denote the issues

in �i and let Ji = (Ji,1, . . . , Ji,u).

(ii) Then, in the second stage, wewill use the profiles�1, . . . , �v and the profiles J1, . . . , Jv

to construct a single agenda � and a single profile J.

We let � contain the issues yi, j , y′
i, j and zi,1, . . . , zi,5, for each 1 ≤ i ≤ v and each 1 ≤

j ≤ n, as well as issues wi,�,k for each 1 ≤ i ≤ v, each 1 ≤ � ≤ u and each 1 ≤ k ≤ n.
We let J contain judgments J ′

i,� for each 1 ≤ i ≤ v and each 1 ≤ � ≤ u, that we will define
below. Intuitively, for each i , the sets J ′

i,� will contain the judgments Ji,1, . . . , Ji,u from the
profile Ji .

Take an arbitrary 1 ≤ i ≤ v, and an arbitrary 1 ≤ � ≤ u. We let J ′
i,� agree with Ji,�

(fromJi ) on all issues from�i—i.e., the issues yi, j , y′
i, j for each 1 ≤ j ≤ n and zi,1, . . . , zi,5.

On all issues ϕ from each �i ′ , for 1 ≤ i ′ ≤ v with i ′ �= i , we let J ′
i,�(ϕ) = 0. Then, we

let J ′
i,�(wi ′,�′,k) = 1 if and only if i = i ′ and � = �′.

In other words, J ′
i,� agrees with Ji,� on the issues from �i , it sets every issue from each

other�i ′ to false, it sets all the issueswi,�,k to true, and it sets all other issueswi ′,�′,k to false.

(iii) In the third stage, we will replace the logically independent issues in � by other issues,
in order to place restrictions on the different judgments that are allowed.

We start by describing a constraint—in the form of a propositional logic formula � on the
original (logically independent) issues in �—and then we describe how this constraint can
be used to produce replacement formulas for the issues in �. We define � = �1 ∨ �2 by:

�1 = ∨

1≤i≤v
1≤�≤u

⎛

⎜
⎜
⎝

∧

1≤k≤n
wi,�,k ∧ ∧

1≤i ′≤v,1≤�≤u
i �=i ′ or ��=�′

¬wi ′,�′,k

⎞

⎟
⎟
⎠

�2 =
⎛

⎜
⎝

∧

1≤i≤v,1≤�≤u
1≤k≤n

¬wi,�,k

⎞

⎟
⎠ ∧

⎛

⎜
⎝

∧

1≤i≤v
1≤ j≤n

(yi, j ↔ ¬y′
i, j )

⎞

⎟
⎠
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In other words, � requires that either (1) for some i, � all issues wi,�,k are set to true, and all
other issues wi ′,�′,k are set to false, or (2) all issues wi,�,k are set to false and for each i, j
exactly one of yi, j and y′

i, j is set to true.
Because we can in polynomial time compute a satisfying truth assignment for�, we know

that we can also in polynomial time compute a replacement ϕ′ for each ϕ ∈ �, resulting in
an agenda �′, so that the logically consistent judgments J ∈ J (�′) correspond exactly to
the judgments J ∈ J (�) that satisfy the constraint � [26, Proposition 3].

In the remainder of this proof, wewill use� (with the restriction that judgment sets should
satisfy �) interchangeably with �′.

(iv) Finally, in the fourth stage,wewill duplicate some issuesϕ ∈ � a certain number of times,
by adding semantically equivalent (yet syntactically different) issues to the agenda �,
and by updating the judgments in the profile J accordingly.

For each 1 ≤ i ≤ v, we will define a number ci and will make sure that there are ci
(syntactically different, logically equivalent) copies of each issue in � that originated from
the agenda �i . In other words, we duplicate each agenda �i a certain number of times, by
adding ci − 1 copies of each issue that originated from �i . For each 1 ≤ i ≤ v, we let ci =
(v−i). This concludes the description of our reduction—i.e., of the profile� and the profile J.
What remains is to show that the minimum value of maxJ ′,J ′′∈J |H(J ∗, J ′) − H(J ∗, J ′′)|,
for any J ∗ ∈ J (�), is divisible by 4 if and only if the maximum number of variables set to
true in any satisfying assignment of ψ is odd. To do so, we begin with stating and proving
the following claims.

