
HAL Id: hal-04739554
https://hal.science/hal-04739554v1

Submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Deterministic Abstractions for Supervising
Discrete-Time Continuous Systems
Gwendal Priser, Elena Vanneaux, Goran Frehse

To cite this version:
Gwendal Priser, Elena Vanneaux, Goran Frehse. Robust Deterministic Abstractions for Supervising
Discrete-Time Continuous Systems. Reachability Problems. RP 2024, Sep 2024, Wien, Austria,
Austria. pp.187-202, �10.1007/978-3-031-72621-7_13�. �hal-04739554�

https://hal.science/hal-04739554v1
https://hal.archives-ouvertes.fr

Robust Deterministic Abstractions for
Supervising Discrete-time Continuous Systems

Gwendal Priser, Elena Vanneaux, and Goran Frehse[0000−0002−5441−0481]

U2IS, ENSTA Paris, Institut Polytechnique de Paris
{gwendal.priser|elena.vanneaux|goran.frehse}@ensta-paris.fr

Abstract. We present a method for constructing discrete abstractions
for discrete-time, continuous-state systems. Related approaches construct
a discrete bisimulation, which leaves little room for non-determinism in
the outputs and quickly leads to highly complex models since all con-
crete behavior is covered. Our approach is to relax these requirements
and build a satisficing solution: a discrete abstraction that is determin-
istic, robust, and as complete as possible under the given parameters.
This allows us to balance granularity and computational feasibility. We
leverage linearization and linear feedback control to extend the approach
from globally contractive systems to systems with contractive cycles. The
resulting abstraction directly induces a supervisor policy. The approach
is illustrated with numerical experiments and has potential applications
in various domains where system safety and reversibility are essential.

Keywords: continuous dynamical systems · discrete abstraction · ro-
bustness · supervision

1 Introduction

We are interested in supervising the behavior of dynamical systems that are
subject to a sequence of control inputs, also called actions. The system’s reaction
to an input can be nondeterministic, i.e., the same input can lead to different
successor states. The supervisor’s job is to ensure that the control actions always
lead to runs that satisfy a given specification. Ideally, we want to identify the
maximally permissive supervisor that achieves this. However, this is known to
be a hard problem, so the approach we pursue in this paper is to trade off some
of the maximality to reduce the computational cost.

The design of controllers and supervisors often involves the construction of
an abstraction, i.e., a substitute dynamical system that is simple enough to carry
out the actual synthesis process [23,4]. This is usually a two-step process: First,
designing an abstraction that captures the system response to all possible control
actions in all states. Second, using the abstraction to identify the control actions
that ensure a given specification. One problem with this two-step approach is
that a complete abstraction may be extremely complex. It stands to reason that
a simpler abstraction may be sufficient to find an acceptable supervisor, so we
forego the objective of finding the maximal one.

2 Priser et al.

Discrete abstractions of continuous systems are usually associated with a
notion of contractiveness, like global asymptotic stability [24,11,20,12]. We pro-
pose to construct deterministic abstractions that use feedback control policies
to induce contractiveness locally. Deterministic policy abstractions provide an
extraordinarily strong link to the concrete system. One can pick any succession
of policies from the abstraction, apply it to the concrete system and is guar-
anteed to obtain the same outputs – without having to adapt to the concrete
state. If even the policies are independent of the concrete state, which we call
a reach set abstraction, any trace from a reach set abstraction can be enforced
completely in an open loop. This can be advantageous in critical situations, un-
der degraded operating conditions, or when feedback can be compromised due
to damage, malfunction, or communication problems. For example, open-loop
control is preferred for the control surfaces of certain missiles [6].

Given the power of a deterministic abstraction, the question is under what
conditions and with which tools they can be constructed. We show that deter-
ministic abstractions exist under conditions similar to standard bisimulations.
While finding the maximal policy involves robust backward reachability, the for-
ward reachability operator suffices to obtain a solution, and we show maximality
under certain conditions. To synthesize the local feedback policies, we use lin-
earization. The linearized system allows us to describe the sufficient conditions
for the abstraction with a single linear constraint system, which can then be fed
to an off-the-shelf solver. If the linear constraint system is infeasible, we can use
feedback from the LP solver to select a subset of transitions that is satisfiable
yet preserves properties like connectedness.

Related Work The formal basis of our abstractions is provided by the well-
established notions of simulation [17] and alternating simulation [2], which were
applied to continuous control systems in [20]. Inspired by the approach in [9], we
admit nondeterministic outputs and consider specifications that are upwards-
closed with respect to sets of outputs. While simulation preserves safety prop-
erties, bisimulation preserves much stronger properties like those captured with
temporal logics like CTL* [8]. However, bisimulation with both state and input
labels requires an extremely close correspondence between the two systems so
that abstractions that bisimulate the original system may be found only in a
restricted class of systems; see, for example, [22].

We consider nondeterministic dynamical systems, which may end up in dif-
ferent states for the same input. For this situation, alternating simulation [2]
provides a stronger relationship, which is particularly suited to control systems
[20], and we build on this concept. An even stronger notion, called feedback re-
finement relations [21], requires that inputs in the concrete and abstract system
are matched exactly; our policy abstractions require this implicitly in the sense
that applying the policy to the concrete state must in all cases lead to states that
are covered by the relation. Controllers synthesized with the approach in [21] can
immediately be mapped to concrete control actions; in our case, this is achieved
through policies, which, however, require continuous state information. In [20],
the antagonistic choice of successor states is explicitly represented by disturbance

Robust Deterministic Abstractions 3

labels. In our approach, disturbances are implicitly represented by successor sets,
which encode a nondeterministic choice. We formalize a novel abstraction-based
approach in which the transitions are not labeled by discretized control inputs,
but by local state-feedback controllers that can ensure the determinism of the
symbolic system, even when the concrete system is non-deterministic and not
incrementally stable [13]. This stateful policy differentiates our approach from
much of the literature, where the supervisor is often based only on the state of
the concrete system.

To make our abstraction deterministic, we use closed-loop strategies to ensure
contractions. To compute a closed-loop strategy, we first locally linearize the
system and then design a linear feedback control to force the system to be locally
contractive. Our approach is similar to [10,25] and can be seen as an instance
of an ε-close bisimulation as in [11]. However, in contrast to [25], the states
of our abstraction can overlap, which is crucial for building non-trivial smart
abstractions [10]. As opposed to [10], we solve a linear programming problem to
ensure contraction in terms of infinite norms, not quadratic norms.

Structure The remainder of the paper is structured as follows. In Sect. 2, we de-
scribe the fundamental building blocks of the abstraction, notably LTS semantics
and alternating simulation. In Sect. 3, we define a particular type of alternat-
ing simulation that we call policy abstraction, which maps abstract transitions
to feedback policies in the concrete system. We discuss the particular power of
deterministic abstractions and show their existence for systems that are glob-
ally Lipschitz and contractive. Section 4 extends the approach to more general
classes of systems by applying continuous feedback control to induce contrac-
tiveness locally. Numerical experiments illustrate the approach in Sect. 5.

