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This study investigates the interaction between a freely-rising, deformable bubble and a
freely-settling particle of the same size due to gravity. Initially, an in-line configuration
is considered while varying the Bond, Galilei and Archimedes numbers. The study shows
that as the bubble and particle approach each other, a liquid film forms between them that
undergoes drainage. The formation of the liquid film leads to dissipation of kinetic energy,
and for sufficiently large bubble velocities, particle flotation takes place. Increasing the
Bond number causes the bubble to deform more severely, which may allow the particle to
pass through the bubble as it ruptures. This work also considers an offset configuration,
which shows that the bubble slides away from the particle, affecting its settling trajectory.

1. Introduction

The transport and dynamics of rigid or deformable particles and their interaction
with surfaces are of considerable importance in various scientific and industrial fields
due to their potential for efficient, and sustainable applications. Understanding these
interactions is crucial for optimising processes ranging from wastewater treatment to
mineral beneficiation and food processing. In many engineering applications, a deformable
surface, or interface separating two fluids, affects the motion of rigid or deformable bodies.
Furthermore, in oceanography, particles and marine snow settle in a background fluid
that consists of large density gradients caused by variations in salinity and temperature
levels, which may greatly affect their fate. Bubbles rising in the ocean may also interact
with sedimenting particles, which may play a role in their transport (Masry et al.
2021).Comprehensive reviews have been carried out on the motion in viscosity and/or
density stratified fluids by (Govindarajan & Sahu 2014; Ardekani et al. 2017; Magnaudet
& Mercier 2020; More & Ardekani 2023).
At the core of these interactions is the dynamic behaviour of bubbles. When a bubble

impacts and interacts with a horizontal (Klaseboer et al. 2014; Manica et al. 2015, 2016)
or curved (Basařová et al. 2019; Esmaili et al. 2019) solid surface, a hydrodynamic dimple
(Ascoli et al. 1990) might form on the surface of the bubble closest to the solid boundary.
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If the approach velocity of the interaction is sufficiently high, the bubble may rebound, or
bounce, after colliding with the solid surface (Chan et al. 2011; Zawala et al. 2007; Zawala
& Dabros 2013). If the approach velocity is low, a trapped liquid film in the gap region
between the bubble and the solid surface will start to drain. Klaseboer et al. (2000) and
Chan et al. (2011) have studied the film drainage and coalescence of bubbles and drops,
which present further complexities. The deformation of these bodies can be characterised
across six orders of magnitude in length scales, which presents difficulties when studying
the dynamic nature of the interaction both experimentally and numerically. Moreover, as
a bubble impacts a solid wall, it exerts forces that can dislodge contaminants or biofilms
(Gómez-Suárez et al. 2001; Sharma et al. 2005a,b; Parini & Pitt 2006; Esmaili et al.
2019). Menesses et al. (2017) have shown that a continuous stream of single bubbles
can effectively prevent biofouling by generating consistent shear stress. This principle
extends beyond cleaning, influencing the behavior of bubbles in different mediums and
applications. The adhesion behaviour of bubbles or droplets with solids is influenced by
the properties of the deformable interface and the surrounding fluid (Danov et al. 2016),
the presence of contaminants (Basarova et al. 2018; Legawiec et al. 2023), and the surface
characteristics of the solid, such as its geometry or wettability (Krasowska et al. 2009).
As a bubble adheres to a solid surface, it forms a three-phase contact line, which is the
interface where the bubble, solid, and liquid meet. The dynamics and stability of the
contact line are crucial in understanding how bubbles interact with solid surfaces.
In the context of mineral beneficiation, froth flotation relies on bubbles to separate

valuable minerals from waste material. The process of flotation depends heavily on
the characteristics of the separated particles, and the bubbles. Specifically, the surface
wettability of the solid particles is crucial for allowing the bubbles to selectively separate
hydrophobic from hydrophilic particles (Xie et al. 2021), and the bubbles must be
appropriately sized to enhance the probability of collision between the bubbles and the
particles (Yoon & Luttrell 1989). The main causes behind the detachment of parti-
cles from bubbles during flotation separation systems were summarised by Klassen &
Mokrousov (1963) and Wang et al. (2023). These include the sliding of the particle on
the bubble surface, the overall hydrodynamic behaviour of the bubble, such as its lateral
migration or deformation, or the collision of the aggregate with a solid wall. When a
bubble/particle aggregate collides with a solid horizontal wall, Wang et al. (2023) have
found that the detachment of the particle is dependent on the inclination angle of the
major axis of the bubble with the solid wall during the collision. Comprehensive reviews
of recent advancements in understanding the hydrodynamics and surface interactions in
froth flotation systems can be found in Wang & Liu (2021) and Xie et al. (2021).
In liquid-solid suspensions, the behavior of bubbles is equally important. Bubbles

interact with the solid particles, affecting their rise velocity and overall dynamics.
Hooshyar et al. (2013) have considered the interaction between a rising bubble and a
neutrally buoyant particle suspension. The particles were characterised based on their
diameter, and when the size of the particles is sufficiently small, the bubble rises without
collision. The work has shown that as the rising bubble interacts with larger particles,
the bubble’s rise velocity decreases, its surface deforms, and it imparts momentum on
the surrounding particles. The bubble will then continue to rise until it interacts with
another particle, repeating the cycle of the interaction.
Many experimental (Clift et al. 1978; Bhaga & Weber 1981) and computational

(Sussman & Puckett 2000; Dijkhuizen et al. 2010) studies have considered the hydro-
dynamic behaviour of particles or bubbles settling or rising in a quiescent background
fluid. At small Reynolds number, Re = DpUtρl/µl, the particle terminal speed is
Ut = 2

9 (ρp − ρl)gR
2/µl where ρp is the particle density, R = Dp/2 is the particle
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(bubble) radius, g is the gravitational acceleration, and ρl and µl are the fluid density
and viscosity, respectively. At larger Re, (Mordant & Pinton 2000; Ten Cate et al. 2002)
considered the inertial regime, where 1.5 < Re < 7700, such that Ut is unknown a
priori. An alternative way of characterising the particle motion in a homogeneous fluid
is through the Archimedes number, Ar = ρl(ζpg)

1/2R3/2/µl, where ζp = ρp − ρl/ρl,
which corresponds to a particle Reynolds number based on a gravitational velocity scale
(Magnaudet & Mercier 2020). Tripathi et al. (2015) recently conducted three-dimensional
direct numerical simulations (DNS) of a rising bubble in a quiescent, Newtonian fluid.
The study found that the rising bubble has five distinct regimes, governed by two non-
dimensional parameters, which are the bubble Galilei, Ga = ρlg

1/2R3/2/µl, and Bond,
Bo = ρlgR

2/γ, numbers, where γ is the surface tension. The computational study was
in wide agreement with the experimental work of Bhaga & Weber (1981), and the five
distinct regimes are (1) axisymmetric bubble geometry at small Ga and small Bo, (2)
skirted spherical cap bubble at small Ga and large Bo, (3) a spiraling bubble at large
Ga and small Bo, and (4) peripheral or (5) central breakup at large Ga and Bo. The
bubble dynamics can be further classified based on surface mobility; mobile bubbles with
low contamination, by the presence of surfactants for example, achieve higher terminal
velocities, while immobile, contaminated bubbles rise more slowly due to the absence of
tangential velocity (Esmaili et al. 2019).

