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Abstract—Annotating 3D medical images demands expert
knowledge and is time-consuming. As a result, semi-supervised
learning (SSL) approaches have gained significant interest in
3D medical image segmentation. The significant size differences
among various organs in the human body lead to imbalanced
class distribution, which is a major challenge in the real-world
application of these SSL approaches. To address this issue, we
develop a novel Shape Transformation driven by Active Contour
(STAC), that enlarges smaller organs to alleviate imbalanced
class distribution across different organs. Inspired by curve
evolution theory in active contour methods, STAC employs a
signed distance function (SDF) as the level set function, to
implicitly represent the shape of organs, and deforms voxels in
the direction of the steepest descent of SDF (i.e., the normal
vector). To ensure that the voxels far from expansion organs
remain unchanged, we design an SDF-based weight function
to control the degree of deformation for each voxel. We then
use STAC as a data-augmentation process during the training
stage. Experimental results on two benchmark datasets demon-
strate that the proposed method significantly outperforms some
state-of-the-art methods. Source code is publicly available at
https://github.com/GuGuLL123/STAC.

Index Terms—Semi-supervised learning, 3D medical image
segmentation, Class imbalance, Data augmentation

I. INTRODUCTION

Precise segmentation of medical images is crucial for
computer-aided diagnosis (CAD) systems. While supervised
segmentation approaches have demonstrated remarkable suc-
cess with extensive labeled datasets, the process of man-
ual segmentation remains laborious and time-consuming. Re-
cently, semi-supervised segmentation techniques have attracted
considerable interest for utilizing easily accessible unlabeled
images to enhance the precision of segmentation models.
These methods commonly leverage two strategies: consistency
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regularization and pseudo labeling. Consistency regularization
approaches are mainly based on some form of smoothness
assumption [1], that aims to produce consistent results under
small perturbations at data level [2]–[5] and model level [6]–
[10]. Pseudo labeling approaches [11]–[13] leverage predic-
tions of the model on unlabeled data to generate pseudo labels,
thereby expanding the initial labeled dataset.

The size of human organs can vary considerably, frequently
causing a notable imbalance in the number of voxels among
different categories (as shown in Fig. 1). Recently, some
works address this issue of imbalanced class distribution in
semi-supervised medical image segmentation by improving
the network’s representation ability of imbalanced classes and
refining their pseudo labels. For instance, Basak et al. [14]
propose a dynamic learning strategy that tracks class-wise
confidence during training and incorporates fuzzy fusion and
robust class-wise sampling to improve segmentation perfor-
mance for under-represented classes. To address the issue that
the proposed model in [14] can not well model the difficulty,
DHC [15] introduces Distribution-aware Debiased Weighting
and Difficulty-aware Debiased Weighting, two strategies that
use pseudo labels to dynamically address data and learning
biases. Yuan et al. [16] combine a traditional linear-based
classifier with a prototype-based classifier to alleviate the
class-wise bias exhibited in each individual sample. However,
these methods do not address the imbalanced class issue from
an intuitive perspective in data level, that is, some organs are
too small, resulting in low number of voxels.

In this paper, we enlarge smaller organs to alleviate the
issue of imbalanced class distribution across different organs.
In active contour methods, the contours evolve in the direction
of the normal vector and are represented implicitly by a level
set function to ensure stability during the evolution process.
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Fig. 1. Motivation of STAC: enlarging smaller organs helps to alleviate imbalanced class distribution across different organs. The second and third rows are
magnified images of the corresponding color boxes in the first row. The green curve in the Image represents the corresponding edges of the ground truth for
categories with smaller pixel proportions. The white curve in the Transformed Image represents the edges of the corresponding ground-truth category, after
processing with STAC.