Claim 7 For any judgment J ∗ ∈ J (�) that satisfies�1, the value ofmaxJ ′,J ′′∈J |H(J ∗, J ′)−
H(J ∗, J ′′)| is at least 2n.

Proof of Claim 7 Take some J ∗ that satisfies �1. Then there must exist some i, � such that J
sets all wi,�,k to true and all other wi ′,�′,k to false. Therefore, |H(J ∗, J ′

i,�) − H(J ∗, Ji ′,�′)|
is at least 2n, for any i ′, �′ such that (i, �) �= (i ′, �′). �

Claim 8 For any judgment J ∗ ∈ J (�) that satisfies�2, the value ofmaxJ ′,J ′′∈J |H(J ∗, J ′)−
H(J ∗, J ′′)| is strictly less than 2v.

Proof of Claim 8 Take some J ∗ that satisfies �2. Then J ∗ sets each wi,�,k to false, and for
each 1 ≤ i ≤ v the judgment J contains ¬zi,1, . . . ,¬zi,4, zi,5 and contains exactly one
of yi, j and y′

i, j for each 1 ≤ j ≤ n. Moreover, without loss of generality, we may assume
that J ∗, for each 1 ≤ i ≤ v, assigns truth values to the issues originating from �i in a way
that corresponds either (a) to a truth assignment to the variables in ψi witnessing that ψi

is 1-in-3-satisfiable, or (b) to a partial truth assignment β : var(ψi ) \ {x1} → {0, 1} that
satisfies exactly one literal in each clause where x1 or ¬x1 occurs, and satisfies no literal in
each clause where x1 or ¬x1 occurs.

If this were not the case, we could consider another J ∗ instead that does satisfy these
properties and that has a value of maxJ ′,J ′′∈J |H(J ∗, J ′) − H(J ∗, J ′′)| that is at least as
small.

Then, by the construction of J—and the profiles Ji used in this construction—for each J ′
i, j

it holds that H(J ∗, J ′
i, j ) = ∑

1≤i≤v ci (n+1)+n±di , where di = 0 ifψi is 1-in-3-satisfiable
and di = (v − i) otherwise. From this it follows that the value of maxJ ′,J ′′∈J |H(J ∗, J ′) −
H(J ∗, J ′′)| is strictly less than 2v, since ψ1 is 1-in-3-satisfiable. �
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By Claims 7 and 8 , and because we may assume without loss of generality that n ≥ v, we
know that any judgment J ∗ ∈ J (�) that minimizes maxJ ′,J ′′∈J |H(J ∗, J ′) − H(J ∗, J ′′)|
must satisfy �2. Moreover, by a straightforward modification of the arguments in the
proof of Claim 8, we know that the minimal value, over judgments J ∗ ∈ J (�),
ofmaxJ ′,J ′′∈J |H(J ∗, J ′)−H(J ∗, J ′′)| is 2(v−i) for the smallest value of i such thatψi is not
1-in-3-satisfiable, which coincides with 2(v+1−i) for the largest value of i such thatψi is 1-
in-3-satisfiable. Sincev is even (and thusv+1 is odd),weknow that 2(v+1−i) is divisible by4
if and only if i is odd. Therefore, the minimal value of maxJ ′,J ′′∈J |H(J ∗, J ′)− H(J ∗, J ′′)|
is divisible by 4 if and only if the maximum number of variables set to true in any satisfying
assignment of ψ is odd.

Moreover, it is straightforward to show that from any J ∗ ∈ MaxEq(�) we can construct,
in polynomial time, a satisfying assignment of ψ that sets a maximum number of variables
to true.

This concludes our description and analysis of the polynomial-time Levin reduction, and
thus of our hardness proof. �

Proposition 6 Given an agenda � and a profile J, the problem of deciding whether there is
some J ∗ ∈ J (�) withmaxJ ′,J ′′∈J |H(J ∗, J ′)−H(J ∗, J ′′)| = 0 is NP-complete. Moreover,
NP-hardness holds even for the case where � consists of logically independent issues—i.e.,
the case where J (�) = {0, 1}m for some m.

