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Abstract

We study numerical algorithms to solve a specific Partial Differential Equation (PDE),
namely the Stefan problem, using Physics Informed Neural Networks (PINNs). This
problem describes the heat propagation in a liquid-solid phase change system. It implies
a heat equation and a discontinuity at the interface where the phase change occurs. In
the context of PINNs, this model leads to difficulties in the learning process, especially
near the interface of phase change. We present different strategies that can be used in
this context. We illustrate our results and compare with classical solvers for PDEs (finite
differences).

Keywords: Neural Networks, Partial Differential Equations, Physics Informed Neural
Networks, Computational Physics, Phase Change Materials.

1. Introduction

When modeling heat transfer problems, depending on the context, there are various for-
mulations. For a solid material involving a liquid-solid phase change, the problem reduces
to the Stefan problem, taking into account only the conduction heat transfer mechanism
(natural convection is ignored). This problem was studied extensively by the mathe-
matical community, resulting in many theoretical results (see [1] and references therein).
In the context of numerical simulation, several frameworks were developed to solve this
problem (see the review [2]).

In the context of Finite Element Method (FEM), different approaches were suggested,
from enthalpy based methods (e.g. [3]) to front-tracking methods (e.g. [4]). For other
numerical frameworks, similar approaches have been developed, see for example [5] for
Finite Volumes Method (FVM) and [6] for Finite Differences (FD).

Recently, machine learning methods have experienced significant growth, largely due to
the improvement of computing hardware, such as GPUs. Thanks to these advancements,
machine learning methods have found applications in various scientific domains, includ-
ing heat transfer problems [7, 8, 9, 10]. The majority of these applications relies on the
supervised learning approach, for which large databases obtained from experiments or
numerical simulations are required to train a model. One of the main challenges is the po-
tential insufficiency of the data acquired through experiments. Additionally, high-fidelity
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numerical simulators are inherently slow, restricting their applicability in generating ex-
tensive numerical data-sets. Conversely, low-fidelity numerical simulators are generally
faster, allowing for the creation of larger data-sets, albeit with a trade-off of reduced
model accuracy. To tackle this problem, the physics-informed neural networks (PINNs)
framework was developed, and subsequently it was applied to a various fluid mechanics
problems [11, 12, 13, 14], as well as heat transfer problems [15, 16, 17, 18, 19]. Instead of
solving partial differential equations (PDEs) using classical simulation tools to generate
training data-sets, the governing PDEs can be used directly to train models. One key
advantage of such an approach is the efficiency in data assimilation problems where the
PDE, initial or boundary conditions are not well known, but a finite number of sparse
measurements inside the domain of interest is available. PINNs are also efficient when
dealing with a PDE with parametric setting or high-dimensional PDE [20, 21].

In this article, we study the applicability of PINNs, to solve the Stefan problem. The
article is organized as follows. In Sec. 2, we describe Stefan’s problem and the enthalpy
formulation; we solve the problem using a finite difference method to generate a reference
solution. In Sec. 3, we present a brief overview of the PINNs method and we use it to
solve the problem for two different configurations. We study also the loss weighting effect
on the model training. In Sec. 4, we present different strategies that can be used to
improve the model accuracy. We conclude in Sec. 5 with a brief summary and outlook.

2. The one-dimensional Stefan problem

2.1. Heating of a semi-infinite material subject to phase change

The Stefan problem is defined on a semi-infinite 1d domain x ≥ 0. The domain is filled
with a pure material, subject to liquid-solid phase change. The dimensionless temperature
and enthalpy are defined as:

θ ←
T − Tf

δT
, H ← H

ρ c δT
,

where the temperature scale for melting and solidification is δT = max(Th−Tf , Tf −Tc),
with Th, Tc, and Tf the hot, cold, and fusion temperatures, respectively. The constants c
and ρ are the specific heat and the density (assumed to be the same in the liquid and the
solid). The left wall, denoted by Γl is kept at a constant temperature θl, and the initial
temperature at t = 0 is θr. The problem can be modeled as:

∂tH − Fo ∂xxθ = 0, t > 0, x > 0,

θ(t, 0) = θl,

limx→+∞ θ(t, x) = θr,

(2.1)

where Fo = α tref/x
2
ref is the Fourier number, with α, tref and xref denoting the thermal

diffusivity of the material, the reference time and reference length, respectively. The
dimensionless enthalpy H is defined as

H(t, x) =

θ(t, x) if θ(t, x) ≤ 0,

θ(t, x) +
1

Ste
if θ(t, x) > 0.