The aim of this paper is to investigate the interaction between a freely rising, de-
formable bubble and a freely settling spherical particle in a quiescent, Newtonian fluid.
This study examines the impact of several parameters on the interaction behavior,
including the Galilei number, the Bond number, the density contrast between the solid
and the fluid (ζp), the ratio of the particle radius to the bubble radius (Ω), and the surface
wettability characteristics of the particle. The paper implements a three-dimensional
particle-resolved DNS using the Level Contour Reconstruction Method (LCRM), which
is a hybrid level-set/front-tracking method to accurately capture the motion and the
interaction of the bubble and the particle. The outline of the paper is as follows: Section
2 contains the methodology and the numerical method; Section 3 provides a discussion
of the results; and Section 4 contains the conclusions and future directions.

2. Methodology

This section contains the problem formulation, governing equations, and the numerical
method used in this paper. We perform highly-resolved numerical simulations of the
incompressible Navier-Stokes equations in a three-dimensional cubical Cartesian domain
with Lx = Ly = Lz = 16R, as shown in Figure 1. The computational domain is
divided into parallel subdomains, which are each uniformly discretised by a 643 finite-
difference mesh. The equations governing Newtonian and incompressible two-phase flows
correspond to mass and momentum conservation respectively expressed in the present
work using a single-field formulation:

∇ · u = 0, (2.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg+∇ · µ

(
∇u+∇uT

)
+ F + FFSI , (2.2)

where u, ρ, p, µ, g, F, and FFSI denote the velocity, density, pressure, viscosity,
gravitational acceleration, the local surface tension force at the interface, and the direct
forcing term for Fluid-Structure Interaction, respectively. Here, FFSI can be computed
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Figure 1: (a) The three-dimensional Cartesian cubic domain with a size of 16R× 16R×
16R, showing the subdomain decomposition and the initial problem setup; (b) the initial
separation distance between the particle and the bubble is shown.

based on the work of Fadlun et al. (2000) as:

FFSI = ρ

(
us − u

∆t

)
, (2.3)

where us is the velocity of the immersed solid boundary. Direct forcing can be considered
as imposing the particle velocity directly on the boundary which is equivalent to applying
FFSI inside the solid structure (Pathak & Raessi 2016). (Feedback forcing (Goldstein
et al. 1993) to obtain the necessary force to satisfy the desired velocity of the particle is an
alternative approach, however, direct forcing is found to be faster and more efficient(Yang
& Stern 2012; Pathak & Raessi 2016).)
We employ a hybrid formulation for the surface tension force, F (Shin et al. 2005,

2017).

F = γκHf
Hf . (2.4)

Here γ is the surface tension, considered constant, Hf is the Heaviside function, and κHf

is twice the mean interface curvature calculated on the Eulerian grid using the following
equations,

κHf
=

FL ·N
N ·N

, (2.5)

FL =

∫
Γ (t)

κfnfδf (x− xf )dS, (2.6)

N =

∫
Γ (t)

nfδf (x− xf )dS. (2.7)

In equations 2.6-2.7, xf is a parameterisation of the interface, Γ (t), and δf (x − xf ) is
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a three-dimensional Dirac delta function that is non-zero only at the interface, x = xf .
nf is the unit normal vector to the interface, where the interface has an area element,
dS. κf is again twice the mean interface curvature, however, it is now obtained from the
Lagrangian interface structure (Shin et al. 2017; Kahouadji et al. 2018). The geometric
information in N, such as the unit normal nf and the interface infinitesimal area dS,
are directly computed from the Lagrangian interface, then distributed onto the Eulerian
grid using a discrete delta function and the Immersed Boundary Method developed by
Peskin (1977). The Lagrangian elements of the interface are advected by integrating the
following equation using a second-order Runge-Kutta method:

dxf

dt
= V; (2.8)

here, the interface velocity V is interpolated from the Eulerian velocity. Further details
on calculating the force, constructing the function field N and the Heaviside function,
and advecting the interface can be found in (Shin et al. 2005; Shin & Juric 2007; Shin
2007; Shin & Juric 2009a,b; Shin et al. 2011).
The particle’s motion and interaction with the fluid are modeled using a fictitious

domain method, such that the Navier-Stokes equations are applied to the entire flow
field. Tracking the solid body’s motion is achieved by introducing a distance function
ϕs. At the start of the simulation, ϕ0

s is calculated at the cell center of the Eulerian
grid (x0

i , y
0
i , z

0
i ) to create the solid volume, which is then updated to calculate ϕn

s at
(xn

i , y
n
i , z

n
i ) by tracking the solid’s center position and rotation over time. The solid

object’s movement is updated by its momentum averaged translational and rotational
velocities, which are calculated in equations 2.9 and 2.10.

mpup =

∫
V

ρudV, (2.9)

Ipωp =

∫
V

r× ρudV, (2.10)

where mp is the mass of the solid, up is it’s translational velocity, V is the solid volume, r
is the radial vector from it’s center, Ip is the moment of inertia, and ωp is the rotational
velocity. The moment of inertia can be calculated using equation 2.11,

Ip =

∫
V

ρp|(r · r)I − r⊗ r|dV, (2.11)

and the position of the solid can be tracked by the following velocity field:

us(x, y, z) = up + ωp × r. (2.12)

Utilising equation 2.12, the updated solid distance function can be calculated at the
current position (xn

i , y
n
i , z

n
i ) by tracing back to the original position (x0

i , y
0
i , z

0
i ) using

equation 2.13.

ϕs(x
n, yn, zn) = ϕs(x

n − us∆t, yn − vs∆t, zn − ws∆t) = ϕs(x
0, y0, z0). (2.13)

Rigid body constraints are applied to the solid volume for the momentum-averaged
translational and rotational velocities, and an additional high viscosity, i.e. 500 times
that of water, coefficient is utilised for the solid volume.

Within the single-fluid formulation, the material properties in the domain are calcu-
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lated as follows

ρ(x, t) = [ρb + (ρl − ρb)Hf (x, t)]Hs(x, t) + ρp(1−Hs(x, t)), (2.14)

µ(x, t) = [µb + (µl − µb)Hf (x, t)]Hs(x, t) + µp(1−Hs(x, t)), (2.15)

where the subscripts (l, b, p) denote the background liquid, the bubble, and the solid
phase, respectively. A smoothed three-dimensional Heaviside function Hf (x, t) for the
fluid phases is defined as zero in the bubble phase, and unity in the background liquid
phase. A similar approach has been used for defining the properties of the solid particle,
Hs(x, t) which is considered as zero in the solid phase and unity for both fluid phases
(the bubble and the surrounding liquid). The sharp transition between the two phases
is resolved numerically with a steep, yet smooth transition across three to four grid cells
(Shin et al. 2017; Kahouadji et al. 2018).
To non-dimensionalise the governing equations, we introduce the following scaling:

(x, y, z) = R(x̃, ỹ, z̃), u =
√

gR ũ, t =

(
R√
gR

)
t̃,

p = (ρlgR)p̃, µ = µlµ̃, ρ = ρlρ̃, (2.16)

were the tildes, introduced temporarily, designate dimensionless variables. After dropping
the tildes, the non-dimensional governing equations read:

∇ · u = 0, (2.17)

ρ(
∂u

∂t
+ u · ∇u) = −∇p− ρez +

1

Ga
∇ ·

[
µ(∇u+∇uT )

