
HAL Id: hal-04739413
https://hal.science/hal-04739413v1

Submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Malware Detection Through Windows System Call
Analysis

Badis Hammi, Joel Hachem, Ali Rachini, Rida Khatoun

To cite this version:
Badis Hammi, Joel Hachem, Ali Rachini, Rida Khatoun. Malware Detection Through Windows
System Call Analysis. 9th International Conference On Mobile And Secure Services (MOBISECSERV
2024), Nov 2024, Miami, United States. pp.7. �hal-04739413�

https://hal.science/hal-04739413v1
https://hal.archives-ouvertes.fr

Malware Detection Through Windows System Call
Analysis

Badis HAMMI∗, Joel HACHEM†, Ali RACHINI‡, Rida KHATOUN§
∗SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

badis.hammi@telecom-sudparis.eu
† Kettering University, Michigan, United States

jhachem@kettering.edu
‡Holy Spirit University of Kaslik, Lebanon

alirachini@usek.edu.lb
§Télécom Paris, Institut Polytechnique de Paris, France

rida.khatoun@telecom-paris.fr

Abstract—Detecting malware remains a significant challenge,
as malware authors constantly develop new techniques to evade
traditional signature-based and heuristic-based detection meth-
ods. This paper proposes a novel approach to malware detection
that analyzes patterns in Windows system calls sequences to
identify malicious behaviors. We use a voting classifier, a ma-
chine learning model that aggregates predictions from multiple
individual models. It determines the final output based on the
class that receives the highest likelihood or majority vote from
the ensemble of models. We trained the model on large datasets
of benign and malicious system call traces to detect anomalies
indicative of malware. By focusing on system call behavior rather
than static code characteristics, the approach is able to identify
novel malware variants without requiring prior knowledge of
their signatures. Experiments using a dataset of 42,797 API
call sequences from malware samples and 1,079 sequences from
benign software demonstrate that voting classifier can achieve
high detectionrates while maintaining low false positive rates.
This type of Machine Learning-based malware detection could
be integrated into an Endpoint Detection and Response (EDR)
tool to provide advanced, behavior-based malware detection
capabilities.

I. INTRODUCTION

Malware is a serious security threat to critical applications
and sectors like education, communication, hospitals, banking,
and so on [1]. There is a proliferation in the variety and exotic
behavior of malware in recent years. Further, the associated in-
tensity of damage caused on users’ data, time, and productivity
has increased significantly. For instance a malware attack can
completely paralyze an entire system and destroy the data and
the hardware infrastructure. In 2023, organizations globally
detected 317.59 million ransomware attack attempts according
to Statista1. The Windows Operating System (OS) holds the
largest global market share and is the most extensively used
OS, as reported by Netmarketshare.com2. As a result, the
widespread adoption and popularity of Windows OS make it
the main target for malware attacks across the globe3. Indeed,

1www.statista.com/statistics/494947/ransomware-attempts-per-year-
worldwide/

2netmarketshare.com/operating-system-market-share.aspx
3www.statista.com/statistics/1238996/top-malware-by-file-type/

according to Dailyhost news4, most of the new malware
attacks (more than 95%) discovered in 2022 target Windows
desktop devices, making them the top most devices infected
by malware attacks. For this reason, in this work, we primarily
focus on Windows OS malware detection.

The Windows operating system employs two distinct op-
erating modes: user mode and kernel mode. The user mode
restricts applications to accessing only their own memory
spaces, without direct hardware interaction. While the kernel
mode grants full access to the system’s hardware and entire
physical memory. A system call is an instruction in assembly
language that allows a program running in user mode to
switch to kernel mode. This is so the kernel can execute a
specific task like accessing hardware, reading a file, or sending
network packets which can only be done by the kernel. In other
words, Windows system calls or syscalls provide an interface
for programs to interact with the operating system, allowing
them to request specific services such as reading or writing
to a file, creating a new process, or allocating memory. More
precisely, the transition from user mode to kernel mode is
being performed through the syscall instruction that resides in
each Native API function found in NTDLL.dll.