Inspired by this, we propose the Shape Transformation driven
by Active Contour (STAC) method. STAC method utilizes a
signed distance function (SDF) as the level set function to
subtly represent the shapes of organs. It adjusts the voxels
towards the direction of the steepest descent in SDF, which
corresponds to the normal vector of the shape in zero level
set. To ensure that voxels distant from the expanding organs
remain unaffected, we develop a weight function based on
SDF to carefully regulate the extent of deformation for each
voxel. As shown in Fig. 1, we generate pairs of images and
annotations (pseudo-labels for unlabeled images) that alleviate
the class imbalance issue through our STAC method. Owing to
the fact that evolution along the direction of the normal vector
is less likely to produce distorted shapes, STAC can generate
stable shape transformations, making the generated image
more realistic. Using STAC for data-augmentation during
training enhances the network’s ability to represent categories
that have a smaller number of voxels. Experimental results
demonstrate that enlarging smaller organs to alleviate the issue
of imbalanced class distribution is effective. Our experiments
demonstrate that the proposed STAC method significantly
outperforms some state-of-the-art methods on two datasets.

II. RELATED WORKS

A. Semi-supervised medical image segmentation

Semi-supervised learning (SSL) utilizes limited annotated
data alongside abundant unlabeled data to enhance model
performance. SSL methods are mainly categorized into self-
training [17], where pseudo labels are assigned to unlabeled
data for retraining, and consistency regularization [8], [18],
which relies on the assumption that model outputs should
remain stable under some perturbations [1]. Image-level per-
turbations include simple random augmentations [2] and ad-
versarial approaches [5], while model-level perturbations in-
volve direct stochastic modifications (e.g., Gaussian noise [6]
or dropout [7]), parameter ensembling via exponential mov-
ing averages [8], or generating variations through different
decoders or architectures [9], [10].

Semi-supervised learning is extensively employed in med-
ical image segmentation, to ease the challenges of manual
annotation. Consistency regularization methods [12], [14],
[19]–[23] have significantly enhanced semi-supervised med-
ical semantic segmentation, utilizing strategies such as the
Mean Teacher framework [8] or Co-training [10] to introduce
model-level variations. Another way involves creating diverse
versions of the same image to enforce prediction consistency
across image variations [24]–[28]. A prevalent method for
image variations is the weak-to-strong paradigm [26], which
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Fig. 2. The pipeline of the proposed STAC framework, that is used for data-augmentation. For unlabeled samples, the Fastest Descent Direction (FDD) is
defined as the gradient of the Signed Distance Function (SDF), which represents the direction of Adaptive Deformation Map (ADM). The degree of the ADM
is SDF-based weight function. The shape transformation for enlarging smaller organs is obtained by interpolating the unlabeled images and pseudo labels
according to the ADM. For labeled samples, the ADM is directly obtained using the label.

utilizes images ranging from weakly to strongly augmented
to promote model consistency. Several methods utilize ad-
versarial training strategies to create adversarial perturbations
on images, thereby enhancing the robustness of predictions
against these perturbations [27], [28]. Additionally, an in-
creasing number of techniques improve model performance by
employing pseudo labels for training unlabeled images [12],
[13]. The presence of noisy labels in pseudo labels for
unlabeled images necessitates a careful assessment of their
confidence levels [13], [29]. Additionally, certain methodolo-
gies emphasize the rectification of pseudo labels during the
training process [30]. Beyond these strategies, other methods
harness contrastive learning to attain consistent feature repre-
sentation [3], [19].

B. Class-Imbalanced Learning

Real-world datasets often exhibit a class-imbalanced label
distribution, complicating the standard training and general-
ization of machine learning models [31]. Numerous algo-
rithms [32]–[35] have been proposed to address this problem.
The most prevalent approach for addressing class imbalances
involves rebalancing the training objective based on class-
specific sample sizes. These methods are mainly categorized
into re-weighting [32], [33], which impacts the loss function
by assigning higher costs to examples from minority classes,
and re-sampling [34], [35], which directly adjusts the label
distribution by over-sampling the minority class or under-
sampling the majority class, or both, to achieve a balanced
sampling distribution.