]
+

F

Bo
+ FFSI , (2.18)

where ez denotes the unit vector in the z-direction (see figure 1), Ga is the Galilei number
and Bo is the Bond number. The non-dimensional material properties then read:

ρ(x, t) =

[
ρb
ρl

+

(
1− ρb

ρl

)
Hf (x, t)

]
Hs(x, t) +

ρp
ρl

(1−Hs(x, t)), (2.19)

µ(x, t) =

[
µb

µl
+

(
1− µb

µl

)
Hf (x, t)

]
Hs(x, t) +

µp

µl
(1−Hs(x, t)). (2.20)

To mitigate the stress singularity at the contact line (Sui et al. 2014), the Generalised
Navier Boundary Condition is employed in the framework of the LCRM to model the
contact line motion (Yamamoto et al. 2013; Shin et al. 2018), which may be crucial for
the interaction between bubbles and particles over a certain range of parameters as will
be discussed in the following section. Derived from molecular dynamics simulations (Qian
et al. 2003), the boundary condition indicates that the interaction force in a thin layer
adjacent to the solid wall includes contributions from both viscous shear stress and an
uncompensated Young’s stress. The boundary condition thereby combines Navier slip,
which relates the contact line displacement to the shear stress at the wall, with the
uncompensated Young’s stress. This approach models microscale slip information at the
macroscale, addressing the infinite shear stress problem near the contact line observed
under no-slip conditions. The non-dimensional slip velocity ucl is defined as follows:

ucl = λs

(
∂u

∂n

∣∣∣∣
wall

+
cos θcont − cos θext

Ca∆x

)
, (2.21)

where λs is the slip length, set at a quarter of the size of a grid cell in this work, Ca
is the Capillary number defined as Ca = µl

√
gR/γ, θcont is the apparent contact angle

governed by the tangential component of the interface element tcont, and θext is the
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extended contact angle (see figure 15 in Appendix B) for an extended interface inside
the wall modeled by tracing a new vector text in the extended surface. The extended
interface contact angle θext is used to account for the contact angle hysteresis, such that
the hysteresis model is as follows:

θext =


θext = θA if θcont > θA,

θext = θR if θcont < θR,

θR < θext < θA otherwise,

(2.22)

where θA and θR are the advancing and receding contact angles, respectively.
The numerical method involves temporally discretising Equation 2.2 into the following

form

un+1 − un

∆t
= −(u · ∇u)n +

1

ρn
[Gn −∇p], (2.23)

where G contains the gravitational, surface tension, fluid-structure interaction, and
viscous forces. The momentum solver computes the velocity and pressure variables on
a fixed and uniform Eulerian mesh by means of Chorin’s Projection method (Chorin
1968). For spatial discretisation, the well-known staggered mesh, MAC method, is used
(Harlow & Welch 1965). The non-linear term is spatially-discretised using a second-order
essentially non-oscillatory (ENO) scheme (Shu & Osher 1989; Sussman et al. 1998),
whereas the other terms are spatially-discretised using standard second-order centered
differences.
The time integration of Eq.(2.23) is split into two sub-steps. An intermediate unpro-

jected velocity, u∗, is first calculated neglecting the pressure gradient:

u∗ − un

∆t
= −(u · ∇u)n +

Gn

ρn
, (2.24)

followed by the calculation of the final velocity, un+1,

un+1 − u∗

∆t
= − 1

ρn
∇p, (2.25)

where ∆t is the time-step. By enforcing the divergence-free condition on un+1, the elliptic
pressure Poisson equation,

∇ · ( 1

ρn
∇p) =

∇ · u∗

∆t
, (2.26)

is solved using a multigrid iterative method whence un+1 is obtained:

un+1 = u∗ − ∆t

ρn
∇p. (2.27)

The temporal integration scheme for all the simulations performed is based on a
second-order Gear method (Tucker 2013), with implicit solution of the viscous terms
of the velocity components (Kahouadji et al. 2018). The time-step, ∆t, at each temporal
iteration is set to satisfy the following criterion:

∆t = min{∆tcap, ∆tCFL, ∆tint, ∆tvis}, (2.28)

where ∆tcap, ∆tCFL, ∆tint, ∆tvis are the capillary, Courant-Friedrichs-Lewy (CFL), in-
terfacial, and viscous time-steps, respectively. These time-steps are defined as follows
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Figure 2: Validation of the numerical technique: Panels (a) and (b) show a comparison
of our predictions with the experimental data of Kosior et al. (2014) for a freely-rising
bubble interacting with a solid wall; (a) compares the bubble deformation as a ratio of the
horizontal over the vertical bubble axis, and (b) depicts the spatio-temporal evolution
of the bubble-wall collision; (c) (i)-(iii) compare the results of a rising bubble shape
with the experimental results of Bhaga & Weber (1981). The top panel shows the three-
dimensional illustrations of the terminal bubble shapes, and the bottom panel illustrates
a slice of the interface superposed on the experimental results of Bhaga & Weber (1981).
The parameter values are (Ga,Bo) = (2.316, 29), (3.094, 29), and (4.935, 29) for panels
(i), (ii), and (iii), respectively.

∆tcap ≡ 1

2

√
(ρb + ρl)∆x3

min

πσ
, ∆tCFL ≡ min

j

(
min

domain

(
∆xj

uj

))
,

∆tint ≡ min
j

(
min
Γ (t)

(
∆xj

∥V∥

))
, ∆tvis ≡ min

(
ρb
µb

,
ρl
µl

)
∆x2

min

6
,

(2.29)

where ∆xmin = minj(∆xj) is the minimum size x for cell j. The mesh size used in this
study is 5123, which corresponds to a resolution of R/∆x = 32. No-penetration boundary
conditions are imposed on the lateral domain walls, and no-slip, no-penetration boundary
conditions are imposed on the top and bottom boundaries.
In this paper, the viscosity ratio λ = µl/µb = 100, and the density ratio β = ρl/ρb =

1000 between the bubble and the background fluid are kept constant. The bubble and
the particle radii are kept constant Ω = Rb/Rp = 1, with an initial distance of 6R from
the center of the bubble to the center of the particle. The non-dimensional parameters
governing the problem are Ar, Bo, and Ga. The parameter Ar, governed by ζp, is used
instead of Re as the particle terminal velocity is unknown a priori. Unless otherwise
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Figure 3: Validation of the numerical technique: comparison of the temporal evolution of
the particle settling velocity obtained from our predictions and published experimental
data; (a) and (b), and (c) show results for Re = 11.6 and 31.9 (Ten Cate et al. 2002),
and Re = 41 (Mordant & Pinton 2000), respectively.

stated, the particle Archimedes number (Ar = 10) is kept constant by setting ζp = 1.
This study explores the bubble parameter range of Bo = [0.5− 5] and Ga = [10, 20]; Ga
is kept relatively low to explore the regime wherein the bubble follows a rectilinear path
and interacts with the settling particle.
The numerical method utilised in this study has been extensively validated with

experimental works found in the literature. In Figure 2, two different validation results are
provided. Panels (a) and (b) show a bubble rising from rest in a quiescent Newtonian fluid,
approaching a terminal velocity, and interacting with a solid, immobile, and impermeable
wall. The results are compared to the experimental work of Kosior et al. (2014). The
bubble terminal velocity found using this numerical method is approximately 350 mm/s,
which is in excellent agreement with the terminal velocity found in the experiments. Panel
(a) shows the temporal evolution of the bubble horizontal over vertical deformation,
superposed with the results found in the experiments; panel (b) shows a comparison
between the bubble shapes obtained from the experiments (top) and our numerical
method (bottom); panel (c) shows the results of the numerical framework of a rising
deformable bubble in a quiescent, Newtonian fluid compared to the experimental results
of Bhaga & Weber (1981). When comparing the terminal shape of the bubble predicted
by the simulations to that observed in the experiments, excellent agreement is found.
Furthermore, the numerical framework was validated against the experimental works on
settling solid particles (Ten Cate et al. 2002; Mordant & Pinton 2000), as seen in figure 3.
The particle velocity profiles obtained from our numerical method are in agreement with
the results found in the experiments, which ultimately inspires confidence in the accuracy
and reliability of our computations. Additional validation case studies are provided in
Appendix B.

