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Abstract. Chemical reaction optimization is a challenging field for the
industry. Its purpose is to experimentally find reaction parameters (e.g.
temperature, concentration, pressure) that maximize or minimize a set
of objectives (e.g. yield or selectivity of the chemical reaction). These
experiments are often expensive and long (up to several days), making
the use of modern optimization methods more and more attractive for
chemistry scientists.
Recently, Bayesian optimization has been showed to outperform human
decision-making for the optimization of chemical reactions [14]. It is well-
suited for chemical reaction optimization problems, for which the evalu-
ation is expensive and noisy.
In this paper we address the problem of chemical reaction optimization
with continuous and categorical variables. The presence of categorical
variables in an optimization problem often increases its difficulty and
decreases the performances of the optimization algorithms.
We propose a Bayesian optimization method with the use of a covariance
function initially proposed by Ru et al. in the COCABO method [12]
and specifically designed for categorical and continuous variables. Also,
we experimentally compare different methods to optimize the acquisition
function. We establish their performances based on the optimization of
two simulated chemical reactions involving categorical and continuous
reaction parameters.
We show that the proposed Bayesian optimization algorithm finds op-
timal reaction parameters in fewer experiments than state of the art
algorithms on our simulations.

Keywords: Mixed bayesian optimization · chemical reaction optimiza-
tion · categorical variables

1 Introduction

Every chemical reaction is optimized before being industrialized. The goal is to
find, by carrying out experiments, input parameters (e.g. temperature, pressure,
residence time, etc.) that yield optimal values for a set of objectives (e.g maximize
the yield, minimize the production of an impurity, etc.).

The pursuit of high-performance optimization methods is driven by the high
cost of chemical experiments. The performances of optimization methods applied
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to chemical reactions are measured against the quality of the solution (i.e. how
close the solution is to the optimization objectives) and how many experiments
are needed to find this solution.

One-Variable-At-a-Time (OVAT) and Design of Experiments (DoE) [1, 16]
methods are the most used approaches to optimize chemical reactions. The
OVAT method iterates by performing experiments and modifying only one pa-
rameter at a time. DoE methods consist in planning a series of experiments
following a design matrix, running these experiments and building a statistical
model (usually linear or polynomial) with the resulting dataset. An optimum is
then computed from the model. OVAT and DoE methods tend to need a large
number of experiments to be effective. In addition, OVAT can be very slow (be-
cause only one variable is changed at a time) and can get stuck in local optima.
Simplex-based methods are also sometimes used to optimize chemical reactions
[9, 19]. They consists of building a simplex in the search space, then evaluating
the objective function at each of the vertices of the simplex and iteratively dis-
placing one vertex at a time following heuristics. Simplex-based methods tend
to be easily stuck in local optima [18].

Zhou et al. [21] proposed a deep reinforcement learning (DRL) based method
to optimize chemical reactions. The authors combined DRL and pre-training
to be able to start working with very small amounts of data. This leads to
satisfactory results on problems containing only continuous variables but hasn’t
been tested with categorical variables (without descriptors).

Bayesian optimization (BO) is a powerful approach to optimize problems
for which the evaluations are expensive and noisy. It has shown a variety of
successful applications [13]. BO concepts are described in figure 1. First, an ini-
tialisation is done with a small number of experiments. Then, a surrogate model
(e.g. Gaussian process) is trained using these experiments. An acquisition func-
tion, that balances the predicted improvement (exploitation strategy) and the
uncertainty of the predictions (exploration strategy), is applied to the model.
An optimization algorithm is applied to find the maximum of this acquisition
function. The set of parameters that gives this maximal value for the acquisi-
tion function determines the next experiment (chemical reaction) to run. This
experiment is run, its result is added to the dataset, and the algorithm starts
a new iteration. The algorithm stops when the objectives are attained or when
the experiments budget is spent.