2 Discrete Abstractions of Continuous Systems

In this section, we present the fundamental notions that describe the relation-
ship between the continuous dynamical system that we want to supervise and
the discrete abstractions that we use to build the supervisor: LTS semantics,
simulation, and alternating simulation.

2.1 Disrete-time Dynamical Control Systems

We consider discrete-time dynamical systems with control inputs, with a set of
states X ⊆ Rn and a closed and bounded set of control actions U ⊂ Rm. The
dynamics are described by a set-valued map F : X ×U ⇒ X and F (x, u) ̸= ∅ for
any x ∈ X , u ∈ U . For a given initial state x0, a trajectory consists of a sequence

x′
k+1 ∈ F (xk, uk), xk ∈ X , uk ∈ U . (1)

We extend F (x, u) to sets X ∈ X , U ⊆ U as F (X,U) =
⋃

x∈X ,u∈U F (x, u).
Based on the one-step forward reachset F , the robust one-step backward reachset

4 Priser et al.

B(X ′,U ′) is defined as the states where choosing the right action from U ′ ⊆ U
leads always inside the target set X ′ ⊆ X :

B(X ′,U ′) =
{
x
∣∣ ∃u ∈ U ′ : F (x, u) ⊆ X ′}. (2)

A (feedback) policy is a set-valued function π : X ⇒ U associating each
state with a set of available inputs. Connecting a system with dynamics F with
a feedback policy π leads to the closed-loop dynamics Fπ defined by Fπ(x) =⋃

u∈π(x) F (x, u). Let Π(X ,U) be the set of all policies over X and U . A policy
is called non-blocking if for all x ∈ X , we have that π(x) ̸= ∅.

2.2 LTS Semantics

Two main types of transition systems that are used as abstractions are Kripke
structures (KS), whose states are labeled with atomic propositions and whose
transitions are unlabeled, and Labeled Transition Systems (LTS), whose states
are unlabeled and whose transitions are labeled. Both formalisms are essentially
equivalent [7], but KS-type abstractions seem to have been favored for continuous
systems, e.g., in [20]. We are concerned with both state information, wishing to
direct the system to certain states, and the transitions associated with input
actions. Following the example of [9], we include both kinds of labels. This has
been called a doubly labeled transition system [8], but for the sake of simplicity,
we will stick with LTS, defined as follows.

Definition 1. A labeled transition system (LTS) is L = (S, s0, Σ,→, P,O) with

– a set of states S, including a state s0 called the initial state,
– a set of action labels Σ,
– a transition relation →⊆ S ×Σ × S, where s

α−→ s′ denotes that the system
can transition from state s to s′ if the action α is applied,

– a set of atomic observations P ,
– an observation function O : S ⇒ P that attributes to each state s all obser-

vations that hold in s.

An LTS is called nonblocking if every state has at least one outgoing transition.
It is called complete over a set of labels Σ′ if every state has at least one outgoing
transition for every label in Σ′.

The semantics of the LTS are defined over runs and traces of observations, which
then lead us to specifications, following the approach proposed in [9]:

Definition 2 (Run, trace, specification). A run ρ = s0
π0−→ s1

π1−→ s2 . . .
is a (finite or infinite) sequence of alternating states and labels, starting in the
initial state and connected by the transition relation. Applying the observation
function to each state in a run maps it to a trace, i.e., the sequence of sets of
observations τ = O(ρ) = o0, o1, o2 . . . with ok = O(sk) for all k. We denote with
τ ≤ τ ′ for traces τ = o0, o1, o2 . . ., τ ′ = o′0, o

′
1, o

′
2 . . . if ok ⊆ o′k for all k, i.e., all

observations in τ also hold in τ ′. A specification Spec is a set of traces that is
upwards closed, i.e., for any τ ∈ Spec and τ ′ with τ ≤ τ ′, we have τ ′ ∈ Spec.
We say that a run ρ satisfies a specification Spec if O(ρ) ∈ Spec.

Robust Deterministic Abstractions 5

The upwards-closedness of specification follows intuition: When the specification
requires that observations {a, b} hold, it should also be satisfied if {a, b, c} hold
since a ∧ b ∧ c implies a ∧ b. Our dynamical systems are cast as LTS as follows:

Definition 3. The semantics of the dynamical system (1) is a labeled transi-
tion system L = (X , x0,U ,→X , P,O), with state domain X , the label set U and
transition relation →X defined by x

u→X x′ if and only if x′ ∈ F (x, u).

The set of atomic observations P and the output function O depend on the
type of observation we wish to consider. Assuming perfect state information, we
have P = X and O(x) = {x}. Alternatively, O can represent a quantizer that
indicates states up to a neighborhood; P consists then of the different possible
neighborhoods:

Definition 4. Let P = {S1,S2, . . .} be a collection of sets that cover X . We call
state quantizer the output function OP (x) = {S ∈ P | x ∈ S}.

If P is a partition of X , the state quantizer is deterministic. If the sets in P
overlap, e.g., to model noisy measurements, then O is nondeterministic.

2.3 Abstractions on LTS

We follow the classical route by defining abstractions using simulation relations.
From KS, we adopt that outputs match, and from LTS, that labels match.

Definition 5 (Simulation). Given a pair of LTS (L1, L2) and P1 = P2, a
relation R ⊆ S1 × S2 is a KS-simulation relation if (s0,1, s0,2) ∈ R and for all
(s1, s2) ∈ R

(i) O2(s2) ⊆ O1(s1) and 1

(ii) ∀s1
u1→1 s′1 there exists u2, s

′
2 such that s2

u2→2 s′2 and (s′1, s
′
2) ∈ R.

R is a LTS-simulation relation if in (ii), u1 = u2. R is a bisimulation relation
if it is a simulation relation of (L1, L2) and its converse RT is a simulation
relation of (L2, L1). L2 is said to simulate L1 if there is a simulation relation R
for (L1, L2).

In typical use, L1 would be the concrete system and L2 the abstraction, which
may admit more transitions than the concrete system. Simulation preserves
safety properties: If the abstract system L2 remains inside a set of safe states,
then so does L1. For example, assume safe ∈ O(s2) if and only if s2 is considered
safe in L2, and let only safe states be reachable from the initial state s0,2. If S2

simulates S1, then safe ∈ O(s1) for all reachable s1 in L1.
We now turn to the question of when a transition in the abstraction can

be enforced in the concrete system. We consider nondeterministic dynamical
1 [9] uses the converse condition, i.e., O1(s1) ⊆ O2(s2). We consider our version con-

sistent with the upward-closure requirement for specifications; other work also uses
this direction [16].