3. Results and Discussion

The purpose of this study is to gain insight into the interaction between a freely-rising
deformable bubble and a freely-settling particle. We employed a hybrid level-set/front-
tracking method to capture the interaction dynamics between the bubble and the particle.
Unless otherwise stated, the particle and bubble radii are kept equal, Ω = 1, and the
particle and the bubble are released in-line, with a distance of 6R from their relative
centres. The results in this section will investigate the effect of the bubble Bond and
Galilei numbers on the interaction between a bubble and a particle. This work will also
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Figure 4: Spatio-temporal evolution of the rising bubble as it approaches the particle is
shown in (a) and (b). The snapshots of the bubble contours are shown for t = 1, 2, 3, 4,
and the particle is only shown at t = 4. In panel (a), a scale indicating the separation
distance is provided between the bubble and the particle, indicating the bubble and
the particle’s initial centre positions at z0b and z0p, respectively. The non-dimensional
parameters are (a) Bo = 0.5, Ga = 10, Ar = 10, (b) Bo = 5, Ga = 10, Ar = 10; panels
(d), (e) and (f) show the change in energy of the system for three different Bo numbers
and maintaining Ga = 10, and they are Bo = 0.5, Bo = 2.0, and Bo = 5.0, respectively.
Here, Em is the mechanical energy of the system, such that ∆Em = ∆Ep + Ek. A new
timescale is introduced here, t∗, which corresponds to the time for the reversal of kinetic
energy due to the interaction. Panel (c) showcases the relative velocity of the bubble and
the particle when varying Bo and Ga at t∗, and also showcases the difference in buoyancy
force between the bubble and the particle when varying ζp.

consider the effect of varying the solid to fluid density contrast ζp, varying the bubble-
to-particle size ratio Ω and the initial bubble position on the interaction dynamics.

3.1. In-line bubble-particle interactions

The first part of the discussion will consider the interaction between a rising bubble
and a settling particle with Ar = 10 (ζp = 1) and Ga = 10. The bubble Bond number
will be varied between 0.5 and 5. At these conditions, the bubble trajectory is expected
to follow a rectilinear path as found by Zhang et al. (2021). Since the bubble and the
particle are initially released in line, they will interact through head-on collisions. Panels
(a) and (b) in figure 4 show the spatio-temporal evolution of a rising bubble interacting
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Figure 5: Temporal evolution of the aspect ratio, χ, and the distance between the bottoms
of the bubble and particle, S, shown in (a) and (b), respectively, for Bo = 0.5, Bo = 2.0,
and Bo = 5, with Ga = 10, and ζp = 1. Panel (c) showcases the minimum aspect ratio
when varying Bo and maintaining Ga = 10, while also plotting the change in interfacial
surface area at that timestep (tχmin). The film thickness profile is presented for these cases
at tχmin

in panel (d), and the temporal evolution of the dimple radius RD is presented
in panel (e).

with a settling particle with Bo = 0.5 and Bo = 5, respectively. As the bubble rises in a
quiescent Newtonian fluid, several different bubble-shape regimes were found by Tripathi
et al. (2015). Under the conditions considered in this study, the rising bubble has an
axisymmetric shape, as seen in panels (a) and (b) of figure 4.
Prior to the interaction with the settling particle, the bubble is found to rise in a

spherical shape when Bo = 0.5, and an ellipsoidal shape when Bo = 5. This is because
when surface tension forces dominate at lower Bo, the deformation of the bubble will
be weak (Qin et al. 2013). During the initial interaction process, the particle surface
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begins to deform the bubble as seen in figure 4 (a) and (b), such that a dimple forms
at the bubble apex, the part of the bubble closest to the particle; dimple formation at
the bubble apex was observed for all the parameters studied in the present work, which
is expected due to the increase of hydrodynamic pressure in the gap region between
the bubble and the particle (Chan et al. 2011). The dimple can be characterised by a
negative mean curvature at the centre, such that (κ1 + κ2)/2 < 0, indicating a concave
deformation. A liquid film also begins to develop between the bubble and the particle
surface, which drains due to capillary and gravitational forces, causing it to thin over
time, as seen in figure 8. The liquid film drainage described in this work during the
interaction between the bubble and the particle is observed until they are at most one
grid cell apart. In dimensional terms, one grid cell is in the order of ∼ O(10µm), such that
the drainage process is purely hydrodynamic and disjoining forces from the interaction
can be neglected (Lee et al. 2023). Furthermore, the contact line dynamics between the
bubble and the particle are considered for different particle wettability parameters.
Upon increasing Bo to Bo = 2 or Bo = 5, the gravitational forces play a more

significant role compared to the surface tension forces. As the bubble and the particle
approach each other, two distinct observations can be made. Firstly, the onset of dimpling
occurs at a position where the bubble and particle are further away compared to when
Bo = 0.5. This can be seen in figure 4(a,b) and by comparing the bubble aspect ratio
χ and the normalised distance S between the bubble and the particle as seen in figure
5(a,b), respectively; here, χ is defined as the ratio of the bubble’s height to its width, and
is a measure of the its deformation during its rise and interaction with the particle. The
dimple formed at the apex is also more pronounced compared to the case when Bo = 0.5,
and the deformation starts at the cap of the bubble, which leads to a change in the overall
bubble shape. The increase in Bond number leads to flattening of the side of the bubble
furthest away from the particle, as seen in the interaction between droplets and solid
walls at low Reynolds numbers (Ascoli et al. 1990). It proves instructive to carry out
an energy analysis of the system when considering the dynamics of the bubble-particle
interactions. The four contributions to the total system energy are the potential energy
Ep, surface energy Es, kinetic energy Ek, and viscous dissipation Eη. The changes in the
potential and surface energies respectively read

∆Ep = ρV g(zc − z0), (3.1)

∆Es = γ(A−A0), (3.2)

while the kinetic energy and viscous dissipation are respectively expressed by

Ek =
1

2
ρ

∫
V

(u2 + v2 + w2)dV, (3.3)