The issue of class imbalance poses a significant challenge
for extending existing SSL-based methods t o more practical
settings. CReST [36] employs a self-training approach that en-

hances the SSL model by adaptively selecting pseudo-labeled
data from the unlabeled set to augment the original labeled set.
Unlike traditional self-training methods, CReST [36] chooses
pseudo-labels based on label frequency to progressively bal-
ance the class distribution, favoring predictions from minority
classes. Lin et al. [37] introduce the CLD method, which miti-
gates data bias by adjusting the overall loss function according
to the voxel count of each class. Basak et al. [14] propose a
dynamic learning strategy that monitors class-specific confi-
dence throughout training, integrating fuzzy fusion and robust
class-wise sampling to enhance segmentation performance for
underrepresented classes. However, the model proposed in [14]
does not consider the varying difficulty levels in modeling
different categories. To address this issue, DHC [15] intro-
duces two innovative strategies: Distribution-aware Debiased
Weighting and Difficulty-aware Debiased Weighting. These
approaches utilize pseudo labels to dynamically counteract
data and learning biases.

III. METHOD

A. Curve Evolution Theory of Active Contour Model

A shape can be represented by its edge curves. Let C : s ∈
[0, 1] → (x(s), y(s)) ∈ R2 denote a parametric curve. The
outward normal of C is N⃗(s) = (y′(s),−x′(s)). Many active
contour methods [38], [39] evolve curves according to a veloc-
ity vector in the direction of its normal, which is expressed as
∂C(x(s),y(s),t)

∂t = V N⃗ . Level set method provides an effective
and stable numerical solution for solving the above partial
differential equation problem. In the level set implementation,
an active curve C is implicitly represented as the zero level
set of a function ϕ, denoted as C = {(x, y)|ϕ(x, y) = 0}. The
evolution of the level set function is ∂ϕ(x,y,t)

∂t = V ||∇ϕ||.



Inspired by the evolution of curves along the normal vector
and the level set representation, we design STAC to alleviate
imbalanced class distribution. The pipeline of the proposed
STAC is depicted in Fig. 2.

B. Shape Transformation Driven by Active Contour Evolution

Let D = Dl ∪ Du be the whole training dataset, where Dl

and Du represent labeled and unlabeled dataset. For a labeled
data pair (Xl, Y ) ∈ Dl, we denote the minority classes as
M . The organs we need to enlarge are O = {(x, y, z) ∈
R3 | Y (x, y, z) ∈ M}. We define the signed distance function
as the level set representation of O:

ϕO(p) =


− inf

q∈∂O
∥p − q∥2, p ∈Oin

0, p ∈∂O
+ inf

q∈∂O
∥p − q∥2, p ∈Oout

(1)

where ∂O represents the surface of O. Oin and Oout denote
the inside region and outside region of O. The normal of
ϕO is denoted as N⃗O(x, y, z) = (∂ϕO

∂x , ∂ϕO
∂y , ∂ϕO

∂z ). To ensure
that voxels far from the expanding organs remain unaffected,
we devise a weight coefficient WO(x, y, z) based on SDF to
carefully control the degree of deformation for each voxel.

WO(x, y, z) = α× eβ×|ϕO(x,y,z)|, (2)

where α and β are hyper-parameters. The adaptive deforma-
tion map D⃗O(x, y, z) is obtained by multiplying the normal
vector with a weight coefficient.

D⃗O(x, y, z) = WO(x, y, z)× N⃗O(x, y, z). (3)

By transforming the shape of the organs along the direction
of the normal vector of the level set function, Xtransformed

l

is denoted as:

Xtransformed
l (x, y, z) = Xl(x+

∂ϕO

∂x
×WO,

y +
∂ϕO

∂y
×WO,

z +
∂ϕO

∂z
×WO).

(4)

The same transformation is applied to generate
Y transformed.

Y transformed(x, y, z) = Y (x+
∂ϕO

∂x
×WO,

y +
∂ϕO

∂y
×WO,

z +
∂ϕO

∂z
×WO).

(5)

For unlabeled image Xu ∈ Du, pseudo SDF ϕpre is predicted
by the network. We use ϕpre to calculate the D⃗pre(x, y, z)
as adaptive deformation map. Xu and its pseudo-label Ŷ is
transformed using D⃗pre(x, y, z).