The syscall instruction needs to be specified with a special
number (stored in the eax 32-bit register) that the kernel
requires in order to execute the correct routine. For instance,
if a user mode application wants to open a file. It starts
by calling the Windows API function CreateFileW, which is
located in the kernel32.dll library. The latter function then
calls another function, namely CreateFileW, in the kernel-
base.dll library. Finally, kernelbase.dll calls a function called
CreateFileInternal to actually execute the system call and open
the file. In the Windows operating system, system calls are
implemented inside system call stubs located in the Dynamic
Link Libraries (DLL) ntdll.dll or win32u.dll. These DLLs are
part of the Windows Application Programming Interface (API),
so applications make system calls by calling functions in the
Windows API. Analyzing system calls sequences represents

4https://www.dailyhostnews.com/malware-threats-aimed-at-windows

Fig. 1: EDR components

an interesting way to classify code behaviors between normal
and abnormal. There are no malicious system calls by itself.
However, they often are abused by malware in vulnerable
context in order to gain profit. For example the system call
“ProtectStreamAsync” could be used by someone to encrypt
content before sending Data over the network or it could be
used by a ransomware to encrypt victim files before asking
for a ransom. Consequently, analyzing the sequence of system
calls, their repetition, and their environment would allow
classifying code as either normal or abnormal.

In this paper, we propose a malware detection approach
based on analyzing the system calls in a Windows environment.
First, we identify a series of system calls characteristic of
ransomware. Then, we evaluate the effectiveness of a behavior-
based detection method using a voting classifier.

This dynamic, behavior-based approach could be beneficial
in an Endpoint Detection and Response (EDR) tool to detect
novel malware variants that may evade traditional signature-
based detection. EDR solutions have become an essential
component of cybersecurity strategies within organizations.
EDR (e.g., SentinelOne Singularity Platform, CrowdStrike
Falcon, Microsoft Defender for Endpoint, WatchGuard EPDR
and Cisco Secure Endpoint) encompasses a combination of
technologies and techniques designed to detect and respond to
threats targeting workstations and servers. The architecture of
an EDR system is designed for effective monitoring and rapid
response to threats on network endpoints. An EDR system
generally comprises three primary components as Figure 1
shows:

1) Agents: deployed on each endpoint. These agents collect
real-time data across various devices, including desktops,
servers, and mobile phones. This includes files, IP ad-
dresses, URLs, registry keys, and processes, providing a
comprehensive overview of endpoint activities.

2) Central server: collected data is transmitted to a central
server, often housed in a cloud environment or the orga-
nization’s data center. This server employs sophisticated
heuristic analysis and machine learning algorithms to
detect suspicious behaviors and potential threats.

3) Administration console: security teams use this console
to access threat data, investigate incidents in detail, and
implement appropriate response measures, such as isolat-
ing infected endpoints or removing malicious files.

The integration of artificial intelligence within EDR systems
and especially in the central server represents a significant
advancement in cybersecurity. Machine learning enables EDR
solutions to learn user and application behavior patterns on

endpoints. This ability allows for more accurate detection
of anomalies, reducing false positives and enhancing overall
effectiveness. By proposing a novel approach that focuses on
the analysis of Windows system call sequences, this study
introduces an innovative method to malware detection. Using
a voting classifier, a machine learning model that synthesizes
insights from multiple models, to identify malicious behav-
iors based on patterns rather than relying solely on known
signatures. The use of large datasets of both benign and
malicious system call traces for training adds robustness to
our model enhancing its capacity to distinguish malicious
activity accurately. Moreover, the potential to integrate this
machine learning-based detection into Endpoint Detection and
Response tools could mark a step forward in behavior-based
detection capabilities.

II. RELATED WORKS

Maniriho et al. [2] classify malware detection and analysis
systems into four classes: static, dynamic, memory, and hybrid
analysis. Figure 2 presents a proposed taxonomy of malware
detection techniques and the deployment approaches.