Eη =

t∫
0

∫
V

ξdV dt, (3.4)

where A is the surface area, V is the volume, z0 is the bottom of the domain, and ξ is
the viscous dissipation function. The temporal evolution of the energy budget during the
initial interaction process when Bo = 0.5, Bo = 2, and Bo = 5 are shown in panels (d-f)
of figure 4, respectively. Here, ∆Em is the mechanical energy of the system, such that
∆Em = ∆Etotal

p +Etotal
k , and the results are normalised to the total energy of the system

Et = Ep + Ek + Es + Eη. As the bubble rises and the particle settles, Ek is found to
increase up to a maximum, until the flow field of the particle and the bubble interact. At
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this point, Ek starts to decrease as the gap distance between the bubble and the particle
thins. We introduce a new time scale t∗ which specifies the time of kinetic energy reversal
in panels (d-f) of figure 4. For Bo = 0.5, t∗ ≈ 3.0 and for Bo = 2 or Bo = 5, t∗ ≈ 3.5.
In panel (c), the relative interaction velocity at the peak kinetic energy is presented for
the case of Ga = 10 and Ga = 20 when varying the Bo number. When Ga = 10, it
can be seen that the relative velocity does not vary significantly when increasing Bo,
however the relationship between the relative velocity and Bo remains the same for both
Ga. When increasing Bo, the bubble rising velocity decreases, which allows the particle
to attain a larger velocity as it settles. However, this increase in particle velocity does
not compensate for the difference in bubble rise speed, which causes a decrease in the
relative velocity prior to the interaction. A similar trend is observed for Ga = 20, with
a larger increase in relative velocity when decreasing Bo. Furthermore, the difference
in buoyancy force between the bubble and the particle is also presented when varying
ζp, where the buoyancy force was taken as F i

b = V g(ρi − ρl), where i = (b, p) for the
bubble or the particle, respectively. When ζp = 1, the buoyancy force of the particle
is comparable to that of the bubble, however, decreasing ζp leads to a larger difference
between the bubble and particle buoyancy force. A larger difference in buoyancy force
between the bubble and the particle allows for the bubble to ‘push’ the particle upwards
during the initial interaction, rather than remain in the same vertical position during
film drainage. For low Bo, the particle kinetic energy is seen to decrease to zero at later
times, which shows that the film drainage process causes the bubble and the particle to
remain at approximately the same vertical position as the liquid film thins (see figure
4(d)). The formation of the liquid film between the bubble and the particle causes an
outward radial velocity of the background fluid, which leads to the dissipation of kinetic
energy, as seen at t = 3.5 in figure 6 (Zawala & Dabros 2013).

As film drainage is a gradual process driven by pressure differences in the film region,
this allows time for the surface tension forces to help the bubble recover a semi-spherical
shape with a small dimple at the bubble apex. The dimple radius decreases during the
drainage of the liquid film, which can be seen at t ≈ 5 when Bo = 0.5 (see figure 6) and
by comparing the liquid film thickness profiles and the bubble interface shape in figure
9(a,b). Yiantsios & Davis (1990) have considered the interaction between a droplet and
a solid surface and their numerical simulations showed that the terminal value of the
dimple radius scales with Bo as RD ∼ ( 23Bo)

1
2R, which is in great agreement with the

dimple radius found in this work when Bo = 0.5 (RD ≈ 0.5). This result was first
obtained by Derjaguin & Kussakov (1939) by assuming the pressure in the dispersed
phase is approximately equal to the pressure in the dimple, and balancing the pressure
with the buoyancy force such that 2γ

R πR2
D ∼ 4

3π(ρl−ρb)gR
3. In panel (e) of figure 5, the

dimple radius is presented during the initial interaction period for different Bo numbers
when Ga = 10 and ζp = 1, where the scaling of the dimple radius presents a good
approximation of the results.
Upon increasing the Bo number to Bo = 5, a significantly different interaction process

is observed at later times. As the particle deforms the bubble interface, the dimple that
forms interacts with the southernmost part of the bubble, such that the bubble will
rupture. Prior to its rupture, the bubble is seen to deform severely with a film thickness
larger than that associated with the Bo = 0.5 case (see panel (d) of figure 5 and figure
6 at t = 5). The bubble topology resembles the splashing configuration found by Yoon
& Shin (2021) when considering the interaction between a droplet and a particle, with
a liquid film between the bubble and the particle in the present work. In figure 5, the
minimum aspect ratio attained during the interaction is presented when varying Bo in
panel (c). The time of maximum bubble deformation (minimum χ) is taken as tχmin

, and
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Figure 6: Spatio-temporal evolution of the bubble-particle interaction dynamics shown
for the same parameters used to generate Figure 4; the rows are associated with Bo = 0.5,
Bo = 2.0, and Bo = 5, from top to bottom. The contours on the left part of the figures
in the panels show the logarithm of the viscous dissipation function log10 ξ in the fluid,
and the contours on the right show the velocity magnitude in the fluid V . The bubble
is shown with glyphs of the velocity to illustrate the relative motion of the bubble at
different time-steps.

the change in interfacial surface area ∆A/A0 is presented. At tχmin
, the film thickness

profile between the bubble and the particle is plotted in panel (d). The profiles of the
film thickness show that at larger Bo, the minimum gap distance is found at the bubble
centre, and when decreasing Bo, the minimum gap distance shifts towards the bubble
dimple. The aspect ratio χ reaches a minimum of ∼ 0.2, and the normalised distance
between the particle and the bubble, S, continues to decrease. The distortion of the
bubble surface caused by the particle drives the increase in χ at later times, up to
the point of bubble rupture. Figure 7(b) shows the passage of the particle post-bubble
rupture. The particle’s kinetic (potential) energy continues to increase (decrease) as seen
in figure 7(d), which shows that the particle continues to settle post bubble rupture.
This bubble rupture mechanism was also found by the two-dimensional, axisymmetric
simulations of the interaction between a rising bubble and a solid surface (Qin et al.
(2013)), where bubble rupture was observed at large Bo numbers. As the bubble and
the particle approach each other when Bo = 2, the bubble is found to deform similarly
to the Bo = 5 case (see panel (a) of Figure 5), however the bubble does not rupture.
Therefore, the liquid film in the gap region between the bubble and the particle starts
to drain. As the liquid film drains, the bubble’s buoyancy drives it to shift away from
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Figure 7: The spatio-temporal evolution of the bubble-particle interaction dynamics is
shown in (a) for Ga = 10, Bo = 2 and ζp = 1, where the contours depict the velocity
magnitude. Panel (b) shows the spatio-temporal evolution of the interaction dynamics
when Ga = 10, Bo = 5 and ζp = 1. The timesteps presented are relative to t∗, such that
t− t∗ varies from 2.5 to 7.0. When Bo = 2 and t− t∗ = 7, a top view of the interaction
between the bubble and the particle is presented to showcase that no contact is found
between them. In panels (c) and (d), the normalised energy budget Ẽ/Ẽ0 is presented
for Bo = 2 and Bo = 5, respectively, where Ẽ0 = Eparticle

p0
+ Es0 .

the particle, as seen in panel (a) of figure 7, interrupting the film draining process. As
the bubble moves away from the particle, we note that no contact was found between
the bubble and the solid surface, as seen from the presented top view. The bubble then
continues to rise, and the particle continues to settle, as seen by considering the change
in mechanical energy in the energy budget plot presented in panel (c) of figure 7.
In figure 8(a, b), the temporal evolution of h(t), defined as the shortest bubble-particle

distance at every time step, is presented for different Bo numbers. As the bubble rises at
early times, it assumes a spherical or ellipsoidal shape such that h(t) is measured along
centreline of the bubble and particle, which we define as h0(t). Figure 8(a) provides an
illustration of h0(t) and h(x, t), such that h(t) = min h(x, t). As the dimple forms on
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Figure 8: Panels (a) and (b) show the temporal evolution of the minimum gap thickness
h(t) for different Bo when Ga=10 and ζp = 1. Two different scaling are also provided,
such that h ∼ (t− t∗/td)