6 Priser et al.

systems, which may end up in different states for the same input. This can be
modeled as a two-player game in which an agent plays the input action, and the
opponent gets to pick the successor state. For this situation, alternating simu-
lation [2] provides a relationship that is particularly suited to control systems
[20]:

Definition 6 (Alternating Simulation, adapted from [20]). Given a pair
of LTS (L1, L2) with P1 = P2, a relation R ⊆ S1×S2 is an alternating simulation
relation if (s0,1, s0,2) ∈ R and for all (s1, s2) ∈ R

– O1(s1) ⊆ O2(s2),
– ∀s1

u1→1 s′1 there exist u2, s
′
2 such that s2

u2→2 s′2 with (s′1, s
′
2) ∈ R and

∀s2
u2→2 s′′2 there exist s′′1 such that s1

u1→1 s′′1 with (s′′1 , s
′′
2) ∈ R.

In our case, L2 is the concrete system and L1 the abstraction: If the abstraction
L1 proposes a move, then L2 must be able to realize that move with an action,
and all other possible successor states for that action (s′′2) must also be in the
relation. Intuitively, an alternating simulation over (L1, L2) guarantees that any
action in L1 can be implemented in L2. Similarly, any sequence of observations
that can be realized in L1 can also be realized in L2 without any risk of non-
determinism leading to different traces [26, Thm. 1].

3 Supervision with Deterministic Policy Abstractions

Our goal is to represent and synthesize supervisors efficiently. We employ dis-
crete—ideally, finite—LTS as models for this. In what we call a policy abstraction,
every transition s

π→A s′ attributes a policy π to the change from s to s′. In the
literature, abstractions are frequently based on the forward reach set F (X ′,U ′),
where X ′ are the concrete states associated with s, so the input is the same
for all states in X ′. This case, which we call reach set abstraction, is covered by
letting π(x) = U ′ for all x ∈ X .

3.1 Policy Abstractions

To relate the abstraction to the control system, we use a special case of alter-
nating simulation, where the relationship between the abstract labels (policies)
and concrete labels (input actions) is not entirely arbitrary: the abstract labels
are policies, i.e., they map concrete states to a set of concrete labels.

Definition 7 (Reach-set and Policy Abstraction). Given a dynamical sys-
tem (1), a set of observations P and an observation function O : X ⇒ P , a
policy abstraction is an LTS A = (S, s0, Π,→A, P,OA), where Π is a set of
nonblocking policies (mapping X to nonempty subsets of U), such that there ex-
ists a relation R ⊆ S×X (an alternating simulation relation), with (s0, x0) ∈ R
and for all (s, x) ∈ R

(i) OA(s) ⊆ O(x),

Robust Deterministic Abstractions 7

(ii) ∀s π→A s′,∀x′′ ∈ F (x, π(x)) there exists s′′: s π→A s′′ with (s′′, x′′) ∈ R.

If all policies in π→A are independent of the continuous state, i.e., π = X × U ′

for some U ′ ⊆ U , we call A a reach set abstraction.

Simply put, the abstraction must cover the forward reach set in the concrete
system with abstract transitions that have the same label. The relation R above
is an alternating simulation relation over A and the LTS semantics of F , with
an additional constraint on the correspondence between labels.

We can operate a policy abstraction as a supervisor on the system. This
leads to a hybrid system, i.e., discrete states representing the policy abstraction,
similar to the approach in [10].

Definition 8 (Supervision by a PA). The semantics of the dynamical system
(1) supervised by a policy abstraction A is the LTS L||A = (XA, xA,0,U , →X||A,
P,O) with XA = X × S, xA,0 = (x0, s0), and (x, s)

u→X||A (x′, s′) if and only
if there exists s

π−→A s′ such that u ∈ π(x) and x′ ∈ F (x, u). These dynamics
correspond to the one-step forward reachset

FA

(
(x, s)

)
=

{
(x′, s′)

∣∣∣ ∃π ∈ Π, s′ ∈ S : s
π→A s′, x′ ∈ F (x, π(x))

}
.

The supervised control system matches the policy abstraction if the output func-
tion matches exactly. We formalize this relationship as a bisimulation.

Proposition 1. If for all (s, x) in the relation R in Def. 7, OA(s) = O(x), then
L||A is a KS-bisimulation of A.

We are particularly interested in the special case where the policy abstraction
is deterministic, i.e., in Def. 7, s′ = s′′. A deterministic policy abstraction A
encodes traces that can be realized by applying the corresponding sequence of
policies from A to the concrete system L. We formalize this by specializing a
result from [9] to deterministic policy abstractions:

Theorem 1 (Deterministic PA). Let s0
π0−→ s1

π1−→ s2 . . . be a run of a deter-
ministic policy abstraction A that satisfies a given specification Spec. Then any
run x0

u0−→ x1
u1−→ x2 . . . of L with uk ∈ πk(xk) for all k also satisfies Spec.

Proof. Let o0, o1, . . . be the trace of s0
π0−→A s1

π1−→A s2 . . . and o′0, o
′
1, . . . the trace

of x0
u0−→ x1

u1−→ x2 . . . We first show by induction that (sk, xk) ∈ R for all k ≥ 0.
Induction start: For x = 0, we have (s0, x0) ∈ R from the definition of R in Def. 7.
Induction step: Let (sk, xk) ∈ R. With sk

πk−→A sk+1, ∀x′′ ∈ F (xk, πk(xk)) we
get (sk+1, x

′′) ∈ R. Since xk+1 ∈ F (xk, πk(xk)), we get (sk+1, xk+1) ∈ R. Since
(sk, xk) ∈ R, OA(sk) ⊆ O(xk) and therefore t ≤ t′. Since t ∈ Spec and Spec is
upwards closed, we get t′ ∈ Spec, which concludes the proof.

In the sequel, we use abstractions based on a discrete cover of the states and
inputs; we give a generic definition below and will the following sections present
ways to compute the corresponding parameters and identify suitable policies.

8 Priser et al.

We extensively use vector norms to define sets of states since this reduces set
containment relationships to linear inequalities. The results in the remainder of
the paper hold for arbitrary vector and matrix norms provided that they are
consistent. Let B(ε) denote the n-dimensional ball with vector norm ε (centered
around the origin), and ∆(X) the diameter of the set X, i.e., the diameter of
the smallest ball containing X.

Definition 9 (Neighborhood-based Abstraction). Consider a dynamical
system (1) equipped with quantizer output, i.e., with LTS semantics L = (X , x0,
U , →X , P,OP), and consider covers of X and U , defined with distance param-
eters α and β as follows. Let X̂ be a set of pairwise distinct points such that
X̂⊕B(α) covers X and let Û be a set of pairwise distinct points such that Û⊕B(β)
covers U . We associate each x̂ ∈ X̂ with its neighborhood of radius εx̂ ≥ α. Let
the observations be P = {x̂ ⊕ B(εx̂) | x̂ ∈ X̂} and let OP be the state quantizer
in Def. 4. Let A be the LTS (X̂, x̂0, X̂×U ,→A, P,OA) defined as follows. Let x̂0

be any of the points in X̂ that are closest to x0. Let OA(x̂) = x̂⊕B(εx̂). We call
ε = sup{εx̂ | x̂ ∈ X̂} the accuracy of A.