Static analysis is performed without executing the code. It
is carried out using tools like disassemblers (e.g., IDA Pro5) to
extract static features like strings from file headers, operational
codes (opcodes), hashes, signatures, metadata, and so on.
Static analysis based detection methods operate like signature-
based methods. That is, features extracted are compared to a
signature database for pattern matching. The primary limita-
tion of static analysis methods is their vulnerability to ob-
fuscation techniques [3]. Additionally, while static approaches
that depend on pattern matching can identify known malware
signatures, they fall short in detecting zero-day or polymorphic
malware. Therefore, static analysis methods often prove to be
unreliable.

To address the limitations of static-based malware detec-
tion, dynamic analysis examines malware behavior during
execution. This analysis is conducted in isolated environments,
commonly referred to as sandboxes (e.g., Cuckoo sandbox6,
CWSandbox7) to extract features like API calls, running pro-
cesses, loaded DLLs, registry change, network behaviour, and
so on. Dynamic analysis based detection methods. Numerous
studies [4][2][5][6] state that dynamic analysis methods are
considered the most effective and accurate in terms of malware

5https://hex-rays.com/ida-pro/
6https://github.com/cuckoosandbox
7https://cwsandbox.org/

Fig. 2: Taxonomy of malware detection techniques

analysis. In our approach, we use API call sequences collected
using a dynamic approach.

Memory analysis techniques focus on monitoring a pro-
gram’s behavior in memory during its execution. This ap-
proach offers several advantages, including the ability to reveal
memory-based behavioral characteristics of running processes,
network activities, and injected processes. It is particularly
effective in detecting fileless and memory-resident malware,
as it captures real-time interactions and modifications within
memory. However, memory analysis is inherently limited to
the data present in memory, which can restrict its overall
effectiveness and coverage.

Finally, hybrid analysis techniques leverage multiple analy-
sis methods, such as combining dynamic and static analysis, to
extract features. By integrating the strengths of each technique,
hybrid approaches provide a more comprehensive detection
capability. However, implementing these techniques is often
more complex due to the need to effectively integrate and
manage different analytical processes.

Numerous studies have been conducted on malware de-
tection [7][8][9][2][6]. Our research leverage the Windows
OS API’s calls to identify malicious behaviors and hence
malwares. Therefore, in this section, we review previous
works that employ system calls for malware detection within
Windows environments.

Or-Meir et al. [10] proposed a Long Short Term Memory
(LSTM) based method for malware classification that relies
on system calls extracted from malware while running in
the isolated dynamic analysis environment. With this method,
long sequences of system calls invoked by malware can be
processed in a short time, Pektaş et al. [11] analyzed n-grams
in malware API call sequences to uncover malicious patterns.
They found that frequently occurring patterns could be con-
sidered as behavioral representation features of malware. Lee
et al. [12] introduced a methodology to categorize various
types of malware mutants by capturing and clustering n-grams
from these mutants. Tran et al. [13] applied natural language
processing techniques to analyze API call sequences. They di-
vided the sequences using n-grams and assigned weights using

Term Frequency-Inverse Document Frequency (TF-IDF). The
purpose of TF-IDF was to transform n-grams into numerical
features suitable for machine learning algorithms. However,
TF-IDF methods do not preserve the contextual relationships
between words. Amer et al. [4] employed word embedding to
understand the contextual relationships between API functions
in malware call sequences. They used this method to clus-
ter individual functions with similar contextual traits. Based
on these clusters, they developed a method to detect and
predict malware using a Markov chain model. Kim et al.
[14] utilized multiple sequence alignment (MSA) to create
"feature-chain" patterns representing malware behavior. These
generated patterns were then used to classify malware similar
to the training patterns. Tungjitviboonkun et al. [15] proposed
an approach similar to [14]. They used the longest common
API sequence to break down malware API call sequences
into simpler sequences. The extracted longest common sub-
sequences were then used as signatures to identify similar
malware.