C. Network architecture and training process

Our method can be integrated into any existing semi-
supervised method, in a plug-and-play manner. In this paper,
we use mutual supervision of two networks trained with
cross-entropy loss (Refer to Eq.(6) and (8) below for this
classic approach.), as an illustration of our proposal. For
i ∈ [1, 2], let the feature extraction module be denoted as
f i the classification head as hi, as used in the base approach).
We introduce an additional regression head for predicting the
signed distance function, denoted as gi. For labeled data pair
as (Xl, Y ) ∈ Dl, the supervised loss for segmentation task
and regression task are:

Ll
seg = ℓce(P

1
l , Y ) + ℓce(P

2
l , Y ), (6)

Ll
sdf = ||ϕ1

pre − ϕY ||2 + ||ϕ2
pre − ϕY ||2 (7)

where ℓce is the cross-entropy loss, P i
l = f i(hi(Xl)) is the

output of the segmentation head, ϕi
pre = gi(hi(Xl)) is the

output of the level set prediction head, and superscript i ∈
[1, 2] means different network. In other words, we complement
the basic supervised loss given in Eq. (6), with a specific loss
Ll
sdf , given in (7), dedicated to the signed distance function.
For unlabeled data Xu ∈ Du, we denote the mutual

supervision loss as:

Lu
seg = ℓce(P

1
u , Ŷ

2) + ℓdc(P
2
u , Ŷ

1), (8)

Lu
sdf = ||ϕ1

pre − ϕ2
pre||2 (9)

where Ŷ 1 and Ŷ 2 are pseudo labels obtained from P 1
u and

P 2
u , respectively. Again, we complement the base loss for

unlabeled data, given in Eq. (8), with a specific cost, given
in Eq. (9) dedicated to the signed distance function.

In summary, our proposal boils down to adding to a base
network, another head to predict the signed distance function,
together with a specific cost function for training this head.
During the training process, we use Xtransformed (Eq. (4))
and Y transformed (Eq. (5)) as data-augmentation (see Fig. 2).

IV. EXPERIMENTS

A. Dataset and Implementation Details.

To address class imbalance in semi-supervised medical
image segmentation, we adhere to the experimental setup
proposed in DHC [15]. We use two different benchmarks: the
Synapse1 [42] and AMOS2 [43] datasets. The AMOS dataset
consists of 360 scans, which are divided into 216, 24 and
120 scans for training, validation, and testing, covering 15
foreground classes, including spleen (Sp), right kidney (RK),
left kidney (LK), gallbladder (Ga), esophagus (Es), liver (Li),
stomach (St), aorta (Ao), inferior vena cava (IVC), pancreas
(PA), right adrenal gland (RAG), left adrenal gland (LAG),
duodenum (Du), bladder (Bl), prostate/uterus (P/U). Compared
with AMOS, Synapse excludes Du, Bl and P/U but adds
portal & splenic veins (PSV). Synapse dataset consists of 30
scans, and we follow DHC [15] splitting them as 20, 4 and

1https://www.synapse.org/\#!Synapse:syn3193805/wiki/89480
2https://amos22.grand-challenge.org/



TABLE I
QUANTITATIVE COMPARISON OF DICE SCORE (↑) BETWEEN OUR PROPOSED STAC AND SOME CLASS IMBALANCE SSL SEGMENTATION METHODS ON

2% LABELED AMOS DATASET.

Methods Avg. Dice Sp RK LK Ga Es Li St Ao IVC PA RAG LAG Du Bl P/U

V-Net (fully) 76.5 92.2 92.2 93.3 65.5 70.3 95.3 82.4 91.4 85.0 74.9 58.6 58.1 65.6 64.4 58.3

CReST [36] 32.1 44.6 45.6 49.4 18.3 18.3 52.5 35.9 35.9 42.5 25.4 19.1 10.5 24.4 37.0 22.2
CReST+STAC 37.1(+5.0) 63.5 58.5 55.5 32.6 22.1 69.2 24.3 49.1 48.1 18.6 22.6 13.1 21.8 32.9 25.6