It is straightforward to show that the above abstraction satisfies the conditions
of a policy abstraction:

Proposition 2. Any Neighborhood-based Abstraction A, as defined in Def. 9, is
a deterministic policy abstraction (witnessed by an alternating simulation rela-
tion) if for all x̂, π, x̂′ with x̂

π−→A x̂′ holds that

x ∈ x̂⊕ B(εx̂) ⇒
∥∥F (

x, π(x)
)
− x̂′∥∥ ≤ εx̂′ . (3)

3.2 Existence of Deterministic Reach Set Abstractions

We consider dynamical systems from (1) satisfying the following assumption:

Assumption 1 1. The radius of the reach sets is globally bounded by

ω = sup
x∈X,u∈U

1
2∆

(
F (x, u)

)
.

2. There are constants Kx,Ku ≥ 0 such that for all x, x′ ∈ X , u, u′ ∈ U :

F (x′, u′) ⊆ F (x, u)⊕ B
(
Kx||x− x′||+Ku||u− u′||

)
.

The above assumptions may, in general, not be satisfied. E.g., if X or U are
unbounded, the sup might not exist. If the assumptions are satisfied, a discrete
abstraction exists:

Proposition 3. Consider a dynamical system satisfying Assumption 1 and let
A be the LTS (X̂, x̂0, Π(X ,U),→A, P,OA) as defined in Def. 9, i.e., a neighbor-
hood-based abstraction. Let the accuracy ε be uniform, i.e., εx̂ = ε for all x̂.
Let Û be a set of pairwise distinct points such that Û ⊕ B(β) covers U . Let →A

be defined as x̂
π−→A x̂′ for all combinations of x̂, x̂′ ∈ X̂, û ∈ Û that satisfy

Robust Deterministic Abstractions 9

||F (x̂, û) − x̂′|| ≤ ω + α, with π = X ×
(
û ⊕ B(β)

)
∩ U . Let the discretization

parameters α, ε, β be such that

Kx < 1 and ε ≥ ω+Kuβ+α
1−Kx

, (4)

Under the above conditions, the LTS A is a deterministic reach set abstraction
of the concrete system L, and consequently, there is an alternating simulation
relation R that witnesses this relationship. Furthermore, RT is also a witness
that A KS-simulates L.

Proof. We first show by structural induction that R =
{(

x̂, x
) ∣∣ x̂ ∈ X̂, x ∈

x̂⊕B(ε)
}

is a PA relation. Since Kx < 1, we have ε > α. Hence x0 ∈ x̂0⊕B(ε) =
OA(x̂0) and (x̂0, x0) ∈ R. Assume (x̂, x) ∈ R, so that x ∈ x̂ ⊕ B(ε). For all
x ∈ OA(x̂), OA(x̂) ∈ OP (x) by Def. 4, which satisfies condition (i). Now assume
x̂

π→PA x̂′. Under the hypothesis,

F (x̂⊕ B(ε), û⊕ B(β)) ⊆ F (x̂, û)⊕ B(Kxε+Kuβ).

Under the hypothesis, F (x̂, û) ⊆ x̂′ ⊕ B(ω + α), so that with (4):

F (x̂⊕ B(ε), û⊕ B(β)) ⊆ x̂′ ⊕ B(α+ ω +Kxε+Kuβ) ⊆ x̂′ ⊕ B(ε).

This satisfies condition (ii) and concludes the proof for R.

We now show that RT is a simulation relation for (L,A). By definition,
x

u→X x′ means that x′ ∈ F (x, u). Since X is covered by X̂ ⊕ B(α) and U
is covered by Û ⊕ B(β), there are x̂, π and û such that x ∈ x̂ ⊕ B(ε) and
u ∈ π(x) = û⊕ B(β). Since x′ ∈ F (x, u), under the hypothesis,

x′ ∈ F (x̂⊕ B(ε), û⊕ B(β)) ⊆ F (x̂, û)⊕ B(Kxε+Kuβ),

and there is some x̂′ ∈ X̂ with

F (x̂, û)⊕ B(Kxε+Kuβ) ⊆ x̂′ ⊕ B(α+ ω +Kxε+Kuβ) ⊆ x̂′ ⊕ B(ε).

Therefore, x′ ∈ x̂′ ⊕ B(ε), and
(
x′, x̂′ ⊕ B(ε)

)
∈ RT . The transition follows from

F (x̂, û)⊕ B(Kxε+Kuβ) ⊆ x̂′ ⊕ B(α+ ω +Kxε+Kuβ) ⇔
F (x̂, û) ⊆ x̂′ ⊕ B(α+ ω) ⇔

||F (x̂, û)− x̂′|| ≤ α+ ω.

Therefore x̂
π→A x̂′. The LTS A is deterministic since the û, and therefore the

labels π for each transition, are pairwise distinct.

Corollary 1. If F is deterministic (ω = 0) and Lipschitz over X with constant
Kx < 1 and Lipschitz over U , then a deterministic forward reach set approxi-
mation can be constructed with arbitrarily small accuracy ε by setting α and β
small enough.

The above result on the existence of a discrete abstraction is consistent with
results from the literature on nondeterministic abstractions, e.g., [20], where it
is associated with global asymptotic stability. According to our above result, we
can obtain a deterministic abstract and, therefore, the full power of Theorem 1,
without any particular downside.

10 Priser et al.

4 Policy Abstraction through Linear Feedback

In Sect. 3.2, we described a deterministic abstraction obtained using only the
forward reach set operator. This works for dynamics that are globally contrac-
tive. We now extend the applicable cases to systems that are not contractive
everywhere by designing policies. One way to achieve this would be to use the
robust backward reach set operator: The states for which there exists a policy
that drives them towards a target set is exactly the backward reach set in (2).
However, the backward reach set operator is much more expensive to compute
than the forward operator, even for linear systems [26]. There is a fundamental
limitation to backward reachability, even without robust control: a system that
is stable going forward in time is unstable going backward in time [18]. Our
approach is to stick with forward reachability and use linear state feedback to
achieve contractiveness. The reach set computation and feedback design is based
on linear control.