(2.2)

The Stefan number is defined as Ste = c δT/L, with L denoting the latent heat.
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In this setting, the liquid-solid interface is a point λ(t), and its motion is prescribed by
the Stefan condition:

∂xθright(t, λ(t))− ∂xθleft(t, λ(t)) =
1

FoSte
λ′(t),

where θleft (resp. θright) corresponds to θex(t, x) for x < λ(t) (resp. x > λ(t)).

This condition is embedded in the enthalpy formulation (2.1). Using the ansatz λ(t) =
2λ0

√
tFo, for some constant λ0, the exact solution of the problem is given by:

θex(t, x) =


θl

(
1− erf (λ0)

−1 erf
(

x
2
√
tFo

))
, if x ≤ λ(t),

θr

(
1− erfc (λ0)

−1 erfc
(

x
2
√
tFo

))
, otherwise.

(2.3)

The Stefan condition is satisfied provided λ0 is the solution of the nonlinear equation:

λ0 −
Ste√
π
e−λ2

0

(
θr

erfc (λ0)
+

θl
erf (λ0)

)
= 0.

This solution is referred to as the exact solution and will be used to set a suitable boundary
condition on a finite domain.

2.2. Restriction to a finite domain

Numerically, we do not compute the solution on a semi-infinite domain. If the right
boundary is kept at the temperature θr, then the exact solution holds only for small
times, for which the interface is far away from the boundary. In order to avoid using
a large computational domain, we need to solve numerically the problem on a smaller
domain, with a time-dependent Dirichlet condition that matches θex.

We consider a unit domain D = [0, 1]. The left and right walls, denoted by Γl and Γr are
kept at a temperature θl and θex(t, 1) respectively. The evolution of the temperature is
described by the following PDE:

∂tH(t, x)− Fo ∂xxθ(t, x) = 0, t > 0, x ∈ D, (2.4)

θ(t, 0) = θl, (2.5)

θ(t, 1) = θex(t, 1). (2.6)

Noting that (2.2) can be reformulated as H = θ + (1/Ste)φ(θ), where φ is the Heaviside
function representing the liquid fraction, the previous equation can be rewritten as

∂tθ(t, x)− Fo ∂xxθ(t, x) = −
1

Ste
∂tφ(θ). (2.7)

This equation is solved numerically in [22, 23] using a regularized enthalpy. Let δ > 0 be
a regularization parameter, and define

φδ(θ) =
1

2

(
1 + tanh

(
θ

δ

))
. (2.8)

Using the regularization φδ instead of φ, equation (2.7) reads

∂tθ = r(θ) ∂xxθ t ∈ [0.05, 1], x ∈ [0, 1], (2.9)

where

r(θ) = Fo

(
1 +

1

Ste
φ′
δ(θ)

)−1

.
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2.3. Reference solution

As a regularization term has been used, θex is no longer the solution of (2.9). In order to
assess the accuracy of the neural network approach, we compute a reference solution of
(2.9) using a finite differences scheme. Applying the Crank–Nicolson scheme [24] for time
integration of (2.9) and centered finite differences for the space discretization, we obtain

θn+1
i − θni

∆t
=

1

2

[
r(θn+1

i )
θn+1
i+1 − 2θn+1

i + θn+1
i−1

(∆x)2
+ r(θni )

θni+1 − 2θni + θni−1

(∆x)2

]
. (2.10)

Assuming that the solution θn is known, then θn+1 is the solution of a non linear system of
equations, which can be solved using the Newton–Raphson method [25]. Figure 1 shows
the numerical convergence of the considered approach. By setting equal step size for time
and space h = ∆t = ∆x, we obtain convergence of order O(h2).