−α where α here is either −4/5 or −1/2.

the bubble surface, h(t) begins to deviate from h0. When comparing the minimum gap
distance for different Bo, it can be seen that for smaller Bo, the film drainage process
occurs fastest as the bubble deformations are less severe. This leads to the liquid in the
film to drain over a smaller surface area (Manga & Stone 1993). Furthermore, increasing
Bo leads to an increase in surface area in the gap region, which delays the film drainage
process. This is found to occur up to Bo = 2, because at Bo = 5, the bubble ruptures.
Comparing the difference between the gap thickness at the centre and the minimum
gap thickness when increasing Bo, two different conclusions can be made. First, at low
Bo, the development of the dimple occurs at earlier times as compared to the larger Bo
number cases. However, the dimple is much more pronounced with increasing Bo, at later
times. Nevertheless, when the bubble ruptures at Bo = 5, the minimum gap distance
is always found at the centreline as the particle continues to settle. Previous studies
(Jones & Wilson 1978; Yiantsios & Davis 1990; Chan et al. 2011; Quan 2012; Denner
2018) have shown that the film thickness during the interaction between a deformable
interface and a solid surface scales as t−α where 0 ⩽ α ⩽ 1. During film drainage, we
can assume that the outward radial velocity of the fluid is much greater than the vertical
velocity of the bubble or the particle. Therefore, a new characteristic velocity scale U
can be obtained by balancing the buoyancy and viscous drag (∆ρR3g ∼ µbRU), such
that U = gρl(2R)2/6µlϕ since ρl >> ρb, and ϕ = (2 + 3/λ)/(1 + 1/λ) is a correction
factor for the viscosity ratio λ (Denner 2018). We introduce a new draining time scale,
td = 2R

√
µl/γU , which can be obtained by assuming the film drainage is dominated by

the balance of surface tension and viscous stresses (Klaseboer et al. 2000; Chan et al.
2011; Denner 2018). At smaller Bond numbers, the liquid film thickness is found to scale
as h ∼ (t − t∗/td)

−4/5, whereas when increasing the Bond number, the scale varies to
h ∼ (t− t∗/td)

−1/2. This result can be seen in panel (b) of figure 8. We note that when
Bo = 2, the film drainage result presented is prior to the bubble sliding away from the
particle.
Panels (c) to (f) in figure 9 presents the interaction between a bubble and a particle

when Ω = 2 when Ga = 10, Bo = 0.5, and ζp = 1. As the bubble and the particle
interact, the approach velocity of the particle when Ω = 2 is smaller, such that the larger
bubble’s kinetic energy is transferred to the particle, allowing it to reverse its direction
and float. Here, t∗ was found to be around t ≈ 3.5. As this kinetic energy from the
bubble is transferred to the particle, the bubble’s second approach to the particle is at a
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Figure 9: This figure showcases the film thickness and the bubble shape as it approaches
the particle when Ga = 10, ζp = 1, and Bo = 0.5 in panels (a) and (b). In panels (c) and
(d), the temporal evolution of the kinetic energy and particle velocity is presented for
two cases, and they are when Ω = 1, which is the base case, and when Ω = 2. In panels
(e) and (f), the film thickness profile and the bubble shape at different time steps during
the interaction for Ω = 2 are presented.

substantially smaller velocity, such that the total kinetic energy stabilises around t = 5
to t = 5.9. The radius of the dimple on the bubble apex starts to decrease, as seen from
the liquid film thickness profiles in panel (e), and the liquid film ruptures at t− t∗ ≈ 2.5.
It can be seen that as opposed to the case where Ω = 1, decreasing the particle size
leads to the bubble continuing to rise during the film-draining process, which can be seen
from the bubble apex position in panels (b) and (f) for the two cases. When the film
ruptures, the larger bubble continues to push the particle upwards, until reaching the
top boundary.
We further consider the effect of increasing Ga and varying ζp on the interaction

dynamics in figure 10. Seven different cases are presented, which correspond to
(Bo,Ga, ζp)=(0.5, 20, 1), (1, 20, 1), (2, 20, 1), (5, 20, 1), (0.5, 20, 0), (0.5, 20, 0.25), and
(0.5, 20, 0.75). In panel (a), the temporal evolution of the particle velocity is presented.
Previously, at a Bond number of 0.5, a Galilei number of 10, and a particle-to-fluid
density ratio of 1, the bubble and the particle remained at relatively the same vertical
position throughout the film draining process. This indicates that the bubble and particle
experienced minimal vertical displacement relative to each other due to the difference
in buoyancy force between the bubble and the particle. When Ga is increased to 20
while maintaining ζp = 1, the bubble approaches the particle with a greater velocity
compared to when Ga = 10. However, the interaction dynamics remain consistent with
the case when Ga = 10, where the magnitude of the particle velocity decreases, and the
particle remains at relatively the same vertical position during film drainage (see panel
(c) of figure 10). In this investigation, we consider the effects of decreasing the particle-
to-fluid density ratio (ζp), which introduces new dynamics into the interaction process.
Specifically, a lower ζp makes the particle less dense relative to the fluid, increasing
its susceptibility to the forces exerted by the bubble. This increased sensitivity results
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Figure 10: In panels (a), (b) and (c), the particle settling velocity, total kinetic energy,
and the change in particle potential energy are presented, respectively. These results
correspond to when Ga = 20, Bo = 0.5 and varying ζp. Temporal evolution of the
minimum gap thickness hm(t) is shown in (d) for ζp = 1, Ga = 20, and Bo = [0.5 − 5];
an enlarged view of the plot in (d) is shown in panel (f), for Bo = 0.5 and Bo = 1 as at
these Bo numbers, the bubble did not rupture. A scaling for the film drainage is provided

such that h ∼ (t− t∗)/t
−4/5
d . Panel (e) showcases the film thickness profile at tχmin

when
varying Bo and maintaining Ga = 20 and ζp = 1.

in more pronounced motion reversals and changes in velocity, demonstrating a critical
dependence on the density ratio for the overall behavior of the bubble-particle interaction.
When ζp is decreased, the increased velocity of the bubble causes it to push the particle
upwards as the gap distance between them decreases. The extent of flotation of the
particle increases as ζp decreases. This can be verified by examining panels (a), (b)
and (c), which show the particle velocity, the total kinetic energy, and the change in
potential energy of the particle, respectively. Specifically, the bubble’s kinetic energy
becomes significant, imparting momentum to the particle and causing it to reverse its
motion. This reversal is similar to the behavior observed when Ω = 2. As the particle
reverses its motion due to the bubble’s kinetic energy, the bubble’s velocity decreases
post-interaction. This deceleration results from the transfer of energy from the bubble
to the particle, leading to a redistribution of momentum. The interaction process when
ζp = [0, 1], Ga = 20, and Bo = 0.5 can be seen in figure 10.
When considering the temporal evolution of the gap thickness between the bubble and