SimiS [40] 37.5 62.4 60.4 59.5 29.7 0.0 70.2 37.1 50.0 46.2 27.8 21.5 8.1 21.0 43.1 26.3
SimiS+STAC 38.0(+0.5) 59.6 59.9 58.9 29.5 0.0 67.9 39.6 52.7 50.6 29.6 19.4 4.9 26.5 45.9 25.6

CLD [37] 36.6 60.9 54.1 56.4 28.1 0.0 67.7 35.6 48.1 48.7 29.7 28.0 6.8 22.1 40.5 22.4
CLD+STAC 40.0(+3.4) 63.2 61.4 59.4 32.4 0.0 73.2 39.7 59.3 56.2 37.0 19.1 8.1 19.4 46.4 25.1

DHC [15] 37.6 62.3 60.1 59.7 27.7 18.3 69.2 31.6 50.9 42.7 24.4 23.9 9.5 13.5 46.7 23.7
DHC+STAC 45.8(+8.2) 63.2 63.6 62.8 38.4 27.3 73.5 45.2 66.5 57.3 41.5 29.9 13.7 31.8 45.6 27.1

TABLE II
QUANTITATIVE COMPARISON OF DICE SCORE (↑) BETWEEN OUR PROPOSED STAC AND SOME CLASS IMBALANCE SSL SEGMENTATION METHODS ON

5% LABELED AMOS DATASET.

Methods Avg. Dice Sp RK LK Ga Es Li St Ao IVC PA RAG LAG Du Bl P/U

V-Net (fully) 76.5 92.2 92.2 93.3 65.5 70.3 95.3 82.4 91.4 85.0 74.9 58.6 58.1 65.6 64.4 58.3

CReST [36] 47.0 74.1 66.7 67.6 24.1 32.3 86.1 47.6 72.4 54.6 39.5 25.8 13.4 29.2 44.6 27.3
CReST+STAC 48.0(+1.0) 73.6 71.1 70.2 31.2 32.3 86.0 44.0 66.9 57.5 40.0 24.2 18.3 29.7 46.9 28.2

SimiS [40] 49.6 80.1 72.7 69.5 36.8 34.9 88.1 53.4 78.5 58.3 43.0 29.3 12.4 21.9 45.9 19.6
SimiS+STAC 53.7(+4.1) 79.0 77.4 74.0 41.0 44.7 88.3 55.2 78.8 59.2 37.5 33.5 28.3 32.2 48.0 29.5

CLD [37] 49.3 80.2 77.6 71.4 34.8 36.5 88.5 44.0 78.7 57.9 44.3 30.1 17.0 23.6 43.4 12.9
CLD+STAC 50.9(+1.6) 81.1 75.6 75.9 39.9 40.4 88.2 51.4 78.8 61.5 47.8 28.9 17.5 31.8 45.9 0.2

DHC [15] 49.2 80.6 68.3 70.6 34.1 35.1 85.3 51.9 73.4 59.0 48.0 26.3 16.0 27.3 42.9 20.7
DHC+STAC 53.9(+4.7) 79.9 78.0 76.3 38.5 45.9 85.8 53.6 76.4 62.0 47.3 32.1 27.1 38.1 47.8 20.0

TABLE III
QUANTITATIVE COMPARISON OF AVERAGE SURFACE DISTANCE (ASD ↓)

BETWEEN OUR PROPOSED STAC AND SOME CLASS IMBALANCE SSL
SEGMENTATION METHODS.

Methods Amos Synapse
2% 5% 10% 20%

CReST [36] 22.5 9.7 50.9 29.6
CReST + STAC 19.3 5.9 31.0 14.3

SimiS [40] 26.3 10.9 32.9 38.4
SimiS + STAC 26.2 5.6 31.9 32.7

CLD [37] 28.6 11.4 37.9 20.2
CLD + STAC 26.0 13.6 22.8 17.1

DHC [15] 20.1 11.2 25.8 9.8
DHC + STAC 13.5 6.4 26.7 8.9

TABLE IV
QUANTITATIVE RESULTS OF THE PROPOSED STAC COMPARED WITH

OTHER SHAPE TRANSFORMATION ON AMOS DATASET USING 2%
LABELED IMAGES UNDER THE DHC [15] BASELINE.