4.1 Linearizing over Discrete States

We base our analysis on linearization and assume a global limit εmax on the size
of the neighborhoods around the states we consider. Let the input set be a ball
U = B(δ) with δ > 0. We assume the following linearization is available. Given
linearization points (x̂, û) ∈ X̂ × Û , let Ax̂,û, Bx̂,û be matrices, cx̂,û a vector and
γx̂,û, ω be scalars such that for all ε ≤ εmax, x ∈ x̂⊕B(ε), u ∈ B(δ)∩

(
û⊕B(β)

)
,

F (x, u) ⊆ cx̂,û⊕Ax̂,û(x− x̂)⊕Bx̂,û(u− û)⊕B
(
γx̂,û

(
||x− x̂||+ ||u− û||

)
+ω

)
. (5)

In the following, we associate each transition x̂
πx̂,û,x̂′
−−−−→A x̂′ in the abstraction

with an input û and a constant feedback control policy

πx̂,û,x̂′(x) =
{
û−Kx̂,û,x̂′

x−x̂
εx̂

⊕ B(β)
}
∩ U , (6)

where Kx̂,û,x̂′ is a real-valued matrix mapping concrete states to the space of
control inputs. We exploit this feedback matrix to locally induce contractiveness
as needed (but not necessarily everywhere). Note that scaling the feedback ma-
trix by 1/εx̂ is a trick to obtain linear constraints in the sequel, e.g., in (8) and
Prop. 4. To avoid saturating the input signal, we must ensure that πx̂,û,x̂′(x) ∈ U
for all x ∈ x̂⊕ B(εx̂), which is surely the case if∥∥û−Kx̂,û,x̂′B(1) + β

∥∥ ≤ δ (7)

Substituting the policy (6) in (5), we obtain for all x ∈ x̂⊕ B(ε):

F
(
x, π(x)

)
⊆ cx̂,û ⊕

(
Ax̂,û −Bx̂,ûKx̂,û,x̂′/εx̂

)
(x− x̂)⊕Bx̂,ûB(β)

⊕ B
((

γx̂,û + ||Kx̂,û,x̂′ ||/εx̂
)
||x− x̂||+ ω

)
.

Robust Deterministic Abstractions 11

We apply the above to the containment relationship (3) to derive a constraint
that is sufficient for a deterministic policy abstraction:∥∥cx̂,û − x̂′ ⊕

(
Ax̂,ûεx̂ −Bx̂,ûKx̂,û,x̂′

)
B(1)⊕Bx̂,ûB(β)

∥∥
+ γx̂,ûεx̂ + ||Kx̂,û,x̂′ ||+ ω ≤ εx̂′ . (8)

Proposition 4. Consider a dynamical system (1) with LTS L and linearization
(5). Let A be the LTS (X̂, x̂0, Π(X ,U),→A, P,OA) as defined in Def. 9, i.e., a
neighborhood-based abstraction. Let Û be a set of pairwise distinct points Let I ⊆
X̂ × Û × X̂ be a given set of tuples (x̂, û, x̂′) such that the following conjunction
of linear constraints on the variables εx̂,Kx̂,û,x̂′ , β is satisfiable:∧

(x̂,û,x̂′)∈I

∥∥cx̂,û − x̂′ ⊕
(
Ax̂,ûεx̂ −Bx̂,ûKx̂,û,x̂′

)
B(1)⊕Bx̂,ûB(β)

∥∥+ γx̂,ûεx̂

+ ||Kx̂,û,x̂′ ||+ ω ≤ εx̂′ ∧
∥∥û−Kx̂,û,x̂′B(1) + β

∥∥ ≤ δ ∧ α ≤ εx̂ ≤ εmax. (9)

Let the transition relation consist of x̂
πx̂,û,x̂′
−−−−→A x̂′ for all (x̂, û, x̂′) ∈ I, with

πx̂,û,x̂′ as defined in (6). Then A is a deterministic policy abstraction, witnessed
by an alternating simulation relation.

It is straightforward to show that any solution of Prop. 3 also satisfies Prop. 4
(Kx = ||Ax̂,û||, Ku = ||Bx̂,û||, γx̂,û = 0, ||cx̂,û− x̂′|| ≤ α and letting Kx̂,û,x̂′ = 0),
so we can rest assured that Prop. 4 is strictly more powerful. The constraint
system (9) is linear in the variables εx̂,Kx̂,û,x̂′ , β if we use the infinity norm
(the 1-norm works, too). This means that a solution can be found efficiently. In
addition, we cast it as a linear optimization problem to find a solution with the
highest precision (minimize a global bound on εx̂) or permissiveness (maximize
β). The constraints can be further simplified; we limit the discussion for lack of
space. An important special case is Bx̂,û having full row rank, since it maximizes
the capacity of the feedback controller to make the system contractive. A stan-
dard reduction to this case consists of modeling the system at every p-th step
for some p: The dynamics of this sub-sampled system are given by

Fp(x, [u(1); . . . ;u(p)]) = F
(
· · ·F

(
F (x, u(1)), u(2)

)
· · · , u(p)

)
,

where the augmented input vector u = [u(1); . . . ;u(p)] consists of the concate-
nation of p input vectors of the original system (one for each time step). The
outputs of the system must, of course, be adapted accordingly to preserve the
desired properties.

4.2 Selecting Transitions

The main challenge in constructing the abstraction proposed in Prop. 4 is se-
lecting which tuples of transitions (x̂, û, x̂′) to include in the set I. First, we note

12 Priser et al.

that in cases where the linearization Ax̂,û, Bx̂,û, cx̂,û is independent of û, we can
declare û as a variable in the constraint system (9). This reduces the search to
pairs (x̂, x̂′).

Transitions that are infeasible in the concrete system can be ruled out, e.g., by
forward or backward reachability analysis (which one is more precise depends
on whether the system is locally stable or instable [18]). However, even if we
somehow include only transitions that individually can be concretized, this does
not mean that the constraint system (9) is satisfiable.

We propose an iterative approach: Starting from an initial set I0 (possi-
bly very conservative), we identify one or more problematic transitions, remove
them to obtain I1, and repeat the process until (9) becomes satisfiable (possibly
because there are no transitions left). Each time the constraint system (9) is
infeasible, the LP solver helpfully provides us with a collection of Irreducible
Infeasible Subsets (IIS) of constraints. In our abstraction, each IIS corresponds
to a cycle in the transition graph, and by encoding the problem accordingly, the
IIS allows us to detect the transitions in the cycle.

Depending on the properties that we wish to preserve, we may be able to
prioritize transitions. An approach to identify a minimal subset that preserves
reachability relationships between states is described in [14]. A stronger require-
ment is to preserve strongly connected components (see discussion in Sect. 5);
an approach to find the such minimal transition set is given in [3]. Finally, the
slack variables returned by the solver can provide quantitative information on
which constraints are harder to satisfy, which we can translate into priorities on
transitions.

5 Experiments

We present experiments on discrete-time versions of two nonlinear systems with
unstable equilibria: the inverted pendulum (IP) and the Van der Pol oscilla-
tor (VdP) [15]. Both examples have unstable equilibria, and VdP has a stable
limit cycle, so constructing an abstraction is challenging. The continuous-time
dynamics are given by the ODE ẋ = f(x, u), with:

fIP(x, u) =
(

x2

− g
l sin x1+

β

ml2
x2+u

)
fVdP(x, u) =

(
2x2

−0.8x1+2x2−10x2
1x2+u

)
, (10)

with parameters g = −9.81, l = 1, β = 1,m = 1. We consider inputs in U =
[−8, 8] for IP and U = [−2, 2] for VdP. The nonlinear dynamics are linearized,
and the approximation error is over-estimated using Taylor models from interval
analysis [5,1]. The parameters γx̂,û, ω of the linearization are chosen such that
the linearization is guaranteed to contain the original forward reach set by taking
into account all approximation and linearization errors. The linearized dynamics
are then integrated to obtain the discrete dynamics over a given time step h
(h = 1 for IP and h = 0.04 for VdP), keeping the inputs constant over the time
interval. To achieve full rank in B, we take two time steps at a time, i.e., the
input of the abstraction is two-dimensional.