Categorical variables are often present in the optimization of chemical re-
actions [11]. We can cite as an example the choice of a catalyst or additives,
the choice of the solvent or the order of addition of the reactants. Categorical
variables have two important particularities. The first one is the non-continuity
constraint, since categorical variables are not defined on a continuous space. The
second one is the non-ordinality constraint: they can only be compared with the
equality operator. For example, with a categorical variable representing a choice
between three solvents water, ethanol, toluene asserting that water > toluene
is meaningless.
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Fig. 1: Simplified Bayesian optimization algorithm applied to chemical reactions.

Mixed-variable optimization can be handled with one-hot encoding: a cat-
egorical variable with n categories is encoded as a vector of n corresponding
bits, with all bits being equal to 0 except the bit corresponding to the selected
category, that is equal to 1. However, in the BO algorithm, treating one-hot di-
mensions as continuous without any supplementary treatment misleads the ac-
quisition function optimizer and often results in a sub-optimal solution. Indeed,
the experiment proposed by the acquisition function optimizer is a real-valued
vector and has to be decoded to the closest category. Hence, most of the time,
there will be a gap between the experiment suggested by the acquisition func-
tion optimizer and the experiment that will actually be performed, leading to a
mediocre optimization performance.

The work presented by Garrido-Merchán et al. [3] brings an improvement to
the basic one-hot encoding approach. During the optimization of the acquisition
function, real-valued encoded vectors are transformed to the nearest one-hot
vectors before being used as inputs of the model. It follows that the acquisition
function optimizer considers real-valued vectors as having the same acquisition
values as the associated transformed vectors. Thus, the acquisition optimizer
suggests an experiment that can be performed as is, which ensures the conver-
gence to optimal solutions.

Häse et al. [4] have developed an augmented Bayesian optimization algo-
rithm called Gryffin that uses a Bayesian neural network as surrogate model.
It estimates kernel densities, based on previously evaluated experiments, that
are used to approximate the objective function. Griffyn is able to use expert
knowledge (descriptors) to guide the optimization, which drastically improves
the performances of their method. Its ”naive” version doesn’t use descriptors,
which enabled us to use it in our benchmarks.

COCABO [12] is a Bayesian optimization method designed for mixed-variable
optimization. At each iteration, COCABO first selects categories with a multi-
armed bandit algorithm and then separately optimizes the numerical variables
(after modelling them using a mixed covariance function).
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Random forests inherently handle categorical variables and can be used as
surrogate model in the Bayesian optimization algorithm [5]. A ready-to-use im-
plementation of this algorithm is provided in a package called SMAC [7].

In this study, we aim at improving the performances (i.e. reducing the num-
ber of experiments necessary to reach an optimum) of the Bayesian optimization
method for the optimization of chemical reactions with continuous and categor-
ical variables. Our approach is based on Gaussian processes as surrogate models
with the COCABO covariance function [12]. We propose different techniques
for the optimization of the acquisition function. Next, we compare the different
acquisition function optimizer on the optimization of simulated chemical reac-
tions. And finally, we compare our optimization algorithm (using the COCABO
covariance function and the highest-performing acquisition function optimizer)
with other state-of-the-art algorithms.

2 Problem definition

Our work is applied to problems with a form given by:

Minimize f(z) with the smallest possible number of evaluations (1)

where :

– z = (x,h)

– x = x0, .., xn and xi ∈ [Ai, Bi] with Ai, Bi ∈ R
– h = h0, ..., hn and hi ∈ Ci with Ci denotes the categorical space of the ith

categorical variable.

This work is restricted to single objective optimization. Moreover, only contin-
uous and categorical variables are used.