III. BACKGROUND ON WINDOWS API

As mentioned earlier, in the Windows OS, user applications
cannot directly access hardware or system resources. Instead,
they rely on interfaces provided by dynamic-link libraries
(DLLs). These libraries offer functionalities to access hard-
ware and system resources. Below is a brief description of the
main DLLs:

• Ntoskrnl.dll: Also known as the kernel image, this kernel-
mode DLL is a fundamental part of the operating sys-
tem, providing various system services such as hardware
abstraction, memory management, and process manage-
ment.

• Bootvid.dll: A kernel-mode DLL that provides functions
for video graphics adapters (VGA), making it heavily
utilized in the Windows operating system.

• Hal.dll: This kernel-mode DLL acts as middleware be-
tween the kernel and the hardware, providing functions
for interfacing with unique chipsets associated with spe-
cific motherboards.

• User32.dll: A user-mode DLL that provides components
for the user interface, such as buttons and scroll bars,
and functionalities for controlling and responding to user
actions.

• Kernel32.dll: A user-mode DLL that indexes core func-
tions such as accessing and manipulating memory, files,
and hardware.

• Advapi32.dll: A user-mode DLL that provides function-
alities for core Windows components like service man-
agement and the registry.

• Rpcrt4.dll: A user-mode DLL that offers essential func-
tions for remote procedure calls (RPC), used by various
Windows applications for networking and internet com-
munication.

• Ntdll.dll: A user-mode DLL that serves as the interface to
the Windows kernel. When a process imports this DLL,
it indicates the use of functions to create tasks or new
functions not available to standard Windows programs,
such as process manipulation or hiding functions.

• Gdi32.dll: A user-mode DLL that contains functions for
graphical display and manipulation.

Windows API call sequences are widely recognized as a
key feature in behavior-based malware detection [4]. While
the API call mechanism itself does not distinguish between
malicious and benign programs—since both can use the same
APIs—the sequence and pattern of these calls can reveal
the contextual behavior of the calling process [16][4]. By
analyzing these sequences, it becomes possible to infer the
intent and nature of the process, aiding in the identification of
malicious activity.

IV. TOWARD A VOTING CLASSIFIER FOR MALWARE
DETECTION

A. Ensemble learning

Ensemble techniques such as generative method, boosting,
and clustering are commonly employed in machine learning
to enhance model performance by combining predictions from
several models. The underlying principle is that a group of
models (an ensemble) can collectively make more accurate
predictions than any individual model alone. This approach
can reduce errors, increase accuracy, and make the model more
robust. Voting is a fundamental approach in ensemble learning.
It involves merging the predictions from various models to
determine a final outcome. The two main types of voting in
ensemble methods are hard voting and soft voting. In this work
we implement both approaches.

1) Hard Voting involves counting the predictions from each
base model and selecting the class that receives the most
votes as the final prediction. This method is best suited
for classification tasks where classes are distinct and
exclusive.

2) Soft Voting considers the probability scores that each base
model assigns to each class and computes the weighted
average of these probabilities to reach the final prediction.
Soft voting calculates the average probability for each

class and selects the class with the highest weighted
probability. It is applicable for both classification and
regression tasks.

In the remainder of this section we present the classifiers
used by our voting classification approach.

B. Decision tree
Decision Trees (DTs) are a type of supervised learning tech-

nique used for classification and regression. It is a simple tree-
structured technique that employs decision rules representing
tree branches derived from dataset features. The goal of DT
is to develop a model that can predict the value of a response
value (leaf node) based on learning decision rules [17] [18].
To classify a data point, we begin at the root of the tree and
compare the value of the root feature to the value of the feature
point. We proceed following the branch corresponding to that
value, and the same process is repeated at each internal node
and branches of the tree, until we reach the leaf decision node.
We summarize the DT algorithm as follows:

• It begins with the entire dataset as the root node.
• It chooses the attribute with the greatest Information Gain

(IG) value. IG criterion is computed based on the entropy
metric, which measures the uncertainty in a group of data,
and it can be calculated as follows:

Entropy = −
k∑

i=1

pi log2 pi (1)

where pi is the probability of a data point to be selected
from class i and k is the number of classes. The IG can
be calculated as follows:

IG = Eparent − Echildren (2)

where Eparent is the entropy of parent node and
Echildren is the average entropy of the child nodes (the
left and right branches). The Gini Index (GI), which is
preferable in the case of categorical variables, is another
well-known criterion for splitting the dataset. It can be
calculated as follows:

GI = 1−
k∑

i=1

(pi)
2 (3)

where pi is the same probability used in IG. The attribute
with a lower Gini index should be chosen.