Robust Deterministic Abstractions 13

Table 1. Policy Abstractions obtained through Linearization

Inv. Pendulum Van der Pol

Number of transitions 835 452
Maximum out-degree 14 3
Average out-degree 6.9 2.0
minx̂ εx̂ 0.100 0.050
maxx̂ εx̂ 0.100 0.069
minx̂,û

∥∥Ax̂,û −Bx̂,ûKx̂,û,x̂′/εx̂
∥∥
∞ 0.42 0.71

maxx̂,û

∥∥Ax̂,û −Bx̂,ûKx̂,û,x̂′/εx̂
∥∥
∞ 0.95 2.27

avg.
∥∥Ax̂,û −Bx̂,ûKx̂,û,x̂′/εx̂

∥∥
∞ 0.77 1.21

Some statistics on the abstractions are given in Table 1, for a discretization
parameter α = 0.05. For the inverted pendulum, the closed-loop dynamics of the
system with feedback are strictly contractive everywhere, i.e.,

max
x̂,û

∥∥Ax̂,û −Bx̂,ûKx̂,û,x̂′/εx̂
∥∥
∞ = 0.95 < 1.

As a consequence, we can use the same precision ε̂ = 0.1 everywhere. Since
the closed-loop system is quite contractive on average, the average out-degree
is elevated, i.e., we can deterministically choose from an average of 6.9 possible
successor states. Note that the average out-degree is biased by states on the
border of the domain, many of which have out-degree zero.

For the Van der Pol oscillator, the closed-loop dynamics are, on average,
enlarging the set of successor states, i.e.,

avg.
∥∥Ax̂,û −Bx̂,ûKx̂,û,x̂′/εx̂

∥∥
∞ = 1.21 > 1.

The expansion of the sets of successor states in some transitions is balanced by a
number of contractive transitions. In consequence, the precision ε̂ varies between
0.05 and 0.069. Because the closed-loop system is less contractive compared
to the inverted pendulum, the average out-degree is also lower, with only two
possible successor states to choose from.

The graphs of the obtained abstractions are shown in Fig. 1 and 2. The greyed
nodes represent the strongly connected components (SSCs). The fact that the
SSCs include a significant portion of the abstract states demonstrates that our
abstraction provides a certain degree of completeness even for the chosen coarse
grid. We are interested in computing strongly connected components since, for
deterministic abstractions, they represent a set of states where all actions are
reversible (they can be undone), and any state may be revisited an infinite
number of times. This is particularly important when designing supervisors for
a reinforcement learning agent [19], which is a goal for future research.

6 Conclusions

The presented method for constructing discrete abstractions for discrete-time,
continuous-state systems provides a trade-off between accuracy, completeness,