The ”No-Free Lunch Theorem” [17] stipulates that the performances of ev-
ery optimization methods are equal when averaged on all possible problems. It
implies that in order to increase the performances on a specific optimization
problem (e.g. chemical reaction optimization), we must evaluate the optimiza-
tion method on similar problems without any regards on the performances of
unrelated ones. The underlying functions of chemical reactions have some par-
ticularities: they are smooth and have few local optima [8, 15]. So, in order to be
specific to the chemical reaction optimization problem, we measure the perfor-
mances of our approach using chemical reaction simulators. We have built these
chemical reaction simulators by training machine learning models with publicly
available chemical reaction data (see table 1). This benchmarking strategy was
initially introduced by Felton et al. [2] for measuring performances on chemical
reactions with continuous and categorical variables. It allows us to establish opti-
mization performances on chemical reactions without having to run experiments
in a chemistry lab.
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Table 1: Details of the data used to train the simulators

Reaction type Number of experiments Source

Pd-catalysed direct arylation 1728 [14]

Suzuki-Miyaura cross-coupling 4 cases of 96 [11, 2]

3 Propositions

In a first part, we describe the surrogate model including the COCABO kernel
and its hyperparameters. In a second part, we present different approaches for
the optimization of the acquisition function.

3.1 Gaussian process kernel

We use Gaussian processes (GP) to approximate the underlying functions of
chemical reactions. It is the most commonly used model since it can inher-
ently predict both a value and an associated uncertainty. Gaussian processes are
mainly defined by their covariance function. Since the underlying functions of
chemical reactions are smooth, we use a smooth covariance function, Matérn5/2
[10], for the continuous dimensions.

The smoothness of the GP on continuous variables is kept with the use of
the one-hot encoding. However, the Euclidian distance used for the calculation
of the Matérn5/2 kernel is based on all dimensions (continuous and encoded). We
believe that, in order to catpure complex relationships between categorical and
continuous variables, the covariance function should use the Euclidian distance
only on continuous variables and incorporate categorical knowledge later in its
calculation. The COCABO method [12] uses such a covariance function (see
equation 2). It combines two sub-functions: one for continuous variables, Kcont,
and one for categorical variables, Kcat.

K(z, z′) = (1− λ)× (Kcont(x,x
′)×Kcat(h,h

′))
+ λ× (Kcont(x,x

′) +Kcat(h,h
′))

(2)

where :

– z = (x,h)
– x is the set of continuous variables
– h is the set of categorical variables

Kcont is the Matérn5/2 function. It is a standard covariance function for
smooth Gaussian processes regressions with continuous inputs. Kcat, the kernel
for categorical inputs (see equation 3), measures similarity between categorical
vectors with the equality operator (which is the only permitted operation for
categorical variables).
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Kcat(h,h
′) = σ × 1

D

D∑
1

α(hd, h
′
d) (3)

where:

– α(a, b) equals 1 if a = b and 0 if a ̸= b
– D is the number of categorical variables
– σ is the variance hyperparameter.

The proposition made by Ru et al. in COCABO [12] revolves around the
hyperparameter λ, which is a trade-off between the two terms of the equation
2: the sum and the product of Kcont and Kcat. Both of these terms capture
different relationships between continuous and categorical variables. The sum
of the two sub-kernels produces a learning of a single trend on the continuous
variables and shift this trend depending on the categories whereas the product is
able to produce a learning of complex relationships with highly different trends
depending on the categories. The sum is especially necessary when the amount
of training data is low (beginning of the optimization) because the product is
able to capture knowledge only if the evaluations have categories in common.
For example, if two evaluations have the same continuous features but different
categorical ones, the product will be equal to 0 which prevent the model to learn
even on continuous variables. Nonetheless, the product is essential because, as
the optimization goes on, more evaluations are added to the training dataset and
a single trend with a simple shift will not be sufficient to model the complexity
offered by the data. In other words the sum alone will not be able to capture all
the knowledge available to guide the optimization. With the hyperparameter λ,
the authors ensure that the relationships that can be captured either by the sum
or by the product are taken into account into the covariance K(z, z′), because λ
is tuned during the fitting of the Gaussian process.