Figure 1: Convergence of the finite differences scheme used to solve (2.9). The L2 error is calculated
relative to a reference solution obtained with a step size hmin = 3.9 × 10−5, i.e. Rel. L2 error: ∥θh −
θhmin∥2/∥θhmin∥2.

3. Stefan problem with Physics-Informed Neural Networks

3.1. Physics-Informed Neural Networks

In this section, we provide a brief overview of the Physics-Informed Neural Networks
(PINNs) [11], which is a method to approximate the solution to differential equations
using neural networks.

A neural network with L layers (or L − 1 hidden layers), can be represented as the
composition of L parameterized functions ℓk(x,Θk), where x and Θk are the input and
a set of parameters for the k−th layer, respectively. A feed-forward neural network in
particular, apply for each layer ℓk a linear and nonlinear transformations to the inputs
i.e.

∀k, ℓk
(
x,Wk;bk

)
= Σk

(
Wkx+ bk

)
,

where Wk ∈ RNk−1×Nk and bk ∈ RNk are the weights and the biases which constitute
the neural network parameters. Nk denotes the number of neurons in layer k and the Σk

are nonlinear functions applied element-wisely, typically

Σk(x) =

{
tanh(x), if 1 ≤ k < L,
x, if k = L.
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In the context of finding the solution u of a partial differential equation, a feedforward
neural network can be considered as an approximate solution.

Consider PDEs taking the general form

∂tu+N [u] = 0, t ∈ [0, T ], x ∈ Ω, (3.1)

subject to initial and boundary conditions

u(0, x) = g(x), x ∈ Ω, (3.2)

B[u](t, x) = h(t, x), t ∈ [0, T ], x ∈ ∂Ω, (3.3)

where N [ · ] is a linear or nonlinear differential operator, and B[ · ] is a boundary operator
corresponding to Dirichlet, Neumann, Robin, or periodic boundary conditions.

By replacing the unknown solution u(t, x) of (3.1), (3.2) and (3.3) with a neural network
uΘ(t, x), where Θ denotes all tunable parameters (weights and biases) of the network, the
goal is to minimize the following composite loss function

L(Θ) = ω0 L0(Θ) + ωb Lb(Θ) + ωr Lr(Θ), (3.4)

where Lr, L0 and Lb are loss (residual) terms corresponding to the PDE term (3.1), the
initial condition (3.2), and the boundary condition (3.3), respectively:

Lr(Θ) =
1

Nr

Nr∑
k=1

∣∣∣∣∂uΘ∂t
(tkr , x

k
r ) +N [uΘ](t

k
r , x

k
r )

∣∣∣∣2 , (3.5)

L0(Θ) =
1

N0

N0∑
k=1

∣∣∣uΘ(0, xki )− g(xki )
∣∣∣2 , (3.6)

Lb(Θ) =
1

Nb

Nb∑
k=1

∣∣∣B[uΘ](tkb , xkb )− h(tkb , x
k
b )
∣∣∣2 . (3.7)

The sets {xki , g(xki )}
N0
k=1, {t

k
b , x

k
b , h(t

k
b , x

k
b )}

Nb
k=1, and {t

k
r , x

k
r}

Nr
k=1 representN0 initial training

points, Nb boundary training points, and Nr collocation points, respectively. They are
randomly selected using low discrepancy sequence techniques (also known as a quasi-
Monte Carlo sample) such as Latin Hypercube [26], Sobol sequence [27] or Halton [28]
sequence.

It is worth noting that loss terms include gradients with respect to input variables. It is
thus possible to compute these exactly using automatic differentiation [29] at any point
in the domain, without the need for manual computation. Moreover, hyper-parameters
ω0, ωb and ωr enable the flexibility of assigning a different learning rate to each individual
loss term in order to balance their interplay during model training. These weights may
be user-specified or tuned automatically during training [30, 31].