• It repeats the process for each subset, considering the
attributes that were not previously selected.

The DT algorithm is simple to understand and interpret
because of its hierarchical structure, which can easily show
the most important attributes. It can also handle a variety
of data types, including continuous, discrete, and categorical
data, depending on the criteria used to manipulate the various
data types. A complex decision tree, on the other hand, can
result in an overfitting problem. Furthermore, minor changes
in the data can result in a different decision tree. In terms
of computational complexity, it is considered to be more
expensive than other algorithms (such as KNN, random forest,
XGBoost, naive Bayes, etc).

C. Random forest

Random Forest (RF) is an ensemble technique for improving
the model performance by combining multiple decision tree
models. This ensemble technique is also known as Bagging
or Bootstrap aggregation. Each decision tree model is based
on a subset of the entire dataset that is chosen at random.
As a result, it works in a divide-and-conquer fashion, and the
generated DTs are based on criteria such as the Gini index,
information gain, or gain ratio. It can be used for regression
as well as classification, and it can handle datasets with cat-
egorical or continuous features [19] [20]. In the classification
problem, the most-voted class is chosen as the output class for
a given data point. The algorithm of RF operates as follows:

• Select randomly several samples from the original dataset
with replacement. This step is called bootstrapping.

• Generate a decision tree independently for each sample.
• Apply a majority voting approach to predict the class for

a new set of given data.
When compared to another algorithm like DT, the random
forest technique has several advantages. It considers the results
of multiple decision trees rather than just one. As a result, it
does not suffer from the overfitting problem and can produce
highly accurate results due to a large number of DTs involved
in the process. However, by traversing the tree from the root to
the leaf node, it is not easier to interpret the results compared
with a DT tree. It also has a computational complexity due
to the fact that the process requires several DTs to work in
parallel to generate the final results.

D. Naive Bayes

Naive Bayes classifiers are a family of probabilistic classi-
fication algorithms that uses Bayes’ theorem to predict data
point class values, while assuming independence between
features. Bayes’ theorem is used in Naive Bayes techniques
to compute the conditional probabilities (also called posterior
probability), and it is given by:

P (y|X) =
P (X|y)P (y)

P (X)
(4)

where y is the class label and X represents the values of inde-
pendent variables (features) for a given data. By considering
the independence among features, the Bayes formula can be
written as:

P (y|x1,, xn) = P (y)

n∏
i=1

P (xi|y) (5)

To obtain the class variable (y), we have to maximize the
probability in equation (5) as:

y = argmaxyP (y)

n∏
i=1

P (xi|y) (6)

The class with the highest posterior probability is chosen
as the predicted class value.

It is easy to understand and can quickly predict the category
of testing data. Furthermore, if the assumption of indepen-
dence is validated, it can produce produces good results. It
can also be used with categorical and numerical variables
and for multi-classification. It has several types: multinomial
naive Bayes, Bernoulli naive Bayes (for binary variables), and
Gaussian naive Bayes (used in case of continuous variables
but assumed to be normally distributed). However, logistic
regression requires features’ independence, which is highly
unlikely in most real-world applications.

E. K-nearest neighbors

K-Nearest-Neighbors (KNN) is a popular supervised ma-
chine learning algorithm. It can be used for both classification
and regression. The main idea behind KNN is to classify data
points based on their k nearest neighbors. The main steps of
the KNN algorithm are summarized below:

• Specify k, the number of neighbors.
• Compute the distance (Manhattan, Minkowski, ..) among

all data points.
• For each data point, keep only the k closest neighbors

based on the calculated distance.
• Assign a new data point to the class, in which the majority

of its k neighbors belong to that class (majority vote).
It is easy to understand this algorithm that is robust to

outliers. In most cases, it also has a relatively high accuracy.
However, its precision is directly proportional to the value of k.
Several techniques, such as the square root of the dataset or the
elbow method have been proposed to select the best value of
k. Furthermore, it has a high computational cost, particularly
for large data sets, due to the use of the distance that must be
calculated between all data points.