In order to avoid underfitting/overfitting the data while training the Gaus-
sian process (tuning its hyperparameters to minimize its negative log marginal
likelihood [10]), we confined hyperparameter values within a range. σK , σKcont

and σKcat
were bounded in [10−2, 20] while the lengthscale parameter of Kcont

and λ were respectively bounded in [10−2, 20] and [0.1, 0.9]. We used the L-BFGS
optimizer to tune the GP hyperparameters.

3.2 Acquisition function optimization

We chose to use the Expected Improvement (EI) acquisition function because
it has shown good results on diverse applications and has a strong theoretical
support [20]. The equation of Expected Improvement is given by:

EI(x) = E[max(f(x)− f(x+), 0)] (4)

with f(x+) the value of the evaluation that have yielded the best result so far.
The analytical form of EI is the following:

EI(x) =

{
σ(x)ZΦ(Z) + σ(x)ϕ(Z) if σ(x) ̸= 0
0 if σ(x) = 0

(5)
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where

Z =
µ(x)− f(x+)− ξ

σ(x)
(6)

Φ(Z) and ϕ(Z) denotes respectively the cumulative distribution function (CDF)
and the probability density function (PDF) of the variable Z. Z denotes the
predicted improvement divided by the standard deviation (uncertainty) and the
parameter ξ determines the weight of the exploration strategy in the equation.
This analytical form of EI is cheap to evaluate and can be optimized without
sparing on the number of evaluations. Therefore, we propose several approaches
for the optimization of the acquisition function with mixed variables.

The first approach (denoted as L-BFGS-OHE) involves a one-hot encoding
of the categorical variables and a multi-started gradient descent for the opti-
mization of the acquisition function. However, since the COCABO model do
not accept one-hot vectors, one-hot dimensions are systematically decoded be-
fore any predictions. In other words, predictions are asked for by the acquisi-
tion function optimizer with encoded inputs but they are decoded before they
pass through the model. The multi-started gradient descent is performed as fol-
lows: 1000 configurations are randomly drawn and the 5 configurations with the
highest acquisition function value are kept and a gradient descent (L-BFGS) is
performed on each of these 5 configurations.

We also propose an approach based on a ”brute-force” optimization of the
categorical space and a multi-started gradient descent on the continuous space
(see Algorithm 1). First, all the combinations of the categorical parameters are
constructed. Then, for each combination, a multi-started gradient descent (pre-
viously described) is performed on the continuous parameters. Finally, after de-
termining the maximal acquisition values for each categorical combination, the
configuration with the highest acquisition value is suggested as the next experi-
ment. This algorithm reduces the difficulty of the optimization of the acquisition
function because instead of dealing with different types of variables (or with sup-
plementary dimensions from the encoding), the acquisition optimizer only works
on the continuous dimensions. Still, it can be heavy in terms of computational
cost if the number of categories and categorical variables is large.

Algorithm 1 Categorical brute-force and multi-started gradient descent

1: Construct all categorical combinations
2: Multi-started gradient descent optimization of continuous parameters for each com-

bination
3: Choose as suggestion the configuration (continuous and categorical) with the high-

est acquisition

Lastly, we implemented an evolutionary algorithm based on ant colonies
(ACO) that can handle categorical variables [6]. In our experiments, we used the
colony hyperparameters proposed by the authors without any restart allowed.
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This algorithm is a multi-agent method inspired by the behaviour of ants. An
ant represent an evaluation at a given set of parameters. At each generation,
each ant randomly moves towards previously evaluated points with good results
(exploitation strategy). The presence of multiple ants in the colony and the ran-
domness of their movements enable the mandatory exploration of the search
space. It allows the ants to not only moves around promising areas but also
randomly explore areas that may have not been explored so far.

4 Results

For each optimization algorithm, we performed 25 runs of 55 experiments each.
At each run, we randomly drew 5 initial evaluations and, for a fairness purpose,
these 5 evaluations were used to initialize all the optimizers.