3.2. Validation of the PINNs approach

We consider the equation (2.7) with Fo = 0.01, Ste = 0.5, a regularization δ = 0.05 and
a hot temperature θl = 1. The initial condition is chosen to be the exact solution at the
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initial time t = 0.05 (see (2.3)). The specific system is summarized as follows:

∂tθ − 0.01 ∂xxθ + 2 ∂t [φδ(θ)] = 0, t ∈ [0.05, 1], x ∈ [0, 1] (3.8a)

θ(0.05, x) = θex(0.05, x), (3.8b)

θ(t, 0) = θl, (3.8c)

θ(t, 1) = θex(t, 1). (3.8d)

Following the original work of Raissi et al. [11], we represent the latent variable θ by a
feed-forward neural network θ̂ with 6 hidden layers and 20 neurons per hidden layer, we
use the tanh as an activation function. In order to compute the loss functions, the Latin
Hypercube Sampling method was adopted to generate N0 = 1024 samples for the initial
condition, Nb = 256 samples for the boundary conditions and Nr = 10000 collocation
points in the spatio-temporal domain for the PDE term.

The model parameters are initialized using Xavier initialization [32], and the training
procedure of the resulting PINN is done with full-batch gradient descent using the Adam
optimizer [33] for 100k iterations with an exponential decay learning rate t 7→ η γt/κ

where η = 10−3, γ = 0.9, κ = 8000 and t is the training iteration. Table 1 summarizes
the hyperparameters of both the physics-informed neural network and the training.

Hyperparameters

Architecture
Two inputs (t, x), one output θ̂(t, x), six hidden layers of 20 neurons
with the activation function tanh

Initialization Xavier
Optimizer Adam for 100k epoch

Learning rate Exponential decay learning rate t 7→ η γt/κ, η = 10−3, γ = 0.9, κ = 8000
Training data N0 = 1024, Nb = 256, Nr = 10000 using LHC sampling

Table 1: Hyperparameters used to solve Eq. (3.8).

To evaluate the accuracy of the physics-informed neural network, we compare the model’s
prediction θ̂ with the reference solution θ (given in sec. 2.3) at each time step, calculating
the relative L2 error ∥θ̂ − θ∥2/∥θ∥2 on a grid of 500 × 500 points in the spatio-temporal
domain. The prediction θ is derived from averaging multiple simulations initialized inde-
pendently, allowing us to consider the effect of initialization. Sensitivity to initialization
will be demonstrated by the standard deviation of the simulation ensemble.

In this setting, we test the baseline PINNs approach introduced in [11], which sets ω0 =
ωb = ωr = 1. From Fig. 3, we notice that the neural network captured accurately
the solution of the problem. The relative L2 error at the end of training in this case is
3.175× 10−3 ± 0.0016.
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Figure 2: Problem (3.8). Left: relative L2 error ∥θ̂ − θ∥2/∥θ∥2 during training. Right: absolute error

|θ̂ − θ| at the end of training (i.e. at epoch = 105) .

Figure 3: Solution of (3.8) at the end of training for t = 0.05, t = 0.53 and t = 1.

3.3. Influence of the Stefan number

In this section, we assess the ability of PINNs to capture the phase change with smaller
values of parameter Ste. To this end, we change the Stefan number to the value Ste =
0.005. Then Eq. (3.8a) becomes:

∂tθ − 0.01 ∂xxθ + 200 ∂t [φδ(θ)] = 0, t ∈ [0.05, 1], x ∈ [0, 1]. (3.9)

In this scenario, the disparity between the coefficients of the time derivative ∂tθ and the
spatial derivative ∂xxθ is greater than it was previously. As mentioned in [34], this kind
of discrepancy could potentially pose challenges during training, as the complexity of the
loss landscape increases, making the minimization of the loss function more challenging.
For the model training, we maintain the same hyperparameters as previously. However,
we introduce a supplementary adjustment by modifying the loss weights ω0, ωb, and ωr.
We perform three test cases: we use ω0 = ωb = ωr = 1 as previously. Secondly, we
set ω0 = 100 and ωb = ωr = 1 intended to enforce the neural network to satisfy the
initial condition. Finally, we use the dynamical weighting algorithm suggested in [30] to
dynamically scale the weights of the loss function. The reweighting in this algorithm is
performed so that the gradients of the loss terms of the initial and boundary conditions
are approximately in the same range of values as the gradient of the PDE loss term. At
each training step, e.g. iteration (t+ 1), the estimates of ωi and ωb can be computed by:

ω(t+1) = (1− α)ω(t) + α
maxθ{|∇θLr|}

ω(t)|∇θL|
, (3.10)

where maxθ{|∇θLr|} is the maximum value attained by |∇θLr| and |∇θL| denotes the
mean of |∇θL|. The initial values of the dynamic weights are typically set to 1, and the
parameter α = 0.6 is used.
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Figure 4: Absolute error |θ̂− θ| for Eq. (3.9) at the end of training (i.e. at epoch = 105) for three choices
of loss weights.