DHC [15] +Elastic +Anatomy [41] +STAC

Dice (%) 37.6 40.1 40.0 45.8
ASD 20.1 20.7 16.6 13.5

6 scans for training, validation, and testing, respectively. The
proposed method is evaluated with two widely used metrics in

TABLE V
QUANTITATIVE RESULTS OF APPLYING STAC ON LABELED IMAGES (L)
AND UNLABELED IMAGES (U) ON AMOS DATASET USING 2% LABELED

IMAGES UNDER THE DHC [15] BASELINE.

DHC [15] +STAC (L) +STAC (U+L)

Dice (%) 37.6 41.7 45.8
ASD 20.1 17.1 13.5

semi-supervised medical image segmentation: Dice coefficient
(Dice) and the average surface distance (ASD).

B. Comparison with State-of-the-Art Methods.

To validate the effectiveness of our proposed Shape Trans-
formation driven by Active Contour (STAC) method, we
conduct experimental evaluations by integrating STAC with
four established baselines: CReST [36], SimiS [40], CLD [37],
and DHC [15], which address the class imbalance problem.
Following the experiments setting in DHC [15], we conduct
semi-supervised experiments on the AMOS dataset using
2% and 5% of the labeled data, and experiments on the
Synapse dataset using 10% and 20% of the labeled data. The
results of the AMOS dataset [43] experiments are depicted in
Tab. I (2%) and Tab. II (5%), and the results of the Synapse
dataset [42] experiments are presented in Tab. VI (10%) and
Tab. VII (20%). Under the setting of using 2% labeled data of



TABLE VI
QUANTITATIVE COMPARISON OF DICE SCORE (↑) BETWEEN OUR PROPOSED STAC AND SOME CLASS IMBALANCE SSL SEGMENTATION METHODS ON

10% LABELED SYNAPSE DATASET.

Methods Avg. Dice Sp RK LK Ga Es Li St Ao IVC PSV PA RAG LAG

V-Net (fully) 62.0 84.6 77.2 73.8 73.3 38.2 94.6 68.4 72.1 71.2 58.2 48.5 17.9 29.0

CReST [36] 24.3 39.6 44.7 26.3 26.3 1.4 59.3 16.2 38.5 30.2 3.7 8.1 20.1 1.9
CReST+STAC 26.9(+2.6) 46.9 49.3 36.5 30.2 9.6 51.5 27.4 42.5 23.0 2.9 3.7 23.5 3.8

SimiS [40] 24.5 43.1 38.0 43.8 16.5 4.5 68.1 21.8 46.3 14.4 4.7 7.6 0.5 9.5
SimiS+STAC 29.1(+4.6) 48.1 43.8 42.4 18.3 9.1 54.1 23.7 59.6 50.9 1.6 11.6 2.0 14.0

CLD [37] 24.1 48.1 45.9 39.1 1.0 9.4 46.8 19.4 52.6 33.3 8.2 2.4 5.3 1.9
CLD+STAC 29.7(+5.6) 53.1 55.0 45.8 0.4 9.7 54.1 35.7 50.0 49.2 8.1 10.4 0.6 14.6

DHC [15] 30.0 60.7 43.9 42.4 0.0 19.2 61.2 36.9 48.8 38.3 9.0 11.8 13.2 4.9
DHC+STAC 34.8(+4.8) 61.4 61.5 60.3 0.2 13.9 74.3 35.1 61.0 53.1 11.6 10.7 9.5 0.0

TABLE VII
QUANTITATIVE COMPARISON OF DICE SCORE (↑) BETWEEN OUR PROPOSED STAC AND SOME CLASS IMBALANCE SSL SEGMENTATION METHODS ON

20% LABELED SYNAPSE DATASET.