14 Priser et al.

(a) continuous-time system for u = 0

-0.20,-0.80-0.40,-0.80 -0.10,-0.80-0.30,-0.80

-0.30,-0.70

0.00,-0.80

-0.20,-0.70 -0.10,-0.70

-0.20,-0.60 -0.10,-0.60

-0.10,-0.50

-0.10,-0.40

-0.10,-0.30

-0.10,-0.20

-0.10,-0.10

-0.10,0.00

-0.10,0.10

-0.10,0.20

-0.10,0.30

-0.30,-0.60

-0.30,-0.50

-0.30,-0.40

-0.30,-0.30

-0.30,-0.20

-0.30,-0.10

-0.30,0.00

-0.20,-0.50

-0.20,-0.40

-0.20,-0.30

-0.20,-0.20

-0.20,-0.10

-0.20,0.00

-0.20,0.10

-0.10,0.40

-0.10,0.50

-0.10,0.60

0.00,0.00

0.00,0.10

0.00,0.20

0.00,0.30

0.00,0.40

0.00,0.50

0.00,0.60

0.00,0.70

0.00,0.80

0.10,-0.80

0.00,-0.70

0.00,-0.60

0.00,-0.50

0.00,-0.40

0.00,-0.30

0.00,-0.20

0.00,-0.10

0.10,0.10

0.10,0.20

0.10,0.30

0.10,0.40

0.10,0.50

0.10,0.60

0.10,0.70

0.10,0.80

0.10,0.00

0.20,-0.80

0.10,-0.60

0.10,-0.50

0.10,-0.40

0.10,-0.30

0.10,-0.20

0.10,-0.10

0.20,0.30

0.20,0.40

0.20,0.50

0.20,0.60

0.20,0.70

0.20,0.80

0.20,0.20

0.20,0.10

0.20,0.00

0.30,-0.80

0.20,-0.50

0.20,-0.40

0.20,-0.30

0.20,-0.20

0.20,-0.10

0.10,-0.70

0.30,0.40

0.30,0.50

0.30,0.60

0.30,0.70

0.30,0.80

0.30,0.30

0.30,0.20

0.30,0.10

0.40,-0.80

0.30,-0.40

0.30,-0.30

0.30,-0.20

0.30,-0.10

0.30,0.00

0.20,-0.70

0.20,-0.60

0.40,0.60

0.40,0.70

0.40,0.80

0.40,0.50

0.40,0.40

0.40,0.30

0.40,0.20

0.40,0.10

0.50,-0.80

0.40,-0.40

0.40,-0.30

0.40,-0.20

0.40,-0.10

0.40,0.00

0.50,0.60

0.50,0.70

0.50,0.80

0.50,0.50

0.50,0.40

0.50,0.30

0.50,0.20

0.60,-0.80

0.50,-0.30

0.50,-0.20

0.50,-0.10

0.50,0.00

0.50,0.10

0.60,0.80

0.60,0.70

0.60,0.60

0.60,0.50

0.60,0.40

0.60,0.30

0.70,-0.80

0.60,-0.30

0.60,-0.20

0.60,-0.10

0.60,0.00

0.60,0.10

0.60,0.20

0.70,0.80

0.70,0.70

0.70,0.60

0.70,0.50

0.70,0.40

0.80,-0.80

0.70,-0.20

0.70,-0.10

0.70,0.00

0.70,0.10

0.70,0.20

0.70,0.30

0.80,0.80

0.80,0.70

0.80,0.60

0.80,0.50

-0.40,-0.60

-0.40,-0.70

-0.40,-0.50

-0.40,-0.40

-0.40,-0.30

-0.40,-0.20

-0.40,-0.10

-0.30,0.10

-0.30,0.20

-0.30,0.30

-0.20,0.20

-0.20,0.30

-0.20,0.40

-0.20,0.50

0.30,-0.70 0.40,-0.70

0.30,-0.50

0.50,-0.70 0.60,-0.70

0.50,-0.40

0.70,-0.70 0.80,-0.70

0.70,-0.30

-0.50,-0.60

-0.60,-0.80

-0.60,-0.70

-0.60,-0.60

-0.60,-0.50

-0.60,-0.40

-0.60,-0.30

-0.70,-0.50

-0.70,-0.80

-0.70,-0.70

-0.70,-0.60

-0.70,-0.40

-0.50,-0.80

-0.50,-0.70

-0.50,-0.50

-0.50,-0.40

-0.50,-0.30

-0.50,-0.20

-0.40,0.00

-0.40,0.10

-0.40,0.20

-0.40,0.30

0.30,-0.60 0.40,-0.60 0.50,-0.60

0.40,-0.50

0.60,-0.60

0.50,-0.50

0.70,-0.60

0.60,-0.40

0.80,-0.60

0.70,-0.40

-0.80,-0.80

-0.80,-0.70

-0.80,-0.60

-0.80,-0.50 0.60,-0.50 0.70,-0.50 0.80,-0.50

0.80,0.40

0.80,-0.40

0.80,0.30

-0.70,-0.30 0.80,-0.30

0.80,0.20

-0.70,-0.20 -0.60,-0.20

-0.10,0.70

-0.10,0.80

0.80,-0.20

-0.70,-0.10 -0.60,-0.10 -0.50,-0.10 0.80,-0.10

0.80,0.10

-0.80,0.00

-0.80,-0.40

-0.80,-0.30

-0.80,-0.20

-0.80,-0.10

-0.70,0.00 -0.60,0.00

-0.60,0.10

-0.50,0.00

-0.50,0.10

0.80,0.00

-0.80,0.10 -0.70,0.10

-0.80,0.20 -0.70,0.20 -0.60,0.20 -0.50,0.20

-0.80,0.30 -0.70,0.30 -0.60,0.30 -0.50,0.30

-0.80,0.40 -0.70,0.40 -0.60,0.40 -0.50,0.40 -0.40,0.40 -0.30,0.40

-0.20,0.60

-0.20,0.70

-0.20,0.80

-0.80,0.50 -0.70,0.50 -0.60,0.50 -0.50,0.50

-0.50,0.60

-0.40,0.50

-0.40,0.60

-0.30,0.50

-0.30,0.60

-0.30,0.70

-0.80,0.60 -0.70,0.60 -0.60,0.60

-0.80,0.70 -0.70,0.70 -0.60,0.70 -0.50,0.70 -0.40,0.70

-0.80,0.80 -0.70,0.80 -0.60,0.80 -0.50,0.80 -0.40,0.80 -0.30,0.80

(b) discrete abstraction

Fig. 1. Streamline plot of a continuous-time version of the concrete system and a
discrete abstraction of the inverted pendulum, with strongly connected components
indicated in dark grey (node size not to scale)

(a) continuous system for u = 0

-0.50,-0.70

-0.70,-0.40

-0.40,-0.70-0.70,-0.70 -0.30,-0.70-0.60,-0.70 -0.20,-0.70 0.50,-0.700.20,-0.70 0.60,-0.700.30,-0.70 0.70,-0.700.40,-0.70

0.50,-0.40

0.30,-0.50

0.30,-0.60-0.50,-0.60

-0.70,-0.50

-0.70,-0.30

-0.40,-0.60

-0.60,-0.50

-0.60,-0.40

-0.70,-0.10

-0.70,-0.20

-0.70,0.00

-0.30,-0.60

-0.50,-0.50

-0.70,-0.60 0.60,-0.60

0.40,-0.500.20,-0.50

0.20,-0.60 0.70,-0.60

0.50,-0.50

0.30,-0.40

-0.70,0.10

-0.70,0.20

-0.40,-0.50

-0.60,-0.60

-0.30,-0.50

-0.50,-0.40

-0.60,-0.20

-0.60,-0.10

-0.20,-0.50 -0.10,-0.50 0.00,-0.50

-0.20,-0.60

0.10,-0.50

-0.10,-0.60 0.00,-0.60 0.10,-0.60

0.10,-0.70

0.60,-0.50

0.40,-0.60

0.40,-0.40

0.70,-0.50

0.50,-0.60

-0.60,0.10

-0.60,0.00

-0.60,0.20

-0.40,-0.40

-0.50,-0.20

-0.60,-0.30

-0.50,0.10

-0.30,-0.40 -0.20,-0.40 -0.10,-0.40 0.00,-0.40 0.10,-0.40

-0.10,-0.70

0.20,-0.40

0.00,-0.70

0.60,-0.40 0.70,-0.40

0.60,-0.20

0.50,-0.30

0.50,-0.20

-0.50,-0.30 -0.40,-0.30

-0.50,-0.10

-0.50,0.00

-0.50,0.20

-0.30,-0.30

-0.40,-0.20

-0.40,-0.10

-0.40,0.00

-0.40,0.10

-0.20,-0.30

-0.30,-0.20

-0.10,-0.30

-0.20,-0.20

0.00,-0.30 0.10,-0.30 0.20,-0.30 0.30,-0.30 0.40,-0.30

0.40,-0.200.30,-0.20

0.60,-0.30 0.70,-0.30

0.60,-0.10

0.60,0.00

-0.60,0.30

-0.60,0.40

-0.50,0.30

-0.50,0.40

-0.40,0.30

-0.40,0.40

-0.10,-0.20 0.00,-0.20 0.10,-0.20 0.20,-0.20 0.70,-0.20

-0.40,0.20

-0.30,0.30

-0.30,0.40

-0.30,-0.10

-0.30,0.00

-0.30,0.10

-0.20,0.30

-0.20,0.40

-0.20,-0.10

-0.20,0.00

-0.20,0.10

-0.10,0.30

-0.10,0.40

-0.10,-0.10

-0.10,0.00

-0.10,0.10

0.00,0.30

0.00,-0.10

0.00,0.00

0.00,0.10

0.10,-0.10

0.10,0.00

0.10,0.10

0.20,-0.10

0.20,0.00

0.20,0.10

0.30,-0.10

0.30,0.00

0.30,0.10

0.40,-0.10

0.40,0.00

0.40,0.10

0.50,-0.10

0.50,0.00

0.50,0.10 0.60,0.10

0.70,-0.10

0.70,0.00

0.70,0.10

0.10,0.30 0.20,0.30 0.30,0.30

-0.40,0.50

-0.40,0.60 -0.30,0.60

-0.30,0.50

-0.30,0.70

-0.20,0.60

-0.20,0.50

-0.20,0.70

-0.10,0.60

-0.10,0.50

-0.10,0.70

0.00,0.60

0.00,0.50

0.00,0.70

0.10,0.60

0.10,0.50

0.10,0.70

0.20,0.60

0.20,0.20

0.30,0.60

0.30,0.20 0.40,0.20

0.40,0.30

-0.30,0.20 -0.20,0.20 -0.10,0.20 0.00,0.20

0.00,0.40

0.10,0.20

0.10,0.40

0.20,0.50

0.20,0.70

0.20,0.40

0.30,0.50

0.30,0.70

0.30,0.40

0.40,0.50

0.40,0.60

0.40,0.70

0.40,0.40

0.50,0.50

0.50,0.60

0.50,0.20

0.50,0.30

0.60,0.50

0.60,0.20

0.60,0.30

0.70,0.20

0.70,0.30-0.70,0.30

-0.70,0.40

-0.50,0.50

-0.50,0.60

0.50,0.70

0.50,0.40

0.60,0.70

0.60,0.40

0.60,0.60

0.70,0.70

0.70,0.50

0.70,0.40

0.70,0.60

-0.70,0.50 -0.60,0.50

-0.70,0.60 -0.60,0.60

-0.70,0.70 -0.40,0.70-0.60,0.70 -0.50,0.70

(b) discrete abstraction

Fig. 2. Streamline plot of a continuous-time version of the concrete system and a
discrete abstraction of the Van der Pol oscillator, with strongly connected components
indicated in dark grey (node size not to scale)