V. PERFORMANCE EVALUATION

In this section, we present a comparative analysis of the
performance of our detection approach against several well-
established classification and detection methods. Specifically,
we evaluate our approach in relation to Logistic Regres-
sion, Random Forest, Naive Bayes, and K-Nearest Neighbors
(KNN) classifiers. These methods were selected due to their
widespread use and proven effectiveness in malware detection.

To ensure a fair and consistent comparison, we implemented
all approaches, including our own, using Python, which offers
robust support for machine learning and data analysis through
various libraries. For the experimental evaluation, we used a
dataset8 provided by De Oliveira et al. [21], a comprehensive
resource for analyzing malware behavior. This dataset includes
42,797 API call sequences from malware samples and 1,079
sequences from benign software (goodware). Each sequence
comprises the first 100 non-repeated consecutive API calls
associated with the parent process, carefully extracted from the
’calls’ elements of Cuckoo Sandbox reports. This meticulous
data extraction process ensures the integrity and relevance of
the sequences used in our classification tasks, providing a

8https://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences

https://ieee-dataport.org/open-access/malware-analysis-datasets-api-call-sequences

97.5%

2.5%

0.0%

0.0%

Actual Positive

Actual Negative

Predicted Positive Predicted Negative
Predicted Class

A
ct

ua
l C

la
ss

Freq

10000

20000

30000

40000

Logistic Regression

(a)

97.5%

0.1%

0.0%

2.4%

Actual Positive

Actual Negative

Predicted Positive Predicted Negative
Predicted Class

A
ct

ua
l C

la
ss

Freq

10000

20000

30000

40000

Random Forest

(b)

97.5%

2.5%

0.0%

0.0%

Actual Positive

Actual Negative

Predicted Positive Predicted Negative
Predicted Class

A
ct

ua
l C

la
ss

Freq

10000

20000

30000

40000

Naive Bayes

(c)

97.4%

1.3%

0.2%

1.1%

Actual Positive

Actual Negative

Predicted Positive Predicted Negative
Predicted Class

A
ct

ua
l C

la
ss

Freq

10000

20000

30000

40000

K Nearest Neighbors

(d)

97.5%

1.4%

0.0%

1.1%

Actual Positive

Actual Negative

Predicted Positive Predicted Negative
Predicted Class

A
ct

ua
l C

la
ss

Freq

10000

20000

30000

40000

Hard voting classifier

(e)

97.5%

1.5%

0.0%

0.9%

Actual Positive

Actual Negative

Predicted Positive Predicted Negative
Predicted Class

A
ct

ua
l C

la
ss

Freq

0

10000

20000

30000

40000

Soft voting classifier

(f)

Fig. 3: Confusion matrices for the classification methods tested: (a) Logistic regression; (b) Random forest; (c) Naive Bayes;
(d) K nearest neighbors; (e) Hard voting classifier; (f) Soft voting classifier

0.00

0.25

0.50

0.75

1.00

LR RF NB KNN HVC SVC

A
cc

u
ra

cy

Fig. 4: Accuracy of the tested classifiers

solid foundation for assessing the effectiveness of different
detection methods. Figure 3 depicts the confusion matrices
obtained through the different detection techniques.