Proof We show that the problem is in NP by giving a nondeterministic polynomial-time
algorithm that solves the problem. Given an agenda � and a profile J, the algorithm guesses
a binary vector J ∗, together with a truth assignment α witnessing that J ∗ is consistent. The
algorithm first checks that J ∗ ∈ J (�), by checking that α satisfies all formulas in J ∗. Then
it iterates over all J ′ ∈ J, and computes H(J ∗, J ′). This provides enough information to
computemaxJ ′,J ′′∈J |H(J ∗, J ′)−H(J ∗, J ′′)|. The algorithm accepts if and only if this value
equals 0.

We continue with showing NP-hardness. We give a polynomial-time reduction from the
problem of deciding if there exists a truth assignment that satisfies a given 3CNF formula ψ

and that sets at least 3 variables among the variables of ψ to true. It is straightforward to
show that this problem is NP-complete. NP-hardness of this problem can be shown by a
reduction from the problem of satisfiability of propositional logic formulas in 3CNF. Take
an arbitrary 3CNF formula χ with variables x1, . . . , xn , and construct the formula χ ′ =
χ ∧ (xn+1 ∨ xn+2 ∨ xn+3). Then χ is satisfiable if and only if χ ′ is satisfiable by setting at
least 3 of its variables to true.

We proceed with our hardness proof. Take an arbitrary 3CNF formula ψ . By Claim 6 in
the proof of Theorem 3, we can in polynomial time construct a 3CNF formula ψ ′ with vari-
ables x1, . . . , xn that is 1-in-3-satisfiable if and only if ψ is satisfiable by a truth assignment
that sets at least 3 of its variables to true. Moreover, we know that ψ ′ contains no clause with
complementary literals, and thatψ ′ contains a variable x∗ for which there exists a partial truth
assignment β : {x1, . . . , xn} \ {x∗} → {0, 1} that satisfies exactly one literal in each clause
of ψ ′ where x∗ or ¬x∗ does not occur, and satisfies no literal in each clause of ψ ′ where x∗
or ¬x∗ occurs. Then, by Lemma 1, we can construct from ψ ′ an agenda � with logically
independent issues and a profile J over � with the property that there is some J ∗ ∈ J (�)

with maxJ ′,J ′′∈J |H(J ∗, J ′)− H(J ∗, J ′′)| = 0 if and only ifψ ′ is 1-in-3-satisfiable—which
is the case if and only if the original formula ψ is satisfiable.

Therefore, the problem of deciding—for a given agenda� and a given profile J over�—
whether there is some J ∗ ∈ J (�)withmaxJ ′,J ′′∈J |H(J ∗, J ′)−H(J ∗, J ′′)| = 0 isNP-hard,
even for the case where � consists of logically independent issues. �
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Notably, the proof of Theorem 3 brings out an intriguing fact about a problem that is at first
glance simpler than outcome determination for MaxEq: Given an agenda � and a profile J,
deciding whether the minimum value of maxi, j∈N |H(Ji , J ) − H(J j , J )| for J ∈ J (�)—
the value that the MaxEq rule minimizes—is divisible by 4, is �

p
2-complete (Proposition 8).

Intuitively, merely computing the minimum value that is relevant for MaxEq is �
p
2-hard.

Proposition 8 Given an agenda � and a profile J, deciding whether the minimal value
of maxJ ′,J ′′∈J |H(J ∗, J ′) − H(J ∗, J ′′)| for J ∗ ∈ J (�), is divisible by 4, is a �

p
2 -complete

problem.

Proof This follows from the proof of Theorem 3. The proof of membership in FPNP[log,wit]
for the outcome determination problem for the MaxEq rule can directly be used to show
membership in �

p
2 for this problem.

Moreover, the polynomial-time Levin reduction used in the FPNP[log,wit]-hardness proof
can be seen as a polynomial-time (many-to-one) reduction from the �

p
2-complete problem

of deciding if the maximum number of variables set to true in any satisfying assignment of
a (satisfiable) propositional formula ψ is odd [47, 65]. �
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