Methods Avg. Dice Sp RK LK Ga Es Li St Ao IVC PSV PA RAG LAG

V-Net (fully) 62.0 84.6 77.2 73.8 73.3 38.2 94.6 68.4 72.1 71.2 58.2 48.5 17.9 29.0

CReST [36] 36.5 68.5 66.7 53.1 36.9 3.0 83.5 25.7 40.6 39.8 9.0 15.8 14.3 17.6
CReST+STAC 38.4 (+1.9) 62.3 70.5 58.8 27.0 19.4 76.0 33.8 52.7 37.8 2.3 15.5 17.2 26.1

SimiS [40] 41.8 84.6 78.5 74.7 2.9 0.0 82.5 44.0 66.3 64.2 29.1 17.7 0.0 0.0
SimiS+STAC 43.5 (+1.7) 83.6 77.4 76.2 4.3 0.0 81.2 43.2 74.5 68.4 30.0 23.6 3.7 0.0

CLD [37] 45.0 76.6 76.9 72.3 9.9 0.0 87.4 34.1 63.3 64.7 14.5 19.4 29.1 37.7
CLD+STAC 46.2 (+1.2) 82.9 79.4 79.4 17.4 0.0 87.5 19.1 72.3 61.4 20.0 24.4 27.9 29.7

DHC [15] 47.8 75.5 73.3 77.0 1.7 24.5 80.8 38.8 65.6 57.2 28.4 20.6 25.7 52.2
DHC+STAC 50.7 (+2.9) 84.2 81.4 80.4 6.5 26.3 84.8 33.2 76.4 65.8 38.3 21.9 22.8 38.0

AMOS dataset [43], applying our STAC to the state-of-the-art
DHC [15] method resulted in a 8.2% improvement in the Dice
coefficient. In the scenario where 5% of the AMOS dataset
is labeled, the implementation of our STAC on DHC [15]
led to an enhancement of 4.7% in the Dice coefficient. On
the Synapse dataset [42], when using 10% labeled data,
applying our method to the four approaches—CReST [36]
, SimiS [40], CLD [37], and DHC [15]—results in Dice
coefficient improvements of 2.6%, 4.6%, 5.6%, and 4.8%,
respectively. Some qualitative results are shown in Fig. 3.

C. Ablation Studies.

Ablation study using other shape transformation. While
random elastic [44] is a simple shape transformation aug-
mentation, it cannot be used to enlarge organs. Tab. IV
shows that, while random elastic marginally enhances the Dice
coefficient, it increases ASD by altering organ contours. STAC,
by evolving along the normal vector to avoid distorted shapes,
produces more realistic and stable shape transformations. This
leads to a 5.8% improvement in Dice scores over the anatomy-
informed shape transformation method [41].
Ablation study on hyperparameters (α and β) of WO. The
proposed STAC only include α and β as hyperparameters.
The curve of the SDF-based weight function with different

parameters α and β is shown in Fig. 4. The experimental
results obtained by controlling the degree of shape change
using the SDF-based weight function are shown in Fig. 5.
The best results are achieved when α = 1 and β = −1, with
a Dice score of 53.9.
Ablation study focusing on the application of shape trans-
formation exclusively to labeled data. Our method can be
applied solely to the images and annotation pairs of labeled
samples, which does not alter the training process. As shown
in Tab. V, performing shape transformations only on labeled
samples also significantly improves the results.

V. CONCLUSION

This paper introduces a novel Shape Transformation driven
by Active Contour (STAC) method for addressing the issue of
imbalanced class distribution in 3D medical image segmenta-
tion. By utilizing the Signed Distance Function (SDF) as the
level set function, and deforming the voxels in the direction of
the steepest descent of SDF, STAC effectively enlarges smaller
organs, balancing the class distribution across various organs.
This approach ensures that voxels distant from the expanding
organs remain unchanged by designing an SDF-based weight
function to control the degree of deformation. Experimental
results show that using STAC as a data-augmentation process



(a) GT (b) DHC+STAC (c) DHC (d) CLD (e) CReST (f) SimiS

Fig. 3. Some qualitative segmentation results of STAC and some other methods on AMOS dataset. The first and third rows are 3D views, and the second
and fourth rows are 2D slices.
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Fig. 4. Plot of the SDF-based weight function with different parameters α
and β.

in four baseline models yields consistent and significant im-
provements, demonstrating the effectiveness of our method.
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