Figure 5: Solution of (3.9) at the end of training at t = 0.05, t = 0.53 and t = 1.

From Fig. 4, we can see that in all considered cases, the predominant portion of the error
is located in the region near zero. This is primarily due to the gradual progression of
the interface. Indeed, when we set Ste = 0.005 and Fo = 0.01, we deliberately introduce
a movement of the interface with a steep gradient near zero. This type of behavior is
difficult to model accurately for a neural network, as they are characterized by a high
regularity.

In Fig. 5, where the solutions are plotted for x ∈ [0, 0.1] at various time instants, we
can observe distinct behavior for each case. When the weights are set to 1, the model is
unable to learn the accurate solution. Furthermore, it seems that the predicted solution
get stuck at some intermediate state and cannot be further refined. On the other hand,
when ω0 = 100 is employed, the initial condition is learned much more effectively, resulting
in a significantly more accurate solution at subsequent time instants. In the third scenario,
where the learning rate annealing algorithm [30] is applied, we can observe that both the
initial and boundary conditions are adhered to, leading to a more precise capture of the
interface compared to the other two cases.
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Figure 6: Relative L2 error ∥θ̂ − θ∥2/∥θ∥2 during training for Eq. (3.9).

Figure 6, illustrates the significant role of the loss weights in the learning process. For
instance, we notice the rapid decrease of the relative L2 error in the first few thousand
training epochs for both second (orange) and third (green) cases compared to the first
one (blue). After the epoch 60k, the relative L2 error is barely changed for the first case
while it is still considerably decreasing for the other two cases. Furthermore, the error
for the third case became smaller than that of the second case. The relative L2 error at
the end of training, is 1.341 × 10−1 ± 0.005 for the first case, 3.59 × 10−2 ± 0.01 for the
second case, and 2.565× 10−2 ± 0.004, when the dynamical weighting is performed with
a frequency of 1000 iterations.

Figure 7: Values of the weights during training in the dynamical weighting case for Eq. (3.9).

Figure 7, shows that the weights are of the same order of magnitude. They reach very
large values at the beginning of training to compensate for the dominance of the residual
loss function. Over time, these weights gradually decrease and converge to an approximate
value of 103.
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4. Improvements of PINNs for the Stefan problem

In some cases, the PINNs method can struggle to capture an accurate solution. This
difficulty may stem from the choice of various hyperparameters, such as the number of
training data, the neural network architecture, the training parameters, etc. Despite
careful consideration of these factors, there are instances where the method may still not
perform well due to challenges in accurately capturing the underlying physics. In this
section, we will explore some strategies aimed at refining the approximation of physics-
informed neural networks.

4.1. Pointwise weighting using soft attention mask functions

As illustrated in the previous section, the weights within the loss function are a significant
factor in the training process. In reality, these weights act as an adjustment to the learning
rate during gradient descent for each component of the loss function. In [35] a pointwise
weighting is suggested, to take in account the spatial imbalance of gradients; for every
training (or collocation) point (t, x) we assign a weight ω(t, x). For the problem associated
to Eqs. (3.1), (3.2) and (3.3), the structure of the loss function becomes:

L(Θ, ω) = L0(Θ, ωi) + Lb(Θ, ωb) + Lr(Θ, ωr), (4.1)

where Lr, L0 and Lb are loss terms corresponding to the PDE term (3.1), the initial
condition (3.2), and the boundary condition (3.3), respectively:

Lr(Θ) =
1

Nr

Nr∑
k=1

mr(ω
k
r )