and computational feasibility. By relaxing the stringent completeness require-
ments of traditional discrete bisimulations, this approach produces determinis-
tic and robust solutions. By leveraging linearization and linear feedback control,
we make the approach applicable to non-contractive nonlinear systems. Numer-
ical experiments with classic nonlinear systems illustrate the practicality of this

Robust Deterministic Abstractions 15

method. The proposed deterministic abstractions provide strong guarantees of
system behavior, making them particularly useful for applications requiring high
levels of safety and robustness. Numerical experiments with unstable nonlinear
systems illustrate the practicality of this method. In future research, we will
explore different types of properties that can be guaranteed by adapting these
abstractions online, such as preserving safety and reversibility in the presence of
dynamic obstacles.

Acknowledgments. This work was supported by the Traits project, under the French
National Research Agency (ANR) grant number ANR-21-FAI1-0005.

References

1. Althoff, M., Grebenyuk, D., Kochdumper, N.: Implementation of taylor models in
cora 2018. In: Proc. of the 5th International Workshop on Applied Verification for
Continuous and Hybrid Systems (2018)

2. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement re-
lations. In: CONCUR’98 Concurrency Theory: 9th International Conference Nice,
France, September 8–11, 1998 Proceedings 9. pp. 163–178. Springer (1998)

3. Bellitto, T., Bergougnoux, B.: On minimum connecting transition sets in graphs.
In: Graph-Theoretic Concepts in Computer Science: 44th International Work-
shop, WG 2018, Cottbus, Germany, June 27–29, 2018, Proceedings 44. pp. 40–51.
Springer (2018)

4. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical
Systems. Springer (2017)

5. Berz, M., Hoffstätter, G.: Computation and application of taylor polynomials with
interval remainder bounds. Reliable Computing 4(1), 83–97 (1998)

6. Chomachar, S.A., Fard, A.M.: Flight control system for guided rolling-airframe
missile. In: 2016 IEEE Aerospace Conference. pp. 1–9 (2016)

7. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: LITP Spring School on Theoretical Computer Science, pp. 407–419.
Springer (1990)

8. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. Journal of
the ACM (JACM) 42(2), 458–487 (1995)

9. Demangeon, R., Dima, C., Varacca, D.: Observational preorders for alternating
transition systems. In: European Conference on Multi-Agent Systems. pp. 312–
327. Springer (2023)

10. Egidio, L.N., Lima, T.A., Jungers, R.M.: State-feedback abstractions for optimal
control of piecewise-affine systems. In: 2022 IEEE 61st Conference on Decision and
Control (CDC). pp. 7455–7460 (2022)

11. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Transactions on Automatic Control 52(5), 782–798 (2007)

12. Girard, A., Pappas, G.J.: Approximate bisimulation: A bridge between computer
science and control theory. European Journal of Control 17(5-6), 568–578 (2011)

13. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for
incrementally stable switched systems. IEEE Transactions on Automatic Control
55(1), 116–126 (2010). https://doi.org/10.1109/TAC.2009.2034922

14. Khuller, S., Raghavachari, B., Young, N.: Approximating the minimum equivalent
digraph. SIAM Journal on Computing 24(4), 859–872 (1995)

https://doi.org/10.1109/TAC.2009.2034922
https://doi.org/10.1109/TAC.2009.2034922

16 Priser et al.

15. Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman
operator meets model predictive control. Automatica 93, 149–160 (2018)

16. Liu, J., Ozay, N.: Finite abstractions with robustness margins for temporal logic-
based control synthesis. Nonlinear Analysis: Hybrid Systems 22, 1–15 (2016)

17. Milner, R.: An algebraic definition of simulation between programs. Citeseer (1971)
18. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety

analysis. In: International Workshop on Hybrid Systems: Computation and Con-
trol. pp. 428–443. Springer (2007)

19. Moldovan, T.M., Abbeel, P.: Safe exploration in markov decision processes. In:
Proc. Int. Conf. Machine Learning. p. 1451–1458. ICML’12, Omnipress, Madison,
WI, USA (2012)

20. Pola, G., Tabuada, P.: Symbolic models for nonlinear control systems: Alternating
approximate bisimulations. SIAM Journal on Control and Optimization 48(2),
719–733 (2009)

21. Reissig, G., Weber, A., Rungger, M.: Feedback refinement relations for the syn-
thesis of symbolic controllers. IEEE Transactions on Automatic Control 62(4),
1781–1796 (2016)

22. Van der Schaft, A.: Equivalence of dynamical systems by bisimulation. IEEE trans-
actions on automatic control 49(12), 2160–2172 (2004)

23. Tabuada, P.: Verification and control of hybrid systems: a symbolic approach.
Springer Science & Business Media (2009)

24. Tabuada, P., Pappas, G.J.: Finite bisimulations of controllable linear systems. In:
42nd IEEE International Conference on Decision and Control (IEEE Cat. No.
03CH37475). vol. 1, pp. 634–639. IEEE (2003)

25. Tajvar, P., Meyer, P.J., Tumova, J.: Closed-loop incremental stability for efficient
symbolic control of non-linear systems. IFAC-PapersOnLine 54(5), 121–126 (2021).
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.485, https://
www.sciencedirect.com/science/article/pii/S240589632101260X, 7th IFAC
Conference on Analysis and Design of Hybrid Systems ADHS 2021

26. Yang, L., Zhang, H., Jeannin, J.B., Ozay, N.: Efficient backward reachability using
the minkowski difference of constrained zonotopes. Trans. Comp.-Aided Des. Integ.
Cir. Sys. 41(11), 3969–3980 (nov 2022). https://doi.org/10.1109/TCAD.2022.
3197971, https://doi.org/10.1109/TCAD.2022.3197971

https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.485
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.485
https://www.sciencedirect.com/science/article/pii/S240589632101260X
https://www.sciencedirect.com/science/article/pii/S240589632101260X
https://doi.org/10.1109/TCAD.2022.3197971
https://doi.org/10.1109/TCAD.2022.3197971
https://doi.org/10.1109/TCAD.2022.3197971
https://doi.org/10.1109/TCAD.2022.3197971
https://doi.org/10.1109/TCAD.2022.3197971

	Robust Deterministic Abstractions for Supervising Discrete-time Continuous Systems