For performance evaluation, we use both accuracy and
Matthews Correlation Coefficient (MCC) as comparison met-
rics. While accuracy is a widely used metric, representing the
ratio of correctly predicted instances (true positives and true
negatives) to the total number of instances, it has limitations,
particularly in imbalanced datasets. Relying solely on accuracy
can be misleading, as it does not provide a comprehensive

0.00

0.25

0.50

0.75

1.00

LR RF NB KNN HVC SVC

M
C

C

Fig. 5: MCC of the tested classifiers

view of a model’s performance across all classes. In contrast,
the MCC offers a more balanced evaluation by considering
all four categories of the confusion matrix: true positives,
true negatives, false positives, and false negatives. This makes
MCC a more reliable indicator of performance. Figures 4 and
5 illustrate the accuracy and MCC values obtained from the
different classifiers, respectively.

The performance evaluation of the various classifiers for
detecting malicious activity on the dataset reveals significant
differences in their accuracy and Matthews Correlation Co-

efficient (MCC). Logistic Regression and Naive Bayes both
achieve an accuracy of 96%, but their MCC values are notably
low at 0.03, indicating that these models may not effectively
differentiate between true positive and negative classifications.
In contrast, the Random Forest classifier demonstrates a higher
accuracy of 99% with a substantially improved MCC of
0.647, suggesting a better balance in its predictions. The k-
Nearest Neighbors (KNN) classifier also performs well, with
an accuracy of 98.3% and an MCC of 0.57, indicating a solid
performance in distinguishing between malicious and benign
activities. The Voting Classifiers, both hard and soft, exhibit
strong results as well. The Hard Voting setup achieves an
accuracy of 98.4% and an MCC of 0.635, while the Soft Voting
setup has a slightly lower accuracy of 98.1% and an MCC of
0.58. These results demonstrate that our approach of Voting
Classifiers can effectively leverage the strengths of individual
models, resulting in improved overall performance. Overall,
the Random Forest and Voting Classifiers stand out for their
higher MCC values, reflecting their superior capability in
making reliable predictions compared to the simpler models
like Logistic Regression and Naive Bayes.

While both the voting classifier and the Random Forest
classifier demonstrated similar performance levels in terms of
detection accuracy and MCC, the voting classifier offers dis-
tinct advantages. The key strength of the voting classifier lies
in its ability to leverage the diversity of multiple models, which
can lead to greater robustness and resilience against overfitting.
Unlike the Random Forest, which relies on an ensemble of
decision trees with inherent similarities, the voting classifier
combines a heterogeneous set of models, each contributing
unique perspectives to the final decision. This diversity can be
particularly beneficial in scenarios where the underlying data
distributions are complex or where certain models may excel in
capturing specific patterns. Additionally, the flexibility of the
voting classifier allows for incorporating models with different
strengths, potentially enhancing generalization to unseen data.

VI. CONCLUSION

This paper addresses the challenge of detecting malware,
which is an ongoing issue as malware authors continuously
develop new techniques to evade traditional signature-based.
This paper proposes a novel approach to malware detection
that analyzes patterns in Windows system call sequences to
identify malicious behaviors. In this work, we use a voting
classifier which combines the predictions of multiple sub-
models to arrive at a more accurate and robust output. We
train the voting classifier on large datasets of benign and
malicious system call traces to detect anomalies indicative
of malware. Focusing on system call behavior, rather than
static code characteristics allows the approach to identify novel
malware variants without requiring prior knowledge of their
signatures. The high detection rates and low false positives
rate observed in the experiments highlight the potential of this
approach to contribute to the development of more effective
and adaptable malware detection systems.

REFERENCES

[1] Badis Hammi and Sherali Zeadally. Software supply-chain security:
Issues and countermeasures. Computer, 56(7):54–66, 2023.

[2] Pascal Maniriho, Abdun Naser Mahmood, and Mohammad Jabed Mor-
shed Chowdhury. A systematic literature review on windows malware
detection: Techniques, research issues, and future directions. Journal of
Systems and Software, page 111921, 2023.

[3] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey of
machine learning techniques for malware analysis. Computers &
Security, 81:123–147, 2019.

[4] Eslam Amer and Ivan Zelinka. A dynamic windows malware detection
and prediction method based on contextual understanding of api call
sequence. Computers & Security, 92:101760, 2020.