the particle for Ga = 20 and ζp = 1, a similar general trend is found compared to that
shown in figure 8. Increasing Bo leads to an increase in the surface area between the
bubble and the particle, delaying the process of film drainage. However, when comparing
figure 10(d) to figure 8(a), the bubble ruptured for both Bo = 2 and Bo = 5 when
increasing the impact relative velocity by varying Ga. Panel (e) of figure 10 shows the
film thickness when varying Bo and maintaining Ga = 20 and ζp = 1 at tχmin . As seen in
panel (d) of figure 5, the film thickness profile indicates an increase in distance between
the bubble and the particle when increasing Bo, and the minimum thickness shifts from
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Figure 11: This figure showcases the dynamics of the interaction after the formation of
the contact line, when Ga = 10, Bo = 0.5, and ζp = 1. In panel (a), the particle’s vertical
velocity is presented for different particle wettability parameters, which correspond to a
base case with θe = 105◦, and two additional cases with θe = 55, and θe = 125. The
figures on the right-hand side correspond to t − t∗ from 8 to 11 for the base case and
t − t∗ from 5 to 7 when θe = 55◦. Panel (b) showcases the aspect ratio χ for the three
different cases, and the pentagram indicates reaching the top boundary. Lastly, panel (c)
showcases the temporal evolution of radius of the contact line RTPC when varying θe
and Ω. Note that the x−axis is scaled with the contact line time tTPC .

the bubble dimple to the centreline. Following a similar scaling method to Figure 8, the
minimum film thickness when Bo = 0.5 and Bo = 1 scales as h ∼ (t− t∗/td)

−4/5.
For head-on collisions at relatively small Bo numbers, a contact line forms between the

bubble and the particle after liquid film drainage. In figure 11, the evolution of the contact
line dynamics and the effect of particle wettability on the overall dynamics is studied.
Three different equilibrium contact angles are considered, and they are θe = (55, 105, 125)
for Ω = ζp = 1, Ga = 10, and Bo = 0.5. First, panel (a) showcases the particle vertical
velocity for the three cases. When θe = 55, the particle velocity is seen to increase
significantly post contact-line formation, which indicates that the bubble has attached to
the particle and is pushing it upwards. When increasing θe to 105◦ or 125◦, the particle
velocity is not as significantly affected, indicating the bubble is attempting to minimise
its contact area with the particle. In panel (c), the radius of the contact line RTPC is
shown when varying θe and Ω. When θe = 55◦, the contact line initially expands, and
during the expansion, the bubble vertically deforms which leads to a peak in the aspect
ratio χ at t − t∗ ≈ 4.8 (panel (b)). The contact line radius then maintains the same
size as it floats with the particle until reaching the top boundary. When increasing θe,
the contact line radius initially expands, however, the bubble ‘slides’ across the particle
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Figure 12: Spatio-temporal evolution of off-centre bubble-particle interaction dynamics
with Ar = 10, Ga = 10, and an initial bubble location offset of δ = 1. The results shown
in the top and bottom two rows were generated with Bo = 0.5 and Bo = 5, respectively.
The contours are of the logarithm of the viscous dissipation function log10 ξ in the fluid.
The bubble is shown with glyphs of the velocity to illustrate the relative motion of the
bubble at different time-steps. The snapshots are shown between t = 2.5 and t = 6 in
time-increments of δt = 0.5.

and attempts to minimise the contact area. This leads to a decrease in the contact line
radius as the bubble moves to the particle’s apex, and the bubble then detaches due to
buoyancy and continues to rise. The bubble detaches at t − t∗ ≈ 9 when θe = 105◦ and
θe = 125◦, with a small part of the bubble still attached to the particle surface. When
decreasing the particle size (Ω = 2) and maintaining θe = 105◦, the radius of the contact
line expands during contact. However, due to the particle’s upward velocity induced by
the bubble during the initial interaction, the bubble and the particle continue to rise
and the contact line remains relatively the same size. It is crucial to note that the initial
radius of the contact line indicates the position at which the contact line forms, such
that the dimple radius has a direct influence on the dynamics of the contact line.
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Figure 13: Temporal evolution of the total kinetic energy, and the change in bubble
surface area are shown in (a)-(b), respectively, for off-centre bubble-particle interactions
with (Bo,Ga,Ar, δ) = (0.5, 10, 10, 1) and (5, 10, 10, 1). Panels (c) and (d) show the
temporal evolution of the settling velocity, and the x-component of the particle velocity,
respectively. In panels (e) and (f), the side view of the particle trajectory with respect
to the x−axis and the y−axis are presented, respectively.

3.2. Off-centre bubble-particle interactions

Here we consider bubble-particle interactions that do not correspond to head-on
collisions. These are initiated by introducing a horizontal deviation δ in the initial bubble
position. In this section, we study the dynamics associated with δ = [0.25, 0.5, 1] and keep
(Ga = 10, ζp = 1) fixed. In figure 12, the spatio-temporal evolutions of the interaction
between the bubble and the particle are presented for Bo = 0.5 (top two rows) and
Bo = 5 (bottom two rows), and δ = 1. The background field shows the logarithm of
the viscous dissipation function ξ in the fluid. When initiating an offset between the
bubble and the particle, it can be seen in figure 12 that for Bo = 0.5, the bubble initially
rises in a similar fashion as observed with the in-line collisions, but the dimple at the
apex of the bubble forms on the side of the bubble rather than at the centreline. This
causes the bubble to shift its velocity towards the other side (as seen in the glyphs) as
it deforms during the interaction process. A liquid film forms between the bubble and
the particle at the side of the bubble, at which point we have the largest dissipation of
energy. The bubble tends to exhibit a ‘sliding’ motion, which is similar to the drafting-
kissing-tumbling (DKT) regime found by Zhang et al. (2021) between two bubbles rising
in line. The bubble is then seen to continue its rise as it recover its original spherical
shape, which can be seen at t = 5.5 and t = 6. This can also be observed by the change
in surface area plot in figure 13(b), where the change in surface area decreases after the
interaction with the particle.
Upon further increasing Bo to Bo = 5, a similar initial interaction process is observed

such that the bubble rises with an ellipsoidal shape, and a dimple forms at the side of the
bubble rather than at the centreline. However, due to the large deformations associated
with this Bo value, it can be seen that although a DKT scenario is found, the side of
the bubble associated with the impact forms a ‘tail’ (t = 4.5–5.5). As the tail forms,
we have a sharp increase in the bubble interfacial area and energy dissipation, while the
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centre of mass of the bubble continues to rise as the total kinetic energy increases (see
figure13(a)). The tail of the bubble then retracts to its centre of mass (t = 6 in figure
12) and continues to rise, and the particle continues to settle.
From figure 13(d) it can be seen that upon increasing Bo, the deviation in the particle

settling trajectory is not as affected as for low Bo. This is associated with the significant
deformation of the bubble, which tends not to affect the x-component of the particle
velocity as much as the sliding motion of the bubble observed for Bo = 0.5. Furthermore,
when fixing Bo = 0.5 and varying δ between 0.25-0.5, figure 13(e-f) shows that the
particle trajectory is affected more by decreasing the value of δ. For δ = 0.25 and δ = 0.5,
the particle’s settling velocity (see figure 13(c)) decreases during the initial interaction
process. Although the decrease in settling velocity is more pronounced as δ decreases,
i.e., approaching the case of in-line bubble-particle interactions, the variation in the x-
component of the velocity is more pronounced when δ = 0.5 compared to δ = 0.25 (see
figure 13(f)). This leads to the particle trajectory being rather similar when δ = 0.25 and
0.5 (see figure 13(e)).