∣∣∣∣∂uΘ∂t
(tkr , x

k
r ) +N [uΘ](t

k
r , x

k
r )

∣∣∣∣2 , (4.2)

L0(Θ) =
1

N0

N0∑
k=1

mi(ω
k
i )

∣∣∣uΘ(0, xki )− g(xki )
∣∣∣2 , (4.3)

Lb(Θ) =
1

Nb

Nb∑
k=1

mb(ω
k
b )

∣∣∣B[uΘ](tkb , xkb )− h(tkb , x
k
b )
∣∣∣2 , (4.4)

where mi, mb and mr are nonnegative, differentiable and strictly increasing functions,
called mask functions. The weights {ωk

i }k, {ωk
b }k and {ωk

r }k are updated by gradient
descent side-by-side with the network parameters such that

min
Θ

max
ωi,ωb,ωr

L(Θ, ωi, ωb, ωr) (4.5)

is reached.

For the Stefan problem (3.9), the weighting is specifically applied to the initial and residual
points. We employ mask functions (mr,mi,mb) of the kind w 7→ α(1+e−β(w−m))−1, where
α = 1000, β = 0.1, and m = 2 for the initial condition points, while α = 1, β = 1, and
m = 5 are chosen for the residual points. The weights are initialized from a uniform
distribution in [0, 1] and are updated by gradient descent using the Adam optimizer with
a learning rate ηmax = 10−3 to maximize the loss function with respect to the weights wi,
wr. To minimize the loss function with respect to the model parameters we use the Adam
optimizer for 100k iteration with an exponential decay learning rate t 7→ ηmin γ

t/κ where
ηmin = 10−3, γ = 0.9, κ = 5000 and t is the training iteration. All other hyperparameters
remain unchanged.
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Figure 8: Problem (3.9). Relative L2 error ∥θ̂ − θ∥2/∥θ∥2 during training (left). Absolute error |θ̂ − θ| at
the end of training (i.e. at epoch = 105) (right).

Figure 9: Solution of (3.9) at the end of training for the three cases in t = 0.05, t = 0.53 and t = 1.

Figure 8, reveals that during training, the initial L2 error is lower with pointwise weighting
than with dynamical weighting. However, beyond epoch 50k, they converge to similar
values (Fig. 9, shows the solutions at various time instants). The relative L2 error at the
end of training, is 2.484× 10−2 ± 0.007 for pointwise weighting and 2.565× 10−2 ± 0.004
the dynamical weighting.
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Figure 10: Problem (3.9). Values taken by the mask function for both the initial and residual points in
the beginning of training (top) and at the end of training (bottom).

Figure 10, illustrates the multiplicative soft attention mask function values at the be-
ginning and end of training. Initially, when the weights are initialized from a uniform
distribution in the range [0, 1], the values corresponding to the residual points are no-
ticeably smaller than those for the initial points. This discrepancy is attributed to the
hyperparameters α, β, and m, which emphasizes the learning for the initial condition,
while constraining the dominance of the residual. At the end of training, we can observe
that more attention is needed early in the solution, but not uniformly across the space
variable.

To conclude, this approach can be an alternative to the dynamic weighting method pre-
sented in [30]. However, the selection of a mask function for each loss component requires
prior knowledge about the challenges involved in fitting the problem.

4.2. Sequence learning in time

The conventional PINNs method developed by Raissi et al. [11] trains the neural network
model to predict the solution across the entire space-time domain simultaneously. In
certain cases, this can be difficult to learn. An alternative approach proposed in [36]
involves training the model on sequences of the complete domain. Sequence learning
approaches aim to simplify the training optimization problem, and have been proven to
be effective [34].

In [36] Colby et al. considered the sequence [0, k∆t]× Ω, k = 1, . . . , N of the time-space
domain [0, T ]×Ω, where N is the number of subdomains and ∆t = T/N the step size. The
model is trained firstly on [0,∆t]×Ω, then on [0, 2∆t]×Ω, and so on, gradually increasing
the time span up to [0, N∆t]. To ensure that the solution is well-learned in each time
subinterval, one can set a threshold or a maximum number of training iterations. Once
the loss function value is below the threshold, or the training has reached the maximum
number of iterations, the training procedure begins on the next time interval. In some
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cases, if the loss function value is still very high after the maximum number of iterations,
the time step size ∆t may need to be reduced.