[5] Ömer Aslan Aslan and Refik Samet. A comprehensive review on
malware detection approaches. IEEE access, 8:6249–6271, 2020.

[6] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. Dynamic
malware analysis in the modern era—a state of the art survey. ACM
Computing Surveys (CSUR), 52(5):1–48, 2019.

[7] Mohana Gopinath and Sibi Chakkaravarthy Sethuraman. A compre-
hensive survey on deep learning based malware detection techniques.
Computer Science Review, 47:100529, 2023.

[8] Faitouri A Aboaoja, Anazida Zainal, Fuad A Ghaleb, Bander Ali Saleh
Al-Rimy, Taiseer Abdalla Elfadil Eisa, and Asma Abbas Hassan Elnour.
Malware detection issues, challenges, and future directions: A survey.
Applied Sciences, 12(17):8482, 2022.

[9] Jagsir Singh and Jaswinder Singh. A survey on machine learning-based
malware detection in executable files. Journal of Systems Architecture,
112:101861, 2021.

[10] Ori Or-Meir, Aviad Cohen, Yuval Elovici, Lior Rokach, and Nir Nissim.
Pay attention: Improving classification of pe malware using attention
mechanisms based on system call analysis. In 2021 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[11] Abdurrahman Pektaş and Tankut Acarman. Malware classification
based on api calls and behaviour analysis. IET Information Security,
12(2):107–117, 2018.

[12] Taejin Lee, Bomin Choi, Youngsang Shin, and Jin Kwak. Automatic
malware mutant detection and group classification based on the n-gram
and clustering coefficient. The Journal of Supercomputing, 74:3489–
3503, 2018.

[13] Trung Kien Tran and Hiroshi Sato. Nlp-based approaches for malware
classification from api sequences. In 2017 21st Asia Pacific Symposium
on Intelligent and Evolutionary Systems (IES), pages 101–105. IEEE,
2017.

[14] Hyun-Joo Kim, Jong-Hyun Kim, Jung-Tai Kim, Ik-Kyun Kim, and Tai-
Myung Chung. Feature-chain based malware detection using multiple
sequence alignment of api call. IEICE TRANSACTIONS on Information
and Systems, 99(4):1071–1080, 2016.

[15] Thotsaphon Tungjitviboonkun and Vasin Suttichaya. Complexity reduc-
tion on API call sequence alignment using unique API word sequence.
In 2017 21st international computer science and engineering conference
(ICSEC), pages 1–5. IEEE, 2017.

[16] Youngjoon Ki, Eunjin Kim, and Huy Kang Kim. A novel approach
to detect malware based on api call sequence analysis. International
Journal of Distributed Sensor Networks, 11(6):659101, 2015.

[17] Sherali Zeadally and Michail Tsikerdekis. Securing internet of things
(iot) with machine learning. International Journal of Communication
Systems, 33(1):e4169, 2020.

[18] Abir Mchergui, Tarek Moulahi, and Sherali Zeadally. Survey on artificial
intelligence (ai) techniques for vehicular ad-hoc networks (vanets).
Vehicular Communications, page 100403, 2021.

[19] V Rodriguez-Galiano, M Sanchez-Castillo, M Chica-Olmo, and MJOGR
Chica-Rivas. Machine learning predictive models for mineral prospec-
tivity: An evaluation of neural networks, random forest, regression trees
and support vector machines. Ore Geology Reviews, 71:804–818, 2015.

[20] Iftikhar Ahmad, Mohammad Basheri, Muhammad Javed Iqbal, and
Aneel Rahim. Performance comparison of support vector machine,
random forest, and extreme learning machine for intrusion detection.
IEEE access, 6:33789–33795, 2018.

[21] Angelo Schranko de Oliveira and Renato José Sassi. Behavioral malware
detection using deep graph convolutional neural networks. Authorea
Preprints, 2023.

	Introduction
	Related Works
	Background on Windows API
	Toward a voting classifier for malware detection
	Ensemble learning
	Decision tree
	Random forest
	Naive Bayes
	K-nearest neighbors

	Performance evaluation
	Conclusion
	References