First, we compare the performances of different acquisition optimization tech-
niques (using the COCABO kernel and the EI acquisition function).

The figures 2a and 2b compare the performances of the acquisition optimizers.
They correspond respectively to a simulation of the direct arylation reaction
which contains 3 categorical variables and 2 continuous ones, and to a simulation
of the Suzuki-Miyaura reaction (case 1) which contains 1 categorical variables
and 3 continuous ones.

In both cases, ACO performs poorly compared to the two other methods.
Still, its performances are closer to the two other optimizers than the random
strategy so it will be the subject of further work to exploit the potential of the
ACO method.

In the figure 2a, the brute-force and the L-BFGS algorithm with one-hot
encoded categorical variables give similar results but in the figure 2b, brute-
force performs slightly better. Overall, the brute-force approach offers the best
performances with the steepest average convergence rate and the lowest standard
deviation (filled area).

As consequence of the results presented above, we chose the brute-force ap-
proach to be the acquisition function optimizer in the rest of our study.

The next results present a comparison between our method (composed by
the COCABO kernel, Expected Improvement and the brute-force optimizer),
Gryffin [4], COCABO [12], SMAC [5], and the work of Garrido-Merchán et al.
[3].

We used the ”naive” version of Gryffin in its authors’ implementation. We
used COCABO in its authors’ implementation with its default settings and a
starting λ = 0.5. SMAC denotes an optimization algorithm based on Random
Forest [5] and the Expected Improvement acquisition function. We used an im-
plementation proposed by Lindauer et al. [7].

In Figures 3a and 3b, the Bayesian optimization with the COCABO kernel
and the categorical brute-force optimization of the acquisition function gives the
best results: it generally converges faster to the optimum than other methods.
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(a) Benchmark function: Pd-catalysed direct arylation simulation
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(b) Benchmark function: Suzuki-Miyaura simulation

Fig. 2: Best score evolution on simulations with the use of different acquisition
function optimizers (brute-force, ACO, L-BFGS-OHE). A random optimization
strategy of each chemical reaction simulation is given.
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(a) Benchmark function: Pd-catalysed direct arylation simulation
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(b) Benchmark function: Suzuki-Miyaura simulation (case 1)

Fig. 3: Best score evolution on simulations with different optimization methods
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SMAC’s performances show us that it can handle categorical variables but,
overall, it performs poorly compared to the two Bayesian optimization with
Gaussian process as surrogate model.

The COCABO method fails to optimize the Suzuki-Miyaura simulation. The
multi-armed bandit (MAB) part of the COCABO method is designed for multi-
ple categorical variables with multiple categories and the Suzuki-Miyaura simu-
lation has only one categorical variable.

Our algorithm (”Mixed kernel and brute-force”) performs slightly better than
the work of Garrido-Merchán et al.. The main difference between the two meth-
ods is the use of different covariance functions. The COCABO kernel is able to
capture more complex relationships than a standard Matérn5/2 function on a
one-hot encoded space.

5 Conclusion

This paper presents a method for the optimization of chemical reactions with
mixed variables (continuous and categorical).

We expose a Bayesian optimization algorithm based on a Gaussian process
with a covariance function specifically designed for continuous and categorical
variables [12]. Also, we evaluate different methods for the optimization of the
acquisition function and show that a brute-force approach associated to a multi-
started gradient descent performs best. This approach performs globally better
than other state-of-the-art methods [4, 3, 12] on two simulated chemical reactions
with categorical and continuous inputs.

We are working on further increasing the quality of the model by modifying
the covariance function. Also, in order to fully establish the performance of the
presented method, later works will imply experimental validation in chemistry
labs.

Acknowledgement: This work was supported by the R&D Booster SMAPI
project 2020 of the Auvergne-Rhône-Alpes Region.
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