4. Conclusion

This paper considered the interaction between a freely-rising deformable bubble and
a freely-settling particle in a quiescent, Newtonian background fluid. The considered
non-dimensional parameters were the bubble Bond and Galilei numbers, the particle
Archimedes number, governed by the solid-fluid density contrast, and the size ratio be-
tween the bubble and the particle. The results highlighted the spatio-temporal evolution
of the bubble shape during the interaction process, the bubble aspect ratio as a measure
of its deformation, the liquid film thickness, and an energy analysis of the system. When
considering the bubble shape, it was found that increasing the Bond number led to more
severe bubble deformations, leading up to bubble rupture and its penetration by the
particle. This is caused by the north and south poles of the bubble coalescing due to
the intensity of the deformation. When the Bo number is relatively low, the interaction
includes the formation of a liquid film between the bubble and the particle, which is
associated with the dissipation of kinetic energy. When decreasing ζp, the buoyancy force
of the bubble exceeds that of the particle, and the bubble can lift the particle upwards
if the approach velocity of the bubble is considerably larger than that of the particle.
However, if the particle and the bubble approach velocities are similar in magnitude,
the initial interaction process is associated with the dissipation of kinetic energy which
causes the bubble and the particle to remain at their interaction position as the liquid film
drains. The study also considered the temporal evolution of the minimum gap thickness
(h(t)) between the bubble and the particle and found that increasing Bo led to an increase
in surface area in the gap region, further delaying the film-draining process. The effect
of particle wettability on the contact line dynamics were also considered, such that the
bubble remains attached to the particle surface at lower θe and slides away at larger θe.
A complex situation arises when introducing an offset between the bubble and the

particle initial positions. In this study, an offset is only considered for the bubble initial
position in the horizontal direction at constant Archimedes and Galilei numbers. For low
Bond numbers, a sliding motion of the bubble was observed as it approaches the particle,
causing the bubble to push the particle away from its original settling trajectory. However,
with increasing Bond number, the bubble deformation is seen to be much more severe
such that the bubble centre of mass continues to rise with the formation of a tail in the
particle’s proximity. The tail then retracts, the bubble continues to rise, and the particle
trajectory is not as significantly affected.
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This work has considered one viscosity and density ratio between the bubble and the
background fluid λ = µl/µb = 100 and β = ρl/ρb = 1000. Possible avenues for future
work may include the effects varying the viscosity and density ratios, considering a larger
difference between the particle and bubble sizes, introducing asymmetric particle shapes,
and the effect of density stratification in the background fluid. Furthermore, the effects of
surface mobility of the bubble on the interaction process, by introducing surfactants to the
system for example, presents an interesting avenue of future work due to its relevance for
industrial processes. All of these configurations may lead to different interaction dynamics
between the bubble and the particle. Lastly, this work has considered the interaction
between a single rising bubble and a single settling particle, however the collective effect
of the interaction between a rising bubble, or a group of bubbles, in the presence of a
particle suspension remains an area for further exploration.

Appendix A

In this section, a resolution test is presented for the case when (Bo,Ga,Ar) =
(0.5, 10, 10) in figure 14. Two different mesh resolutions are considered, and they cor-
respond to ∆x/R = 1/24 and ∆x/R = 1/32. When considering the distance between the
particle south pole and the bubble south pole, and the total kinetic energy of the system,
an excellent agreement is found between the two mesh resolutions. The most difficult
part to resolve is the film thickness. The lower resolution RMSE compared to the higher
resolution is approximatley 0.5%, which is acceptable considering the higher resolution is
the coarsest mesh utilised in this study. In panel (c), a domain size independence test is
performed when Bo = 0.5 andGa = 10, by increasing the domain size to 24R×24R×24R.
The results show that when increasing the domain size, there is no difference in the
attained result, further increasing our confidence in the numerical setup. In panel (d), a
mesh size independence considering three different grid cell sizes is presented for the case
of Bo = 5.0 and Ga = 10, where a resolution of up to ∆x/R = 1/64 is presented.

Appendix B

This section presents additional validation case studies for the numerical method
utilised in this work. At first, figure 15 presents illustrations for the contact line method-
ology that is utilised in our inhouse solver code BLUE. Furthermore, the adhesion of
a bubble on a solid wall is presented and qualitatively compared to the experiments of
Basarova et al. (2018). The bubble is initialised close to the flat wall (0.1R from surface
to surface), and as the contact line forms, the deformation of the bubble is accurately
captured when compared to the results of the experiment. The bubble size is 0.705 mm,
and the viscosity and density ratios correspond to an air/water system. The equilibrium
contact angle θe was set at θe ≈ 100◦, which corresponds to the surface wettability
characteristics utilised in the experiments.
Furthermore, additional validation cases are presented for a solid particle settling

through an initially unperturbed interface with different fluid and particle properties. The
particle was initially placed a distance of 6R away from the unperturbed interface (from
the centre of the particle) and is allowed to settle due to gravity. The results attained
from the numerical method are in close agreement with the results of the experiments
of Pierson & Magnaudet (2018a,b), where a few differences were found in the case of
a top fluid of V500 silicone oil with water as the bottom fluid and a steel sphere. The
differences are mainly in the development of axisymmetric corollas near the particle
surface as the particle penetrates the bottom fluid. The reason behind the difference may



24 A. M. Abdal and Co-Authors

Figure 14: The top two panels (a) and (b) show the total kinetic energy of the system
and the distance between the particle south pole and the bubble south pole (S), at two
different resolutions for Ga = 10, Bo = 0.5, and ζp = 1, respectively. Panel (c) shows
the temporal evolution of the total kinetic energy when increasing the domain size for
the same case. It can be seen that increasing the domain size leads to no difference in
the results. Panel (d) shows the total kinetic energy for different mesh sizes for Ga =
10, Bo = 5.0, and ζ = 1, up to a resolution of ∆x/R = 1/64. The results show that
the domain size and mesh resolution utilisied in this work is sufficient to capture the
dynamics of the interaction between the bubble and the particle.

Figure 15: The left hand side of the figure provides an illustration of the contact line
numerical methodology between a bubble and a solid wall or solid particle. The plot
showcases the temporal evolution of the south pole of the bubble as it adheres to a solid
wall with negligible inertia. The contact angle for this case was θA = 102, θR = 99. A
qualitative comparison with the experimental results of Basarova et al. (2018) is provided
at different time steps.
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Figure 16: This figure showcases the experimental results of Pierson & Magnaudet
(2018a,b) for a spherical particle crossing an immiscible interface under different
configurations. The plots showcase the performance of this numerical method compared
to the experimental results in estimating the entrained fluid volume Ve and the particle
velocity. Qualitative results from the simulations are also provided.

be attributed to the different initial position of the particle in the experiments as this
parameter was not exactly specified, or due to the utilised resolution of the case study,
which was ∆x/R = 1/32. Nonetheless, the quantitative results of the entrained volume
of the first fluid into the second fluid (Ve) is in close agreement with the experimental
results, and the particle settling velocity is accurately captured. We note that in this case
study, no contact line forms between the solid and the background fluids, such that an
oil film coats the solid surface at all times, which is in agreement with the results found
in the experiments of (Pierson & Magnaudet 2018a).
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