For our computational domain D = [0.05, 1] × [0, 1], we chose subdomains of the form
Dk = [0.05, 0.05 + k∆t] × [0, 1] with uniform time step size ∆t = 0.05. The number of

collocation points N
(k)
r used for Dk is 1000 if k = 1 and N

(k−1)
r +500 otherwise. In order

to prioritize the initial stages of learning, we determined the number of training iterations

N
(k)
it for each subdomain such that the product N

(k)
it × N

(k)
r is approximately equal to

108.

Figure 11: Example of collocation points for subdomains Dk. Note that the points used in subdomain
Dk−1 are also used in Dk.

Using this set of parameters, the total count of collocation points stands at 10000, which
corresponds to the number used in the previous methods. Furthermore, the maximum
number of iterations matches the minimum number of collocation points, ensuring a faster
training process and more meaningful comparisons with the previous methods.

Figure 12: Problem (3.9). Relative L2 error ∥θ̂ − θ∥2/∥θ∥2 during training. The red horizontal lines
indicate the change of Dk sets.

Figure 12, shows the relative L2 error during the training of the model. We notice
that in the case when the coefficients of the loss function are set in a static way (i.e.
ω0 = ωb = ωr = 1 or ω0 = 100, ωb = ωr = 1), the use of this approach did not
improve the results. However in the case where the coefficients are set dynamically the
error decreased. The relative L2 error at the end of training, is 1.819 × 10−1 ± 0.036
when ω0 = ωb = ωr = 1, 4.282 × 10−2 ± 0.001 when ω0 = 100 and ωb = ωr = 1, and
1.887× 10−2 ± 0.003 when the weights are updated dynamically.
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Figure 13: Absolute error |θ̂ − θ| for Eq. (3.9) when using sequence learning in time.

Figure 14: Solution of (3.9) when using sequence learning in time.

5. Conclusion

We focused on solving Stefan problem using the physics informed neural networks (PINNs)
method. We explored various strategies to enhance the approximation capabilities of the
PINNs, while maintaining a fixed neural network structure and a consistent number of
training and collocation points.

By choosing a moderate value for the Stefan number (e.g. Ste = 0.5), the Stefan problem
can be solved accurately using the PINNs method, even in the absence of loss function
weighting. However, for smaller values (e.g. Ste = 0.005), the solution tends to exhibit
less regularity, leading to increased complexity in capturing the interface. In this latter
case, the exploration of new strategies becomes indispensable.

The classical approach employed in [11] does not account for the imbalance in gradients
of the loss component. We have observed that incorporating weights in the loss function
proved beneficial and enhanced the accuracy of the approximation. The drawback to
manually selecting weights is the ongoing challenge of determining the suitable weights.
Considering that, the learning rate annealing algorithm [30] has proven useful in identi-
fying appropriate weights for the loss function. However, based on our experiences, these
weights depend on the number of training and collocation points (Ni, Nb and Nr).
While weighting can be performed on a pointwise basis, determining the appropriate mask
function is not straightforward. The approach of sequence learning in time holds promise
for achieving higher accuracy since the optimization problem is confined to a smaller
domain. However, a potential drawback, especially with more complex equations, is that
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if the solution deviates within a time interval, subsequent intervals will propagate this
error. It is important to learn the solution well on a time interval before progressing to
the next one. This method may also be helpful when working on problems with larger
time domains.

In general, a single approach can yield different results for various problems. In this work,
we aimed to explore different methods to solve the Stefan problem. We did not examine
the impact of network size, learning rate, or the number of training data on the accuracy
of the approximation. Considering these parameters could lead to more precise solutions,
and this will be one of the directions for our future research.

The Stefan problem studied in this paper is a classical phase change problem where
the motion of the liquid phase, described by the Navier-Stokes equations and natural
convection is ignored. In future studies, we will focus on a more realistic model of phase
change problems, specifically the Navier-Stokes-Boussinesq equations.
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